Genetics and Rare Diseases

banner year

2017: A banner year for innovation at Children’s National

banner year

In 2017, clinicians and research faculty working at Children’s National Health System published more than 850 research articles about a wide array of topics. A multidisciplinary Children’s Research Institute review group selected the top 10 articles for the calendar year considering, among other factors, work published in high-impact academic journals.

“This year’s honorees showcase how our multidisciplinary institutes serve as vehicles to bring together Children’s specialists in cross-cutting research and clinical collaborations,” says Mark L. Batshaw, M.D., Physician-in-Chief and Chief Academic Officer at Children’s National. “We’re honored that the National Institutes of Health and other funders have provided millions in awards that help to ensure that these important research projects continue.”

The published papers explain research that includes using imaging to describe the topography of the developing brains of infants with congenital heart disease, how high levels of iron may contribute to neural tube defects and using an incisionless surgery method to successfully treat osteoid osteoma. The top 10 Children’s papers:

Read the complete list.

Dr. Batshaw’s announcement comes on the eve of Research and Education Week 2018 at Children’s National, a weeklong event that begins April 16, 2018. This year’s theme, “Diversity powers innovation,” underscores the cross-cutting nature of Children’s research that aims to transform pediatric care.

Horizon Pharma gifts $3M to establish Horizon Pharma Clinical Care Endowment at Children’s National Rare Disease Institute

“Patients and families with rare conditions deserve to be treated in a place with the medical knowledge to provide quick, clear answers and the expert care they need,” says Marshall Summar, M.D., director of the CNRDI.

Children’s National Health System and Horizon Pharma plc are pleased to announce the creation of the Horizon Pharma Clinical Care Endowment, the first clinical team endowment at the Children’s National Rare Disease Institute (CNRDI). The endowment is made possible by a generous six-year, $3 million commitment from Horizon Pharma USA, Inc., a wholly owned subsidiary of Horizon Pharma plc –a biopharmaceutical company dedicated to improving the lives of people living with rare diseases.

“Patients and families with rare conditions deserve to be treated in a place with the medical knowledge to provide quick, clear answers and the expert care they need,” says Marshall Summar, M.D. , director of the CNRDI.  “We are grateful for Horizon and their support of our mission to make the Children’s National Rare Disease Institute that place. This endowment will support a dedicated team that can provide optimal, comprehensive care to more patients and ensure that families have a trusted source for all aspects of their health care.”

The Horizon Pharma Clinical Care Endowment will generate revenue annually, providing stable support for an expert care team at the CNRDI. Each team will be comprised of a clinical geneticist and support team members – such as genetic counselors, nutritionists and social workers – all specializing in the care of children with rare disease.

The long-term support provided by the Horizon Pharma Clinical Care Endowment will give the CNRDI a firm foundation for treating patients earlier, more consistently and over the course of their lifetime. Horizon’s commitment marks the first donor-funded endowment at the CNRDI.

Currently, it is estimated that one in 10 Americans has a rare disease – approximately 80 percent of which are genetically based. Additionally, the NIH reports that more than 80 percent are childhood diseases, and more than 25 percent of children admitted to pediatric hospitals have a rare disease.

The CNRDI is a first-of-its-kind center focused exclusively on advancing the care and treatment of children and adults with rare genetic diseases. It is the first National Organization for Rare Disorders (NORD) Center of Excellence and aims to provide a medical home for patients and families seeking the most advanced care and expertise for rare genetic conditions that remain largely unknown to the general medical community.

foods rich in folate

An ironclad way to prevent neural tube defects? Not yet

foods rich in folate

Researchers have known for decades that folate, a vitamin enriched in dark, leafy vegetables; fruit; nuts; and other food sources, plays a key role in preventing neural tube defects.

Every year, about 3,000 pregnancies in the U.S. are affected by neural tube defects (NTDs) –  birth defects of the brain, spine and spinal cord. These include anencephaly, in which a major part of the brain, skull and scalp is missing; and spina bifida, in which the backbone and membranes around the spinal cord don’t close properly during fetal development. These structural birth defects can have devastating effects: In the best cases, they might lead to mild but lifelong disability; in the worst cases, babies don’t survive.

Researchers have known for decades that folate, a vitamin enriched in dark, leafy vegetables; fruit; nuts; and other food sources, plays a key role in preventing NTDs. To help get more folate into pregnant women’s diets, wheat flour in the U.S. and many other countries is often fortified with folic acid, a synthetic version of this vitamin, as part of an intervention credited with significantly reducing the incidence of NTDs.

But folic acid supplementation isn’t enough, says Irene E. Zohn, Ph.D., a principal investigator at the Center for Neuroscience Research at Children’s National Health System who studies how genes and the environment interact during development. A significant number of NTDs still occur, suggesting that other approaches – potentially, other nutrients in the maternal diet – might provide further protection.

That’s why Zohn and colleagues decided to investigate iron. Iron deficiency is one of the most common micronutrient deficiencies in women of childbearing age, Zohn explains. Additionally, iron and folate deficiencies often overlap and signal overall poor maternal diets.

The idea that iron deficiency might play a role in NTDs came from studies by Zohn and colleagues of the flatiron mutant line of experimental models. This experimental model line has a mutation in a gene that transports iron across cell membranes, including the cells that supply embryos with this critical micronutrient.

To determine if NTDs develop in these mutant experimental models because of reduced iron transport, the researchers devised a simple experiment: They took female adult experimental models with the mutation and separated them into four groups. For several weeks, one group ate a diet that was high in folic acid. Another group ate a diet high in iron. The third group ate a diet high in both folic acid and iron. The fourth group ate standard chow. All of these experimental models then became pregnant with embryos that harbored the flatiron mutation, and the researchers assessed the offspring for the presence of NTDs.

Irene Zohn

“We were hoping that iron supplements would be the next folic acid, but it did not turn out that way,” says Irene E. Zohn, Ph.D. “Even though our results demonstrate that iron is important for proper neural tube development, giving extra iron definitely has its downsides.”

As they reported in Birth Defects Research, the dietary interventions successfully increased iron stores: Experimental model mothers whose diets were supplemented with iron, folic acid or both had increased concentrations of these micronutrients in their blood.

The dietary interventions also affected their offspring. While about 80 percent of flatiron mutant embryos fed a standard diet during pregnancy had NTDs, feeding a diet high in iron prevented NTDs in half of the offspring. This lower rate was similar in the offspring of mothers fed a diet high in both folic acid and iron, but not for those whose mothers ate just a diet high in folic acid. Those embryos had NTD rates as high as those who ate just the standard chow, suggesting that low iron was the cause of the high rates, not low folic acid.

