Cancer

Dr. Kurt Newman in front of the capitol building

Kurt Newman, M.D., shares journey as a pediatric surgeon in TEDx Talk

Kurt Newman, M.D., president and chief executive officer of Children’s National, shares his poignant journey as a pediatric surgeon, offering a new perspective for approaching the most chronic and debilitating health conditions. In this independently-organized TEDx event, Dr. Newman also shares his passion for Children’s National and the need to increase pediatric innovations in medicine.

Stat Madness 2019

Vote for Children’s National in STAT Madness

Stat Madness 2019

Children’s National Health System has been selected to compete in STAT Madness for the second consecutive year. Our entry for the bracket-style competition is “Sensitive liquid biopsy platform to detect tumor-released mutated DNA using patient blood and CSF,” a new technique that will allow kids to get better treatment for an aggressive type of pediatric brain tumor.

In 2018, Children’s first-ever STAT Madness entry advanced through five brackets in the national competition and, in the championship round, finished second. That innovation, which enables more timely diagnoses of rare diseases and common genetic disorders, helping to improve kids’ health outcomes around the world, also was among four “Editor’s Pick” finalists, entries that spanned a diverse range of scientific disciplines.

“Children’s National researchers collaboratively work across divisions and departments to ensure that innovations discovered in our laboratories reach clinicians in order to improve patient care,” says Mark Batshaw, M.D., Children’s Executive Vice President, Chief Academic Officer and Physician-in-Chief. “It’s gratifying that Children’s multidisciplinary approach to improving the lives of children with brain tumors has been included in this year’s STAT Madness competition.”

Pediatric brain cancers are the leading cause of cancer-related death in children younger than 14. Children with tumors in their midline brain structures have the worst outcomes, and kids diagnosed with diffuse midline gliomas, including diffuse intrinsic pontine glioma, have a median survival of just 12 months.

“We heard from our clinician colleagues that many kids were coming in and their magnetic resonance imaging (MRI) suggested a particular type of tumor. But it was always problematic to identify the tumor’s molecular subtype,” says Javad Nazarian, Ph.D., MSC, a principal investigator in Children’s Center for Genetic Medicine Research. “Our colleagues wanted a more accurate measure than MRI to find the molecular subtype. That raised the question of whether we could actually look at their blood to determine the tumor subtype.”

Children’s liquid biopsy, which remains at the research phase, starts with a simple blood draw using the same type of needle as is used when people donate blood. When patients with brain tumors provide blood for other laboratory testing, a portion of it is used for the DNA detective work. Just as a criminal leaves behind fingerprints, tumors shed telltale clues in the blood. The Children’s team searches for the histone 3.3K27M (H3K27M), a mutation associated with worse clinical outcomes.

“With liquid biopsy, we were able to detect a few copies of tumor DNA that were hiding behind a million copies of healthy DNA,” Nazarian says. “The blood draw and liquid biopsy complement the MRI. The MRI gives the brain tumor’s ZIP code. Liquid biopsy gives you the demographics within that ZIP code.”

Working with collaborators around the nation, Children’s National continues to refine the technology to improve its accuracy. The multi-institutional team published findings online Oct. 15, 2018, in Clinical Cancer Research.

Even though this research technique is in its infancy, the rapid, cheap and sensitive technology already is being used by people around the globe.

“People around the world are sending blood to us, looking for this particular mutation, H3K27M, ” says Lindsay B. Kilburn, M.D., a Children’s neurooncologist, principal investigator at Children’s National for the Pacific Pediatric Neuro-Oncology Consortium, and study co-author. “In many countries or centers, children do not have access to teams experienced in taking a biopsy of tumors in the brainstem, they can perform a simple blood draw and have that blood processed and analyzed by us. In only a few days, we can provide important molecular information on the tumor subtype previously only available to patients that had undergone a tumor biopsy.”

“With that DNA finding, physicians can make more educated therapeutic decisions, including prescribing medications that could not have been given previously,” Nazarian adds.

The STAT Madness round of 64 brackets opened March 4, 2019, and the championship round voting concludes April 5 at 5 p.m. (EST).

In addition to Nazarian and Dr. Kilburn, study co-authors include Eshini Panditharatna, Madhuri Kambhampati, Heather Gordish-Dressman, Ph.D., Suresh N. Magge, M.D., John S. Myseros, M.D., Eugene I. Hwang, M.D. and Roger J. Packer, M.D., all of Children’s National; Mariam S. Aboian, Nalin Gupta, Soonmee Cha, Michael Prados and Co-Senior Author Sabine Mueller, all of University of California, San Francisco; Cassie Kline, UCSF Benioff Children’s Hospital; John R. Crawford, UC San Diego; Katherine E. Warren, National Cancer Institute; Winnie S. Liang and Michael E. Berens, Translational Genomics Research Institute; and Adam C. Resnick, Children’s Hospital of Philadelphia.

Financial support for the research described in the report was provided by the V Foundation for Cancer Research, Goldwin Foundation, Pediatric Brain Tumor Foundation, Smashing Walnuts Foundation, The Gabriella Miller Kids First Data Resource Center, Zickler Family Foundation, Clinical and Translational Science Institute at Children’s National under award 5UL1TR001876-03, Piedmont Community Foundation, Musella Foundation for Brain Tumor Research, Matthew Larson Foundation, The Lilabean Foundation for Pediatric Brain Cancer Research, The Childhood Brain Tumor Foundation, the National Institutes of Health and American Society of Neuroradiology.

Maureen E Lyon

Maureen E. Lyon receives American Cancer Society grant

Maureen E Lyon

Children’s Clinical Health Psychologist Maureen E. Lyon, Ph.D., has received the “Judy White Memorial Clinical Research Pilot Exploratory Projects in Palliative Care of Cancer Patients and their Families” grant from the American Cancer Society (ACS).

Over two years, Lyon will be allotted $144,000 to translate Children’s evidence-based Family-Centered (FACE) pediatric advance care planning (ACP) protocol into Spanish through a process of community-based participatory research for teens with cancer.

Lyon’s research focuses on enabling families to understand their adolescents’ treatment preferences and describing patient-reported palliative care needs for teens with cancer. Ultimately, the research will help identify the wants, values, goals and beliefs of teens with cancer.

Along with the ACS research grant, Lyon and Jessica Thompkins, BSN, R.N., CPN, research nurse coordinator at Children’s National, will present at the Annual Assembly of Hospice & Palliative Medicine conference, March 13-16, 2019 in Orlando, Fla. on data from the current multi-site, five-year randomized clinical trial funded by National Institute of Health/ National Institute of Nursing Research for English-speaking teens with cancer.

During the presentation, they will speak about the effect of FACE ACP on families’ appraisals of caregiving for their teens with cancer and describing advance care planning communication approaches.

Lyon and other researchers at Children’s National look forward to making significant contributions to the science of advance care planning aimed to minimize suffering and enhancing quality of life for young adults. Their contributions give teens a voice in their future medical care and help families “break the ice,” by providing an extra level of support to treating clinicians.

tubes filled with pink liquid

Manufacturing technologies lag behind breakthroughs in CAR-T cancer treatment

tubes filled with pink liquid

Drug companies around the country are banking on the cutting-edge cancer treatments known as CAR-T, but many manufacturing processes are holding back the treatment from reaching the market. With the success of CAR-T, which essentially re-trains T Cells to identify and target the cancer-causing cells, many manufacturers still need to catch up in the development process.

