Tag Archive for: cardiac surgery

Cayden rides a horse with her father

Earliest hybrid HLHS heart surgery kids thrive 5 years later

Cayden rides a horse with her father

Five years ago, Cayden was born 6 weeks early weighing less than four pounds and at risk of dying from her critical congenital heart disease. Today, she’s a happy five-year-old who is excited to start kindergarten this fall.

Five years ago, Cayden was born 6 weeks early weighing less than four pounds and at risk of dying from her critical congenital heart disease. Today, she’s a happy five-year-old who is excited to start kindergarten this fall.

Early diagnosis of her hypoplastic right ventricle, double inlet left ventricle and critical coarctation of the aorta allowed for the team at Children’s National Hospital to create a careful plan for safe delivery and to offer an innovative hybrid HLHS surgical approach at the hospital within 24 hours after she was born.

“Truly in my own heart, I do not believe Cayden would be alive today without Dr. Yerebakan and those early hybrid procedures,” says her mom, Casey.

Can Yerebakan, M.D., associate chief of Cardiac Surgery, and Joshua Kanter, M.D., director of Interventional Cardiology, have performed more of these hybrid procedures together at Children’s National than just about anywhere else in the United States. And they are the only team in the country using a special toothpick-sized flexible stent in the ductus. They worked directly with the U.S. Food and Drug Administration to bring these right-sized tiny stents to the U.S. from Europe.

Cayden was one of the first babies to benefit from this cutting-edge approach. In the five-plus years since then, more than 50 high-risk babies, some born as early as 28 weeks of gestation or weighing as little as 2 pounds at birth, have also benefited from hybrid procedures. Soon, the team will start performing hybrid procedures with catheters only, preventing an incision in the chest. This will allow the smallest babies to get the care they need with fewer open-chest procedures.

Read the rest of Cayden’s story here.

screenshot from Congenital Heart Initiative (CHI) Registry Participant Timeline

Congenital Heart Initiative beat recruitment goals, kicked off patient-engaged studies in year three

The Congenital Heart Initiative (CHI) is celebrating its third year as the first global patient-powered registry for adults with congenital heart disease (CHD). In 2023, the registry surpassed recruitment targets and launched a data intake process to allow researchers from around the world to submit proposals for patient-centered research and programs around the critical questions for adults with CHD who had their hearts repaired in childhood.

What it means

By recruiting over 4,600 participants in all 50 states and 37 countries, the CHI is now the largest patient-powered registry for adults with congenital heart disease. This is the first time researchers and clinicians have been able to access this type of robust data set to help them better understand and address the needs of people with CHD as they continue to age. Even better, the registry’s mechanisms allow for routine feedback and input about priorities directly from the growing patient population.

“Patient-centered research organizations, not providers or universities, have the greatest ability to lead this charge and lay the foundation for future breakthroughs. The inspiring efforts of all participants to date gives me hope that the next generation of advances is within reach,” says Matthew Lewis, M.D., an adult congenital heart specialist and CHI-RON site PI from Columbia University Medical Center.

An ongoing sub-study of CHI uses PCORnet®, the National Patient-Centered Clinical Research Network, to better understand how gaps in care impact the adult patient experience with CHD. The CHI-RON study (PCORI RD-2020C2-20347) fills in these gaps by exploring three distinct data types: patient-reported outcomes, health insurance claims and electronic health records. The effort is led by Children’s National Hospital and Louisiana Public Health Institute.

This year, CHI also launched some of its first studies, focused on pregnancy, health disparities and long-term health care follow-ups. The first academic manuscripts about these studies are expected to publish in the next year.

Why it matters

Although nearly 2 million adults in the United States are living with a congenital heart defect — more adults than children in fact — it’s been historically difficult to gather data on these conditions and to identify patient needs.

As children born with CHD become adults, they have a lot of worry and uncertainty about their limitations and abilities to achieve what might be considered common adult milestones. The research made possible by this registry and the mechanisms to communicate findings to both the participants and the larger clinical community will make a big difference in quality of life and hope to provide more answers to these important questions.

The CHI related meetings have allowed a space where patients and researchers can come together to discuss research priorities.

“Once you go and look at things from the patient’s point of view, there is no going back. It is going to be something that will redefine you as a researcher and a provider,” says Rohan D’Souza, M.D., a maternal-fetal medicine specialist who is an active participant in a PCORI-funded maternal health consortium focused on reducing maternal morbidity and mortality in CHD patients (PCORI EACB-23293).

The patient benefit

Additionally, because people with CHD live all over the United States and the world, it can be hard for them to connect with each other to share common questions and experiences with clinicians and each other. The patient-driven registry engages participants and hopes to help make greater connections between people who live with CHD. A key registry partner, the Adult Congenital Heart Association (ACHA), helps create opportunities, such as virtual Coffee Hours, for people in the registry to weigh in on research priorities and share feedback about CHI’s work.

“The ACHA Cafe was born out of a need for connection,” says Aliza Marlin, who founded and organized the café project on behalf of the ACHA. “A virtual social hour, coffee optional, gave the ACHD community a safe space to come together. Using it as a conduit to the Congenital Heart Initiative gave us an empowered voice in our own futures. It’s the perfect example of social connection leading to transformative possibilities.”

What’s next

Anitha John, M.D., medical director of the Washington Adult Congenital Heart Program and an adult congenital cardiologist at Children’s National Hospital who leads CHI, says that the future looks bright for the registry and the vital information it can provide.

The new data intake process launched this year, she adds, gives anyone with an interest the ability to submit ideas for new grants, projects and studies. The team will also continue to engage with registry participants, researchers and the centers who provide care for people with CHD, all with the goal of finding more answers to the key questions about how to accomplish specific goals, such as improving mental health, the health care transition and overall quality of life for adults with CHD. For more information on how to get involved, please email ACHDresearch@childrensnational.org.

imaging of blood flow in the heart

4D flow explained: Advanced imaging measures critical blood flow characteristics of single ventricle hearts

Yue-Hin “Tom” Loke, M.D., pediatric cardiologist and director of the 3D Cardiac Visualization Laboratory at Children’s National Hospital, uses magnetic resonance imaging and software rendering to create novel 4D flow images of children with single ventricle congenital heart disease.

“My research measures the degree of vortex formation (and) the degree of energy loss in the atrium as potential measurements of heart health and uses these measurements as a potential gauge of the heart health of children born with single ventricle conditions including hypoplastic left heart syndrome,” he says. “This information can be used to guide the management of the care for children with congenital heart disease. This technology provides valuable insight into how well the heart is working, especially before the Fontan procedure.”