Together, Zohn says, these experiments show that iron plays an important role in the development of the neural tube and that deficits in iron might cause some cases of NTDs. However, she notes, reducing NTDs isn’t nearly as simple as supplementing pregnant women’s diets with iron. In the same study, the researchers found that when they gave normal experimental models that didn’t have the flatiron mutation concentrated iron supplements – amounts akin to what doctors might prescribe for human patients with very severe iron-deficiency anemia – folate stores dropped.

That’s because these two micronutrients interact in the body with similar sites for absorption and storage in the intestines and liver, Zohn explains. At either the intestines or liver or at both locations, an iron overload might interfere with the body’s ability to absorb or use folate.

At this point, she says, giving high doses of iron routinely during pregnancy doesn’t look like a feasible way to prevent NTDs.

“We were hoping that iron supplements would be the next folic acid, but it did not turn out that way,” Zohn says. “Even though our results demonstrate that iron is important for proper neural tube development, giving extra iron definitely has its downsides.”

Zohn’s team plans to continue to investigate the role of iron, as well as the role of other micronutrients that might influence neural tube development.

Zohn’s coauthors include Bethany A. Stokes, The George Washington University, and Julia A. Sabatino, Children’s National.

Research reported in this story was supported by a grant from the Board of Visitors, Eunice Kennedy Shriver National Institute of Child Health & Human Development under award number R21-HD076202, the National Center for Research Resources under award number UL1RR031988, Children’s Research Institute and the National Institutes of Health under grant P30HD040677.

Eric Vilain

Exploring differences of sex development

Eric Vilain, M.D., Ph.D.

Eric Vilain, M.D., Ph.D., analyzes the genetic mechanisms of sex development to give families more answers that will help them make better treatment (or non treatment) decisions for a child diagnosed with DSD.

Eric Vilain, M.D., Ph.D., is well versed in the “world of uncertainty” that surrounds differences of sex development. Since joining Children’s National as the director of the Center for Genetic Medicine Research in 2017, he’s shared with our research and clinical faculty and staff his expertise about the ways that genetic analysis might help address some of the complex social, cultural and medical implications of these differences.

Over the summer, he gave a keynote address entitled “Disorders/Differences of Sex Development: A World of Uncertainty” during Children’s National’s Research and Education Week, an annual celebration of research, education, innovation and scholarship at Children’s National and around the world. In January 2018, he shared a more clinically oriented version of the talk at a special Children’s National Grand Rounds session.

The educational objective of these talks is to inform researchers and providers about the mechanisms of differences of sex development (DSD), which are defined as congenital conditions in which the development of chromosomal, gonadal or anatomical sex is atypical.

The primary goal, though, is to really shine light on the complexity of this hot topic, and share how powerful genetic tools can be used to provide vital, concrete information for care providers, patients and families to assist with difficult treatment (and non-treatment) decisions.

“A minority of DSD cases are able to receive a genetic diagnosis today,” he points out. “But geneticists know how important it is to come to a diagnosis and so we seek to increase the number of patients who receive a concrete genetic diagnosis. It impacts genetic counseling and reproductive options, and provides a better ability to predict long term outcomes.”

“These differences impact physiology and medicine. We want to better understand the biology of reproduction, with an emphasis on finding ways to preserve fertility at all costs, and how these variations may lead to additional complications, including cancer risk.”

At conception, he explains, both XX and XY embryos have bipotential gonads capable of differentiating into a testis or an ovary, though embryos are virtually indistinguishable from a gender perspective up until six weeks in utero.

Whether or not a bipotential gonad forms is largely left up to the genetic makeup of the individual. For example, a gene in the Y chromosome (SRY) triggers a cascade of genes that lead to testis development. If there is no Y chromosome, it triggers a series of pro-female genes that lead to ovarian development.

Dr. Vilain notes that a variation of enzymes or transcription factors can occur at any single step of sex development and alter all the subsequent steps. Depending on the genotype, an individual may experience normal gonadal development, but abnormal development of the genitalia, for example.

He also noted that these genes are critical to determining the differences between men and women in non-gonadal tissues, including differences in gene expression within the brain. One study in the lab of investigator Matt Bramble, Ph.D., investigates if gonadal hormones impact sex differences in the brain by modifying the genome.

This work is a prime example of research informing the care provided to patients and families. Dr. Vilain is also a member of the multidisciplinary clinical team of the PROUD Clinic at Children’s National, a program completely devoted to caring for patients with a wide array of genetic and endocrine issues, including urogenital disorders and variations of sex development.

Electronic medical record on tablet

Children’s National submissions make hackathon finals

Electronic medical record on tablet

This April, the Clinical and Translational Science Institute at Children’s National (CTSI-CN) and The George Washington University (GW) will hold their 2nd Annual Medical and Health App Development Workshop. Of the 10 application (app) ideas selected for further development at the hackathon workshop, five were submitted by clinicians and researchers from Children’s National.

The purpose of the half-day hackathon is to develop the requirements and prototype user interface for 10 medical software applications that were selected from ideas submitted late in 2017. While idea submissions were not restricted, the sponsors suggested that they lead to useful medical software applications.

The following five app ideas from Children’s National were selected for the workshop:

  • A patient/parent decision tool that could use a series of questions to determine if the patient should go to the Emergency Department or to their primary care provider; submitted by Sephora Morrison, M.D., and Ankoor Shah, M.D.
  • The Online Treatment Recovery Assistance for Concussion in Kids (OnTRACK) smartphone application could guide children/adolescents and their families in the treatment of their concussion in concert with their health care provider; submitted by Gerard Gioia, Ph.D.
  • A genetic counseling app that would provide a reputable, easily accessible bank of counseling videos for a variety of topics, from genetic testing to rare disorders; submitted by Debra Regier, M.D.
  • An app that would allow the Children’s National Childhood and Adolescent Diabetes Program team to communicate securely and efficiently with diabetes patients; submitted by Cynthia Medford, R.N., and Kannan Kasturi, M.D.
  • An app that would provide specific evidence-based guidance for medical providers considering PrEP (pre-exposure prophylaxis) for HIV prevention; submitted by Kyzwana Caves, M.D.

Kevin Cleary, Ph.D., technical director of the Bioengineering Initiative at Children’s National Health System, and Sean Cleary, Ph.D., M.P.H., associate professor in epidemiology and biostatistics at GW, created the hackathon to provide an interactive learning experience for people interested in developing medical and health software applications.

The workshop, which will be held on April 13, 2018, will start with short talks from experts on human factors engineering and the regulatory environment for medical and health apps. Attendees will then divide into small groups to brainstorm requirements and user interfaces for the 10 app ideas. After each group presents their concepts to all the participants, the judges will pick the winning app/group. The idea originator will receive up to $10,000 of voucher funding for their prototype development.

Human Rhinovirus

Finding the root cause of bronchiolitis symptoms

Human Rhinovirus

A new study shows that steroids might work for rhinovirus but not for respiratory syncytial virus.