Currently, there are nearly 700 CAR-T studies in the database ClinicalTrials.gov, including 152 industry-sponsored trials that are active, recruiting or enrolling by invitation. According to market research firm, Coherent Market Insights, they predict the CAR-T market will grow to $8 billion worldwide by 2028 from $168 million in 2018.

Catherine Bollard, M.B.Ch.B., M.D., director of the Center for Cancer and Immunology Research at Children’s National Health System, was featured in a recent Bloomberg Law article stating that academics, industry participants and medical product regulators are trying to catch up with the technology and determine the best standards for developing these products. Although this is an exciting and positive time in the field of oncology, it also presents a big learning curve.

Making these cells requires extracting patients T cells. They are then genetically engineered in a laboratory to produce proteins that allow them to identify cancer-causing cells. The new cells are then multiplied and then reintroduced into the body to kill off the cancer cells. The entire process can take a few weeks to complete.

“This is not a drug,” Bollard said. “This is a living biologic, and it comes from the patient and individuals. There’s so much variability.”

Along with manufacturing challenges, the outlook on creating more therapies is looking good. The FDA predicts that it will be approving 10 to 20 gene therapy products a year by 2025. Other companies are working to develop a manufacturing platform that can help reduce the complexity of the current system and ultimately make CAR-T manufacturing easier to scale.

schistosome blood fluke

Therapy derived from parasitic worms downregulates proinflammatory pathways

schistosome blood fluke

A therapy derived from the eggs of the parasitic Schistosoma helps to protect against one of chemotherapy’s debilitating side effects by significantly downregulating major proinflammatory pathways, reducing inflammation.

A therapy derived from the eggs of parasitic worms helps to protect against one of chemotherapy’s debilitating side effects by significantly downregulating major proinflammatory pathways and reducing inflammation, indicates the first transcriptome-wide profiling of the bladder during ifosfamide-induced hemorrhagic cystitis.

The experimental model study findings were published online Feb. 7, 2019, in Scientific Reports.

With hemorrhagic cystitis, a condition that can be triggered by anti-cancer therapies like the chemotherapy drug ifosfamide and other oxazaphosphorines, the lining of the bladder becomes inflamed and begins to bleed. Existing treatments on the market carry their own side effects, and the leading therapy does not treat established hemorrhagic cystitis.

Around the world, people can become exposed to parasitic Schistosoma eggs through contaminated freshwater. Once inside the body, the parasitic worms mate and produce eggs; these eggs are the trigger for symptoms like inflammation. To keep their human hosts alive, the parasitic worms tamp down excess inflammation by secreting a binding protein with anti-inflammatory properties.

With that biological knowledge in mind, a research team led by Michael H. Hsieh, M.D., Ph.D., tested a single dose of IPSE, an Interleukin-4 inducing, Schistosoma parasite-derived anti-inflammatory molecule and found that it reduced inflammation, bleeding and urothelial sloughing that occurs with ifosfamide-related hemorrhagic cystitis.

In this follow-up project, experimental models were treated with ifosfamide to learn more about IPSE’s protective powers.

The preclinical models were given either saline or IPSE before the ifosfamide challenge. The bladders of the experimental models treated with ifosfamide had classic symptoms, including marked swelling (edema), dysregulated contraction, bleeding and urothelial sloughing. In contrast, experimental models “pre-treated” with IPSE were shielded from urothelial sloughing and inflammation, the study team found.

Transcriptional profiling of the experimental models’ bladders found the IL-1-B TNFa-IL-6 proinflammatory cascade via NFkB and STAT3 pathways serving as the key driver of inflammation. Pretreatment with IPSE slashed the overexpression of Il-1b, Tnfa and Il6 by 50 percent. IPSE drove significant downregulation of major proinflammatory pathways, including the IL-1-B TNFa-IL-6 pathways, interferon signaling and reduced (but did not eliminate) oxidative stress.

“Taken together, we have identified signatures of acute-phase inflammation and oxidative stress in ifosfamide-injured bladder, which are reversed by pretreatment with IPSE,” says Dr. Hsieh, a urologist at Children’s National Health System and the study’s senior author. “These preliminary findings reveal several pathways that could be therapeutically targeted to prevent ifosfamide-induced hemorrhagic cystitis in humans.”

When certain chemotherapy drugs are metabolized by the body, the toxin acrolein is produced and builds up in urine. 2-mercaptoethane sulfonate Na (MESNA) binds to acrolein to prevent urotoxicity. By contrast, IPSE targets inflammation at the source, reversing inflammatory changes that damage the bladder.

“Our work demonstrates that there may be therapeutic potential for naturally occurring anti-inflammatory molecules, including pathogen-derived factors, as alternative or complementary therapies for ifosfamide-induced hemorrhagic cystitis,” Dr. Hsieh adds.

In addition to Dr. Hsieh, study co-authors include Lead Author Evaristus C. Mbanefo and Rebecca Zee, Children’s National; Loc Le, Nirad Banskota and Kenji Ishida, Biomedical Research Institute; Luke F. Pennington and Theodore S. Jardetzky, Stanford University; Justin I. Odegaard, Guardant Health; Abdulaziz Alouffi, King Abdulaziz City for Science & Technology; and Franco H. Falcone, University of Nottingham.

Financial support for the research described in this report was provided by the Margaret A. Stirewalt Endowment, the National Institute of Diabetes and Digestive and Kidney Diseases under award R01DK113504, the National Institute of Allergy and Infectious Diseases under award R56AI119168 and a Urology Care Foundation Research Scholar Award.

Roger Packer

Roger J. Packer, M.D. presents keynote address for BRAIN 2019

Roger Packer

2019 Otto Lien Da Wong visiting professor in neuro-oncology at BRAIN 2019, Roger J. Packer, M.D. presented the keynote address.

 

More than 400 neurologists, neurosurgeons, pathologists, pediatricians, clinical and basic scientists gathered in Hong Kong for Brain 2019, a conjoint congress of the 3rd Asian Central Nervous System Germ Cell Tumour Conference (CNSGCT), the 9th Interim Meeting of the International Chinese Federation of Neurosurgical Sciences (ICFNS) and the 16th Asia Pacific Multidisciplinary Meeting for Nervous System Diseases (BRAIN) which is also jointly organized by The Chinese University of Hong Kong. This three-day convention discussed advances in pediatric neuro-oncology and neuro-rehabilitation.

Invited as the 2019 Otto Lien Da Wong (OLDW) visiting professor in neuro-oncology, Roger J. Packer, M.D., senior vice president for the Center of Neuroscience and Behavioral Medicine and director at the Gilbert Neurofibromatosis and Brain Tumor Institutes, presented a keynote address titled “Advances in Pediatric Brain Tumors.” Established in 2009, the purpose of the visiting professorship is to advance surgical knowledge and techniques in neuro-oncology between Hong Kong and major medical centers around the world. Dr. Packer was selected from an international field of acclaimed academic surgeons and scholars in the field of neuro-oncology. Two additional presentations included “Pediatric Brain Tumors in Molecular Era: Germ Cell Tumors” as an invited guest of the BRAIN conference and a presentation on “Treatment of Medulloblastoma and PNET” as a session presented by the ICFNS.