Learn more about the approach and how it impacts clinical care decisions in the Children’s National Heart Institute.

blood flow in the heart

High-risk newborns with hypoplastic left heart syndrome benefit from hybrid approaches

“Hybrid treatment enables even patients who are extremely high risk for surgery to have a survival advantage.” — Dr. Yerebakan.

Can Yerebakan, M.D., Ph.D., associate chief of Cardiac Surgery, and Joshua Kanter, M.D., director of Interventional Cardiology, created a multi-disciplinary team at Children’s National Hospital to perform the staged surgical approach known as the “hybrid strategy” to support the smallest, most fragile babies born with hypoplastic left heart syndrome (HLHS).

Today, the team performs more of these procedures than almost any other heart center in the United States, and they’ve successful completed it for neonates as small as 1 kg.

The approach gives high-risk babies time to recover from birth trauma and continue developing crucial organs before undergoing more traditional, more-invasive HLHS procedures that require open-heart surgery with cardiopulmonary bypass. Surgeons also have more time to make complete individualized risk assessments for next steps on each case, replacing the historical “one size fits all” operative pathway for HLHS.

Read more about the hybrid surgical strategy for HLHS.

President Joe Biden and First Lady Jill Biden tour the telehealth command center at Children's National Hospital

President Biden, First Lady tour cardiac telehealth command center

President Joe Biden and First Lady Jill Biden paid a recent visit to the Cardiac Intensive Care Unit (CICU) at Children’s National Hospital, where leaders of our cardiology services toured them through the state-of-the-art telehealth command center embedded on the unit.

The big picture

Children’s National is pioneering the integration of telemedicine into CICU care. It’s one of the few pediatric hospitals in the world to do this.

Experts liken the telehealth command center to an ‘air traffic control tower’ for the most vulnerable patients with critical heart disease. The President and First Lady saw how complex the environment is, with real-time monitoring of all 26 high-risk patients in the CICU. The system combines traditional remote monitoring, video surveillance and artificial intelligence tools.

What this means

“With this technology, we’re helping to predict and prevent major adverse events,” said Ricardo Munoz, M.D., executive director of the Telemedicine Program and chief of the Division of Critical Care Medicine at Children’s National. “For example, our neuromonitoring system can help signal an impending brain injury before it happens.”

Dr. Munoz says President Biden expressed interest in the prevention strategy of adverse events and this new approach to caring for children with critical cardiac illness.

What they’re saying

  • “It was important to share with the Biden’s that caring for these kids is a long-term endeavor, not simply a single surgery or procedure to fix their heart abnormality,” said Yves d’Udekem, M.D., Ph.D., chief of Cardiac Surgery at Children’s National. “That means making sure they have the earliest diagnoses, the best treatments from surgeons and others who truly understand their condition, and a technologically advanced, attentive place to recover and heal as safely as possible.”
  • “Many people don’t believe that ‘pediatrics’ and ‘innovation’ can co-exist,” said Annette Ansong, M.D., medical director of Outpatient Cardiology at Children’s National. “During the Biden’s visit, they were at the crux of a novel way to closely monitor some of our sickest children with the added ability to predict bad events before they happen.”

Dr. Ansong hopes bringing awareness of these cardiac capabilities to the President and First Lady is the first of many steps in seeking support for children with congenital and acquired heart disease.

animation showing MRI cardiac imaging

Advanced MRI hopes to improve outcomes for Fontan cardiac patients

animation showing MRI cardiac imaging

Chief of Cardiac Surgery Yves d’Udekem, M.D., calls this “fourth-dimensional imaging” that identifies if blood flows swiftly, smoothly, or is subjected to swirls or turbulences that impede the effectiveness of the flow.

Cardiac imaging specialists and cardiac surgeons at Children’s National Hospital are applying advanced magnetic resonance imaging visualization techniques to understand the intricacies of blood flow within the heart chambers of children with single ventricle heart defects like hypoplastic left heart syndrome (HLHS).

The data allows surgeons to make critical corrections to the atrioventricular valve — the valve between the atrium and ventricle of the heart — before a child undergoes the single ventricle procedure known as the Fontan.

Yves d’Udekem, M.D., chief of Cardiac Surgery at Children’s National, says that eliminating leakage of the atrioventricular valve before a child undergoes the Fontan may improve a child’s quality of life after Fontan and reduce the likelihood of heart failure, transplant or death long term.

The big picture

Patients with only one functioning pumping chamber, or ventricle, have been on the same treatment trajectory for decades. However, critical international efforts to collect and analyze long-term outcomes for patients with Fontan circulations have led surgeons like d’Udekem to rethink what quality of life and a positive outcome means for these patients. This includes patients in the Australia and New Zealand Fontan Registry founded by d’Udekem while at Royal Children’s Hospital in Australia.

Research based on data in the patient registries shows that atrioventricular valve leakage plays a critical role in the outcomes for patients with single ventricle defects. For children with Fontan circulation, significant leakage of this valve leads to worse outcomes.

Moving the field forward

Treatment decisions for children with single ventricle heart defects are often made based on commonly used heart imaging to determine the effect of valve leakage based on two limited, key variables: the size and the squeeze of the heart. However, this is a late effect and may not reflect the true impact on children with single ventricle hearts.

The team at Children’s National — including d’Udekem and Yue-Hin Loke, M.D., cardiac MRI specialist and director of the 3D Cardiac Visualization Laboratory — use cardiac MRI to measure the flow between heart chambers. Special software can measure abnormal flow and energy losses inside the heart, drawing on principles of physics and engineering.

“Dr. Loke not only gathers three-dimensional imaging of the heart through every heartbeat, he also gathers brand new types of colored imaging of blood flow itself, showing how effectively it is propelled by the heart,” says d’Udekem. “This ‘fourth-dimensional imaging’ identifies whether the blood flows swiftly, smoothly or whether it is subjected to swirls or turbulences that impede the effectiveness of the flow.”

Children’s National leads the way

Harnessing the visualization technology and analysis for clinical care of patients with single ventricle defects is relatively new in the United States, but it has become a vital part of the routine, clinical pre-Fontan evaluations at Children’s National.

Few locations in the United States have the mechanisms and expertise to study abnormal flow patterns in children with single ventricle defects. Children’s National collaborates with engineers to help parse the information into clear-cut takeaways for the clinical teams to use in their treatment planning.

Also, while other centers have access to this technology, not many centers have cardiac surgeons like d’Udekem who have an active interest in applying the key learnings from this data as quickly as possible to improve outcomes for patients.