Every winter, doctors’ offices and hospital emergency rooms fill with children who have bronchiolitis, an inflammation of the small airways in the lung. It’s responsible for about 130,000 admissions each year. Sometimes these young patients have symptoms reminiscent of a bad cold with a fever, cough and runny nose. Other times, bronchiolitis causes breathing troubles so severe that these children end up in the intensive care unit.

“The reality is that we don’t have anything to treat these patients aside from supportive care, such as intravenous fluids or respiratory support,” says Robert J. Freishtat, M.D., M.P.H., chief of emergency medicine at Children’s National Health System. “That’s really unacceptable because some kids get very, very sick.”

Several years ago, Dr. Freishtat says a clinical trial tested using steroids as a potential treatment for bronchiolitis. The thinking was that these drugs might reduce the inflammation that’s a hallmark of this condition. However, he says, the results weren’t a slam-dunk for steroids: The drugs didn’t seem to improve outcomes any better than a placebo.

But the trial had a critical flaw, he explains. Rather than having one homogenous cause, bronchiolitis is an umbrella term for a set of symptoms that can be caused by a number of different viruses. The most common ones are respiratory syncytial virus (RSV) and rhinovirus, the latter itself being an assortment of more than 100 different but related viruses. By treating bronchiolitis as a single disease, Dr. Freishtat says researchers might be ignoring the subtleties of each virus that influence whether a particular medication is useful.

“By treating all bronchiolitis patients with a single agent, we could be comparing apples with oranges,” he says. “The treatment may be completely different depending on the underlying cause.”

To test this idea, Dr. Freishtat and colleagues examined nasal secretions from 32 infants who had been hospitalized with bronchiolitis from 2011 to 2014 at 17 medical centers across the country that participate in a consortium called the 35th Multicenter Airway Research Collaboration. In half of these patients, lab tests confirmed that their bronchiolitis was caused by RSV; in the other half, the cause was rhinovirus.

From these nasal secretions, the researchers extracted nucleic acids called microRNAs. These molecules regulate the effects of different genes through a variety of different mechanisms, usually resulting in the effects of target genes being silenced. A single microRNA typically targets multiple genes by affecting messenger RNA, a molecule that’s key for producing proteins.

Comparing results between patients with RSV or rhinovirus, the researchers found 386 microRNAs that differed in concentration. Using bioinformatic software, they traced these microRNAs to thousands of messenger RNAs, looking for any interesting clues to important mechanisms of illness that might vary between the two viruses.

Their findings eventually turned up important differences between the two viruses in the NF-kB (nuclear factor kappa-light-chain-enhancer of activated B cells) pathway, a protein cascade that’s intimately involved in the inflammatory response and is a target for many types of steroids. Rhinovirus appears to upregulate the expression of many members of this protein family, driving cells to make more of them, and downregulate inhibitors of this cascade. On the other hand, RSV didn’t seem to have much of an effect on this critical pathway.

To see if these effects translated into cells making more inflammatory molecules in this pathway, the researchers searched for various members of this protein cascade in the nasal secretions. They found an increase in two, known as RelA and NFkB2.

Based on these findings, published online Jan. 17, 2018, in Pediatric Research, steroids might work for rhinovirus but not for RSV, notes Dr. Freishtat the study’s senior author.

“We’re pretty close to saying that you’d need to conduct a clinical trial with respect to the virus, rather than the symptoms, to measure any effect from a given drug,” he says.

Future clinical trials might test the arsenal of currently available medicines to see if any has an effect on bronchiolitis caused by either of these two viruses. Further research into the mechanisms of each type of illness also might turn up new targets that researchers could develop new medicines to hit.

“Instead of determining the disease based on symptoms,” he says, “we can eventually treat the root cause.”

Study co-authors include Kohei Hasegawa, study lead author, and Carlos A. Camargo Jr., Massachusetts General Hospital; Marcos Pérez-Losada, The George Washington University School of Medicine and Health Sciences; Claire E. Hoptay, Samuel Epstein and Stephen J. Teach, M.D., M.P.H., Children’s National; Jonathan M. Mansbach, Boston Children’s Hospital; and Pedro A. Piedra, Baylor College of Medicine.

Sarah Viall

Newborn screening leader selected to advisory committee on heritable disorders in newborns and children

Sarah Viall

Sarah Viall, PPCNP, coordinator for the Newborn Screening Program at the Children’s National Rare Disease Institute (CNRDI), has been invited to serve on the Education and Training Workgroup of the Health Resources & Services Administration’s (HRSA) Advisory Committee on Heritable Disorders in Newborns and Children (ACHDNC).

Established under the Public Health Service Act, the ACHDNC focuses on reducing morbidity and mortality in newborns and children who have, or are at risk for, genetic disorders. The Committee currently recommends that all newborn screening programs include a Uniform Screening Panel that monitors for a total of 34 core disorders and another 26 secondary disorders.

In addition to developing recommendations on national newborn screening guidelines, the ACHDNC also advises the U.S. Department of Health and Human Services Secretary on the most appropriate application of newborn screening technologies, tests, policies and standards. The Committee provides technical information that helps develop Heritable Disorders Program policies and priorities that enhance the ability of local and state health agencies to provide screening, healthcare services and counseling for newborns and children affected by genetic disease.

Viall had previously spent a year observing meetings for the ACHDNC Education and Training Workgroup.

“I am thrilled to be an official member that can contribute to the important work of educating communities about newborn screening,” says Viall.

$3M Retrophin gift establishes Rare Disease Network at Children’s National

“This is an exciting first step toward a new era of rare disease care and innovation,” says Marshall Summar, M.D., director of the CNRDI. “We are grateful for this gift from Retrophin that will help us accelerate progress for our patients and families and pursue work that will have a far-reaching impact on both children and adults across the country and around the world thanks to the support of Retrophin.”

Children’s National Health System and Retrophin, Inc. have announced the creation of the Retrophin Rare Disease Network at Children’s National. Retrophin, a biopharmaceutical company specializing in identifying, developing and delivering life-changing therapies to people living with rare diseases, has committed $3 million over the next six years to support the work of the Children’s National Rare Disease Institute (CNRDI). Retrophin’s commitment marks the first corporate gift to CNRDI.

“One of the chief challenges of 21st century pediatric medicine is our continued inability to provide more help to those born with rare genetic diseases,” says Marshall Summar, M.D., director of the CNRDI. “This is an exciting first step toward a new era of rare disease care and innovation. We are grateful for this gift from Retrophin that will help us accelerate progress for our patients and families and pursue work that will have a far-reaching impact on both children and adults across the country and around the world thanks to the support of Retrophin.”

As a dedicated source of funding, the Retrophin Rare Disease Network will advance the CNRDI’s efforts to create a global “hub and spoke” model for disseminating and streamlining patient access to optimal care methods and among national and international peer institutions. The network will enhance the field of rare disease medicine by standardizing care models and establishing world-wide best practices in diagnosis and treatment.