In addition to his presentations, Dr. Packer will participate in surgical teaching and scholastic exchange with local surgeons, surgical trainees and medical students.

Karun-Sharma-and-kids-MR-HIFU

Clinical Trial Spotlight: Treating tumors with ThermoDox® and MR-HIFU

Karun Sharma, M.D., is working with AeRang Kim, M.D., Ph.D., to evaluate the use of ThermoDox®, a heat-activated chemotherapy drug, in combination with noninvasive magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) to treat refractory or relapsed solid tumors in children and young adults.

A Phase I Study of Lyso-thermosensitive Liposomal Doxorubicin (LTLD, ThermoDox®) and Magnetic Resonance-Guided High Intensity Focused Ultrasound for Relapsed or Refractory Solid Tumors in Children, Adolescents, and Young Adults.

This study is looking to determine the maximum tolerated dose (MTD) and recommended phase 2 dose (RP2D) of lyso-thermosensitive liposomal doxorubicin (LTLD), a heat-activated formulation of liposomal doxorubicin with unique property of heat-activated release of doxorubicin, administered in combination with magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) in children with relapsed/refractory solid tumors.

MR-HIFU is an innovative device that provides precise and controlled delivery of heat inside a tumor using an external applicator. Unlike other heating systems used in local therapy, MR-HIFU is entirely non-invasive and does not use any radiation. Integration of MR imaging allows for real-time temperature monitoring for accurate and precise targeting of tumors. LTLD is a novel formulation of doxorubicin with the unique property of heat-activated release. This selective drug delivery mechanism allows for local and rapid release of doxorubicin in high concentrations in tumors when heated. This novel combination may potentiate known effective therapy to improve local control and drug delivery without increasing toxicity.

Children’s National Health System and Celsion Corp, a leading oncology drug-development company, were the first to launch a clinical study in the U.S. that evaluates the use of ThermoDox® with MR-HIFU. Learn more about the clinical trial.

For more information about this trial or other trials available at Children’s National, contact:

Melissa Salerno
Clinical Research Program Manager
202-476-2142
msalerno@childrensnational.org

View more open phase 1 and phase 2 cancer clinical trials at Children’s National.

The Children’s National Center for Cancer and Blood Disorders is committed to providing the best care for pediatric patients. Our experts play an active role in innovative clinical trials to advance pediatric cancer care. We offer access to novel trials and therapies, some of which are only available here at Children’s National. With research interests covering nearly aspect of pediatric cancer care, our work is making great advancements in childhood cancer.

AlgometRX

Breakthrough device objectively measures pain type, intensity and drug effects

AlgometRX

Clinical Research Assistant Kevin Jackson uses AlgometRx Platform Technology on Sarah Taylor’s eyes to measure her degree of pain. Children’s National Medical Center is testing an experimental device that aims to measure pain according to how pupils react to certain stimuli. (AP Photo/Manuel Balce Ceneta)

Pediatric anesthesiologist Julia C. Finkel, M.D., of Children’s National Health System, gazed into the eyes of a newborn patient determined to find a better way to measure the effectiveness of pain treatment on one so tiny and unable to verbalize. Then she realized the answer was staring back at her.

Armed with the knowledge that pain and analgesic drugs produce an involuntary response from the pupil, Dr. Finkel developed AlgometRx, a first-of-its-kind handheld device that measures a patient’s pupillary response and, using proprietary algorithms, provides a diagnostic measurement of pain intensity, pain type and, after treatment is administered, monitors efficacy. Her initial goal was to improve the care of premature infants. She now has a device that can be used with children of any age and adults.

“Pain is very complex and it is currently the only vital sign that is not objectively measured,” says Dr. Finkel, who has more than 25 years of experience as a pain specialist. “The systematic problem we are facing today is that healthcare providers prescribe pain medicine based on subjective self-reporting, which can often be inaccurate, rather than based on an objective measure of pain type and intensity.” To illustrate her point, Dr. Finkel continues, “A clinician would never prescribe blood pressure medicine without first taking a patient’s blood pressure.”

The current standard of care for measuring pain is the 0-to-10 pain scale, which is based on subjective, observational and self-reporting techniques. Patients indicate their level of pain, with zero being no pain and ten being highest or most severe pain. This subjective system increases the likelihood of inaccuracy, with the problem being most acute with pediatric and non-verbal patients. Moreover, Dr. Finkel points out that subjective pain scores cannot be standardized, heightening the potential for misdiagnosis, over-treatment or under-treatment.

Dr. Finkel, who serves as director of Research and Development for Pain Medicine at the Sheikh Zayed Institute for Pediatric Surgical Innovation at Children’s National, says that a key step in addressing the opioid crisis is providing physicians with objective, real-time data on a patient’s pain level and type, to safely prescribe the right drug and dosage or an alternate treatment.,

She notes that opioids are prescribed for patients who report high pain scores and are sometimes prescribed in cases where they are not appropriate. Dr. Finkel points to the example of sciatica, a neuropathic pain sensation felt in the lower back, legs and buttocks. Sciatica pain is carried by touch fibers that do not have opioid receptors, which makes opioids an inappropriate choice for treating that type of pain.

A pain biomarker could rapidly advance both clinical practice and pain research, Dr. Finkel adds. For clinicians, the power to identify the type and magnitude of a patient’s nociception (detection of pain stimuli) would provide a much-needed scientific foundation for approaching pain treatment. Nociception could be monitored through the course of treatment so that dosing is targeted and personalized to ensure patients receive adequate pain relief while reducing side effects.

“A validated measure to show whether or not an opioid is indicated for a given patient could ease the health care system’s transition from overreliance on opioids to a more comprehensive and less harmful approach to pain management,” says Dr. Finkel.

She also notes that objective pain measurement can provide much needed help in validating complementary approaches to pain management, such as acupuncture, physical therapy, virtual reality and other non-pharmacological interventions.

Dr. Finkel’s technology, called AlgometRx, has been selected by the U.S. Food and Drug Administration (FDA) to participate in its “Innovation Challenge: Devices to Prevent and Treat Opioid Use Disorder.” She is also the recipient of Small Business Innovation Research (SBIR) grant from the National Institute on Drug Abuse.

SIOP logo

Children’s National physicians attend the International Society of Paediatric Oncology in Japan

SIOP logo

From November 16 to 19, medical professionals, clinicians, nurses and oncology patients and families from around the globe gathered for the International Society of Paediatric Oncology (SIOP) in Kyoto, Japan. Pediatric experts in their respective fields Jeffrey Dome, M.D., Ph.D., AeRang Kim, M.D., Ph.D., Steven Hardy, Ph.D., and Karun Sharma, M.D., attended SIOP representing Children’s National. The four-day scientific programme engaged those in pediatric oncology with educational lectures, keynote speakers, tailored sessions for survivors, families and support organizations, free paper sessions, specialist sessions and Meet the Expert talks.

