Genetics and Rare Diseases

inhaler

Keeping kids with asthma out of the hospital

inhaler

Pediatric asthma takes a heavy toll on patients and families alike. Affecting more than 7 million children in the U.S., it’s the most common nonsurgical diagnosis for pediatric hospital admission, with costs of more than $570 million annually. Understanding how to care for these young patients has significantly improved in the last several decades, leading the National Institutes of Health (NIH) to issue evidence-based guidelines on pediatric asthma in 1990. Despite knowing more about this respiratory ailment, overall morbidity – measured by attack rates, pediatric emergency department visits or hospitalizations – has not decreased over the last decade.

“We know how to effectively treat pediatric asthma,” says Kavita Parikh, M.D., M.S.H.S., a pediatric hospitalist at Children’s National Health System. “There’s been a huge investment in terms of quality improvements that’s reflected in how many papers there are about this topic in the literature.”

However, Dr. Parikh notes, most of those quality-improvement papers do not focus on inpatient discharge, a particularly vulnerable time for patients. Up to 40 percent of children who are hospitalized for asthma-related concerns come back through the emergency department within one year. One-quarter of those kids are readmitted.

“It’s clear that we need to do better at keeping kids with asthma out of the hospital. The point at which they’re being discharged might be an effective time to intervene,” Dr. Parikh adds.

To determine which interventions hold promise, Dr. Parikh and colleagues recently performed a systematic review of studies involving quality improvements after inpatient discharge. They published their findings in the May 2018 edition of the journal, Pediatrics. Because May is National Asthma and Allergy Awareness month, she adds, it’s a timely fit.

The researchers combed the literature, looking for research that tested various interventions at the point of discharge for their effect on hospital readmission anywhere from fewer than 30 days after discharge to up to one year later. They specifically searched for papers published from 1991, the year after the NIH issued its original asthma care guidelines, until November 2016.

Their search netted 30 articles that met these criteria. A more thorough review of each of these studies revealed common themes to interventions implemented at discharge:

  • Nine studies focused on standardization of care, such as introducing or revising a specific clinical pathway
  • Nine studies focused on education, such as teaching patients and their families better self-management strategies
  • Five studies focused on tools for discharge planning, such as ensuring kids had medications in-hand at the time of discharge or assigning a case manager to navigate barriers to care and
  • Seven studies looked at the effect of multimodal interventions that combined any of these themes.

When Dr. Parikh and colleagues examined the effects of each type of intervention on hospital readmission, they came to a stunning conclusion: No single category of intervention seemed to have any effect. Only multimodal interventions that combined multiple categories were effective at reducing the risk of readmission between 30 days and one year after initial discharge.

“It’s indicative of what we have personally seen in quality-improvement efforts here at Children’s National,” Dr. Parikh says. “With a complex condition like asthma, it’s difficult for a single change in how this disease is managed to make a big difference. We need complex and multimodal programs to improve pediatric asthma outcomes, particularly when there’s a transfer of care like when patients are discharged and return home.”

One intervention that showed promise in their qualitative analysis of these studies, Dr. Parikh adds, is ensuring patients are discharged with medications in hand—a strategy that also has been examined at Children’s National. In Children’s focus groups, patients and their families have spoken about how having medications with them when they leave the hospital can boost compliance in taking them and avoid difficulties is getting to an outside pharmacy after discharge. Sometimes, they have said, the chaos of returning home can stymie efforts to stay on track with care, despite their best efforts. Anything that can ease that burden may help improve outcomes, Dr. Parikh says.

“We’re going to need to try many different strategies to reduce readmission rates, engaging different stakeholders in the inpatient and outpatient side,” she adds. “There’s a lot of room for improvement.”

In addition to Dr. Parikh, study co-authors include Susan Keller, MLS, MS-HIT, Children’s National; and Shawn Ralston, M.D., M.Sc., Children’s Hospital of Dartmouth-Hitchcock.

Funding for this work was provided by the Agency for Healthcare Research and Quality (AHRQ) under grant K08HS024554. The content is solely the responsibility of the authors and does not necessarily represent the official views of AHRQ.

Research and Education Week awardees embody the diverse power of innovation

cnmc-research-education-week

“Diversity powers innovation” was brought to life at Children’s National April 16 to 20, 2018, during the eighth annual Research and Education Week. Children’s faculty were honored as President’s Award winners and for exhibiting outstanding mentorship, while more than 360 scientific poster presentations were displayed throughout the Main Atrium.

Two clinical researchers received Mentorship Awards for excellence in fostering the development of junior faculty. Lauren Kenworthy, Ph.D received the award for Translational Science and Murray M. Pollack, M.D., M.B.A., was recognized in the Clinical Science category as part of Children’s National Health System’s Research and Education Week 2018.

Dr. Kenworthy has devoted her career to improving the lives of people on the autism spectrum and was cited by former mentees as an inspirational and tireless counselor. Her mentorship led to promising new lines of research investigating methods for engaging culturally diverse families in autism studies, as well as the impact of dual language exposure on cognition in autism.

Meanwhile, Dr. Pollack was honored for his enduring focus on motivating early-career professionals to investigate outcomes in pediatric critical care, emergency medicine and neonatology. Dr. Pollack is one of the founders of the Collaborative Pediatric Critical Care Research Network. He developed PRISM 1 and 2, which has revolutionized pediatric intensive care by providing a methodology to predict mortality and outcome using standardly collected clinical data. Mentees credit Dr. Pollack with helping them develop critical thinking skills and encouraging them to address creativity and focus in their research agenda.

In addition to the Mentorship and President’s Awards, 34 other Children’s National faculty, residents, interns and research staff were among the winners of Poster Presentation awards. The event is a celebration of the commitment to improving pediatric health in the form of education, research, scholarship and innovation that occurs every day at Children’s National.

Children’s Research Institute (CRI) served as host for the week’s events to showcase the breadth of research and education programs occurring within the entire health system, along with the rich demographic and cultural origins of the teams that make up Children’s National. The lineup of events included scientific poster presentations, as well as a full slate of guest lectures, educational workshops and panel discussions.

“It’s critical that we provide pathways for young people of all backgrounds to pursue careers in science and medicine,” says Vittorio Gallo, Ph.D., Children’s chief research officer and CRI’s scientific director. “In an accelerated global research and health care environment, internationalization of innovation requires an understanding of cultural diversity and inclusion of different mindsets and broader spectrums of perspectives and expertise from a wide range of networks,” Gallo adds.

“Here at Children’s National we want our current and future clinician-researchers to reflect the patients we serve, which is why our emphasis this year was on harnessing diversity and inclusion as tools to power innovation,” says Mark L. Batshaw, M.D., physician-in-chief and chief academic officer of Children’s National.

“Research and Education Week 2018 presented a perfect opportunity to celebrate the work of our diverse research, education and care teams, who have come together to find innovative solutions by working with local, national and international partners. This event highlights the ingenuity and inspiration that our researchers contribute to our mission of healing children,” Dr. Batshaw concludes.

Awards for the best posters were distributed according to the following categories:

  • Basic and translational science
  • Quality and performance improvement
  • Clinical research
  • Community-based research and
  • Education, training and program development.

Each winner illustrated promising advances in the development of new therapies, diagnostics and medical devices.

