Cancer

Dr. Yang of Children's National Research Institute

Unlocking treatments for neuroblastoma

Dr. Yang of Children's National Research Institute

Dr. Jianhua Yang talks about his latest research into neuroblastoma treatments at Children’s National Hospital.

Curing neuroblastomas is going to take years of investigation and persistence, and the team at the Center for Cancer and Immunology Research at Children’s National Hospital is laying the foundation for breakthroughs. Recently, Jianhua Yang, Ph.D., and his colleagues completed a study providing proof-of-concept, preclinical evidence for exploring ulixertinib as a novel pharmaceutical approach for targeting neuroblastomas.

The big picture

This inhibitor blocks a type of communication inside a cell called the extracellular signal-regulated kinases (ERK), which are believed to drive the growth of neuroblastomas and various cancers. In a study of preclinical models published in Cancers, ulixertinib strongly inhibited the proliferation of high-risk neuroblastoma cells inside and outside of living organisms. Investigators also found that ulixertinib sensitized the cancer cells for treatment with the conventional chemotherapy drug, doxorubicin. Yang and his colleagues hope that finding inhibitors like ulixertinib could someday unlock a modality for treating neuroblastomas.

What we hope to discover

“We are trying to figure out if we can find a novel target, which no one has studied,” Yang said. “Some kinases, over-expressed in neuroblastoma and medulloblastoma, are interesting in terms of their expression pattern. We want to learn how they can be activated and promote tumor growth, and then we can develop therapies to safely target that cellular change.”

Neuroblastoma is the most common pediatric extracranial tumor, accounting for 15% of childhood malignancy-related deaths. Although some lower-risk versions of the disease can be cured, high-risk neuroblastomas have proven invulnerable to treatments for decades.

Moving the field forward

Working multiple research tracks, Yang’s lab is also investigating antibody-based immunotherapy that could be used to block the growth of neuroblastomas. Combined with chemotherapies, he and others at Children’s National believe these potential therapies could change the way pediatric cancers are treated and improve the quality of life for survivors.

“It’s like a religion,” Yang said. “You have to believe in yourself. The chance to fail is high, but you have to believe. If we can develop one or two drugs before my retirement, that’s a huge success.”

Dalia Haydar

Harnessing children’s immune systems to fight their own brain tumors

Dalia Haydar, Pharm.D., Ph.D., principal investigator for the Program for Cell Enhancement and Technologies for Immunotherapies, recently joined Children’s National Hospital to help develop breakthrough treatments that hopefully will be a key in the fight against pediatric brain tumors. She brings her deep experience at St. Jude Children’s Research Hospital to the Center for Cancer and Immunology Research (CCIR) to help support the NexTGen team’s 10-year, $25-million Cancer Grand Challenges award.

Dalia – literally – has drive: She commutes 180 miles round trip from her home in Hershey, Pa., to her lab. She says she is grateful to be at one of the few research institutions in the world that is researching how to harness the power of CAR T-cell therapies to attack solid tumors in kids. While these therapies have been approved to treat leukemia and other blood cancers, solid tumors have proven far more stubborn. Haydar has tremendous hope that she and the team led by CCIR Director Catherine Bollard, M.D., M.B.Ch.B., will change that.

Q: Could you explain the importance of this research?

A: Unfortunately, once a patient is diagnosed with a brain tumor, especially a kid, there’s very little we can do. Using chemotherapy or radiation therapy has big disadvantages because of developmental delays and other side effects. We are hoping this kind of immunotherapy – where we take the patient’s own immune cells and engineer them in the lab to attack their cancer – will eradicate their very harsh and aggressive tumors, without causing significant adverse effects.

Q: How are researchers at Children’s National going to attack solid tumors with a treatment originally designed for blood cancers?

A: We have a lot of resources and expertise at Children’s National that we are trying to put together to develop a therapy that would cure brain tumors. Unfortunately, solid tumors are hard to treat and there are several challenges for any kind of immunotherapy. But right now, being at a place where all the necessary resources, support and expertise are available, we are hoping to address each of these challenges, and we are determined to do something in a meaningful timeframe to push that survival curve toward the advantage of those kids.