Loke describes the collaboration at Children’s National as a “unique crossroads of clinical need and clinical interest to help these kids in very bold ways.”

What’s next

d’Udekem and Loke are engaged in a comprehensive project that analyzes the impact of atrioventricular valve leakage to ensure that the flow inside the heart is optimized before a Fontan procedure.

The research will map the efficiency of blood flow between the atrium and ventricle before surgery and after a surgical correction is made. The goal is to test the hypothesis that better atrioventricular circulation before Fontan can make a big difference for patients’ long-term quality of life and overall health.

Map showing CHI Registry sign-ups through December 2022

Congenital Heart Initiative celebrates global reach in first two years

The first patient-powered registry for adults living with congenital heart disease (CHD) — the Congential Heart Initiative (CHI) — celebrates a major milestone this month. In the two years since it was launched in December 2020, the registry has enrolled more than 3,227 adults with CHD from all 50 states and 28 countries.

Why it matters

Although nearly 2 million adults in the United States are living with a congenital heart defect — more adults than children in fact — it’s been historically difficult to gather data on these conditions and to identify patient needs.

“We developed this registry together with numerous patients and providers so it could become a platform for increasing our knowledge and improving care,” says Anitha John, M.D., medical director of the Washington Adult Congenital Heart Program and an adult congenital cardiologist at Children’s National Hospital, who helped drive the registry’s creation. “We want it to become a resource for patients and researchers, a place where they can learn more about what it means for adults who had their hearts repaired in childhood to live a long, healthy life.”

The patient benefit

As the treatments for children with CHDs have improved, people born with them are living longer and longer. That means that as they become adults, they have a lot of worry and uncertainty about their limitations and abilities to achieve what might be considered common adult milestones.

“Over the past two years, more than 3,000 adult congenital heart disease (ACHD) patients from around the world, including myself, have worked to support ACHD research by participating in the Congenital Heart Initiative (CHI),” says Scott Leezer, a single-ventricle heart defect patient and co-leader of research and advocacy for the Initiative. “This selfless and simple effort has produced an investment in improving our collective understanding of adult patients living with CHD. We hope these investments will pay dividends in helping guide new research strategies for future generations of CHD patients.”

Participants in the registry receive regular newsletters, highlighting findings and providing access to patient specific resources including content from the Adult Congenital Heart Association (ACHA), a key partner. The ACHA collaboration has also given registry participants the opportunity to interact with other people – a key request identified as important based on input from people who have already registered.

What’s unique

“There is no ’one-size-fits-all’ answer for adults with CHD,” Dr. John adds.

“While other CHD registries exist, they are provider-based and not patient-powered,” said John. “The CHI registry is driven by patients, supporting research but also providing information based on what is important according to the people with CHD themselves.”

What’s next

A sub-study of the CHI will use PCORnet®, the National Patient-Centered Clinical Research Network, to better understand how gaps in care impact the adult patient experience with CHD. The CHI-RON study, which stands for Congenital Heart Initiative: Redefining Outcomes and Navigation to Adult-Centered Care, will be the first of its kind to fill in these knowledge gaps by exploring three distinct types of data at once: patient reported outcomes, health insurance claims and electronic health records (EHR). The effort is led by Children’s National and Louisiana Public Health Institute.

“PCORnet is a fantastic resource to help us fully understand the impact of gaps in CHD care,” said Tom Carton, dual-principal investigator of CHI-RON and chief data officer at the Louisiana Public Health Institute. “It is essentially turbo-charging our patient-reported data with two additional layers of insights from claims and EHRs, unlocking answers that would be impossible to achieve in isolation.”

In terms of research, the CHI now has enough participants to allow researchers to complete some important studies about pregnancy, mental health and long-term health care follow ups, all of which will kick off within the next year. The research teams hope to engage centers across the United States to better determine the needs of individual ACHD centers and to understand how the CHI can help with these needs.

PeriPath surgery

NIH awards $1.8 million to trial pacemaker delivery system for children

PeriPath pacemaker

The PeriPath access port makes it possible for pacing and defibrillating leads to be placed in the smallest children through holes the size of a straw.

A $1.8 million Small Business Innovation Research (SBIR) grant from the National Institutes of Health (NIH) is funding the first clinical trial of a novel device called PeriPath. The device makes it possible for pacing and defibrillating leads (or wires) to be placed in the smallest children through holes the size of a straw, eliminating thoracotomy or sternotomy procedures for children who are too small for transvenous implantation.

Even the tiniest pacemakers and defibrillators on the market today aren’t small enough for infants and young children with heart rhythm abnormalities. Innovating smaller devices, including adapting current technology like the Medtronic Micra for pediatric use, is a good start but won’t be enough to eliminate some of the challenges for these patients. When a newborn or young child needs any pacemaker or defibrillator, they face open chest surgery. Their arteries and veins are just too small for even the smallest size transvenous pacemaker catheter.

The research goal

Charles Berul, M.D., division chief of Cardiology and co-director of the Children’s National Heart Institute, partnered with engineers in the Sheikh Zayed Institute for Pediatric Surgical Innovation at Children’s National Hospital to develop and test a first-of-its-kind minimally invasive pericardial access tool. The tool allows doctors to place pacing and defibrillation leads to the epicardial surface of the heart under direct visualization from an endoscope.

The team hypothesizes that this tool will allow for pacing and defibrillation therapy to be delivered through a single small port inserted through the skin that is about the size of a drinking straw.

Why it matters: Less pain, shorter and fewer surgeries

If successful, the device will eliminate the need for open chest surgery in patients who aren’t candidates for transvenous placement. The ability to place these leads percutaneously should:

  • Reduce pain and infection risk.
  • Decrease procedure times.
  • Minimize surgery complications that arise from open surgery.
  • Improve better visualization for pericardial punctures.
  • Allow other novel therapies such as epicardial ablation or, in the future, even drug/gene delivery into the pericardial space.

Any implanted pacemaker or defibrillator must be replaced every 5-10 years. A young child in critical need of such devices could face surgeries 10 or more times to replace the device and/or leads.

Pre-clinical testing shows early data that this percutaneous approach is as safe and effective as an open surgical technique, although it remains in early-stage evaluation.

What’s next

The NIH SBIR funding will allow the research team to assess long-term safety and efficacy and commercialize the PeriPath tool. Next steps are to:

  • Refine the design of PeriPath for production manufacturing, integrate testing protocols into a Quality Management System and conduct a pilot verification build. Success is defined as manufacturing production devices that pass 510(k) verification and validation testing.
  • Demonstrate substantial equivalence to predicate trocars through performance and handling validation testing using PeriPath to implant an epicardial lead in a pediatric simulator. If successful, the team will demonstrate equivalence and obtain investigational device exception (IDE).
  • In the latter part of the plan, to perform a first in human feasibility clinical study using PeriPath to implant a commercial pacemaker lead with institutional review board (IRB) approval in infants at Children’s National.