Diversity powers innovation: Denice Cora-Bramble, M.D., MBA
Diversity powers innovation: Vittorio Gallo, Ph.D.
Diversity powers innovation: Mark L. Batshaw, M.D.

2nd-annual-hackathon

Genetic testing reigns triumphant at health app hackathon

2nd-annual-hackathon

The growing popularity of genetic testing has one large hurdle: There are fewer than 4,000 genetic counselors in the United States, and people who use commercial genetic testing kits may receive confusing or inaccurate information.

To combat this problem, a team of doctors from the Rare Disease Institute at Children’s National Health System created the framework for a smartphone application that would house educational videos and tools that provide reputable information about genetic disorders and genetic testing.

On April 13, 2018, Debra Regier, M.D., Natasha Shur, M.D., and their teammates presented the app “Bear Genes” at the 2nd Annual Medical & Health App Development Workshop, a competition sponsored by the Clinical and Translational Science Institute at Children’s National (CTSI-CN) and the Milken Institute School of Public Health (Milken Institute SPH) at the George Washington University. Bear Genes won first place, and the team received $10,000 to develop a working prototype of the app.

The Bear Genes team was one of 10 who presented their ideas for smartphone apps to a panel of judges at the competition. Ideas covered a variety of topics, including emergency room visits and seizures related to menstrual cycles. Sean Cleary, Ph.D., M.P.H., an associate professor of epidemiology and biostatistics at the Milken Institute SPH, and his teammates proposed an app called “MyCommunicationPal” that would assist autistic individuals in reporting their symptoms to healthcare providers.

Sean Cleary and Kevin Cleary, Ph.D., technical director of the Bioengineering Initiative at Children’s National Health System, created the hackathon to bring together professionals from various fields to create technology-based solutions for public health and medical challenges. Interested participants submit applications and app proposals in the fall, and 10 ideas are selected to be fleshed out at the half-day hackathon. Participants join teams to develop the selected ideas, and on the day of the event, create a five-minute presentation to compete for the top prize. About 90 people attended this year’s hackathon.

“The workshop provides us with the opportunity to collaborate with healthcare providers, public health professionals and community members to develop an appropriate user-friendly app for those in need,” said Sean Cleary. “The event also fosters future collaborations between important stakeholders.”

This article originally appeared in the Milken Institute SPH pressroom.

Gustavo Nino

New method may facilitate childhood respiratory research

Gustavo Nino

“The use of CRC is a potentially powerful translational approach to shed light on the molecular mechanisms that control airway epithelial immune responses in infants and young children. This novel approach enables us to study the origins of respiratory disease and its chronic progression through childhood and beyond,” observes Gustavo Nino, M.D., a Children’s pulmonologist and study senior author.

A new method perfected by a team at Children’s National Health System may help expand research into pulmonary conditions experienced by infants and children, an understudied but clinically important age group. The study describing the new technique was published in the December 2017 print edition of Pediatric Allergy and Immunology.

Using conditionally reprogrammed cells (CRCs), a technique that enables indefinite proliferation of cells in the lab, the team was able to produce cell cultures that have a number of advantages over standard cultures and that may make it easier and more efficient to conduct research into pediatric respiratory immune responses.

The epithelial cells that line human airways are crucial in controlling immune responses to viruses, allergens and other environmental factors. The function and dysfunction of these airway epithelial cells (AECs) play a key role in asthma, cystic fibrosis and other pulmonary conditions, many of which begin in early life.

To generate enough of these cells for research, scientists culture AECs from primary nasal and bronchial cell samples. Cells derived from adults have fueled research leading to new therapies and the discovery of key biomarkers. But little comparable research has been conducted in infants. Airway sampling in premature infants has not been reported, likely to due to airway size limitations and underlying comorbidities. Similarly, sampling in infants is limited by the need for bronchoscopy and sedation.

“A major barrier has been the lack of a good system to culture epithelial cells, since airway sampling in infants and children is a challenge,” says co-lead author, Geovanny F. Perez, M.D., co-director of Children’s Severe Bronchopulmonary Dysplasia Program. “We needed a better way to culture cells in this age group.”

While primary AECs do not survive long in the lab, that hurdle was recently overcome by a process that generates CRCs from the primary AECs of adults, making it possible to quickly generate cell cultures from specimens.

In this study, the Children’s team adapted that approach, producing CRCs from primary AECs of neonates and infants. The CRC induction successfully enabled AEC cultures from infants born prematurely and from bronchial specimens of young children.

Geovanny Perez

“A major barrier has been the lack of a good system to culture epithelial cells, since airway sampling in infants and children is a challenge,” says co-lead author, Geovanny F. Perez, M.D., co-director of Children’s Severe Bronchopulmonary Dysplasia Program. “We needed a better way to culture cells in this age group.”

“We found that the CRCs have longer cell life and greater proliferation ability than standard cultures of epithelial cells. They preserved their original characteristics even after multiple experiments. And, they presented an innate immune response similar to that seen in primary human epithelial cells during viral respiratory responses in children,” says Dr. Perez.

“The use of CRC is a potentially powerful translational approach to shed light on the molecular mechanisms that control airway epithelial immune responses in infants and young children. This novel approach enables us to study the origins of respiratory disease and its chronic progression through childhood and beyond,” observes Gustavo Nino, M.D., a Children’s pulmonologist and study senior author.

The authors note that further studies are needed to define more precisely the differences and similarities in the immune responses of CRC and non-CRC derived from primary AEC. However, they conclude that CRC represents a new, effective method to study AEC innate immune responses in infants.

In addition to Drs. Perez and Nino, Children’s Center for Genetic Medicine Research co-authors include Co-Lead Author S. Wolf; Lana Mukharesh; Natalia Isaza Brando, M.D.; Diego Preciado, M.D., Ph.D.; Robert J. Freishtat, M.D., M.P.H.; Dinesh Pillai, M.D.; and M. C. Rose.

Financial support for this research was provided by the National Institute of Allergy and Infectious Diseases under grant number R21AI130502; Eunice Kennedy Shriver National Institute of Child Health and Human Development under grant number HD001399; National Heart, Lung and Blood Institute under grant number HL090020; and National Center for Advancing Translational Sciences under grant number UL1TR000075.

STAT Madness

Voters select Children’s National innovation as runner-up in national competition

STAT Madness

Facial recognition technology developed and tested by researchers with the Sheikh Zayed Institute for Pediatric Surgical Innovation and Rare Disease Institute at Children’s National was the runner-up in this year’s STAT Madness 2018 competition.

Facial recognition technology developed and tested by researchers with the Sheikh Zayed Institute for Pediatric Surgical Innovation and Rare Disease Institute at Children’s National was the runner up in this year’s STAT Madness 2018 competition. Garnering more than 33,000 overall votes in the bracket-style battle that highlights the best biomedical advances, the Children’s National entry survived five rounds and made it to the championship before falling short of East Carolina University’s overall vote count.

Children’s entry demonstrates the potential widespread utility of digital dysmorphology technology to diverse populations with genetic conditions. The tool enables doctors and clinicians to identify children with genetic conditions earlier by simply taking the child’s photo with a smartphone and having it entered into a global database for computer analyses.