Q: How soon can this work be done?

A: Within two or three years, we are hopeful we’ll be able to identify the best working regimen of this CAR T-cell immunotherapy and investigate if it will work in a patient. I foresee, in the next 5 to 10 years, that we’re hopefully going to have such therapy for kids with brain tumors.

Q: What has surprised most you in your work?

A: There are so many challenges in developing immunotherapies for kids with brain tumors. First, if it works for adults, it doesn’t necessarily work for kids. Some of the tumors in kids are more aggressive. We need to understand the tumor itself, besides understanding the immunotherapy we’re developing.

The other challenge is CAR-T immunotherapy is not like a pill or taking radiotherapy that is standardized for several patients. It’s a very expensive therapy. It’s taking the patient’s own immune cell, like a bone marrow transplant. We put it in the lab, re-engineer the cells without transforming them into a cancer cell, enable those immune cells to attack the cancer, and then put them back into the patient. There are a lot of steps you need to take to make sure you don’t artificially harm those cells or introduce contamination.

One of the most intriguing challenges for me is how we make immunotherapy work for kids who have different kinds of brain tumors – a medulloblastoma versus a glioma versus an embryonal tumor. This is one of the challenges that keeps me on my toes, and I’m hoping to answer.

Q: What is the power of being in a multi-center environment like the Children’s National Research Institute?

A: We have to do enough science on the bench to support any proposal for the therapy to move to the clinic. The last thing we want to do is to investigate a drug or therapy in patients without really knowing how it works and the potential adverse effects. Being able to work with researchers at different stages of the bench-to-bedside spectrum, as well as being able to have access to patient samples and innovative preclinical models, helps push the science forward in a shorter time frame.

blood cells

Half-matched cells – not identical – can help patients live longer, study finds

blood cells

Severe aplastic anemia (SAA) is a rare but serious blood disorder. Children and adults with SAA get very sick with low blood counts, infections or bleeding.

A new study, published in The Lancet Haematology, finds that patients of all races and ethnicities can get successful transplants for severe aplastic anemia (SAA) through haploidentical, or half-matched, bone marrow transplantation (BMT).

The big picture

SAA is a rare but serious blood disorder. Children and adults with SAA get very sick with low blood counts, infections or bleeding.

Relapsed SAA is a marrow failure disorder with high morbidity and mortality. Although this is often treated with BMT at relapse post-immunosuppressive therapy, historically under-represented minorities often struggle finding a suitably matched donor.

“If SAA does not respond to the first choice of therapy or comes back after a period of health, then we call this relapsed and refractory SAA,” says Blachy J. Dávila Saldaña, M.D., Blood and Marrow Transplant Specialist at Children’s National Hospital and corresponding author of the study. “BMT is the only cure for relapsed and refractory SAA.”

Moving the field forward

Many diagnosed patients do not have a fully matched donor to have a successful BMT. However, the study’s findings show that a haploidentical BMT from a family member can help people live longer.

“This especially helps people who are American Indian or Alaska native, Asian, Black or African American, Native Hawaiian, other Pacific Islander, more than one race or Hispanic,” Dr. Dávila adds. “It’s easier for people in these communities to find a related half-matched than a fully matched unrelated BMT donor.”

The patient benefit

Haploidentical BMT will greatly expand the ability of experts to safely treat patients of non-Caucasian ancestry that suffer from this condition.

“The half-matched transplant is becoming more standard and as safe as those with a fully matched donor,” Dr. Dávila says.

Children’s National was one of a handful of pediatric hospitals in the United States to participate in this open trial. Our experts will now provide the framework to expand these services to pediatric patients across the world.

Abstract Happy 2022 New Year greeting card with light bulb

The best of 2022 from Innovation District

Abstract Happy 2022 New Year greeting card with light bulbA clinical trial testing a new drug to increase growth in children with short stature. The first ever high-intensity focused ultrasound procedure on a pediatric patient with neurofibromatosis. A low dose gene therapy vector that restores the ability of injured muscle fibers to repair. These were among the most popular articles we published on Innovation District in 2022. Read on for our full top 10 list.