The Retrophin Rare Disease Network will also provide funding for new dedicated positions at the CNRDI and build on the Institute’s existing digital and telemedicine programs, to extend the reach of its researchers and caregivers in areas where there is currently limited care available for children and adults living with rare diseases.

CNRDI is a first-of-its-kind center focused exclusively on advancing the care and treatment of children and adults with rare genetic diseases. The first National Organization for Rare Disorders (NORD) Center of Excellence, it aims to provide a medical home for patients and families seeking the most advanced care and expertise for rare genetic conditions that remain largely unknown to the general medical community.

Ashley Hill and Joyce Turner

New clues to detect rare pediatric cancers

Ashley Hill and Joyce Turner

Using germline and tumor testing and centralized pathology review, a research team that included D. Ashley Hill, M.D, and Joyce Turner found that Sertoli-Leydig cell tumor and gynandroblastoma are nearly always DICER1-related tumors.

Children’s National Health System researchers played a key role in a new study exploring the clinical and genetic qualities of a group of rare, potentially deadly cancers that affect infants, children and adolescents. The research team’s findings suggest that genetic testing for people at risk may aid in earlier, more accurate diagnoses of these cancers, leading to early-stage treatment that could greatly improve survival.

Ovarian sex cord-stromal tumors (OSCST) include juvenile granulosa cell tumors (JGCT), Sertoli-Leydig cell tumor (SLCT) and gynandroblastoma (GAB). Mutations in the DICER1 gene often have been noted in children with these cancers, as well as in those with a particularly lethal pediatric lung cancer called pleuropulmonary blastoma (PPB). All of these cancers are highly curable if caught early but, at later stages, can be aggressive and often fatal.

Using germline and tumor testing and centralized pathology review, the research team found that SLCT and GAB are nearly always DICER1-related tumors. There also may be a much stronger association between SLCT and DICER1 than was previously appreciated. The new findings have implications for earlier detection and diagnoses of these cancers, as well as for screening other family members. The study was published in the December 2017 edition of Gynecologic Oncology.

“These types of tumors are diverse, relatively rare and understudied,” says D. Ashley Hill, M.D., the study’s senior author and a professor in the Division of Pathology and Laboratory Medicine at Children’s National. “Sertoli-Leydig cell tumor, for instance, is a unique genetic and pathologic entity and this rare cancer of the ovaries can be hard to detect. Using the testing process from this study, we now may be able to classify these tumors more accurately.”

The study authors assessed the first 107 individuals enrolled in the International Ovarian and Testicular Stromal Tumor Registry. They obtained medical and family history, and they conducted central pathology review plus DICER1 gene sequencing on blood and tumor tissue. Thirty-six of 37 patients with SLCTs and all four patients with GABs they tested showed DICER1 mutations, and half of those with SLCT had germline or mosaic mutations. The team noted that individuals with predisposing DICER1 mutations had significantly better overall and recurrence-free survival.

Based on their findings, the study authors recommend:

  • Careful and ideally centralized pathologic review for all individuals with OSCST tumors
  • DICER1 testing for all those with SLCT and GAB and
  • Consideration of DICER1 testing for patients with other OSCSTs.

“Genetic testing may be useful for screening and diagnosing entire families if one family member tests positive for a DICER1 mutation, especially to determine if they are at risk for PPB. When we know who is at risk, we can protect all children in a family,” Dr. Hill says. “Ultimately we may be able to cure this deadly lung cancer, PPB, by identifying and performing computed tomography scans on people who are at risk, so we can catch these cancers early.”

Dr. Hill thinks future research may study children whose cancer was not detected early or has become resistant to chemotherapy. They also may explore ways to restore normal controls in cancer cells, so they follow normal paths of development, for the purpose of developing targeted treatments with fewer side effects than current therapies.

In addition to Dr. Hill, other Children’s National study co-authors include Amanda Field, M.P.H., Department of Pathology; Weiying Yu, Ph.D., Department of Pathology; and Joyce Turner, director of the Cancer Genetic Counseling Program in Children’s Rare Disease Institute.

Other members of the study team are experts from the International Ovarian and Testicular Stromal Tumor Registry, Children’s Minnesota, Washington University Medical Center, Carolinas Health Care System, University of Texas MD Anderson Cancer Center, Harvard Medical School, University of Colorado School of Medicine, Clinic of Pediatrics (Dortmund, Germany), National Cancer Institute and Dana-Farber Cancer Institute.

Research reported in this story was supported by the National Institutes of Health under award number NCI R01CA143167, The Parson’s Foundation, St. Baldrick’s Foundation, Pine Tree Apple Tennis Classic Foundation, Hyundai Hope on Wheels, the Randy Shaver Cancer Research and Community Fund, the German Childhood Cancer Foundation and the Intramural Research Program of the Divisions of Cancer Epidemiology and Genetics, National Cancer Institute.

Lisa M. Guay-Woodford, M.D

Internationally renowned pediatric nephrologist named to NIH advisory council

Lisa M. Guay-Woodford, M.D

Pediatric nephrologist Lisa M. Guay-Woodford, M.D., has been named to a three-year term as adviser serving on the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) Kidney, Urologic and Hematologic Diseases subcouncil.

Dr. Guay-Woodford, Director of the Center for Translational Science at Children’s National, is an internationally recognized expert in the mechanisms that modulate the clinical severity of certain inherited renal disorders, such as autosomal recessive polycystic kidney disease. She holds the Richard L. and Agnes F. Hudson Professorship in Health Services Research at Children’s National.

NIDDK, like other grant-awarding institutes within the National Institutes of Health (NIH), looks to its advisory councils for feedback on procedures that govern staff and manage its grant portfolios. The institute, the fifth largest at the NIH, supports clinical research about internal medicine and related subspecialties for many of the most common chronic health conditions.

“It is a tremendous honor to be asked to serve on this important council. I look forward to providing advice and perspective on the exciting portfolio of NIDDK-funded projects,” Dr. Guay-Woodford says.

Carlos Ferreira Lopez

Researchers discover new gene variant for inherited amino acid-elevating disease

Carlos Ferreira Lopez

What’s known

Hypermethioninemia is a rare condition that causes elevated levels of methionine, an essential amino acid in humans. This condition stems from genetic variations inherited from one or both parents. Some forms of hypermethioninemia are recessive, meaning that two copies of defective genes are necessary to cause this disease. Other forms are dominant, meaning that only one copy can cause hypermethioninemia. Recessive forms of the disease tend to have more serious consequences, causing elevated methionine levels throughout life and leading to changes in the brain’s white matter visible on magnetic resonance imaging that can cause neurological problems. The dominant forms are generally thought to be largely benign and require minimal follow-up.