Dr. Kim, an oncologist with the Center for Cancer and Blood Disorders and a member of the solid tumor faculty at Children’s National, presented with Dr. Sharma, director of Interventional Radiology at Children’s, on “Interventional Radiology: Technology and Opportunities” in Meet the Expert talks on both Saturday and Sunday of the programme. They discussed background information, preclinical studies, current, ongoing studies of high-intensity focused ultrasound (HIFU), HIFU in combination with heat sensitive formulated chemotherapy and future directions. In 2017, Children’s National was the first U.S. children’s hospital to successfully use MR-HIFU to treat osteoid osteoma, and is currently accruing on early phase studies evaluating HIFU ablation and HIFU in combination with lyso-thermosensitive liposomal doxorubicin for pediatric patients with refractory/recurrent solid tumors.

Dr. Hardy, a pediatric psychologist in the Center for Cancer and Blood Disorders at Children’s, presented on “Brief Psychosocial Screening to Identify Patients in Need of a Mental Health Treatment Referral in a Childhood Cancer Survivorship Clinic.” In his educational lecture, Dr. Hardy described findings that show a brief mental and behavioral health questionnaire given to patients in the Children’s National survivorship clinic is a sensitive screening tool that can identify patients in need of more formal psychosocial evaluation and treatment. He also presented data supporting the use of a lower threshold of psychological symptoms necessary to trigger discussions about mental health treatment compared to previous reports. The key implication of Dr. Hardy’s work is that survivorship clinics lacking embedded psychology support could adopt this questionnaire, which is publically available and translated into 86 languages, to help identify survivors with mental and behavioral health concerns and ensure appropriate referrals are made.

Dr. Dome, Vice President of the Center for Cancer and Blood Disorders, served on the SIOP Scientific Programme Advisory Committee, which selected the topics for presentation.

SIOP provides an international forum for the sharing of new research and ideas related to pediatric oncology. The annual conference furthers the efforts made towards developing new treatments and cures and opens the conversation, encouraging innovation and collaboration with experts from around the world. Children’s National has taken part in SIOP for many years, most recently hosting the meeting in Washington, D.C., in 2017.

Dr. Andrew Campbell examines a child

Children’s National physicians provide education at 46th Annual Sickle Cell Disease Association of America Convention

Dr. Andrew Campbell examines a child

Andrew Campbell, M.D., presented at the conference on the topics of hydroxyurea (HU) and blood transfusions.

More than 600 researchers, physicians, nurses, social workers and individuals living with sickle cell disease (SCD) and sickle cell trait (SCT) gathered in Baltimore for the 46th Annual National Sickle Cell Disease Association of America (SCDAA) Convention in mid-October. Children’s National physicians Andrew Campbell, M.D., director of the Comprehensive Sickle Cell Program, and Deepika Darbari, M.D., were among the speakers at the four-day convention discussing the latest scientific research and clinical information through seminars, panel discussions and symposiums.

Dr. Campbell presented at the conference on the topics of hydroxyurea (HU) and blood transfusions. He spoke to families about the benefits of HU, explaining how it lowers the percentage of sickle cells in the blood and decreases the overall inflammatory process. He stressed the importance of HU as a medication used in the prevention of SCD and emphasized the potential decrease in organ damage and increased overall survival rate of SCD patients. The importance of minor antigen blood group phenotyping was also discussed, as it can decrease the chance of patients rejecting future blood transfusions by developing new red blood cell antibodies.

“The indications for blood transfusions in the acute ‘ill’ setting can be life-saving and improve oxygen delivery and overall clinical outcomes within sickle cell complications, including acute chest syndrome, stroke and splenic sequestration. Approximately 10 to 15 percent of patients will need monthly blood transfusions for primary (i.e. stroke, patients with abnormal brain vessel TCD velocities >200cm/s) and secondary (i.e. patients with a previous stroke, multiple splenic sequestrations, recurrent priapism, recurrent acute chest syndromes) sickle cell complications,” explains Dr. Campbell.

Dr. Darbari, a hematologist at Children’s National, educated medical colleagues on chronic pain in SCD and emphasized the increase in pain from adolescence to adulthood.

“During childhood, pain in SCD is considered a consequence of discrete episodes of vaso-occlusion.  Such vaso-occlusion is a complex process in which abnormally shaped (so-called ‘sickled’) red blood cells episodically obstruct the microcirculation thereby causing distal ischemia and resultant pain. As patients get older, mechanisms such as peripheral neuropathic or centralization may play important roles in transition and maintenance of chronic pain. It is important to consider underlying mechanisms contributing to pain when managing a patient with SCD,” states Dr. Darbari. She referenced her coauthored and published Analgesic, Anesthetic and Addiction Clinical Trial Translations Innovations Opportunities and Networks (ACTTION)-American Pain Society Taxonomy (AAPT) criteria for classifying chronic pain in SCD and how useful this tool can be for physicians in the treatment of patients with SCD.

Both Drs. Campbell and Darbari shared their expertise on different facets of SCD with families and medical professionals alike. Their impactful work is paving the way for future treatments and pain management techniques for treating patients living with SCD and their families.

ASCAT Conference Attendees

Children’s National represented at ASCAT conference in London

ASCAT Conference Attendees

From left to right: Lisa Thaniel, Ph.D., Brittany Moffitt, Deepika Darbara, M.D., Steven Hardy, Ph.D., Andrew Campbell, M.D., Barbara Speller-Brown, DNP, Stefanie Margulies and Karen Smith-Wong all represented Children’s National at the ASCAT Conference in London.

Deepika Darbari, M.D., Andrew Campbell, M.D., and Steven Hardy, Ph.D., represented Children’s National at the Annual Sickle Cell Disease and Thalassemia (ASCAT) Conference in London in late October. The theme of this year’s conference was Sickle Cell Disease and Thalassemia: Bridging the Gap in Care and Research.

Dr. Darbari, a Children’s National hematologist, was the featured Grand Rounds speaker and led a pain management symposium. Dr. Darbari studies complications of sickle cell disease with an emphasis on pain. She conducts clinical and translational studies to better understand sickle cell pain and its management. She addressed the topics of pain mechanisms and phenotypes in sickle cell disease during her symposium.

Dr. Campbell, Director of the Comprehensive Sickle Cell Disease Program at Children’s National, has served on the steering committee for this annual international conference for the past two years, working alongside colleagues from across the globe to bring together multiple experts who work with children with blood disorders. Dr. Campbell remarks, “I’m pleased to promote and be a part of [this conference] because it’s one of the best sickle cell/thalassemia conferences in the world pushing the field forward with international representation.” He spoke at the conference during Dr. Darbari’s symposium, discussing sickle cell disease pain around the globe.

Dr. Hardy, a pediatric psychologist in the divisions of Blood and Marrow Transplant, Blood Disorders (Hematology) and Oncology and the Center for Cancer and Blood Disorders at Children’s National, also presented at the conference on his abstract “Computerized Working Memory Training Improves Cognition in Youth with Sickle Cell Disease.” His abstract received the Best Oral Abstract Award at the conference and was awarded a 500 pound prize. In his work at Children’s National, Dr. Hardy provides evidence-based psychological assessments and treatments for children with cancer, sickle cell disease and other blood disorders, as well as those patients undergoing bone marrow transplants.

Poster presentations were also given by Barbara Speller Brown, NP, DNP, Lisa Thaniel, MSW, Ph.D., Brittany Moffitt, MSW, and Stefanie Margulies, senior clinical research coordinator, all representing Children’s National at the ASCAT Conference.