1. Vosoritide shows promise for children with certain genetic growth disorders

Preliminary results from a phase II clinical trial at Children’s National Hospital showed that a new drug, vosoritide, can increase growth in children with certain growth disorders. This was the first clinical trial in the world testing vosoritide in children with certain genetic causes of short stature.
(2 min. read)

2. Children’s National uses HIFU to perform first ever non-invasive brain tumor procedure

Children’s National Hospital successfully performed the first ever high-intensity focused ultrasound (HIFU) non-invasive procedure on a pediatric patient with neurofibromatosis. This was the youngest patient to undergo HIFU treatment in the world.
(3 min. read)

3. Gene therapy offers potential long-term treatment for limb-girdle muscular dystrophy 2B

Using a single injection of a low dose gene therapy vector, researchers at Children’s National restored the ability of injured muscle fibers to repair in a way that reduced muscle degeneration and enhanced the functioning of the diseased muscle.
(3 min. read)

4. Catherine Bollard, M.D., M.B.Ch.B., selected to lead global Cancer Grand Challenges team

A world-class team of researchers co-led by Catherine Bollard, M.D., M.B.Ch.B., director of the Center for Cancer and Immunology Research at Children’s National, was selected to receive a $25m Cancer Grand Challenges award to tackle solid tumors in children.
(4 min. read)

5. New telehealth command center redefines hospital care

Children’s National opened a new telehealth command center that uses cutting-edge technology to keep continuous watch over children with critical heart disease. The center offers improved collaborative communication to better help predict and prevent major events, like cardiac arrest.
(2 min. read)

6. Monika Goyal, M.D., recognized as the first endowed chair of Women in Science and Health

Children’s National named Monika Goyal, M.D., M.S.C.E., associate chief of Emergency Medicine, as the first endowed chair of Women in Science and Health (WISH) for her outstanding contributions in biomedical research.
(2 min. read)

7. Brain tumor team performs first ever LIFU procedure on pediatric DIPG patient

A team at Children’s National performed the first treatment with sonodynamic therapy utilizing low intensity focused ultrasound (LIFU) and 5-aminolevulinic acid (5-ALA) medication on a pediatric patient. The treatment was done noninvasively through an intact skull.
(3 min. read)

8. COVID-19’s impact on pregnant women and their babies

In an editorial, Roberta L. DeBiasi, M.D., M.S., provided a comprehensive review of what is known about the harmful effects of SARS-CoV-2 infection in pregnant women themselves, the effects on their newborns, the negative impact on the placenta and what still is unknown amid the rapidly evolving field.
(2 min. read)

9. Staged surgical hybrid strategy changes outcome for baby born with HLHS

Doctors at Children’s National used a staged, hybrid cardiac surgical strategy to care for a patient who was born with hypoplastic left heart syndrome (HLHS) at 28-weeks-old. Hybrid heart procedures blend traditional surgery and a minimally invasive interventional, or catheter-based, procedure.
(4 min. read)

10. 2022: Pediatric colorectal and pelvic reconstructive surgery today

In a review article in Seminars in Pediatric Surgery, Marc Levitt, M.D., chief of the Division of Colorectal and Pelvic Reconstruction at Children’s National, discussed the history of pediatric colorectal and pelvic reconstructive surgery and described the key advances that have improved patients’ lives.
(11 min. read)

Jeffrey Dome

Jeffrey Dome, M.D.: Making strides in the fight against pediatric cancer

Jeffrey DomeJeffrey Dome, M.D., Ph.D., senior vice president of the Center for Cancer and Blood Disorders and chief of the Division of Oncology (ranked number 6 in the nation by U.S. News & World Report 2022-23 Best Children’s Hospitals annual rankings) at Children’s National Hospital in Washington, D.C., is an internationally recognized expert on pediatric solid tumors, with an emphasis on kidney tumors and sarcomas. He chaired the Children’s Oncology Group (COG) Renal Tumor Committee, which oversees clinical research on kidney tumors at more than 200 children’s hospitals around the world for more than 10 years. Dr. Dome is currently the Continental President of North America for the International Society of Paediatric Oncology (SIOP) and serves on several medical advisory boards for cancer centers and foundations.