What’s new

A research team led by Carlos R. Ferreira, M.D., a medical geneticist at Children’s National Health System, discovered a new gene variant that had not been associated with hypermethioinemia previously when an infant who had tested positive for elevated methionine on newborn blood-spot screening came in for a follow-up evaluation. While the majority of dominant hypermethioninemia are caused by a genetic mutation known as MAT1A p.Arg264His, the child didn’t have this or any of the common recessive hypermethioninemia mutations. Genetic testing showed that she carried a different mutation to the MAT1A gene known as p.Ala259Val, of which she carried only a single copy. The child fit the typical profile of having the dominant form of the disease, with methionine levels gradually declining over time. Testing of her mother showed that she carried the same gene variant, with few consequences other than a hepatitis-like illness as a child. Because liver disease can accompany dominant hypermethioninemia, the infant’s doctors will continue periodic follow-up to ensure she remains healthy.

Questions for future research

Q: Besides the potential for harmful liver effects, does dominant hypermethioninemia have other negative consequences?

Q: How common is this gene variant, and are certain people at more risk for carrying it?

Source: Confirmation that MAT1A p.Ala259Val mutation causes autosomal dominant hypermethioninemia. Muriello, M.J., S. Viall, T. Bottiglieri, K. Cusmano-Ozog and C. R. Ferreira. Published by Molecular Genetics and Metabolism Reports December 2017.

Debra Regier

U.S. leads the pack in medical genetics and genomic medicine

Debra Regier

Debra S. Regier, M.D., Ph.D., a pediatric geneticist who is the director of education in the Rare Disease Institute at Children’s National Health System.

It long has been recognized that traits can be passed down from parents to offspring in humans, just as occurs with other species. But medical genetics – the scientific field that covers the diagnoses and management of heritable diseases – didn’t get its start until recently. Only in the past century or so have researchers devoted significant resources to better understanding the patterns of inheritance or syndromes that have a genetic cause.

Although this research has taken place around the world, the United States is well established as a leader in this field, say authors of an article published in the July 2017 issue of Molecular Genetics & Genomic Medicine.

This article covers the history of the field, demographics of genetic conditions, legislation that relates to genetic disease and its burdens and highlights a long list of American researchers who have genetic diseases named after them. The list, comprising 86 scientists in a diverse array of fields including pediatrics, pathology, dermatology and oncology, is a testament to the devotion of these researchers to understanding a specific condition or, sometimes, group of related conditions.

Their dedication, often spanning the entirety of their career, contributed to the wealth of knowledge now available that’s improved the outcomes of many individuals with these diseases, says article co-author Debra S. Regier, M.D., Ph.D., a pediatric geneticist who is the director of education in the Rare Disease Institute at Children’s National Health System.

“Because these researchers spent their lives characterizing these disorders,” Dr. Regier says, “we can use that information when we find a child who fits the scheme of a particular disorder to tell families what they can expect – and in many instances – explain how best to treat them.”

Beyond tracking heritable disease traits through families, modern genomics also has led to the ability to recognize specific genes that cause various disorders, speeding the process of diagnosis and intervention.

“There are about 7,000 rare diseases, and sometimes it’s hard to know where to start with patients because it’s unclear which one they have,” Dr. Regier says. “By doing genetic testing, we can give families information, offer a prognosis and start treatments that have helped children who came before them with the same genetic mutation.”

Dr. Regier speculates that U.S. leadership in this field is largely due to the presence of large academic centers that are devoted to the study of genetic disorders, like Children’s National. Such centers give researchers dedicated time and space to better understand genetic diseases, both on a basic and an applied level. Despite the country’s stature as a frontrunner in this research arena, the United States has a relatively small medical genetics community, which researchers can use to their advantage.

“If I find a child with a rare genetic disorder, I can call up the world expert on this condition to share and receive information,” Dr. Regier adds. “That’s relatively rare in science, but it happens all the time in our field because we’re so small.”

Although the United States has contributed to many medical genetics and genomic medicine advances that have helped patients worldwide, the history of the field in this country wasn’t always laudable, Dr. Regier says. The article also addresses the eugenics movement during the early 20th century. For example, in 1907, Indiana became the first state to enact involuntary sterilization legislation, an effort to remove “flawed” individuals from the gene pool that was followed by similar laws in several other states. In 1924, Virginia enacted a law that allowed eugenic sterilization of people with intellectual disabilities that was upheld by the U.S. Supreme Court in 1927.

After atrocities committed by the Nazis during World War II, when the repercussions of these policies became more clear, these laws were gradually abolished.

More recent legislation, the article’s authors write, aims to protect individuals from discrimination for genetic disorders. Thus far, 35 states have laws on the books protecting against employment discrimination, and 48 states passed legislation against health insurance discrimination based on genetic information. Twenty-four states endorsed statutes that limit the use of genetic information for other types of insurance, including life, long-term care and disability.

The article is the first of a two-part series and was followed Nov. 26, 2017 by a second article addressing the current status of prenatal testing, reproductive options and reproductive law in the United States, as well as newborn screening, genetic services, rare disease registries, and education and training in genetics.

“We can take pride in our progress, while still acknowledging that we have a long way to go in this field,” Dr. Regier says.

Children’s National leaders join with Governor Martin O'Malley

Facial analysis technology successfully used to identify Noonan syndrome in diverse populations

facial recognition of noonan syndrome

According to an international study led by the National Human Genome Research Institute (NHGRI), researchers have successfully used facial analysis software, developed by the Sheikh Zayed Institute for Pediatric Surgical Innovation at Children’s National, to identify Noonan syndrome in diverse populations.

Noonan syndrome is relatively common, affecting between 1 in 1,000 to 1 in 2,500 children, however few studies have been conducted in non-Europeans. For this study, the researchers evaluated children (average age of eight) with Noonan syndrome from 20 countries. Using the facial analysis software and clinical criteria, the researchers compared 161 white, African, Asian and Latin American children with Noonan syndrome with 161 people of the same age and gender without the disease. Using the software to analyze facial features, they were able to correctly diagnose patients with the disease from each ethnic group with 94 percent or higher accuracy.

Vote for STAT Madness!

Vote for Children’s National facial analysis technology in the STAT Madness Tournament.

“Our algorithm found widely spaced eyes as a significant facial feature in all ethnic groups and also highlighted facial features that are relevant to diagnosing the syndrome in each group,” said

Marius George Linguraru, D.Phil., developer of the facial analysis technology and an investigator in the study from Children’s National.

Linguraru and his team are working to create a simple tool that will enable doctors in clinics without state-of-the-art genetic facilities to take photos of their patients on a smartphone and receive instant results.

Zhe Han

Research led by Zhe Han featured on cover of JASN, leading kidney disease journal

Journal of the American Society of Nephrology September 2017 cover

Coenzyme Q10, one of the best-selling nutrient supplements to support heart health also could be beneficial for kidney health, according to research conducted in transgenic fruit flies that was led by Zhe Han, Ph.D., associate professor at Children’s Center for Cancer and Immunology Research.