The researchers partnered with the National Institutes of Health National Human Genome Research Institute and clinicians from 20 different countries to acquire pictures from local doctors for the study. Using the facial analysis technology, they compared groups of Caucasians, Africans, Asians and Latin Americans with Down syndrome, 22q11.2 deletion syndrome (also called DiGeorge syndrome) and Noonan syndrome to those without it. Based on more than 125 individual facial features, they were able to correctly identify patients with the condition from each ethnic group with more than a 93 percent accuracy rate. Missed diagnoses of genetic conditions can negatively impact quality of life and lead to premature death.

Children’s National also was among four “Editor’s Pick” finalists, entries that span a diverse range of scientific disciplines. Journalists at the digital publication STAT pored through published journal articles for 64 submissions in the single-elimination contest to honor a select group of entries that were the most creative, novel, and most likely to benefit the biomedical field and the general public.

Each year, 1 million children are born worldwide with a genetic condition that requires immediate attention. Because many of these children experience serious medical complications and go on to suffer from intellectual disability, it is critical that doctors accurately diagnose genetic syndromes as early as possible.

“For years, research groups have viewed facial recognition technology as a potent tool to aid genetic diagnosis. Our project is unique because it offers the expertise of a virtual geneticist to general health care providers located anywhere in the world,” says Marius George Linguraru, D.Phil., M.A., M.S., a Sheikh Zayed Institute for Pediatric Surgical Innovation principal investigator who invented the technology. “Right now, children born in under-resourced regions of the U.S. or the world can wait years to receive an accurate diagnosis due to the lack of specialized genetic expertise in that region.”

In addition to providing patient-specific benefits, Marshall Summar, M.D., director of Children’s Rare Disease Institute that partners in the facial recognition technology research, says the project offers a wider societal benefit.

“Right now, parents can endure a seemingly endless odyssey as they struggle to understand why their child is different from peers,” says Dr. Summar. “A timely genetic diagnosis can dispel that uncertainty and replace it with knowledge that can speed patient triage and deliver timely medical interventions.”

Javad Nazarian

Private foundation and researchers partner to cure childhood cancers

Javad Nazarian

Researchers nationally and internally stand the best chance of fulfilling Gabriella Miller’s dream of curing childhood cancers by effectively working together, says Javad Nazarian, Ph.D.

“Thank you for helping me reach my goal.” The handwritten note was penned by Gabriella Miller, a patient treated at Children’s National Health System who ultimately succumbed to an aggressive form of pediatric brain cancer.

Gabriella, then 9 years old, dreamed of curing childhood cancer, including diffuse intrinsic pontine glioma (DIPG), the aggressive pediatric brain tumor that took her life.

Attendees will gather April 14, 2018, for an annual gala held by the Smashing Walnuts Foundation – a group Gabriella started – to celebrate their progress on achieving her goal and to chart future strategic approaches.

“While this foundation was the brainchild of a single person, researchers nationally and internally stand the best chance of fulfilling her dream by working together more effectively,” says Javad Nazarian, Ph.D., M.S.C., the gala’s main speaker. Nazarian is scientific director of Children’s Brain Tumor Institute and is scientific co-chair of the Children’s Brain Tumor Tissue Consortium.

To that end, Children’s National was named a member of a public-private research collective awarded up to $14.8 million by the National Institutes of Health (NIH) to launch a data resource center that cancer sleuths around the world can tap into to accelerate discovery of novel treatments for childhood tumors.

This April, the NIH announced that researchers it funded had completed PanCancer Atlas, a detailed genomic analysis on a data set of molecular and clinical information from more than 10,000 tumors representing 33 types of cancer, including DIPG.

And this January, the NIH announced that it would accept applications from researchers performing whole-genome sequencing studies at one of its Gabriella Miller Kids First research program sequencing facilities. The centers will produce genome, exome and transcriptome sequencing.

Expanding access to these growing troves of data requires a close eye on nuts-and-bolts issues, such as securing sufficient physical data storage space to house the data, Nazarian adds. It’s essential for research teams around the world to have streamlined access to data sets they can analyze as well as contribute to.

“In addition to facilitating researchers’ access to this compiled data, we want to ensure that patients and families feel they are partners in this enterprise by also offering opportunities for them to share meaningful clinical data,” Nazarian says.

Nazarian has been instrumental in expanding the comprehensive biorepository at Children’s National, growing it from just a dozen samples six years ago to thousands of specimens donated by patients with all types of pediatric brain tumors, including DIPG.

“We are so grateful to our patients and families. They share our passion for finding cures and validating innovative treatments for pediatric cancers that defy current treatment. They provide funding through their foundations. Families touched by tragedy offer samples to help the next family avoid reliving their experience,” Nazarian says. “It is in their names – and in Gabriella’s name – that we continue to push ourselves to ‘crack the cure’ for childhood brain cancer.”

Sean Donahue

Pediatric ophthalmology celebrates 75th anniversary in Washington, D.C.

Sean Donahue

Angeline M. Parks Visiting Professor Sean P. Donahue, M.D., Ph.D., (front left) enjoys a light moment during the celebration of the 75th anniversary while Anthony Sandler, M.D., Children’s surgeon in chief, senior vice president of the Joseph E. Robert Jr. Center for Surgical Care and director of the Sheikh Zayed Institute, speaks to the group.

After 75 years dedicated to the eyes of children, the world’s pediatric ophthalmologists gathered in Washington, D.C., the specialty’s birthplace, to share the latest research and innovation in the field. The group gathered for a joint meeting of the International Strabismological Association (ISA) and the American Association for Pediatric Ophthalmology and Strabismus (AAPOS), which was held March 18-22, 2018.

“This year marks the 75th anniversary of our specialty, which was founded right here, at Children’s National, in Washington, D.C., when Dr. Frank Costenbader restricted his practice exclusively to children and began to train residents in the nuance of treating children’s eyes,” says Mohamad S. Jaafar, M.D., chief of the Division of Ophthalmology at Children’s National Health Center. “It is a tremendous honor to welcome my colleagues back to the birthplace of pediatric ophthalmology on this grand occasion.”

In advance of the larger meeting, Children’s Division of Ophthalmology welcomed some of the international attendees to Children’s National for a special gathering on Saturday, March 17, 2018.

The event at Children’s featured a special lecture by this year’s Angeline M. Parks Visiting Professor, Sean P. Donahue, M.D., Ph.D. Dr. Donahue is the Sam and Darthea Coleman Chair in Pediatric Ophthalmology and Chief of Pediatric Ophthalmology at the Children’s Hospital at Vanderbilt. This Annual Visiting Professorship was established by the members of the Costenbader Society (The Children’s National Pediatric Ophthalmology Alumni Society) in memory of Angeline M. Parks, the wife of pediatric ophthalmologist Marshall M. Parks, M.D., to carry on her legacy of establishing a warm and supportive environment between physician and spouse, which benefits the physicians and their young patients.

Three former division chiefs of Ophthalmology at Children’s National, Drs. Costenbader, Parks and Friendly, have national lectureships established in their names to reflect their contributions to the field. Dr. Frank Costenbader, the society’s namesake, established the sub-specialty of pediatric ophthalmology. Dr. Parks founded the Children’s Eye Foundation and the AAPOS, and David S. Friendly, M.D., codified pediatric ophthalmology fellowship training across the United States.