Eugene Hwang

Unexpected heterogeneity in CNS-PNET patients treated as a single entity

Eugene Hwang

“We found that some patients diagnosed with standard tools underwent much more treatment than necessary or intended,” said Eugene Hwang, M.D.

Eugene I. Hwang, M.D., a neuro-oncologist in the Center for Cancer and Blood Disorders, and other researchers at Children’s National Health System, Seattle Children’s Hospital and Research Institute, the Fred Hutchinson Cancer Research Center and the Hopp-Children’s Cancer Center at the NCT Heidelberg recently published the results of a clinical trial focusing on children with histologically diagnosed supratentorial primitive neuroectodermal tumors (CNS-PNET) and pineblastomas (PBLs).

The clinical trial, published online October 17, 2018 in the Journal of Clinical Oncology, included children and adolescents aged 3-22 with these brain cancers who were randomly assigned to receive carboplatin during radiation and/or isotretinoin after the standard intensive therapy (high-dose craniospinal radiation and months of inpatient chemotherapy).  Importantly, because each patient was treated prospectively according to the clinical trial design, the conclusions related to tumor biology were felt to be less affected by varied treatment plans.

“This trial really highlighted the importance of new molecular testing methods in accurately diagnosing some of the brain cancers included in the trial. We found that some patients diagnosed with standard tools underwent much more treatment than necessary or intended.” says Dr. Hwang. “Kids who aren’t receiving the right form of cancer treatment may not get better despite months and months of intensive treatment.”

During this clinical trial, 85 participants with institutionally-diagnosed CNS-PNETs/PBLs were enrolled. Out of the 60 patients with sufficient tissue, 31 were non-pineal in location, 22 of which represented tumors that did not fit in the diagnoses intended for trial inclusion.

The researchers discovered that patient outcomes across each molecularly-diagnosed tumor type were strikingly different. Patients with molecularly-confirmed supratentorial embryonal tumors/PBLs exhibited a five-year event free survival (EFS) and an overall survival rate of 62 percent and 78.5 percent, respectively. However, patients with molecularly-classified high-grade gliomas (HGGs) had a five-year EFS of 5.6 percent and OS of 12 percent, showing no benefit even with the chemotherapy and craniospinal radiation.

Researchers determined that for patients with CNS-PNETs/PBLs, prognosis is considerably better than previously assumed when molecularly-confirmed HGG are removed. Dr. Hwang and co-authors concluded that molecular diagnosis can greatly aid standard pathological diagnostic tools, preventing unnecessary intensive therapy for some patients while enabling more rational treatment for others.

“The findings from our clinical trial have highlighted the immense challenges of histology-based diagnosis for some types of pediatric brain tumors, and the enormous importance this has for children with brain cancer,” Dr. Hwang says. “We hope that ultimately our study will pave the way for molecular profiling to become a standard component of initial diagnosis.”

Maureen E Lyon

Maureen E. Lyon, Ph.D., ABPP, lauded for outstanding excellence in patient-centered advance care planning

Maureen E Lyon

Maureen E. Lyon, Ph.D., a principal investigator at Children’s Center for Translational Science, will be honored with a “Recognition Award for Excellence and Innovation in Research” by Respecting Choices for outstanding excellence in patient-centered advance care planning and shared decision-making.

Respecting Choices will present the award on Oct. 26, 2018, during its “National Share the Experience Conference” in Bloomington, Minnesota.

Lyon’s expertise is in advance care planning and shared decision-making for children and adolescents with life-threatening illnesses and their families, a field that has transformed in recent decades in order to pave better paths forward for difficult but necessary conversations.

“It came from my clinical experience,” Lyon says. “In the early days of the human immunodeficiency virus (HIV) epidemic in the U.S., everything, absolutely everything, was done to keep the kids alive in the hopes that some new drug would come around the corner, and we could bring them back from the brink. I remember one of the young boys saying to his case manager that he didn’t want all of these interventions. But he hadn’t told his family.”

That young man’s eye-opening comments – and learning that Children’s National Health System had a policy that teenagers were to be included in conversations about their own advance care planning – inspired Lyon to conduct a series of surveys involving adolescents, families and clinicians.

“I remember sitting down with friends and saying ‘There must be a better way to do this. Everyone is afraid to broach the subject,’ ” Lyon recalls. So, she conducted surveys of all healthy kids coming through Children’s adolescent clinic and kids diagnosed with HIV, cancer and sickle cell disease.

“It turned out the kids did want to talk about it. That was the first thing. Families told us they wanted help breaking the ice. Physicians felt it wasn’t their role – many doctors felt their role was to save people – or, they didn’t have the training,” she says.

Through a series of focus groups with youths living with HIV, families and community members, Lyon adapted the adult-centric Respecting Choices model to create a three-session intervention to better meet the advance care planning needs of youths and adolescents living with HIV.

Lyon’s recent work includes a single-blinded, randomized study published Oct. 19, 2018, in Pediatrics that finds the more families understand the end-of-life treatment preferences expressed by adolescents living with HIV, the less likely these youth are to suffer HIV-related symptoms, compared with youths whose families do not understand their end-of-life care goals.

She also has adapted the Respecting Choices intervention to facilitate its use with children diagnosed with cancer. More recently, she has adapted the model for use by parents of children with rare diseases who cannot communicate on their own.

“For the other life-threatening health conditions, we worked to support adolescents in expressing their advance care planning choices in their own voices. With rare diseases, we’re shifting gears,” she adds.

Published research indicates a sizable proportion of pediatric patients who die in hospitals now have confirmed or suspected rare diseases, she says. During a pilot involving seven families, many parents multitasked during the conversations, taking pauses to attend to various alarms as they sounded, to complete regular feedings and to contend with their child’s petit mal seizures.

“The level of burden of taking care of these children with terminal illnesses was pretty overwhelming,” she says. “Still, families were not too burdened to participate in advance care planning, but first wanted to identify their priority palliative care needs and to develop a support plan to meet those needs. We also had more fathers involved.”

Jeffrey Dome

The impact of surveillance imaging to detect relapse in Wilms tumor patients

Jeffrey Dome

Dr. Jeffrey Dome, M.D., Ph.D., vice president, Center for Cancer and Blood Disorders.

The Children’s Oncology Group published an article in the Journal of Clinical Oncology looking at the impact that surveillance imaging has on patients with Wilms tumor (WT), the most common kidney cancer in children.

Despite the risks and costs, the use of computed tomography (CT) for routine surveillance to detect recurrence in patients with WT has increased in recent years. The rationale for using CT scans rather than chest x-rays (CXR) and abdominal ultrasounds (US) is that CT scans are more sensitive, thereby enabling recurrences to be detected earlier.

In this study, led by Jeffrey S. Dome, M.D., Ph.D, vice president of the Center for Cancer and Blood Disorders at Children’s National Health System, researchers conducted a retrospective analysis of patients enrolled in the fifth National Wilms Tumor Study (NWTS-5) who experienced relapse to determine if relapse detection with CT scan correlates with improved overall survival compared with relapse detection by CXR or abdominal US.