Bottom line

Dr. Berul says, “This research could have a transformative impact on current clinical practice by converting an open surgical approach to a minimally invasive percutaneous procedure.”

He also notes that while the study design focuses on the unique needs of infants and children with congenital heart disease – who are the primary focus of the device – the results of the trial may benefit thousands of adult patients who need pacemakers or defibrillators but who are not candidates for the transvenous placement.

echocardiogram

AI may revolutionize rheumatic heart disease early diagnosis

echocardiogram

Researchers at Children’s National Hospital have created a new artificial intelligence (AI) algorithm that promises to be as successful at detecting early signs of rheumatic heart disease (RHD) in color Doppler echocardiography clips as expert clinicians.

Researchers at Children’s National Hospital have created a new artificial intelligence (AI) algorithm that promises to be as successful at detecting early signs of rheumatic heart disease (RHD) in color Doppler echocardiography clips as expert clinicians. Even better, this novel model diagnoses this deadly heart condition from echocardiography images of varying quality — including from low-resource settings — a huge challenge that has delayed efforts to automate RHD diagnosis for children in these areas.

Why it matters

Current estimates are that 40.5 million people worldwide live with rheumatic heart disease, and that it kills 306,000 people every year. Most of those affected are children, adolescents and young adults under age 25.

Though widely eradicated in nations such as the United States, rheumatic fever remains prevalent in developing countries, including those in sub-Saharan Africa. Recent studies have shown that, if detected soon enough, a regular dose of penicillin may slow the development and damage caused by RHD. But it has to be detected.

The hold-up in the field

Diagnosing RHD requires an ultrasound image of the heart, known as an echocardiogram. However, ultrasound in general is very variable as an imaging modality. It is full of texture and noise, making it one of the most challenging to interpret visually. Specialists undergo significant training to read them correctly. However, in areas where RHD is rampant, people who can successfully read these images are few and far between. Making matters worse, the devices used in these low resource settings have their own levels of varying quality, especially when compared to what is available in a well-resourced hospital elsewhere.

The research team hypothesized that a novel, automated deep learning-based method might detect successfully diagnose RHD, which would allow for more diagnoses in areas where specialists are limited. However, to date, machine learning has struggled the same way the human eye does with noisy ultrasound images.

Children’s National leads the way

Using approaches that led to successful objective digital biometric analysis software for non-invasive screening of genetic disease, researchers at the Sheikh Zayed Institute for Pediatric Surgical Innovation, including medical imaging scientist Pooneh Roshanitabrizi, Ph.D., and Marius Linguraru, D.Phil., M.A., M.Sc., principal investigator, partnered with clinicians from Children’s National Hospital, including Craig Sable, M.D., associate chief of Cardiology and director of Echocardiography, and cardiology fellow Kelsey Brown, M.D., who are heavily involved in efforts to research, improve treatments and ultimately eliminate the deadly impacts of RHD in children. The collaborators also included cardiac surgeons from the Uganda Heart Institute and cardiologists from Cincinnati Children’s Hospital Medical Center.

Dr. Linguraru’s team of AI and imaging scientists spent hours working with cardiologists, including Dr. Sable, to truly understand how they approach and assess RHD from echocardiograms. Building the tool based on that knowledge is why this tool stands apart from other efforts to use machine-learning for this purpose. Orienting the approach to the clinical steps of diagnosis is what led to the very first deep learning algorithm that diagnoses mild RHD with similar success to the specialists themselves. After the platform was built, 2,136 echocardiograms from 591 children treated at the Uganda Heart Institute fed the learning algorithm.

What’s next

The team will continue to collect data points based on clinical imaging data to refine and validate the tool. Ultimately, researchers will look for a way that the algorithm can work directly with ultrasound/echocardiogram machines. For example, the program might be run through an app that sits on top of an ultrasound device and works on the same platform to communicate directly with it, right in the clinic. By putting the two technologies together, care providers on the ground will be able to diagnose mild cases and prescribe prophylactic treatments like penicillin in one visit.

The first outcomes from the program were showcased in a presentation by Dr. Roshanitabrizi at one of the biggest and most prestigious medical imaging and AI computing meetings — the 25th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI).

Baby on ventilator

JAMA study shows no benefit to nitric oxide in cardiopulmonary bypass for young children

Baby on ventilator

An international clinical trial showed that nitric oxide doesn’t help kids recover faster from cardiac surgery with cardiopulmonary bypass.

A study published in JAMA finds that the practice of introducing nitric oxide into the gas flow of the cardiopulmonary bypass oxygenator does not improve recovery or reduce the amount of time a child under age 2 needs to be on a ventilator after cardiac surgery.

Children’s National Cardiac Surgery Chief Yves d’Udekem, M.D., Ph.D., co-authored the international study, which is already leading to changes in how hospitals around the world care for children with congenital heart disease (CHD).

The results are from a double-blind, randomized controlled trial with more than 1,200 participants across six centers in Australia, New Zealand and the Netherlands. The research team found that children under age 2 who had cardiac surgery with cardiopulmonary bypass spent about the same number of days on ventilators after surgery, whether nitric oxide was used during surgery or not.

“These findings do not support the use of nitric oxide delivered into the cardiopulmonary bypass oxygenator during heart surgery,” the authors conclude.

What this means

Previous smaller, single center studies had shown early indications that nitric oxide delivered during heart surgery could possibly improve recovery and shorten the need for respiratory support after surgery by reducing the occurrence of low cardiac output syndrome in children under age 2.

This large-scale international trial showed that this is not the case.

Why it matters

Based on these earlier studies, many hospitals in the United States and around the world who perform critical heart surgery on young children with congenital heart disease had already started to incorporate nitric oxide into cardiopulmonary bypass. This new, more robust data is helping hospitals reassess this practice. Many are stopping it altogether based on the findings.

This work is an important reminder of how valuable well-designed, large-scale, double-blind, randomized, controlled trials are to defining, improving and refining best practices in clinical care.