Nephrocytes, filtration kidney cells in Drosophila, require the Coq2 gene for protein reabsorption, toxin sequestration and critical cell ultrastructure.  Silencing the Coq2 gene results in aberrantly localized nephrocyte slit diaphragms and deformed lacunar channels, Han and co-authors found. Nephrocytes closely resemble the podocytes of the human kidney.

The research team’s paper, published online April 2017, this fall was featured on the cover of Journal of the American Society of Nephrology, the No. 1 kidney disease journal.

“I am honored that the JASN editors chose to feature my lab’s work on the cover of this prestigious journal,” Han says. “This underscores the utility of our gene-replacement approach, which silenced the fly homolog in the tissue of interest – here, the kidney cells – and provided a human gene to supply the silenced function.”

boy sitting in wheelchair

Long-term glucocorticoids help patients with DMD

boy sitting in wheelchair

Glucocorticoids, a class of steroid hormone medications, have definite long-term benefits for patients with Duchenne muscular dystrophy, including extending muscle strength and function over years and decreasing the risk of death.

There is currently no cure for the devastating, progressive neuromuscular disease known as Duchenne muscular dystrophy (DMD). But clinics that treat patients with this disease have long relied on a class of steroid hormone medications, known as glucocorticoids, to ease its symptoms. Over weeks and months, these drugs help preserve muscle strength and function. Though these short-term benefits have been clear, some physicians have balked at using these medications over the long term – their benefits over years was unknown, making their potential side effects not worth the risk.

Now, a study published online Nov. 22, 2017 in The Lancet suggests that these medicines have definite long-term benefits, including extending muscle strength and function over years and even decreasing the risk of death. These findings support what has become the standard prescribing practice at many clinics and could help sway parents who are on the fence about their children receiving these therapies.

DMD is characterized by loss of muscle function and progressive muscle weakness that begins in the lower limbs and typically affects males due to the location of its causative genetic mutation. Patients with this devastating neuromuscular disease often receive glucocorticoids at some point as the disease progresses. Studies since the late 1980s have confirmed short-term benefits of treating with these drugs, including delaying the loss of muscle strength and function.

However, no prospective study had followed long-term glucocorticoid use in these patients, explains Heather Gordish-Dressman, Ph.D., a statistician at the Center for Genetic Medicine Research at Children’s National Health System and study senior author. The lack of long-term data led some physicians to delay treatment with these drugs since their use can lead to significant side effects, including weight gain, delayed growth and immunosuppression.

“Everyone had the idea that long-term use could be beneficial, but nobody had really rigorously tested that,” Gordish-Dressman says.

Craig McDonald, M.D., a University of California, Davis, professor and lead author of the study adds: “This long-term, follow-up study provides the most definitive evidence that the benefits of glucocorticoid steroid therapy in DMD extend over the entire lifespan. Most importantly, patients with Duchenne using glucocorticoids experienced an overall reduction in risk of death by more than 50 percent.”

To determine whether the short-term benefits of these drugs extend in the long term, Gordish-Dressman and researchers scattered across the country tapped data from the Cooperative International Neuromuscular Research Group’s Duchenne Natural History Study, the largest study to follow patients with DMD over time. They gathered data for 440 males with DMD aged 2 to 8 years old. About 22 percent had never taken glucocorticoids or had taken these medications for less than one year. The remainder had taken them for at least one year or longer.

By analyzing data for up to 10 years for these patients, the long-term benefits became clear, Gordish-Dressman adds. Glucocorticoid treatment for patients who received it for more than one year delayed loss of mobility milestones that affected the lower limbs by 2.1 to 4.4 years, such as going from supine to standing, climbing four stairs, and walking or running 10 meters, compared with boys who received the medications for less than one year. Long-term glucocorticoid therapy also delayed the loss of mobility milestones in upper limbs, such as hand function, performing a full overhead reach and raising the hands to the mouth.

Long-term use of these drugs also was associated with a decreased risk of death over the length of the study. Furthermore, deflazacort – a glucocorticoid recently approved by the Food and Drug Administration specifically for DMD – delayed loss of the ability to move from supine position to standing, walking and hand-to-mouth function significantly better than prednisone, the most popular glucocorticoid prescribed for DMD in the United States.

Gordish-Dressman says that glucocorticoids are currently a standard part of care for most patients with DMD, with some clinics prescribing these medications as soon as patients are diagnosed. However, because long-term data supporting their use was lacking, some physicians hesitate to prescribe glucocorticoids until the disease had progressed, when patients already had lost significant function.

Future studies will examine which medicines in this class of drugs and which regimens might offer the most benefits as well as how benefits differ with longer-term medication use.

Research reported in this news release was supported by the U.S. Department of Education/NIDRR, H133B031118 and H133B090001; the U.S. Department of Defense, W81XWH-12-1-0417; National Institute of Arthritis and Musculoskeletal and Skin Diseases of the National Institutes of Health under award number R01AR061875; and Parent Project Muscular Dystrophy.

Javad Nazarian

Liquid biopsy spots aggressive brainstem cancer earlier

Javad Nazarian

A Children’s National research team led by Javad Nazarian, Ph.D., M.S.C., tested whether circulating tumor DNA in patients’ blood and cerebrospinal fluid would provide an earlier warning that pediatric brainstem tumors were growing.

A highly aggressive pediatric brain cancer can be spotted earlier and reliably by the genetic fragments it leaves in biofluids, according to a study presented by Children’s National Health System researchers at the Society for Neuro-Oncology (SNO) 2017 Annual Meeting. The findings may open the door to non-surgical biopsies and a new way to tell if these tumors are responding to treatment.

Children diagnosed with diffuse midline histone 3 K27M mutant (H3K27M) glioma face a poor prognosis with a median survival time of only nine months after the pediatric brainstem cancer is diagnosed. Right now, clinicians rely on magnetic resonance imaging (MRI) to gauge how tumors are growing, but MRI can miss very small changes in tumor size. The Children’s research team led by Javad Nazarian, Ph.D., M.S.C., scientific director of Children’s Brain Tumor Institute, tested whether circulating tumor DNA in patients’ blood and cerebrospinal fluid would provide an earlier warning that tumors were growing. Just as a detective looks for fingerprints left at a scene, the new genetic analysis technique can detect telltale signs that tumors leave behind in body fluids.

“We continue to push the envelope to find ways to provide hope for children and families who right now face a very dismal future. By identifying these tumors when they are small and, potentially more responsive to treatment, our ultimate aim is to help children live longer,” says Eshini Panditharatna, B.A., study lead author. “In addition, we are hopeful that the comprehensive panel of tests we are constructing could identify which treatments are most effective in shrinking these deadly tumors.”