A total of 281 patients with favorable-histology WT (FHWT) were included in the analysis. The key findings of the study were that:

  • Among patients with relapse after completion of therapy, outcome was improved in patients whose relapse was detected by surveillance imaging rather after signs and symptoms developed.
  • A higher disease burden at relapse, defined by the diameter of the relapsed tumor and the number of sites of relapse, was associated with inferior survival.
  • Relapses detected by CT scan were detected earlier and were smaller on average than relapses detected by CXR or US.
  • However, there was no difference in survival between patients whose relapse was detected by CT versus CXR or US.

An analysis of radiation exposure levels showed that surveillance regimes including CT scans have about seven times the radiation exposure compared to regimens including only CXR and US. Moreover, the cost to detect each recurrence reduced by 50 percent when CXR and US are used for surveillance.

“The results of this study will be practice changing,” said Dr. Dome, one of the doctors leading the clinical trial. “The extra sensitivity that CT scans provide compared to CXR and US do not translate to improved survival and are associated with the downsides of extra radiation exposure, cost and false-positive results that can lead to unnecessary stress and medical interventions,” he added. “Although counter-intuitive, the more sensitive technology is not necessarily better for patients.”

In conclusion, the doctors found that the elimination of CT scans from surveillance programs for unilateral favorable histology Wilms tumor is unlikely to compromise survival. However, it could result in substantially less radiation exposure and lower health care costs. Overall, the risk-benefit ratio associated with imaging modalities should be considered and formally studied for all pediatric cancers.

Learn more about this research in a podcast from the Journal of Clinical Oncology.

Affiliations

Elizabeth A. Mullen, Dana-Farber Cancer Institute/Boston Children’s Cancer and Blood Disorders Center, Boston, MA; Yueh-Yun Chi and Emily Hibbitts, University of Florida, Gainesville, FL; James R. Anderson, Merck Research Laboratories, North Wales, PA; Katarina J. Steacy, University of Maryland Medical Center, Baltimore, MD; James I. Geller, Cincinnati Children’s Hospital Medical Centre, Cincinnati, OH; Daniel M. Green, St Jude Children’s Research Hospital, Memphis, TN; Geetika Khanna, Washington University School of Medicine, St Louis, MO; Marcio H. Malogolowkin, University of California at Davis Comprehensive Cancer Center, Sacramento, CA; Paul E. Grundy, Stollery Children’s Hospital, University of Alberta, Alberta; Conrad V. Fernandez, University, Halifax, Nova Scotia, Canada; and Jeffrey S. Dome, Children’s National Health System, George Washington University School of Medicine and Health Sciences, Washington, D.C.

Javad Nazarian

Meeting of the minds: Children’s National hosts first DIPG Round Table Discussion

Javad Nazarian at DIPG Round Table Discussion

Spearheaded by Javad Nazarian, Ph.D., MSC, Scientific Director of the Children’s National Brain Tumor Institute, the focused DIPG Round Table Discussion brought investigators, neurosurgeons and clinicians from North America, Europe and Australia to Children’s National in Washington, D.C.

Over 40 experts involved in the study and treatment of diffuse intrinsic pontine gliomas (DIPG) convened at the inaugural DIPG Round Table Discussion at Children’s National Health System Sept. 30-Oct. 2.

Spearheaded by Javad Nazarian, Ph.D., MSC, Scientific Director of the Children’s National Brain Tumor Institute, the focused DIPG Round Table Discussion brought investigators, neurosurgeons and clinicians from North America, Europe and Australia to Children’s National in Washington, D.C., to engage in dialogue and learn about the changing landscape of DIPG tumor biology and therapeutics. Attendees discussed the recent discoveries in DIPG research, precision medicine, preclinical modeling, immunotherapy, data sharing and the design of next generation clinical trials.

Families affected by DIPG also had an opportunity to participate in day 2 of the event. Many voiced the necessity of data sharing to ensure progress in the field. Dr. Nazarian seconded that point of view: “It is critical to get raw data and have it harmonized and integrated so that the end users (researchers) can utilize and do cross-data analysis…We need to break down the silos.” The highlight of the data sharing session was the Open DIPG Initiative that is spearheaded by Dr. Nazarian and the Children’s Brian Tumor Tissue Consortium (CBTTC).

Nazarian Lab at DIPG Roundtable Meeting

Eshini Panditharatna, Ph.D., Madhuri Kambhampati, Sridevi Yadavilli, M.D., Ph.D., and Erin Bonner of Children’s National at the DIPG Round Table.

As recent technological and molecular advances in DIPG biology have pushed the field forward, focus groups have become essential to share data, ideas and resources with the overarching goal of expediting effective treatments for children diagnosed with DIPG. An extremely aggressive form of pediatric brain cancer, DIPG accounts for roughly 10 to 15 percent of all brain tumors in children. Between 300 and 400 children in the United States are diagnosed with DIPG each year, but the 5-year survival for the brain tumor is less than 5 percent, a strikingly low number in comparison with other types of childhood cancer. DIPG research and clinical initiatives have changed in the past years mainly due to the generous support of families for basic research. The DIPG Open Table meeting was designed to coalesce a team of experts to expedite the first crack at curing this devastating childhood cancer.

Javad Nazarian

Children’s National launches Open DIPG Initiative

Javad Nazarian

Javad Nazarian, Ph.D., MSC, has played an important role in establishing the Open DIPG Initiative. He hopes that the Open DIPG Initiative will serve as a model for centralized disease-specific efforts that will bring research findings one step closer to clinical translation.

A collaborative team of doctors and researchers at Children’s National Health System today announced the launch of the Open DIPG Initiative through the Children’s Brain Tumor Tissue Consortium (CBTTC).

The primary goals for the project will be to generate DIPG Omics which will help decipher major molecular characteristics of diffuse intrinsic pontine glioma (DIPG). Specifically, these will include genomics, proteomics, transcriptomics and epigenomics for primary analyses, centralize all DIPG Omics for secondary analyses, integrate the new DIPG data and unify DIPG expertise (data scientists, researchers, new talent, etc.) to analyze the DIPG genomic data.

CBTTC Scientific Co-Chairs Javad Nazarian, Ph.D., MSC, principal investigator, and Adam Resnick, Ph.D., have played important roles in establishing the Open DIPG Initiative. They hope that the Open DIPG Initiative will serve as a model for centralized disease-specific efforts that will bring research findings one step closer to clinical translation.

Pediatric brain tumors are the leading cause of disease-related death in children. Unlike many adult cancers, the causes of pediatric brain tumors remain largely unknown, and common therapies have remained mostly unchanged over the last four decades. To address these challenges, clinicians and researchers have embraced the emergence of sequencing technologies and deep molecular characterization of tumors to define novel, targeted approaches and individualized therapies.

However, harnessing such data-driven approaches has been a challenge due to limited accessibility to datasets and shared discovery platforms that can empower large-scale integration of datasets for worldwide access and cross-disease analyses.

As a part of this initiative, the Open DIPG Initiative has collected, generated and annotated the largest cohort of DIPG genome data to date. Specifically, these datasets contain more than 1,000 genomes associated with pediatric high-grade gliomas, with over 500 DIPG cases. The Open DIPG has been a part of a larger effort known as the Pediatric Brain Tumor Atlas, which aims to uncover the molecular basis of childhood cancers.

Committed to accelerated discovery, the CBTTC is partnering with the Kids First Data Resource Center (DRC) and the newly developed Kids First Data Resource Portal, which was also launched today.