Honor Awards for Children’s pediatric ophthalmologists at ISA-AAPOS

During the ISA-AAPOS meeting, two current Children’s National pediatric ophthalmologists were recognized with Honor Awards for their long-term dedication to pediatric ophthalmology, their patients, and their engagement in the AAPOS to advance the field.

William Madigan, M.D., vice chief of Ophthalmology at Children’s, a professor of surgery at the Uniformed Services University of the Health Sciences, and a clinical professor of Ophthalmology and Pediatrics at the George Washington University School of Medicine and Health Sciences. He was recognized by AAPOS for his long-time service, including:

  • Chair of the organization’s audit committee and the Costenbader Lecture selection committee.
  • Membership on the fellowship directors’ committee that developed nationwide requirements for pediatric ophthalmology fellowships and established the certification process to insure high quality and uniform education in the specialty.
  • Invited lectures in Shanghai, China; Geneva, Switzerland; and Sao Paolo, Brazil, among others.
  • Many posters and presentations about clinical and research topics of importance for members of the AAPOS and other distinguished professional societies.

Marijean Miller, M.D., director of Neonatal Ophthalmology, division research director at Children’s National and clinical professor of Ophthalmology and Pediatrics at the George Washington University School of Medicine and Health Sciences, was recognized by AAPOS for her cumulative contributions to the society, including:

  • Multiple memberships on vital committees, including AAPOS’s training and accreditation committee and audit committee.
  • Presentation of original research via posters and oral presentations on topics including best practices in neonatal clinical care, innovative tools and applications and advocacy for patients and their families.

“We are so grateful to have a team that continues the tradition of excellence in pediatric ophthalmology here at Children’s National,” Dr. Jaafar says. “Drs. Madigan and Miller exemplify the dedication of our division to caring for the children we serve, and to advancing our field. Congratulations to both!”

Rare Disease Institute director named to Global Commission to End the Diagnostic Odyssey for Children

Marshall Summar, M.D., director of the Children’s National Rare Disease Institute (CNRDI), has been named to the Global Commission to End the Diagnostic Odyssey for Children.

Children’s National Health System has announced that Marshall Summar, M.D., director of the Children’s National Rare Disease Institute (CNRDI), has been named to the Global Commission to End the Diagnostic Odyssey for Children (“the Global Commission”), an alliance dedicated to shortening the multi-year journey that rare disease patients and families endure on the road to diagnosis.

Established in partnership with Shire, Microsoft and EURORDIS, the Global Commission is comprised of a multi-disciplinary team of global experts that have the commitment, creativity and technological expertise required to make a substantial difference in the lives of the millions of children living with a rare disorder.

“Providing more help to children born with rare genetic diseases continues to be one of the core challenges of 21st century medicine,” says Dr. Summar, who notes that patients typically visit up to eight doctors and often receive two or three misdiagnoses along the way. “Even upon diagnosis, patients are hindered by scarce treatment options and approximately a third of patients die before their fifth birthday. We are committed to changing this trend at the CNRDI and are excited to have the opportunity to share our expertise with this alliance on a global stage.”

The Global Commission is focused on developing an actionable roadmap for the field of rare disease that offers recommendations to address core challenges that prevent timely diagnosis for rare disease patients, including improving physicians’ ability to identify and diagnose rare disorders, empowering patients to take an active role in their healthcare and providing high-level policy guidance to help rare disease patients achieve better health outcomes.

Beginning its work in 2018, the Global Commission expects to publish a roadmap that encapsulates the collective findings in early 2019. Over the course of the next year, the alliance will gather input from patients, families and other experts to gain key insights and develop solutions to shorten the diagnostic odyssey.

In the United States, it is estimated that one in 10 people has a rare disease – approximately 80 percent of which are genetically based. Additionally, the National Institutes of Health reports that more than 80 percent are childhood diseases and more than 25 percent of children admitted to pediatric hospitals have a rare disease.

banner year

2017: A banner year for innovation at Children’s National

banner year

In 2017, clinicians and research faculty working at Children’s National Health System published more than 850 research articles about a wide array of topics. A multidisciplinary Children’s Research Institute review group selected the top 10 articles for the calendar year considering, among other factors, work published in high-impact academic journals.

“This year’s honorees showcase how our multidisciplinary institutes serve as vehicles to bring together Children’s specialists in cross-cutting research and clinical collaborations,” says Mark L. Batshaw, M.D., Physician-in-Chief and Chief Academic Officer at Children’s National. “We’re honored that the National Institutes of Health and other funders have provided millions in awards that help to ensure that these important research projects continue.”

The published papers explain research that includes using imaging to describe the topography of the developing brains of infants with congenital heart disease, how high levels of iron may contribute to neural tube defects and using an incisionless surgery method to successfully treat osteoid osteoma. The top 10 Children’s papers:

Read the complete list.

Dr. Batshaw’s announcement comes on the eve of Research and Education Week 2018 at Children’s National, a weeklong event that begins April 16, 2018. This year’s theme, “Diversity powers innovation,” underscores the cross-cutting nature of Children’s research that aims to transform pediatric care.

Horizon Pharma gifts $3M to establish Horizon Pharma Clinical Care Endowment at Children’s National Rare Disease Institute

“Patients and families with rare conditions deserve to be treated in a place with the medical knowledge to provide quick, clear answers and the expert care they need,” says Marshall Summar, M.D., director of the CNRDI.

Children’s National Health System and Horizon Pharma plc are pleased to announce the creation of the Horizon Pharma Clinical Care Endowment, the first clinical team endowment at the Children’s National Rare Disease Institute (CNRDI). The endowment is made possible by a generous six-year, $3 million commitment from Horizon Pharma USA, Inc., a wholly owned subsidiary of Horizon Pharma plc –a biopharmaceutical company dedicated to improving the lives of people living with rare diseases.

“Patients and families with rare conditions deserve to be treated in a place with the medical knowledge to provide quick, clear answers and the expert care they need,” says Marshall Summar, M.D. , director of the CNRDI.  “We are grateful for Horizon and their support of our mission to make the Children’s National Rare Disease Institute that place. This endowment will support a dedicated team that can provide optimal, comprehensive care to more patients and ensure that families have a trusted source for all aspects of their health care.”

The Horizon Pharma Clinical Care Endowment will generate revenue annually, providing stable support for an expert care team at the CNRDI. Each team will be comprised of a clinical geneticist and support team members – such as genetic counselors, nutritionists and social workers – all specializing in the care of children with rare disease.

The long-term support provided by the Horizon Pharma Clinical Care Endowment will give the CNRDI a firm foundation for treating patients earlier, more consistently and over the course of their lifetime. Horizon’s commitment marks the first donor-funded endowment at the CNRDI.

Currently, it is estimated that one in 10 Americans has a rare disease – approximately 80 percent of which are genetically based. Additionally, the NIH reports that more than 80 percent are childhood diseases, and more than 25 percent of children admitted to pediatric hospitals have a rare disease.