The researchers collected biofluid samples from 22 patients with diffuse intrinsic pontine glioma (DIPG) who were enrolled in a Phase I, Pacific Pediatric Neuro-Oncology Consortium clinical trial. Upfront and longitudinal plasma samples were collected with each MRI at various stages of disease progression. The team developed a liquid biopsy assay using a sensitive digital droplet polymerase chain reaction system that precisely counts individual DNA molecules.

“We detected H3K27M, a major driver mutation in DIPG, in about 80 percent of cerebrospinal fluid and plasma samples,” Panditharatna says. “Similar to adults with central nervous system (CNS) cancers, cerebrospinal fluid of children diagnosed with CNS cancers has high concentrations of circulating tumor DNA. However, after the children underwent radiotherapy, there was a dramatic decrease in circulating tumor DNA for 12 of the 15 patients (80 percent) whose temporal plasma was analyzed.”

Nazarian, the study senior author adds: “Biofluids, like plasma and cerebrospinal fluid, are suitable media to detect and measure concentrations of circulating tumor DNA for this type of pediatric glioma. Liquid biopsy has the potential to complement tissue biopsies and MRI evaluation to provide earlier clues to how tumors are responding to treatment or recurring.”

Support for this liquid biopsy study was provided by the V Foundation, Goldwin Foundation, Pediatric Brain Tumor Foundation, Smashing Walnuts Foundation, the Zickler Family Foundation, the Piedmont Community Foundation, the Musella Foundation, the Mathew Larson Foundation and Brain Tumor Foundation for Children.


Advancing cures for pediatric cancer: Highlights from leading Children’s National experts at SIOP 2017

In mid-October 2017, nearly 2,000 clinicians, scientists, nurses, health care professionals and cancer patients and survivors gathered in Washington, D.C., for SIOP 2017, the Annual Congress of the International Society of Paediatric Oncology. For four days, attendees heard from world-renowned experts while exchanging ideas and information, all in the name of advancing cures for childhood cancer.

Hosted in the hometown of Children’s National Health System and chaired by Jeffrey Dome, M.D., Ph.D., Vice President of the Center for Cancer and Blood Disorders and Chief of Oncology at Children’s National Health System, more than 20 doctors and nurses from Children’s National made an impact on participants through a series of widely attended sessions and addresses, including:

  • Symposium lecture on the latest approaches in anti-viral T-cell therapy to improve patient outcomes, given by Catherine Bollard, M.D., M.B.Ch.B.
  • Keynote lecture on DICER1 mutations in pediatric cancer, given by Ashley Hill, M.D., whose study of a rare childhood lung cancer and gene mutations set the stage for a better understanding of microRNA processing gene mutations in the development of pediatric cancer.
  • Education session on new therapies for sarcomas, led by AeRang Kim, M.D., Ph.D., and Karun Sharma, M.D., Ph.D., sharing research on new approaches for local control of sarcomas, such as surgery, radiation and other ablative measures.
  • Education session on new therapies for gliomas, led by Roger J. Packer, M.D., with presentations on immunotherapy from Eugene Hwang, M.D., and targeted therapy by Lindsay Kilburn, M.D.
  • Podium paper presentation on a new method to measure cancer treatment toxicities as reported by the child by Pamela Hinds, Ph.D., RN, FAAN, as well as an education session on advanced care planning, led by Hinds with a presentation from Maureen E. Lyon, Ph.D.

“These sessions and lectures provided a glimpse into the groundbreaking work by SIOP attendees from around the world,” says Dr. Dome. “Children’s National is proud to play an active role in the development of life-saving treatments for children with cancer and our clinicians look forward to another year of revolutionary developments.”

For more on this year’s SIOP, see the Children’s National press release.

  • Jeffrey Dome, M.D., Ph.D., addresses a group of international colleagues at a reception at Children’s National.

    Jeffrey Dome SIOP
  • Catherine Bollard, M.D., M.B.Ch.B., addresses a group of international colleagues at a reception at Children’s National.

  • Lindsay Kilburn, M.D., engages with peers from around the world at a reception at Children’s National.


Roberta DeBiasi and Sarah Mulkey

Children’s National experts contribute to new Zika guidelines

Roberta DeBiasi and Sarah Mulkey

Roberta DeBiasi, M.D., M. S., and Sarah B. Mulkey, M.D., Ph.D., members of Children’s multidisciplinary Congenital Zika Virus Program, were among the experts invited to participate in a forum held in Atlanta at CDC headquarters in late August to formulate new Zika recommendations.

The Centers for Disease Control and Prevention (CDC) on Oct. 19, 2017 updated guidelines for evaluation of women, fetuses and infants exposed to the Zika virus during pregnancy. Although only women with symptoms will now be routinely tested, asymptomatic and symptomatic infants born to these women will still be tested for the Zika virus using blood and urine tests.

Infants who appear normal, whose mothers either had negative Zika results or who had not undergone testing, will not undergo Zika testing. These infants still will undergo a standard evaluation, including a detailed physical exam, hearing screen and routine developmental assessments. The revised Zika guidance includes input from practitioners on the front lines of the Zika epidemic, including Children’s National Health System clinicians.

“These changes in the recommendations for Zika testing should not be interpreted as Zika infection risks subsiding for pregnant women and their infants in the United States. It’s simply an acknowledgement of the limitations of current testing methods – which must occur within a narrow window after Zika exposure – and the poor predictive value of Zika testing right now,” says Roberta L. DeBiasi, M.D., M.S., chief of Children’s Division of Pediatric Infectious Diseases. Dr. DeBiasi and Sarah B. Mulkey, M.D., Ph.D., members of Children’s multidisciplinary Congenital Zika Virus Program, were among the experts invited to participate in the Zika forum held in Atlanta at CDC headquarters in late August to formulate the recommendations.

While all infants will receive a standard evaluation, expanded evaluations that include an ophthalmologic assessment, more detailed hearing evaluation and ultrasound of the newborn’s head will be reserved for infants born to mothers confirmed to be Zika positive or Zika probable, or for infants born with abnormalities potentially consistent with congenital Zika syndrome, regardless of maternal status.

The majority of U.S. infants who have been exposed to Zika in the womb appeared normal at birth, according to CDC registries. Now, the next wave of these normal-appearing babies will receive standard evaluations when they are born, including a newborn hearing screening. At each well-child visit, these infants will receive:

  • A comprehensive physical examination
  • An age-appropriate vision screening
  • Developmental monitoring and screening using validated tools

“This is a natural evolution in the diagnosis and screening strategy now that the peak of the first wave of Zika transmission appears to be over,” Dr. DeBiasi says. “While we continue to evaluate new possible cases of Zika infection among pregnant women in our practice, a sizable proportion of Children’s cases are Zika-exposed infants whose physical exam and neuroimaging appeared normal at birth. Through ongoing monitoring, we hope to learn more about these children’s long-term neurodevelopment outcomes.”