Also, trials of this size and significance in pediatrics generally, and CHD specifically, take a very long time to complete, if they are ever able to be completed at all. That’s because the number of children with these conditions is relatively small and spread out, even though CHD is the most common birth defect in the world. The authors say it is a major accomplishment to have completed a trial of this size and  in such a short time. Even better, the data gathered from this sample of patients from across international borders can be used to provide even more insights into how best to care for these children as they continue to grow and develop.

caspase molecule

Caspases may link brain cell degeneration and cardiac surgery

caspase molecule

The review summarizes both the known physiological roles of caspases as well as some of the well-characterized neurotoxic effects of anesthetics in pre-clinical models.

A review article in the journal Cell Press: Trends in Neuroscience outlines the wide variety of cellular signaling roles for caspase proteins — a type of cellular enzyme best known for its documented role in the natural process of cell death (apoptosis). The authors, including Nemanja Saric, Ph.D., Kazue Hashimoto-Torii, Ph.D., and Nobuyuki Ishibashi, M.D., all from Children’s National Research Institute, pay particular attention to what the scientific literature shows about caspases’ non-apoptotic roles in the neurons specifically. They also highlight research showing how, when activated during a cardiac surgery with anesthesia and cardiopulmonary bypass, these enzymes may contribute to the degeneration of brain cells seen in young children who undergo heart surgery for critical congenital heart defects (CHDs).

Why it matters

The review summarizes both the known physiological roles of caspases as well as some of the well-characterized neurotoxic effects of anesthetics in pre-clinical models.

The authors propose that these non-apoptotic activities of caspases may be behind some of the adverse effects on the developing brain related to cardiac surgery and anesthesia. Those adverse effects are known to increase risk of behavioral impairments in children with congenital heart disease who underwent cardiac surgery with both anesthesia and cardiopulmonary bypass at a very young age.

This work is the first to propose a possible link between developmental anesthesia neurotoxicity and caspase-dependent cellular responses.

The patient benefit

Better understanding of the time and dose-dependent effects of general anesthetics on the developing brain, particularly in children who have genetic predispositions to conditions such as CHDs, will help researchers understand their role (if any) in behavioral problems often encountered by these patients after surgery.

If found to be a contributing factor, perhaps new therapies to mitigate this caspase activity might be explored to alleviate some of these adverse effects on the developing brain.

What’s next?

The authors hope to stimulate more in-depth research into caspase signaling events, particularly related to how these signaling events change when an anesthetic is introduced. Deeper understanding of how anesthetics impact caspase activation in the developing brain will allow for better assessments of the risk for children who need major surgery early in life.

Children’s National leads the way

Children’s National Hospital leads studies funded by the U.S. Department of Defense to better understand how these other roles of caspases, which until now have not been well-documented, may contribute to brain cell degeneration when activated by prolonged anesthesia and cardiopulmonary bypass during cardiac surgery for congenital heart disease.

human heart

Heart anatomy determines outcomes of valve repair for single ventricle hearts after Fontan procedure

human heart

The data shows that the valve repair surgery itself doesn’t increase the likelihood of heart transplant or death. Instead, it is only those with right ventricle dominant heart function who are significantly more likely to have such a negative outcome.

A new study in the Journal of the American College of Cardiology finds the anatomy of the heart is a key predictor of how efforts to repair atrioventricular valve regurgitation — or a leaky heart valve — will impact children with single ventricle heart defects who have undergone a Fontan surgical procedure.

The study uses retrospective data from the largest database of patients who have had the Fontan procedure, the Australia and New Zealand Fontan Registry. The data shows that the valve repair surgery itself doesn’t increase the likelihood of heart transplant or death. Instead, it is only those with right ventricle dominant heart function who are significantly more likely to have such a negative outcome.

It was conducted by cardiac surgeons at Royal Children’s Hospital, including Yves d’Udekem, M.D., Ph.D., who is now chief of cardiac surgery at Children’s National Hospital. Dr. d’Udekem presented the findings at the recent American College of Cardiology Scientific Sessions in Washington, D.C.

What this means

Until now, it was unclear why patients who had undergone a Fontan heart procedure were more likely to need a heart transplant or die after they also underwent surgery to repair atrioventricular valve regurgitation. This type of leaking valve is common in patients who have undergone a Fontan procedure, and it can also be dangerous if left untreated. But because existing data showed poor outcomes following atrioventricular valve repair, it was considered high risk to perform this repair on children with Fontan circulation.

However, this study drilled down into the outcomes of atrioventricular valve repair for these patients and found that it isn’t the surgery that leads to a poor outcome. Instead, it’s a specific anatomic feature — having a dominant right ventricle — that is predictive of the outcome.

Up to now, it was unclear whether surgery should be offered to all patients with a Fontan circulation who had leaky atrioventricular valves. This study shows that things are different for patients with dominant left or dominant right ventricle. For patients with dominant right ventricle, leaving this regurgitation not repaired is much more likely to lead to death and transplantation, and these patients should be operated at the earlier stages of the deficiency of their valves.

The hold-up in the field

One of the biggest challenges to identifying evidence-based best practices for children born with single ventricle heart defects, which are critical congenital heart defects, is the small number of patients at any one institution each year. The Australia and New Zealand Fontan Registry, founded by Dr. d’Udekem and the team at Royal Children’s Hospital, forms one of the world’s longest standing databases of patient information, including outcomes, for this population.

The patient benefit

This data can help doctors and families make the best care decisions possible for children with single ventricle defects by understanding how each child’s unique anatomy may impact how their heart will respond to treatment.

What’s next

Dr. d’Udekem hopes results from this study will improve how doctors strategize and recommend (or not) surgical repair of atrioventricular valve regurgitation. Additionally, the study shows the value of centralized patient registries and data for informing the standard of care. Similar registries across the world may promise to provide even greater insight into the long-term outcomes for patients born with these congenital heart conditions.

doctors doing heart surgery

Innovative hypoplastic left heart syndrome treatment offers hope for highest risk children

doctors doing heart surgery

A recently published study in the Journal of Thoracic and Cardiovascular Surgery is a unique report of outcomes for infants treated using a staged surgical approach such as the “hybrid strategy.”

Adopting a staged surgical strategy as the standard of care for medically fragile children with hypoplastic left heart syndrome (HLHS), a critical congenital heart defect, shows promise as an alternative care path for those who may not be ideal candidates for open heart surgery immediately after birth.

A recently published study in the Journal of Thoracic and Cardiovascular Surgery is a unique report of outcomes for infants treated using a staged surgical approach such as the “hybrid strategy.” This initially less-invasive technique involves the placement of small bands on both lung vessels, with or without the placement of a stent on the ductus arteriosus, as the first stage in surgical palliation.