The CNRDI is a first-of-its-kind center focused exclusively on advancing the care and treatment of children and adults with rare genetic diseases. It is the first National Organization for Rare Disorders (NORD) Center of Excellence and aims to provide a medical home for patients and families seeking the most advanced care and expertise for rare genetic conditions that remain largely unknown to the general medical community.

foods rich in folate

An ironclad way to prevent neural tube defects? Not yet

foods rich in folate

Researchers have known for decades that folate, a vitamin enriched in dark, leafy vegetables; fruit; nuts; and other food sources, plays a key role in preventing neural tube defects.

Every year, about 3,000 pregnancies in the U.S. are affected by neural tube defects (NTDs) –  birth defects of the brain, spine and spinal cord. These include anencephaly, in which a major part of the brain, skull and scalp is missing; and spina bifida, in which the backbone and membranes around the spinal cord don’t close properly during fetal development. These structural birth defects can have devastating effects: In the best cases, they might lead to mild but lifelong disability; in the worst cases, babies don’t survive.

Researchers have known for decades that folate, a vitamin enriched in dark, leafy vegetables; fruit; nuts; and other food sources, plays a key role in preventing NTDs. To help get more folate into pregnant women’s diets, wheat flour in the U.S. and many other countries is often fortified with folic acid, a synthetic version of this vitamin, as part of an intervention credited with significantly reducing the incidence of NTDs.

But folic acid supplementation isn’t enough, says Irene E. Zohn, Ph.D., a principal investigator at the Center for Neuroscience Research at Children’s National Health System who studies how genes and the environment interact during development. A significant number of NTDs still occur, suggesting that other approaches – potentially, other nutrients in the maternal diet – might provide further protection.

That’s why Zohn and colleagues decided to investigate iron. Iron deficiency is one of the most common micronutrient deficiencies in women of childbearing age, Zohn explains. Additionally, iron and folate deficiencies often overlap and signal overall poor maternal diets.

The idea that iron deficiency might play a role in NTDs came from studies by Zohn and colleagues of the flatiron mutant line of experimental models. This experimental model line has a mutation in a gene that transports iron across cell membranes, including the cells that supply embryos with this critical micronutrient.

To determine if NTDs develop in these mutant experimental models because of reduced iron transport, the researchers devised a simple experiment: They took female adult experimental models with the mutation and separated them into four groups. For several weeks, one group ate a diet that was high in folic acid. Another group ate a diet high in iron. The third group ate a diet high in both folic acid and iron. The fourth group ate standard chow. All of these experimental models then became pregnant with embryos that harbored the flatiron mutation, and the researchers assessed the offspring for the presence of NTDs.

Irene Zohn

“We were hoping that iron supplements would be the next folic acid, but it did not turn out that way,” says Irene E. Zohn, Ph.D. “Even though our results demonstrate that iron is important for proper neural tube development, giving extra iron definitely has its downsides.”

As they reported in Birth Defects Research, the dietary interventions successfully increased iron stores: Experimental model mothers whose diets were supplemented with iron, folic acid or both had increased concentrations of these micronutrients in their blood.

The dietary interventions also affected their offspring. While about 80 percent of flatiron mutant embryos fed a standard diet during pregnancy had NTDs, feeding a diet high in iron prevented NTDs in half of the offspring. This lower rate was similar in the offspring of mothers fed a diet high in both folic acid and iron, but not for those whose mothers ate just a diet high in folic acid. Those embryos had NTD rates as high as those who ate just the standard chow, suggesting that low iron was the cause of the high rates, not low folic acid.

Together, Zohn says, these experiments show that iron plays an important role in the development of the neural tube and that deficits in iron might cause some cases of NTDs. However, she notes, reducing NTDs isn’t nearly as simple as supplementing pregnant women’s diets with iron. In the same study, the researchers found that when they gave normal experimental models that didn’t have the flatiron mutation concentrated iron supplements – amounts akin to what doctors might prescribe for human patients with very severe iron-deficiency anemia – folate stores dropped.

That’s because these two micronutrients interact in the body with similar sites for absorption and storage in the intestines and liver, Zohn explains. At either the intestines or liver or at both locations, an iron overload might interfere with the body’s ability to absorb or use folate.

At this point, she says, giving high doses of iron routinely during pregnancy doesn’t look like a feasible way to prevent NTDs.

“We were hoping that iron supplements would be the next folic acid, but it did not turn out that way,” Zohn says. “Even though our results demonstrate that iron is important for proper neural tube development, giving extra iron definitely has its downsides.”

Zohn’s team plans to continue to investigate the role of iron, as well as the role of other micronutrients that might influence neural tube development.

Zohn’s coauthors include Bethany A. Stokes, The George Washington University, and Julia A. Sabatino, Children’s National.

Research reported in this story was supported by a grant from the Board of Visitors, Eunice Kennedy Shriver National Institute of Child Health & Human Development under award number R21-HD076202, the National Center for Research Resources under award number UL1RR031988, Children’s Research Institute and the National Institutes of Health under grant P30HD040677.

Eric Vilain

Exploring differences of sex development

Eric Vilain, M.D., Ph.D.

Eric Vilain, M.D., Ph.D., analyzes the genetic mechanisms of sex development to give families more answers that will help them make better treatment (or non treatment) decisions for a child diagnosed with DSD.

Eric Vilain, M.D., Ph.D., is well versed in the “world of uncertainty” that surrounds differences of sex development. Since joining Children’s National as the director of the Center for Genetic Medicine Research in 2017, he’s shared with our research and clinical faculty and staff his expertise about the ways that genetic analysis might help address some of the complex social, cultural and medical implications of these differences.

Over the summer, he gave a keynote address entitled “Disorders/Differences of Sex Development: A World of Uncertainty” during Children’s National’s Research and Education Week, an annual celebration of research, education, innovation and scholarship at Children’s National and around the world. In January 2018, he shared a more clinically oriented version of the talk at a special Children’s National Grand Rounds session.

The educational objective of these talks is to inform researchers and providers about the mechanisms of differences of sex development (DSD), which are defined as congenital conditions in which the development of chromosomal, gonadal or anatomical sex is atypical.

The primary goal, though, is to really shine light on the complexity of this hot topic, and share how powerful genetic tools can be used to provide vital, concrete information for care providers, patients and families to assist with difficult treatment (and non-treatment) decisions.

“A minority of DSD cases are able to receive a genetic diagnosis today,” he points out. “But geneticists know how important it is to come to a diagnosis and so we seek to increase the number of patients who receive a concrete genetic diagnosis. It impacts genetic counseling and reproductive options, and provides a better ability to predict long term outcomes.”

“These differences impact physiology and medicine. We want to better understand the biology of reproduction, with an emphasis on finding ways to preserve fertility at all costs, and how these variations may lead to additional complications, including cancer risk.”

At conception, he explains, both XX and XY embryos have bipotential gonads capable of differentiating into a testis or an ovary, though embryos are virtually indistinguishable from a gender perspective up until six weeks in utero.

Whether or not a bipotential gonad forms is largely left up to the genetic makeup of the individual. For example, a gene in the Y chromosome (SRY) triggers a cascade of genes that lead to testis development. If there is no Y chromosome, it triggers a series of pro-female genes that lead to ovarian development.

Dr. Vilain notes that a variation of enzymes or transcription factors can occur at any single step of sex development and alter all the subsequent steps. Depending on the genotype, an individual may experience normal gonadal development, but abnormal development of the genitalia, for example.