“This is a remarkably exciting time to be in the field of pediatric oncology, with an explosion of knowledge on cancer biology and genetics and the availability of new treatment modalities including molecularly targeted therapy, immunotherapy and devices to improve drug delivery and local control,” says Dome. “I am proud of the multidisciplinary and cross-center collaborations at Children’s National to deliver the latest innovative therapies.”

The team at Children’s National is making strides across all programs to benefit patients with pediatric cancer. A few highlights include:

  • The Brain Tumor lnstitute is one of the most active clinical and translational research programs in the country. Collaborating with other leading institutions, the Brain Tumor Institute is supported by a robust brain tumor bench research program with focused laboratories in medulloblastoma, high-grade glioma, midline diffuse glioma, diffuse intrinsic pontine glioma, low-grade glioma and immunotherapy. The Brain Tumor Institute is leading two national studies, both funded through the Moon Shot lnitiative. In addition, it works closely with the Virginia Tech brain tumor laboratories on the new Children’s National Research & Innovation Campus.
  • Children’s National is the first children’s hospital in the United States with a Focused Ultrasound Program. This pediatric dedicated program includes high-intensity (HIFU) and low-intensity focused ultrasound (LIFU), offering minimally invasive surgical options for children with extra-cranial solid tumors, low-grade brain tumors and novel, potentially life-saving therapy with LIFU-mediated blood-brain barrier disruptions for diffuse intrinsic pontine gliomas.
  • Children’s National has developed multi-antigen specific T cells that have shown success in early phase clinical trials for leukemias, solid tumors and brain tumors. This promising area of research earned a major boost in the form of a $25 million dollar grant from Cancer Grand Challenges, founded in 2020 by Cancer Research UK and the National Cancer Institute in the U.S. This award supported the foundation of NexTGen, a team of scientists and clinicians with expertise in immunology, proteomics, mathematics and more, across eight institutions in the U.S., U.K. and France. The Center for Cancer and Immunology Research at Children’s National is one of the leaders of this effort.
  • The Blood and Marrow Transplantation team, one of the only dedicated pediatric bone marrow transplant programs in the greater Washington, D.C., region, is celebrating its 35th anniversary, with a history of clinical and research accomplishments for both malignant and non-malignant disorders. This program has seen tremendous success in their day 100 transplant-related mortality (TRM). Recently, for the first time, the day 100 TRM average was 0%, meaning that the program did not lose a patient due to transplant complications in the first 100 days – a remarkable achievement in the world of transplantation.
  • The Cancer Genetics Program has grown tremendously in the past few years, reflecting recognition that approximately 10% of childhood cancers have an underlying cancer predisposition. Despite COVID-19, during the past fiscal year, there were 282 patient visits which is a 40% increase from the prior year. The team has developed a collaboration with researchers in the Rare Disease Institute and now can offer studies for patients with Beckwith-Wiedemann syndrome, children with previously undiagnosed developmental delay and children with undiagnosed syndromes. Further, the team was awarded a grant from the Children’s Cancer Foundation to allow testing for those without insurance coverage.
Catherine Bollard

In the news: Novel research to stop pediatric brain tumors

“The team is really bringing in very new ideas from mathematical modeling, engineering, all the way to cell therapy, immunotherapy and immunology…This is what really excites and energizes us to be part of this great team, to address the Cancer Grand Challenge, to better target pediatric solid tumors.”

The Cancer Letter connected with Catherine Bollard, M.D., M.B.Ch.B., director of the Center for Cancer and Immunology Research at Children’s National Hospital, for a conversation about her work as a leader of the Cancer Grand Challenges NexTGen team. The $25 million effort is funded by Cancer Research U.K. and the National Institute of Health’s National Cancer Institute and the Mark Foundation for Cancer Research. Its ambitious goal: find novel therapies to break the stalemate in the treatment of pediatric solid brain tumors in the next 10 years. Bollard shared her work plan and the “secret sauce” that gives the team its edge with The Cancer Letter. Find out more about the hope behind this effort in the full interview here.