“The combination of consortia-based initiatives, partnerships with foundations and new discovery platforms being announced today, with the support of the National Institutes of Health (NIH), provides for entirely new and transformative ways of doing science on behalf of children with brain tumors,” said Adam Resnick, Ph.D., principal investigator of the Kids First DRC.

The Open DIPG initiative will be launched as a part of the Pediatric Brain Tumor Atlas and has been funded by families as well as the NIH Gabriella Miller Kids First Act fund. The fund was launched in 2015 and named after Gabriella Miller, a former patient at Children’s National who lost her life to DIPG.

Tessie October

Effectively expressing empathy to improve ICU care

Tessie October

“Families who feel we’re really listening and care about what they have to say are more likely to feel comfortable as they put their child’s life in our hands a second, third or fourth time,” says Tessie W. October, M.D., M.P.H.

In nearly every intensive care unit (ICU) at every pediatric hospital across the country, physicians hold numerous care conferences with patients’ family members daily. Due to the challenging nature of many these conversations – covering anything from unexpected changes to care plans for critically ill children to whether it’s time to consider withdrawing life support – these talks tend to be highly emotional.

That’s why physician empathy is especially important, says Tessie W. October, M.D., M.P.H., critical care specialist at Children’s National Health System.

Several studies have shown that when families believe that physicians hear, understand or share patients’ or their family’s emotions, patients can achieve better outcomes, Dr. October explains. When families feel like their physicians are truly empathetic, she adds, they’re more likely to share information that’s crucial to providing the best care.

“For the most part, our families do not make one-time visits. They return multiple times because their children are chronically ill,” Dr. October says. “Families who feel we’re really listening and care about what they have to say are more likely to feel comfortable as they put their child’s life in our hands a second, third or fourth time. They’re also less likely to regret decisions made in the hospital, which makes them less likely to experience long-term psychosocial outcomes like depression and anxiety.”

What’s the best way for physicians to show empathy? Dr. October and a multi-institutional research team set out to answer this question in a study published online in JAMA Network Open on July 6, 2018.

With families’ consent, the researchers recorded 68 care conferences that took place at Children’s pediatric ICU (PICU) between Jan. 3, 2013, to Jan. 5, 2017. These conversations were led by 30 physicians specializing in critical care, hematology/oncology and other areas and included 179 family members, including parents.

During these conferences, the most common decision discussed was tracheostomy placement – a surgical procedure that makes an opening in the neck to support breathing – followed by the family’s goals, other surgical procedures or medical treatment. Twenty-two percent of patients whose care was discussed during these conferences died during their hospitalization, highlighting the gravity of many of these talks.

Dr. October and colleagues analyzed each conversation, counting how often the physicians noticed opportunities for empathy and how they made empathetic statements. The researchers were particularly interested in whether empathetic statements were “buried,” which means they were:

  • Followed immediately by medical jargon
  • Followed by a statement beginning with the word “but” that included more factual information or
  • Followed by a second physician interrupting with more medical data.

That compares with “unburied” empathy, which was followed only by a pause that provided the family an opportunity to respond. The research team examined what happened after each type of empathetic comment.

The researchers found that physicians recognized families’ emotional cues 74 percent of the time and made 364 empathetic statements. About 39 percent of these statements were buried. In most of these instances, says Dr. October, the study’s lead author, the buried empathy either stopped the conversation or led to family members responding with a lack of emotion themselves.

After the nearly 62 percent of empathetic statements that were unburied, families tended to answer in ways that revealed their hopes and dreams for the patient, expressed gratitude, agreed with care advice or expressed mourning—information that deepened the conversation and often offered critical information for making shared decisions about a patient’s care.

Physicians missed about 26 percent of opportunities for empathy. This and striving to make more unburied empathetic statements are areas ripe for improvement, Dr. October says.

That’s why she and colleagues are leading efforts to help physicians learn to communicate better at Children’s National. To express empathy more effectively, Dr. October recommends:

  • Slow down and be in the moment. Pay close attention to what patients are saying so you don’t miss their emotional cues and opportunities for empathy.
  • Remember the “NURSE” mnemonic. Empathetic statements should Name the emotion, show Understanding, show Respect, give Support or Explore emotions.
  • Avoid using the word “but” as a transition. When you follow an empathetic statement with “but,” Dr. October says, it cancels out what you said earlier.
  • Don’t be afraid to invite strong emotions. Although it seems counterintuitive, Dr. October says helping patients express strong feelings can help process emotions that are important for decision-making.

In addition to Dr. October, study co-authors include Zoelle B. Dizon, BA, Children’s National; Robert M. Arnold, M.D., University of Pittsburgh Medical Center; and Senior Author, Abby R. Rosenberg, M.D., MS, University of Washington School of Medicine.

Research covered in this story was supported by the National Institutes of Health under grants 5K12HD047349-08 and 1K23HD080902 and the National Center for Advancing Translational Sciences under Clinical and Translational Science Institute at Children’s National Health System grant number UL1TR0001876.

Yanxin Pei awarded St. Baldrick’s Foundation Research Grant for Childhood Cancer

Yanxin Pei, Ph.D., assistant professor at the Children’s Research Institute, was a recipient of a $100,000 grant that is being named the “Benicio Martinez Fund for Pediatric Cancer Research Grant” from the St. Baldrick’s Foundation, the largest private funder of childhood cancer research grants in the United States.

Dr. Pei studies medulloblastoma – one of the most common malignant brain tumors in children – and has identified a subpopulation of tumor cells that contribute to metastasis after radiotherapy. Her lab is now determining whether targeting these cells can eliminate or prevent the spread of medulloblastoma, thereby improving the outcome of patients with this disease.

In their latest round of funding, the St. Baldrick’s Foundation awarded 76 grants totaling more than $19.1 million to support physician-scientists studying innovative treatment options in the pediatric cancer space. The grants from St. Baldrick’s deliver on its commitment to support the most promising childhood cancer research and work to provide the best solutions possible for kids. The next St. Baldrick’s grant cycle will be announced in fall 2018.

“At St. Baldrick’s, we focus on funding research that has the best potential of giving kids the healthy childhoods they deserve,” said Kathleen Ruddy, CEO of the St. Baldrick’s Foundation.  “I’m proud to say that we have now funded more than a quarter billion dollars since 2005 to support lifesaving childhood cancer research.

Bladder cancer’s unique bacterial “fingerprint”

Michael H. Hsieh, M.D., Ph.D.

Michael H. Hsieh, M.D., Ph.D.

Decades ago, researchers thought that the native bacteria scattered throughout the human body—such as in the gut, the oral cavity and the skin—served little useful purpose. This microbiota, whose numbers at least match those of the cells in the body they live on and in, were considered mostly harmless hitchhikers.

More recently, research has revealed that these natural flora play key roles in maintaining and promoting health. In addition, studies have shown that understanding what a “typical” microbiome looks like and how it might change over time can provide an early warning system for some health conditions, including cancer.

Now, a small, multi-institutional study conducted in experimental models suggests that as bladder cancer progresses, it appears to be associated with a unique bacterial fingerprint within the bladder—a place thought to be bacteria-free except in the case of infection until just a few years ago. The finding opens the possibility of a new way to spot the disease earlier.