The study reports results from applying this hybrid approach as a bridge to either a delayed Norwood operation or a comprehensive stage II operation. Over 3.5 years, 30 patients with HLHS were considered very high risk for surgery based on their preoperative risk factors such as low birth weight and/or gestational age, shock, and other medical conditions. During that time, the overall survival rate for this group was 70 percent. In the past, using traditional approaches, the survival chance for infants with HLHS and these high-risk factors was extremely limited.

Why it matters

This new surgical strategy gives the baby extra time to grow and allows doctors to collect detailed analysis of potentially treatable accompanying conditions. Furthermore, high-risk babies recover from birth trauma and have the chance to continue developing crucial organs before undergoing more traditional procedures for HLHS that require open-heart surgery with cardiopulmonary bypass. It also allows surgeons to make an individualized risk assessment for which surgical step should be taken next, replacing the historical “one size fits all” operative pathway for HLHS. The traditional operative pathway for HLHS is a series of three open-heart surgical procedures: the traditional Norwood operation, the bidirectional Glenn and the Fontan.

Advancing the standard of care for HLHS patients beyond the current best practice approach to improve outcomes for more newborns has been slow for several reasons, the authors note. One main reason is that performing a hybrid procedure on these particularly fragile infants requires advanced devices and additional technical expertise. As one example, the authors note that until recently, there was no stent available in the appropriate sizes and with the right material properties to work within such a tiny ductus arteriosus. However, case-by-case expanded access approval by the FDA has brought a new stent designed specifically for this use from Europe to the U.S. for the first time.

What they’re saying

“The Norwood operation revolutionized the care of children with HLHS in the 1980s and gave them a chance for survival,” says Can Yerebakan, M.D., senior author of the study and cardiac surgeon at Children’s National who oversees the hybrid program alongside Joshua Kanter, M.D., director of Interventional Cardiology. “This staged decision-making strategy may give the same kind of hope and offers an alternative pathway of care for high-risk patients who would otherwise have a dismal prognosis and extremely low chance   of survival in the newborn period. The success in these cases is, however, based on a multidisciplinary team approach.”

What’s next?

“This strategy not only shows promise for improved short-term survival in high-risk patients, but also boasts the potential to convert some patients to two-chamber circulation instead of one, which our team has done with 100% survival,” says Nicolle Ceneri, M.D., first author of the study and pediatric resident at Children’s National. “As time goes on, we are eager to discover how the use of this approach during such a tenuous period impacts the long-term outcomes for these children and their quality of life.”

Read about the smallest baby born with HLHS to survive to 18 months, who was treated using this hybrid surgical approach at Children’s National Hospital.

Dr. Sable performing an echocardiogram in Uganda

Penicillin slows impacts of rheumatic heart disease in Ugandan children

Dr. Sable performing an echocardiogram in Uganda

“We know from previous studies that though it is not always well-documented, sub-Saharan Africa continues to have some of the highest numbers of people with rheumatic heart disease and the highest numbers of people dying from it,” said Craig Sable, M.D., associate chief of Cardiology at Children’s National Hospital and co-senior author of the study. “This study is the first large-scale clinical trial to show that early detection coupled with prophylactic treatment of penicillin is feasible and can prevent rheumatic heart disease from progressing and causing further damage to a child’s heart.”

Penicillin, a widely available and affordable antibiotic, may be one key to turning the tide on the deadly impacts of rheumatic heart disease (RHD) for children in developing nations. This according to the new findings of a large-scale, randomized controlled trial completed in Uganda and published in the New England Journal of Medicine.

The most devastating feature of RHD is severe heart valve damage that is caused by rheumatic fever — a condition that results from the body’s immune system trying to fight poorly treated, repeat infections from streptococcus bacteria, also known as strep throat. Though widely eradicated in nations such as the United States due to the swift detection and treatment of strep throat, rheumatic fever remains prevalent in developing countries including those in sub-Saharan Africa. Current estimates are that 40.5 million people worldwide live with rheumatic heart disease, and that it kills 306,000 people every year. Most of those affected are children, adolescents and young adults under age 25.

“We know from previous studies that though it is not always well-documented, sub-Saharan Africa continues to have some of the highest numbers of people with rheumatic heart disease and the highest numbers of people dying from it,” said Craig Sable, M.D., associate chief of Cardiology at Children’s National Hospital and co-senior author of the study. “This study is the first large-scale clinical trial to show that early detection coupled with prophylactic treatment of penicillin is feasible and can prevent rheumatic heart disease from progressing and causing further damage to a child’s heart.”

The study was led by an international panel of pediatric cardiac experts from institutions including Children’s National, Cincinnati Children’s Medical Center, the Uganda Heart Institute and Murdoch Children’s Research Institute in Melbourne, Australia.

“Our study found a cheap and easily available penicillin can prevent progression of latent rheumatic heart disease into more severe, irreversible valve damage that is commonly seen in our hospitals with little or no access to valve surgery,” said co-lead author Emmy Okello, M.D., chief of Cardiology at the Uganda Heart Institute.

To Andrea Beaton, M.D., associate professor of Cardiology at Cincinnati Children’s and co-lead author, this is the first contemporary randomized controlled trial in rheumatic heart disease. “The results are incredibly important on their own, but also demonstrate that high-quality clinical trials are feasible to address this neglected cardiovascular disease,” she said.

Beaton et al. named the trial Gwoko Adunu pa Lutino (GOAL), which means “protect the heart of a child.” The study enrolled 818 Ugandan children and adolescents ages 5 to 17 years old who were diagnosed with latent rheumatic heart disease to see if an injection of penicillin was effective at preventing their heart condition from worsening.

“There are many challenges with recruitment and retention of trial participants in areas like our study region in Uganda,” said Dr. Sable. “But it is critical to work together and overcome barriers, because we must study these treatments in the people most affected by the condition to understand how they, and others like them, may benefit from the findings.”

Of the 799 participants who completed the trial, the group receiving a prophylactic injection of penicillin (399 volunteers) had three participants show evidence of worsened rheumatic heart disease on repeat echocardiogram after two years. In contrast, 33 of the 400 volunteers in the control group, who received no treatment, showed similar progression on echocardiogram results.

Professor Andrew Steer, who is theme director of Infection and Immunity at Murdoch Children’s Research Institute in Melbourne and who served as senior author of the study, said screening for latent rheumatic heart disease was critical to stop progression because heart valve damage was largely untreatable. “Most patients are diagnosed when the disease is advanced and complications have already developed. If patients can be identified early, there is an opportunity for intervention and improved health outcomes.”

The results were shared in a special presentation at the American Heart Association’s Scientific Sessions on the same day that the findings were published in the New England Journal of Medicine.