He also noted that these genes are critical to determining the differences between men and women in non-gonadal tissues, including differences in gene expression within the brain. One study in the lab of investigator Matt Bramble, Ph.D., investigates if gonadal hormones impact sex differences in the brain by modifying the genome.

This work is a prime example of research informing the care provided to patients and families. Dr. Vilain is also a member of the multidisciplinary clinical team of the PROUD Clinic at Children’s National, a program completely devoted to caring for patients with a wide array of genetic and endocrine issues, including urogenital disorders and variations of sex development.

Electronic medical record on tablet

Children’s National submissions make hackathon finals

Electronic medical record on tablet

This April, the Clinical and Translational Science Institute at Children’s National (CTSI-CN) and The George Washington University (GW) will hold their 2nd Annual Medical and Health App Development Workshop. Of the 10 application (app) ideas selected for further development at the hackathon workshop, five were submitted by clinicians and researchers from Children’s National.

The purpose of the half-day hackathon is to develop the requirements and prototype user interface for 10 medical software applications that were selected from ideas submitted late in 2017. While idea submissions were not restricted, the sponsors suggested that they lead to useful medical software applications.

The following five app ideas from Children’s National were selected for the workshop:

  • A patient/parent decision tool that could use a series of questions to determine if the patient should go to the Emergency Department or to their primary care provider; submitted by Sephora Morrison, M.D., and Ankoor Shah, M.D.
  • The Online Treatment Recovery Assistance for Concussion in Kids (OnTRACK) smartphone application could guide children/adolescents and their families in the treatment of their concussion in concert with their health care provider; submitted by Gerard Gioia, Ph.D.
  • A genetic counseling app that would provide a reputable, easily accessible bank of counseling videos for a variety of topics, from genetic testing to rare disorders; submitted by Debra Regier, M.D.
  • An app that would allow the Children’s National Childhood and Adolescent Diabetes Program team to communicate securely and efficiently with diabetes patients; submitted by Cynthia Medford, R.N., and Kannan Kasturi, M.D.
  • An app that would provide specific evidence-based guidance for medical providers considering PrEP (pre-exposure prophylaxis) for HIV prevention; submitted by Kyzwana Caves, M.D.

Kevin Cleary, Ph.D., technical director of the Bioengineering Initiative at Children’s National Health System, and Sean Cleary, Ph.D., M.P.H., associate professor in epidemiology and biostatistics at GW, created the hackathon to provide an interactive learning experience for people interested in developing medical and health software applications.

The workshop, which will be held on April 13, 2018, will start with short talks from experts on human factors engineering and the regulatory environment for medical and health apps. Attendees will then divide into small groups to brainstorm requirements and user interfaces for the 10 app ideas. After each group presents their concepts to all the participants, the judges will pick the winning app/group. The idea originator will receive up to $10,000 of voucher funding for their prototype development.

Human Rhinovirus

Finding the root cause of bronchiolitis symptoms

Human Rhinovirus

A new study shows that steroids might work for rhinovirus but not for respiratory syncytial virus.

Every winter, doctors’ offices and hospital emergency rooms fill with children who have bronchiolitis, an inflammation of the small airways in the lung. It’s responsible for about 130,000 admissions each year. Sometimes these young patients have symptoms reminiscent of a bad cold with a fever, cough and runny nose. Other times, bronchiolitis causes breathing troubles so severe that these children end up in the intensive care unit.

“The reality is that we don’t have anything to treat these patients aside from supportive care, such as intravenous fluids or respiratory support,” says Robert J. Freishtat, M.D., M.P.H., chief of emergency medicine at Children’s National Health System. “That’s really unacceptable because some kids get very, very sick.”

Several years ago, Dr. Freishtat says a clinical trial tested using steroids as a potential treatment for bronchiolitis. The thinking was that these drugs might reduce the inflammation that’s a hallmark of this condition. However, he says, the results weren’t a slam-dunk for steroids: The drugs didn’t seem to improve outcomes any better than a placebo.

But the trial had a critical flaw, he explains. Rather than having one homogenous cause, bronchiolitis is an umbrella term for a set of symptoms that can be caused by a number of different viruses. The most common ones are respiratory syncytial virus (RSV) and rhinovirus, the latter itself being an assortment of more than 100 different but related viruses. By treating bronchiolitis as a single disease, Dr. Freishtat says researchers might be ignoring the subtleties of each virus that influence whether a particular medication is useful.

“By treating all bronchiolitis patients with a single agent, we could be comparing apples with oranges,” he says. “The treatment may be completely different depending on the underlying cause.”

To test this idea, Dr. Freishtat and colleagues examined nasal secretions from 32 infants who had been hospitalized with bronchiolitis from 2011 to 2014 at 17 medical centers across the country that participate in a consortium called the 35th Multicenter Airway Research Collaboration. In half of these patients, lab tests confirmed that their bronchiolitis was caused by RSV; in the other half, the cause was rhinovirus.

From these nasal secretions, the researchers extracted nucleic acids called microRNAs. These molecules regulate the effects of different genes through a variety of different mechanisms, usually resulting in the effects of target genes being silenced. A single microRNA typically targets multiple genes by affecting messenger RNA, a molecule that’s key for producing proteins.

Comparing results between patients with RSV or rhinovirus, the researchers found 386 microRNAs that differed in concentration. Using bioinformatic software, they traced these microRNAs to thousands of messenger RNAs, looking for any interesting clues to important mechanisms of illness that might vary between the two viruses.

Their findings eventually turned up important differences between the two viruses in the NF-kB (nuclear factor kappa-light-chain-enhancer of activated B cells) pathway, a protein cascade that’s intimately involved in the inflammatory response and is a target for many types of steroids. Rhinovirus appears to upregulate the expression of many members of this protein family, driving cells to make more of them, and downregulate inhibitors of this cascade. On the other hand, RSV didn’t seem to have much of an effect on this critical pathway.

To see if these effects translated into cells making more inflammatory molecules in this pathway, the researchers searched for various members of this protein cascade in the nasal secretions. They found an increase in two, known as RelA and NFkB2.

Based on these findings, published online Jan. 17, 2018, in Pediatric Research, steroids might work for rhinovirus but not for RSV, notes Dr. Freishtat the study’s senior author.

“We’re pretty close to saying that you’d need to conduct a clinical trial with respect to the virus, rather than the symptoms, to measure any effect from a given drug,” he says.

Future clinical trials might test the arsenal of currently available medicines to see if any has an effect on bronchiolitis caused by either of these two viruses. Further research into the mechanisms of each type of illness also might turn up new targets that researchers could develop new medicines to hit.

“Instead of determining the disease based on symptoms,” he says, “we can eventually treat the root cause.”

Study co-authors include Kohei Hasegawa, study lead author, and Carlos A. Camargo Jr., Massachusetts General Hospital; Marcos Pérez-Losada, The George Washington University School of Medicine and Health Sciences; Claire E. Hoptay, Samuel Epstein and Stephen J. Teach, M.D., M.P.H., Children’s National; Jonathan M. Mansbach, Boston Children’s Hospital; and Pedro A. Piedra, Baylor College of Medicine.