Improving treatment success for Duchenne muscular dystrophy


Macrophages, white blood cells involved in inflammation, readily take up a new medicine for Duchenne muscular dystrophy and promote its sustained delivery to regenerating muscle fibers long after the drug has disappeared from circulation.

Chronic inflammation plays a crucial role in the sustained delivery of a new type of muscular dystrophy drug, according to an experimental model study led by Children’s National Health System.

The study, published online Oct. 16, 2017 in Nature Communications, details the cellular mechanisms of morpholino antisense drug delivery to muscles. Macrophages, white blood cells involved in inflammation, readily take up a new medicine for Duchenne muscular dystrophy (DMD) and promote its sustained delivery to regenerating muscle fibers long after the drug has disappeared from circulation.

Until recently, the only approved medicines for DMD targeted its symptoms, rather than the root genetic cause. However, in 2016 the Food and Drug Administration approved the first exon-skipping medicine to restore dystrophin protein expression in muscle: Eteplirsen, an antisense phosphorodiamidate morpholino oligomer (PMO). The drug had shown promise in preclinical studies but had variable and sporadic results in clinical trials.

The Children’s National study adds to the understanding of how this type of medicine targets muscle tissue and suggests a path to improve treatments for DMD, which is the most common and severe form of muscular dystrophy and currently has no cure, explains study co-leader James S. Novak, Ph.D., a principal investigator in Children’s Center for Genetic Medicine Research.

Because the medication vanishes from the blood circulation within hours after administration, Children’s research efforts have focused on the mechanism of delivery to muscle and on ways to increase its cellular uptake – and, by extension, its effectiveness. However, researchers understand little about how this medication actually gets delivered to muscle fibers or how the disease pathology impacts this process, knowledge that could offer new ways of boosting both its delivery and effectiveness, says Terence Partridge, Ph.D., study co-leader and principal investigator in Children’s Center for Genetic Medicine Research.

To investigate this question, Novak, Partridge and colleagues used an experimental model of DMD that carries a version of the faulty DMD gene that, like its human counterparts, destroys dystrophin expression. To track the route of the PMO into muscle fibers, they labeled it with a fluorescent tag. The medicine traveled to the muscle but only localized to patches of regenerating muscle where it accumulated within the infiltrating macrophages, immune cells involved in the inflammatory response that accompanies this process. While PMO is rapidly cleared from the blood, the medication remained in these immune cells for up to one week and later entered muscle stem cells, allowing direct transport into regenerating muscle fibers. By co-administering the PMO with a traceable DNA nucleotide analog, the research team was able to define the stage during the regeneration process that promotes heightened uptake by muscle stem cells and efficient dystrophin expression in muscle fibers.

“These macrophages appear to extend the period of availability of this medication to the satellite cells and muscle fibers at these sites,” Partridge explains. “Since the macrophages are acting as long-term storage reservoirs for prolonged delivery to muscle fibers, they could possibly represent new therapeutic targets for improving the uptake and delivery of this medicine to muscle.”

Future research for this group will focus on testing whether macrophages might be used as efficient delivery vectors to transport eteplirsen to the muscle, which would avert the rapid clearance currently associated with intravenous delivery.

“Understanding exactly how different classes of exon-skipping drugs are delivered to muscle could open entirely new possibilities for improving future therapeutics and enhancing the clinical benefit for patients,” Novak adds.

What Children’s has learned about congenital Zika infection

Roberta DeBiasi

Roberta DeBiasi, M.D., M.S., outlined lessons learned during a pediatric virology workshop at IDWeek2017, one of three such Zika presentations led by Children’s National research-clinicians during this year’s meeting of pediatric infectious disease specialists.

The Congenital Zika Virus Program at Children’s National Health System provides a range of advanced testing and services for exposed and infected fetuses and newborns. Data that the program has gathered in evaluating and managing Zika-affected pregnancies and births may offer instructive insights to other centers developing similar programs.

The program evaluated 36 pregnant women and their fetuses from January 2016 through May 2017. Another 14 women and their infants were referred to the Zika program for postnatal consultations during that time.

“As the days grow shorter and temperatures drop, we continue to receive referrals to our Zika program, and this is a testament to the critical need it fulfills in the greater metropolitan D.C. region,” says Roberta L. DeBiasi, M.D., M.S., chief of the Division of Pediatric Infectious Diseases and co-leader of the program. “Our multidisciplinary team now has consulted on 90 dyads (mothers and their Zika-affected fetuses/infants). The lessons we learned about when and how these women were infected and how their offspring were affected by Zika may be instructive to institutions considering launching their own programs.”

Dr. DeBiasi outlined lessons learned during a pediatric virology workshop at IDWeek2017, one of three such Zika presentations led by Children’s National research-clinicians during this year’s meeting of pediatric infectious disease specialists.

“The Zika virus continues to circulate in dozens of nations, from Angola to the U.S. Virgin Islands. Clinicians considering a strategic approach to managing pregnancies complicated by Zika may consider enlisting an array of specialists to attend to infants’ complex care needs, including experts in fetal imaging, pediatric infectious disease, physical therapists, audiologists, ophthalmologists and radiologists skilled at reading serial magnetic resonance images as well as ultrasounds,” Dr. DeBiasi says. “At Children’s we have a devoted Zika hotline to triage patient and family concerns. We provide detailed instructions for referring institutions explaining protocols before and after childbirth, and we provide continuing education for health care professionals.”

Of the 36 pregnant women possibly exposed to Zika during pregnancy seen in the program’s first year, 32 lived in the United States and traveled to countries where Zika virus was circulating. Two women had partners who traveled to Zika hot zones. And two moved to the Washington region from places where Zika is endemic. Including the postnatal cases, 89 percent of patients had been bitten by Zika-tainted mosquitoes, while 48 percent of women could have been exposed to Zika via sex with an infected partner.

Twenty percent of the women were exposed before conception; 46 percent were exposed to Zika in the first trimester of pregnancy; 26 percent were exposed in the second trimester; and 8 percent were exposed in the final trimester. In only six of 50 cases (12 percent) did the Zika-infected individual experience symptoms.

Zika infection can be confirmed by detecting viral fragments but only if the test occurs shortly after infection. Twenty-four of the 50 women (nearly 50 percent) arrived for a Zika consultation outside that 12-week testing window. Eleven women (22 percent) had confirmed Zika infection and another 28 percent tested positive for the broader family of flavivirus infections that includes Zika. Another detection method picks up antibodies that the body produces to neutralize Zika virus. For seven women (14 percent), Zika infection was ruled out by either testing method.

“Tragically, four fetuses had severe Zika-related birth defects,” Dr. DeBiasi says. “Due to the gravity of those abnormalities, two pregnancies were not carried to term. The third pregnancy was carried to term, but the infant died immediately after birth. The fourth pregnancy was carried to term, but that infant survived less than one year.”