The trial was supported by the Thrasher Pediatric Research Fund, Gift of Life International, Children’s National Hospital Foundation: Zachary Blumenfeld Fund, Children’s National Hospital Race for Every Child: Team Jocelyn, the Elias/Ginsburg Family, Wiley-Rein LLP, Phillips Foundation, AT&T Foundation, Heart Healers International, the Karp Family Foundation, Huron Philanthropies and the Cincinnati Children’s Hospital Heart Institute Research Core.

Learn more about the challenges of rheumatic heart disease in sub-Saharan Africa and other developing parts of the world through the Rheumatic Heart Disease microdocumentary series:

brain network illustration

Cardiopulmonary bypass may cause significant changes to developing brain and nerve cells

brain network illustration

Cardiopulmonary bypass, more commonly known as heart-and-lung bypass, has some unique impacts on the creation and growth of brain cells in the area of a child’s brain called the subventricular zone (SVZ), according to a study in the Annals of Neurology. The SVZ is a critical area for the growth and migration of neurons and nerve cells called neuroblasts, both of which ultimately contribute to the proper development of key brain structures and functions during the early years of life.

The findings, from a study conducted in the Cardiac Surgery Research Laboratory at Children’s National Hospital, provide new insight into the cellular impacts of the cardiopulmonary bypass machine on brain growth and development for newborn infants with congenital heart disease. They will have an important role in the refinement of strategies to help protect the fragile brains of children who require lifesaving cardiac surgery with cardiopulmonary bypass immediately after birth.

Specifically, the research team found that during cardiopulmonary bypass:

  • Creation of neurons (neurogenesis) in the neonatal and infant subventricular zone is altered.
  • Migration of nerve cells, called neuroblasts, to the frontal lobe is potentially disrupted.
  • Changes to the growth and movement of neurons in the SVZ are prolonged.
  • Cortical development and expansion is impaired.
  • Specific types of neurons found only in the brain and spinal cord, called interneurons, are also affected.

The study uses an innovative pre-clinical model of the developing brain that is more anatomically and physiologically similar to human neonates and infants than those used in prior studies and in most neurological laboratory-based research.

Cardiopulmonary bypass is one of several key factors thought to cause children with congenital heart disease to sometimes demonstrate delays in the development of cognitive and motor skills. These disabilities often persist into adolescence and adulthood and can ultimately represent long-term neurocognitive disabilities. It is also believed that genetic factors, abnormal blood flow to the brain while in utero or low cardiac output after surgical procedures on the heart may contribute to these challenges.

“Unraveling cellular and molecular events during surgery using this preclinical model will allow us to design therapeutic approaches that can be restorative or reparative to the neurogenic potential of the neuronal stem precursor cells found in the subventricular zone of the neonatal or infant brain,” says Nobuyuki Ishibashi. M.D., Foglia-Hills Professor of Pediatric Cardiac Research, director of the Cardiac Surgery Research Laboratory at Children’s National and senior author on the study. “In particular, previous studies in our laboratory have shown improvement in the neurogenic activities of these precursor cells when they are treated with mesenchymal stromal cells (MSCs).”

The findings from this study further support the work already underway in the NIH-funded MeDCaP clinical trial for neonates and infants undergoing cardiac surgery using the cardiopulmonary bypass machine. That trial uses the heart and lung machine itself to deliver MSCs directly into the main arteries that carry blood to the brain.

cardiology timeline

History of cardiac care for children in Washington, D.C.

An article published in the journal Cardiology in the Young provides a comprehensive timeline mapping the growth trajectory of cardiology and cardiac surgery at one of the nation’s oldest children’s hospitals — Children’s National Hospital in Washington, D.C.

Cardiology and cardiac surgery at Children’s National have grown exponentially in the nearly 80 years since the first heart-related surgery was recorded in 1942. Today, aligned with the growth trajectory of the hospital as it has evolved to become one of the top-ranked pediatric institutions in the country, the Children’s National Heart Institute has also evolved. In the last year, this included welcoming new Cardiac Surgery Chief, Yves d’Udekem, M.D., Ph.D.

The authors, Gerard Martin, M.D., M.A.C.C., C.R. Beyda Professor of Cardiology, and Richard Jonas, M.D., emeritus chief of Cardiac Surgery, both from Children’s National Hospital, note that this history of care has laid the groundwork for the Heart Institute to continue growing and caring for more neonates, infants, children and adults with congenital heart disease in the entire mid-Atlantic region and around the world.

cara timeline mapping the growth of cardiac care for neonates, children and adults at Children’s National Hospital

The article features a timeline mapping the growth of cardiac care for neonates, children and adults at Children’s National Hospital.

Ugandan boy in hospital bed

Acute rheumatic fever often goes undiagnosed in sub-Saharan Africa

Ugandan boy in hospital bed

Despite low numbers of documented acute rheumatic fever cases in sub-Saharan Africa, the region continues to show some of the highest numbers of people with, and dying from, rheumatic heart disease, the serious heart damage caused by repeat instances of rheumatic fever.

Despite low numbers of documented acute rheumatic fever cases in sub-Saharan Africa, the region continues to show some of the highest numbers of people with, and dying from, rheumatic heart disease, the serious heart damage caused by repeat instances of rheumatic fever. A population-based study in the Lancet Global Health collected evidence of acute rheumatic fever in two areas of Uganda, providing the first quantifiable evidence in decades that the disease continues to take a deadly toll on the region’s people.

“These findings matter. Access to life-saving heart surgery is only available to a very small fraction of the hundreds of thousands of patients in Africa who have irreversible heart damage from rheumatic heart disease,” says Craig Sable, M.D., associate chief of Cardiology at Children’s National Hospital and one of the senior authors of the study. “It’s time to focus upstream on capturing these conditions sooner, even in low-resource settings, so we can implement life-sustaining and cost-saving preventive treatments that can prevent further heart damage.”

The authors, who hail from Uganda and several institutions around the United States, including Children’s National and Cincinnati Children’s Hospital Medical Center, note this is the first study to use an active case-finding strategy for diagnosing acute rheumatic fever. They also note that raising awareness in the community and among its healthcare workers while also finding new ways to overcome some of the diagnostic challenges in these low-resource settings greatly improved diagnosis and treatment of the condition.

The study also described clinical characteristics of children ages 5 to 14 presenting with both definitive and possible acute rheumatic fever, providing further clinical data points to help healthcare workers in these communities differentiate between this common infection and some of the other frequently diagnosed conditions in the region.