Sarah Viall

Newborn screening leader selected to advisory committee on heritable disorders in newborns and children

Sarah Viall

Sarah Viall, PPCNP, coordinator for the Newborn Screening Program at the Children’s National Rare Disease Institute (CNRDI), has been invited to serve on the Education and Training Workgroup of the Health Resources & Services Administration’s (HRSA) Advisory Committee on Heritable Disorders in Newborns and Children (ACHDNC).

Established under the Public Health Service Act, the ACHDNC focuses on reducing morbidity and mortality in newborns and children who have, or are at risk for, genetic disorders. The Committee currently recommends that all newborn screening programs include a Uniform Screening Panel that monitors for a total of 34 core disorders and another 26 secondary disorders.

In addition to developing recommendations on national newborn screening guidelines, the ACHDNC also advises the U.S. Department of Health and Human Services Secretary on the most appropriate application of newborn screening technologies, tests, policies and standards. The Committee provides technical information that helps develop Heritable Disorders Program policies and priorities that enhance the ability of local and state health agencies to provide screening, healthcare services and counseling for newborns and children affected by genetic disease.

Viall had previously spent a year observing meetings for the ACHDNC Education and Training Workgroup.

“I am thrilled to be an official member that can contribute to the important work of educating communities about newborn screening,” says Viall.

$3M Retrophin gift establishes Rare Disease Network at Children’s National

“This is an exciting first step toward a new era of rare disease care and innovation,” says Marshall Summar, M.D., director of the CNRDI. “We are grateful for this gift from Retrophin that will help us accelerate progress for our patients and families and pursue work that will have a far-reaching impact on both children and adults across the country and around the world thanks to the support of Retrophin.”

Children’s National Health System and Retrophin, Inc. have announced the creation of the Retrophin Rare Disease Network at Children’s National. Retrophin, a biopharmaceutical company specializing in identifying, developing and delivering life-changing therapies to people living with rare diseases, has committed $3 million over the next six years to support the work of the Children’s National Rare Disease Institute (CNRDI). Retrophin’s commitment marks the first corporate gift to CNRDI.

“One of the chief challenges of 21st century pediatric medicine is our continued inability to provide more help to those born with rare genetic diseases,” says Marshall Summar, M.D., director of the CNRDI. “This is an exciting first step toward a new era of rare disease care and innovation. We are grateful for this gift from Retrophin that will help us accelerate progress for our patients and families and pursue work that will have a far-reaching impact on both children and adults across the country and around the world thanks to the support of Retrophin.”

As a dedicated source of funding, the Retrophin Rare Disease Network will advance the CNRDI’s efforts to create a global “hub and spoke” model for disseminating and streamlining patient access to optimal care methods and among national and international peer institutions. The network will enhance the field of rare disease medicine by standardizing care models and establishing world-wide best practices in diagnosis and treatment.

The Retrophin Rare Disease Network will also provide funding for new dedicated positions at the CNRDI and build on the Institute’s existing digital and telemedicine programs, to extend the reach of its researchers and caregivers in areas where there is currently limited care available for children and adults living with rare diseases.

CNRDI is a first-of-its-kind center focused exclusively on advancing the care and treatment of children and adults with rare genetic diseases. The first National Organization for Rare Disorders (NORD) Center of Excellence, it aims to provide a medical home for patients and families seeking the most advanced care and expertise for rare genetic conditions that remain largely unknown to the general medical community.

Ashley Hill and Joyce Turner

New clues to detect rare pediatric cancers

Ashley Hill and Joyce Turner

Using germline and tumor testing and centralized pathology review, a research team that included D. Ashley Hill, M.D, and Joyce Turner found that Sertoli-Leydig cell tumor and gynandroblastoma are nearly always DICER1-related tumors.

Children’s National Health System researchers played a key role in a new study exploring the clinical and genetic qualities of a group of rare, potentially deadly cancers that affect infants, children and adolescents. The research team’s findings suggest that genetic testing for people at risk may aid in earlier, more accurate diagnoses of these cancers, leading to early-stage treatment that could greatly improve survival.

Ovarian sex cord-stromal tumors (OSCST) include juvenile granulosa cell tumors (JGCT), Sertoli-Leydig cell tumor (SLCT) and gynandroblastoma (GAB). Mutations in the DICER1 gene often have been noted in children with these cancers, as well as in those with a particularly lethal pediatric lung cancer called pleuropulmonary blastoma (PPB). All of these cancers are highly curable if caught early but, at later stages, can be aggressive and often fatal.

Using germline and tumor testing and centralized pathology review, the research team found that SLCT and GAB are nearly always DICER1-related tumors. There also may be a much stronger association between SLCT and DICER1 than was previously appreciated. The new findings have implications for earlier detection and diagnoses of these cancers, as well as for screening other family members. The study was published in the December 2017 edition of Gynecologic Oncology.

“These types of tumors are diverse, relatively rare and understudied,” says D. Ashley Hill, M.D., the study’s senior author and a professor in the Division of Pathology and Laboratory Medicine at Children’s National. “Sertoli-Leydig cell tumor, for instance, is a unique genetic and pathologic entity and this rare cancer of the ovaries can be hard to detect. Using the testing process from this study, we now may be able to classify these tumors more accurately.”

The study authors assessed the first 107 individuals enrolled in the International Ovarian and Testicular Stromal Tumor Registry. They obtained medical and family history, and they conducted central pathology review plus DICER1 gene sequencing on blood and tumor tissue. Thirty-six of 37 patients with SLCTs and all four patients with GABs they tested showed DICER1 mutations, and half of those with SLCT had germline or mosaic mutations. The team noted that individuals with predisposing DICER1 mutations had significantly better overall and recurrence-free survival.

Based on their findings, the study authors recommend:

  • Careful and ideally centralized pathologic review for all individuals with OSCST tumors
  • DICER1 testing for all those with SLCT and GAB and
  • Consideration of DICER1 testing for patients with other OSCSTs.

“Genetic testing may be useful for screening and diagnosing entire families if one family member tests positive for a DICER1 mutation, especially to determine if they are at risk for PPB. When we know who is at risk, we can protect all children in a family,” Dr. Hill says. “Ultimately we may be able to cure this deadly lung cancer, PPB, by identifying and performing computed tomography scans on people who are at risk, so we can catch these cancers early.”

Dr. Hill thinks future research may study children whose cancer was not detected early or has become resistant to chemotherapy. They also may explore ways to restore normal controls in cancer cells, so they follow normal paths of development, for the purpose of developing targeted treatments with fewer side effects than current therapies.

In addition to Dr. Hill, other Children’s National study co-authors include Amanda Field, M.P.H., Department of Pathology; Weiying Yu, Ph.D., Department of Pathology; and Joyce Turner, director of the Cancer Genetic Counseling Program in Children’s Rare Disease Institute.

Other members of the study team are experts from the International Ovarian and Testicular Stromal Tumor Registry, Children’s Minnesota, Washington University Medical Center, Carolinas Health Care System, University of Texas MD Anderson Cancer Center, Harvard Medical School, University of Colorado School of Medicine, Clinic of Pediatrics (Dortmund, Germany), National Cancer Institute and Dana-Farber Cancer Institute.