Bladder cancer is the fourth-most common malignancy among U.S. men but, despite its prevalence, mortality rates have remained stubbornly high. Patients often are diagnosed late, after bladder cancer has advanced. And, it remains difficult to discern which patients with non-invasive bladder cancer will go on to develop muscle-invasive disease.

Already, researchers know that patients with grade 4 oral squamous cell carcinoma, women with increasingly severe grades of cervical cancer and patients with cirrhosis who develop liver cancer have altered oral, vaginal and gut microbiomes, respectively.

New technological advances have led to identification of a diverse community of bacteria within the bladder, the urinary microbiome. Leveraging these tools, a research team that includes Children’s National Health System investigators studied whether an experimental model’s urinary bacterial community changed as bladder cancer progressed, evolving from a microbiome into a urinary “oncobiome.”

To test the hypothesis, the research team led by Michael H. Hsieh, M.D., Ph.D., a Children’s urologist, exposed an experimental model of bladder cancer to a bladder-specific cancer-causing agent, n-butyl-n-(4-hydroxybutyl) nitrosamine (BBN). Bladder cancers induced by BBN closely resemble human cancers in tissue structure at the microscopic level and by gene expression analyses. Ten of the preclinical models received a .05 percent concentration of BBN in their drinking water over five months and were housed together. Ten other experimental models received regular tap water and shared a separate, adjacent cage.

Researchers collected urine samples ranging from 10 to 100 microliters at the beginning of the longitudinal study, one week after it began, then once monthly. They isolated microbial DNA from the urine and quantified it to determine how much DNA was microbial. All of the bladders from experimental models exposed to BBN and two bladders from the control group were analyzed by a pathologist trained in bladder biology.

According to the study published online July 5, 2018, by the biology preprint server Biorxiv, they found a range of pathologies:

  • Five of the experimental models that received BBN did not develop cancer but had histology consistent with inflammation. Three had precancer on histology: urothelial dysplasia, hyperplasia or carcinoma in situ. Two developed cancer: invasive urothelial carcinomas, one of which had features of a squamous cell carcinoma.
  • The experimental model that developed invasive carcinoma had markedly different urinary bacteria at baseline, with Rubellimicrobium, a gram negative organism found in soil that has not been associated with disease previously, Escherichia and Kaistobacter, also found in soil, as the most prominent bacteria. By contrast, in the other experimental models the most common urinary bacteria were Escherichia, Prevotella, Veillonella, Streptococcus, Staphyloccoccus and Neisseria.
  • By month four, the majority of experimental models exposed to BBN had significantly higher proportion of Gardnerella and Bifidobacterium compared with their control group counterparts.

“Closely analyzing the urinary bacterial community among experimental models exposed to BBN, we saw distinct differences in microbial profiles by month four that were not present in earlier months,” Dr. Hsieh says. “While Gardnerella is associated with the development of cancer, Bifidobacterium has been shown to exert antitumor immunity, and its increasing abundance points to the need for additional research to understand its precise role in oncogenesis.”

Dr. Hsieh adds that although the study is small, its findings are of significance to children who are prone to developing urinary tract infections (UTIs), including children with spina bifida, due to the association between UTIs and bladder cancer. “This work is important because it not only suggests that the urinary microbiome could be used to diagnose bladder cancer, but that it could also perhaps predict cancer outcomes. If the urinary microbiome contributes to bladder carcinogenesis, it may be possible to favorably change the microbiome through antibiotics and/or probiotics in order to treat bladder cancer.”

In addition to Dr. Hsieh, co-authors include Catherine S. Forster, M.D., M.S., and Crystal Stroud, of Children’s National; James J. Cody, Nirad Banskota, Yi-Ju Hsieh and Olivia Lamanna, of the Biomedical Research Institute; Dannah Farah and Ljubica Caldovic, of The George Washington University; and Olfat Hammam, of Theodor Bilharz Research Institute.

Research reported in this news release was supported by the National Institutes of Health under award number R01 DK113504 and the Margaret A. Stirewalt Endowment.

Yuan Zhu

The brain tumor field moves forward with new findings and a research grant

Yuan Zhu

Yuan Zhu, Ph.D., and other experts completed new research findings evaluating the effects of manipulating the growth-promoting signaling pathways in brain tumors associated with adults and children.

This month, experts at Children’s National Health System made great strides in brain tumor research, specifically in gliomas, glioblastomas and medulloblastomas. Led by Yuan Zhu, Ph.D., the scientific director and Gilbert Endowed Professor of the Gilbert Family Neurofibromatosis Institute and Center for Cancer and Immunology Research at Children’s National, the team completed new research findings evaluating the effects of manipulating the growth-promoting signaling pathways in brain tumors associated with adults and children. Dr. Zhu’s research was recently published in Cell Reports and he was also awarded a U.S. Department of Defense (DoD) grant to gain a better understanding of how low-grade gliomas form. Together, this work moves the needle on developing more effective treatments for these debilitating and life-threatening tumors.

The study

In his recently published paper, Dr. Zhu and his colleagues, including Drs. Seckin Akgul and Yinghua Li, studied glioblastomas, the most common brain tumor in adults, and medulloblastomas, the most common brain tumor found in children, in genetically engineered experimental models. Dr. Zhu found that when they removed the p53 gene (the most commonly mutated tumor suppressor gene in human cancers) in the experimental model’s brain, most developed malignant gliomas and glioblastomas, while Sonic Hedgehog (SHH)-subtype (SHH) medulloblastomas were also observed. They further suppressed the Rictor/mTorc2 molecular pathway that is known in the regulation of tumor growth. This action greatly reduced the incidence of malignant gliomas and extended the survival of the models, validating the concept that Rictor/mTorc2 could be a viable drug target for this lethal brain cancer in adults.

The study also found that the same Rictor/mTorc2 molecular pathway serves the opposite function in SHH medulloblastoma formation, acting as a tumor suppressor. Findings suggest that if the same drug treatment is used for treating SHH medulloblastoma in children, it could potentially have an adverse effect and promote growth of the tumors.

Ultimately, the study demonstrates that Rictor/mTORC2 has opposing functions in glioblastomas in adults and SHH medulloblastomas in children. While drug therapies targeting Rictor/mTORC2 may be successful in adults, the findings reveal the risks of treating children with pediatric brain tumors when using the same therapies.

The grant

Continuing the study of brain tumors, Dr. Zhu recently received a $575,000 grant from DoD to research benign gliomas, with the hope of gaining a greater understanding of how the tumors form. Low-grade gliomas, or benign brain tumors, are the most common brain tumors in children. While not lethal like their high-grade counterpart, these tumors can lead to significant neurological defects, permanently impacting a child’s quality of life. Most commonly, the tumor can impair vision, often leading to blindness.

Since the tumors only occur in children under the age of eight, Dr. Zhu believes they are linked to neural stem or progenitor cells that exist in the optic nerve only during development, or when children are under eight-years-old. To test if his hypothesis is correct, Dr. Zhu will develop a preclinical model that mimics human brain tumors to study the development of the optic nerve. If his theory proves correct, Dr. Zhu’s long-term goal is to develop a strategy that prevents the tumor formation from ever occurring, ultimately preventing vision loss in children. The grant begins in July and will run for three years.