“With this study, we can now confidently dismiss the myth that acute rheumatic fever is rare in Africa,” the authors write. “It exists at elevated rates in low-resource settings such as Uganda, even though routine diagnosis remains uncommon. While these incidence data have likely underestimated the cases of acute rheumatic fever in two districts in Uganda, they show that opportunity exists to improve community sensitization and healthcare worker training to increase awareness of acute rheumatic fever. Ultimately this leads to diagnosing more children with the condition before they develop rheumatic heart disease, so that they can be offered secondary prophylaxis with penicillin.”

Children with suspected acute rheumatic fever participated in this population-based study. Data was collected over 12 months in Lira district (January 2018 to December 2018) and over nine months (June 2019 to February 2020) in Mbarara district.

Follow-up of children diagnosed in this study will provide more data on the outcomes of acute rheumatic fever, including a better understanding of the risk for a child to develop rheumatic heart disease.

This work was funded by the American Heart Association Children’s Strategically Focused Research Network Grant #17SFRN33670607 and by DEL‐15‐011 to THRiVE‐2 and General Electric.

Learn more about the challenges of rheumatic heart disease in sub-Saharan Africa and other developing parts of the world through the Rheumatic Heart Disease microdocumentary series:


video still of Dr. Yves d'Udekem

A conversation with Yves d’Udekem, M.D., Ph.D.

Dr. Yves d’Udekem discusses his background, the history of pediatric cardiovascular surgery and his vision for the future.

pregnant hispanic woman

Significant health disparities in detection of critical congenital heart disease

pregnant hispanic woman

Mothers who are Hispanic or who come from rural or low socioeconomic status neighborhoods are less likely to have their child’s critical heart condition diagnosed before birth, according to a new study in the journal Circulation.

Mothers who are Hispanic or who come from rural or low socioeconomic status neighborhoods are less likely to have their child’s critical heart condition diagnosed before birth, according to a new study in the journal Circulation.

This is the largest and most geographically diverse study of these challenges to date. The study compared patient data of more than 1,800 children from the United State and Canada diagnosed with two of the most common, and the most serious, critical congenital heart defects: hypoplastic left heart syndrome (HLHS), when the left side of the heart is not developed completely, and transposition of the great arteries (TGA), when the two main arteries that carry blood away from the heart are reversed.

“The earlier we diagnose a heart defect, especially a serious one such as HLHS or TGA, the sooner we can make a plan for how to safely deliver the infant and reduce the impacts of that heart defect on the rest of the body,” says Anita Krishnan, M.D., first author and cardiologist at Children’s National Hospital. “Early detection and diagnosis of these conditions is crucial to ensuring the best possible outcome for the child, especially in protecting the brain.”

Even when infants’ heart defects were detected before birth, babies from neighborhoods with lower socioeconomic status were detected later in gestation than others.

“The COVID-19 pandemic has brought the idea of significant disparities in health care to the forefront of our national attention,” says Dr. Krishnan. “Even though many health care providers have seen these inequities firsthand in their own clinical experience, it was still surprising to see the strength of the association between socioeconomic position and the care available to mothers.”

In both the United States and Canada, expectant mothers are first screened as part of routine prenatal care in the first trimester for early signs of congenital heart defects and other genetic disorders via blood screen and ultrasound. In the second trimester, a comprehensive ultrasound evaluation for structural anomalies is routine. If any issues are detected, the mother is referred for a fetal echocardiogram and counseling.

The authors suggest that decreased linkages between neighborhoods and people identified in the study and subspecialists could contribute to the disparities found in the study.

“Prenatal detection rates may improve if we are able to leverage outreach and telehealth to strengthen the relationships between these specialties and the groups we identified in the study,” Dr. Krishnan says.

The study included a total of 1,862 patients, including 1,171 patients with HLHS (91.8% prenatally diagnosed) and 691 with TGA (58% prenatally diagnosed). The study group included prenatally diagnosed fetuses with HLHS or TGA and postnatally diagnosed infants less than two months old with HLHS or TGA. Data was collected from institutions participating in the Fetal Heart Society, a non-profit 501(c) multicenter research collaborative with a mission to advance the field of fetal cardiovascular care and science. Mary Donofrio, M.D., director of Prenatal Cardiology at Children’s National, is society president and served as a senior author on this study.

Read the AHA’s press release: Prenatal detection of heart defects lower in rural, poor areas and among Hispanic women.

illustration of brain with stem cells

Innovative phase 1 trial to protect brains of infants with CHD during and after surgery

A novel phase 1 trial looking at how best to optimize brain development of babies with congenital heart disease (CHD) is currently underway at Children’s National Hospital.

Children with CHD sometimes demonstrate delay in the development of cognitive and motor skills. This can be a result of multiple factors including altered prenatal oxygen delivery, brain blood flow and genetic factors associated with surgery including exposure to cardiopulmonary bypass, also known as the heart lung machine.

This phase 1 trial is the first to deliver mesenchymal stromal cells from bone marrow manufactured in a lab (BM-MSC) into infants already undergoing cardiac surgery via cardiopulmonary bypass. The hypothesis is that by directly infusing the MSCs into the blood flow to the brain, more MSCs quickly and efficiently reach the subventricular zone and other areas of the brain that are prone to inflammation. The trial is open to eligible patients ages newborn to six months of age.


Learn more in this overview video.

The trial is part of a $2.5 million, three-year grant from the National Institutes of Health (NIH) led by Richard Jonas, M.D.Catherine Bollard, M.B.Ch.B., M.D., and Nobuyuki Ishibashi, M.D.. The project involves collaboration between the Prenatal Cardiology program of Children’s National Heart Institute, the Center for Cancer and Immunology Research, the Center for Neuroscience Research and the Sheikh Zayed Institute for Pediatric Surgical Innovation.

“NIH supported studies in our laboratory have shown that MSC therapy may be extremely helpful in improving brain development in animal models after cardiac surgery,” says Dr. Ishibashi. “MSC infusion can help reduce inflammation including prolonged microglia activation that can occur during surgery that involves the heart lung machine.”

Staff from the Cellular Therapy Laboratory, led by director Patrick Hanley, Ph.D., manufactured the BM-MSC at the Center for Cancer and Immunology Research, led by Dr. Bollard.

The phase 1 safety study will set the stage for a phase 2 effectiveness trial of this highly innovative MSC treatment aimed at reducing brain damage, minimizing neurodevelopmental disabilities and improving the postoperative course in children with CHD. The resulting improvement in developmental outcome and lessened behavioral impairment will be of enormous benefit to individuals with CHD.

For more information about this new treatment, contact the clinical research team: Gil Wernovsky, M.D., Shriprasad Deshpande, M.D., Maria Fortiz.