Research reported in this story was supported by the National Institutes of Health under award number NCI R01CA143167, The Parson’s Foundation, St. Baldrick’s Foundation, Pine Tree Apple Tennis Classic Foundation, Hyundai Hope on Wheels, the Randy Shaver Cancer Research and Community Fund, the German Childhood Cancer Foundation and the Intramural Research Program of the Divisions of Cancer Epidemiology and Genetics, National Cancer Institute.

Lisa M. Guay-Woodford, M.D

Internationally renowned pediatric nephrologist named to NIH advisory council

Lisa M. Guay-Woodford, M.D

Pediatric nephrologist Lisa M. Guay-Woodford, M.D., has been named to a three-year term as adviser serving on the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) Kidney, Urologic and Hematologic Diseases subcouncil.

Dr. Guay-Woodford, Director of the Center for Translational Science at Children’s National, is an internationally recognized expert in the mechanisms that modulate the clinical severity of certain inherited renal disorders, such as autosomal recessive polycystic kidney disease. She holds the Richard L. and Agnes F. Hudson Professorship in Health Services Research at Children’s National.

NIDDK, like other grant-awarding institutes within the National Institutes of Health (NIH), looks to its advisory councils for feedback on procedures that govern staff and manage its grant portfolios. The institute, the fifth largest at the NIH, supports clinical research about internal medicine and related subspecialties for many of the most common chronic health conditions.

“It is a tremendous honor to be asked to serve on this important council. I look forward to providing advice and perspective on the exciting portfolio of NIDDK-funded projects,” Dr. Guay-Woodford says.

Carlos Ferreira Lopez

Researchers discover new gene variant for inherited amino acid-elevating disease

Carlos Ferreira Lopez

What’s known

Hypermethioninemia is a rare condition that causes elevated levels of methionine, an essential amino acid in humans. This condition stems from genetic variations inherited from one or both parents. Some forms of hypermethioninemia are recessive, meaning that two copies of defective genes are necessary to cause this disease. Other forms are dominant, meaning that only one copy can cause hypermethioninemia. Recessive forms of the disease tend to have more serious consequences, causing elevated methionine levels throughout life and leading to changes in the brain’s white matter visible on magnetic resonance imaging that can cause neurological problems. The dominant forms are generally thought to be largely benign and require minimal follow-up.

What’s new

A research team led by Carlos R. Ferreira, M.D., a medical geneticist at Children’s National Health System, discovered a new gene variant that had not been associated with hypermethioinemia previously when an infant who had tested positive for elevated methionine on newborn blood-spot screening came in for a follow-up evaluation. While the majority of dominant hypermethioninemia are caused by a genetic mutation known as MAT1A p.Arg264His, the child didn’t have this or any of the common recessive hypermethioninemia mutations. Genetic testing showed that she carried a different mutation to the MAT1A gene known as p.Ala259Val, of which she carried only a single copy. The child fit the typical profile of having the dominant form of the disease, with methionine levels gradually declining over time. Testing of her mother showed that she carried the same gene variant, with few consequences other than a hepatitis-like illness as a child. Because liver disease can accompany dominant hypermethioninemia, the infant’s doctors will continue periodic follow-up to ensure she remains healthy.

Questions for future research

Q: Besides the potential for harmful liver effects, does dominant hypermethioninemia have other negative consequences?

Q: How common is this gene variant, and are certain people at more risk for carrying it?

Source: Confirmation that MAT1A p.Ala259Val mutation causes autosomal dominant hypermethioninemia. Muriello, M.J., S. Viall, T. Bottiglieri, K. Cusmano-Ozog and C. R. Ferreira. Published by Molecular Genetics and Metabolism Reports December 2017.

Debra Regier

U.S. leads the pack in medical genetics and genomic medicine

Debra Regier

Debra S. Regier, M.D., Ph.D., a pediatric geneticist who is the director of education in the Rare Disease Institute at Children’s National Health System.

It long has been recognized that traits can be passed down from parents to offspring in humans, just as occurs with other species. But medical genetics – the scientific field that covers the diagnoses and management of heritable diseases – didn’t get its start until recently. Only in the past century or so have researchers devoted significant resources to better understanding the patterns of inheritance or syndromes that have a genetic cause.

Although this research has taken place around the world, the United States is well established as a leader in this field, say authors of an article published in the July 2017 issue of Molecular Genetics & Genomic Medicine.

This article covers the history of the field, demographics of genetic conditions, legislation that relates to genetic disease and its burdens and highlights a long list of American researchers who have genetic diseases named after them. The list, comprising 86 scientists in a diverse array of fields including pediatrics, pathology, dermatology and oncology, is a testament to the devotion of these researchers to understanding a specific condition or, sometimes, group of related conditions.

Their dedication, often spanning the entirety of their career, contributed to the wealth of knowledge now available that’s improved the outcomes of many individuals with these diseases, says article co-author Debra S. Regier, M.D., Ph.D., a pediatric geneticist who is the director of education in the Rare Disease Institute at Children’s National Health System.

“Because these researchers spent their lives characterizing these disorders,” Dr. Regier says, “we can use that information when we find a child who fits the scheme of a particular disorder to tell families what they can expect – and in many instances – explain how best to treat them.”

Beyond tracking heritable disease traits through families, modern genomics also has led to the ability to recognize specific genes that cause various disorders, speeding the process of diagnosis and intervention.

“There are about 7,000 rare diseases, and sometimes it’s hard to know where to start with patients because it’s unclear which one they have,” Dr. Regier says. “By doing genetic testing, we can give families information, offer a prognosis and start treatments that have helped children who came before them with the same genetic mutation.”

Dr. Regier speculates that U.S. leadership in this field is largely due to the presence of large academic centers that are devoted to the study of genetic disorders, like Children’s National. Such centers give researchers dedicated time and space to better understand genetic diseases, both on a basic and an applied level. Despite the country’s stature as a frontrunner in this research arena, the United States has a relatively small medical genetics community, which researchers can use to their advantage.

“If I find a child with a rare genetic disorder, I can call up the world expert on this condition to share and receive information,” Dr. Regier adds. “That’s relatively rare in science, but it happens all the time in our field because we’re so small.”

Although the United States has contributed to many medical genetics and genomic medicine advances that have helped patients worldwide, the history of the field in this country wasn’t always laudable, Dr. Regier says. The article also addresses the eugenics movement during the early 20th century. For example, in 1907, Indiana became the first state to enact involuntary sterilization legislation, an effort to remove “flawed” individuals from the gene pool that was followed by similar laws in several other states. In 1924, Virginia enacted a law that allowed eugenic sterilization of people with intellectual disabilities that was upheld by the U.S. Supreme Court in 1927.

After atrocities committed by the Nazis during World War II, when the repercussions of these policies became more clear, these laws were gradually abolished.

More recent legislation, the article’s authors write, aims to protect individuals from discrimination for genetic disorders. Thus far, 35 states have laws on the books protecting against employment discrimination, and 48 states passed legislation against health insurance discrimination based on genetic information. Twenty-four states endorsed statutes that limit the use of genetic information for other types of insurance, including life, long-term care and disability.

The article is the first of a two-part series and was followed Nov. 26, 2017 by a second article addressing the current status of prenatal testing, reproductive options and reproductive law in the United States, as well as newborn screening, genetic services, rare disease registries, and education and training in genetics.

“We can take pride in our progress, while still acknowledging that we have a long way to go in this field,” Dr. Regier says.