Catherine Bollard at People V. Cancer summit

In the news: People v. pediatric cancer

“I just want to hammer home the fact that, if you have a child with a pediatric solid tumor who relapses, most likely the chemotherapy that will be treating that child will be the same chemotherapy that a child diagnosed 20 years ago would have received. This is how little progress has been made…. This is what we are trying to change.”

Catherine Bollard, M.D., M.B.Ch.B., director of the Center for Cancer and Immunology Research at Children’s National Hospital, pulled the curtain back on her work fighting pediatric brain tumors at The Atlantic’s People V. Cancer summit. This annual event brings together leading voices from the front lines for in-depth conversations about how to stop this complex and lethal disease. Dr. Bollard discussed the unique importance of collaboration among pediatric oncologists and the optimism she has for using a patient’s immune system to go after solid tumors with CAR T therapies.

pregnant woman at fertility consultant

Fertility preservation in sickle cell disease patients

pregnant woman at fertility consultant

Fertility is a long-standing concern for patients with sickle cell disease and their families.

In a recent review in the Journal of Clinical Medicine, researchers from Children’s National Hospital look at the current state of fertility preservation in patients with sickle cell disease and make recommendations for longitudinal post-treatment for these individuals.

Fertility is a long-standing concern for patients with sickle cell disease and their families. Current curative therapy for the disease requires gonadotoxic conditioning, which many patients resist because of the resulting risk of infertility. And, while standard fertility preserving interventions exist for pre- and postpubescent females and males, best practices for integrating these interventions into sickle cell disease care have not yet been established.

In their article, Children’s National hematologist Robert Sheppard Nickel, M.D., and co-authors review current fertility assessments, fertility considerations in pre- and post-transplant patients with sickle cell disease and fertility preserving interventions for patients. The authors conclude that in the future, less toxic curative approaches may make fertility preservation unnecessary, but at present, fertility preservation should be offered to patients with sickle cell disease pursing curative therapy.

Additional authors from Children’s National include Michael Hsieh, M.D., Ph.D., and Jacqueline Maher, M.D.

Read the full review article, Fertility after Curative Therapy for Sickle Cell Disease: a Comprehensive Review to Guide Care, in the Journal of Clinical Medicine.

stem cells

How our BMT program is excelling: Q&A with David Jacobsohn, M.D.

David Jacobsohn

Dr. Jacobsohn has led the BMT program at Children’s National as the division chief and talks about their incredible success over the last 5 years.

Over the last five years, the bone marrow transplant (BMT) program at Children’s National Hospital has continuously improved. From decreasing transplant-related mortality to 0%, to increasing the complexity of their transplants, the program continues to succeed in providing the best care to patients and their families.

David Jacobsohn, M.D., Blood and Marrow Transplantation division chief, offers insight on the goals the program has reached, the obstacles it has overcome and the vision for what’s next.

Q: How would you describe the success of the BMT program over the last 5 years?

A: We have progressively seen outcomes improve, marked by improvement in one-year overall survival of allogeneic transplants. Contributing to that is our outstanding day 100 transplant-related mortality (TRM). For the first time ever, the day 100 transplant-related mortality, averaged over allogeneic transplants done in the last 3 years, was 0%. That means that during that time, we have not lost a patient due to transplant complications in the first 100 days. This is a remarkable achievement in the world of transplantation.

Q: How does this work move the field forward?

A: We are particularly interested in continuing BMT in non-malignant conditions, such as beta-thalassemia, immunodeficiency and sickle cell anemia. We have one of the largest programs in the country for transplantation of patients with sickle cell anemia. We have been able to offer BMT to patients with sickle cell disease (SCD) and no prior complications, as a preventative procedure. Whereas in the past, it was mostly reserved for patients that had already been severely affected.

Q: How will this work benefit patients?

A: One of the key benefits that we’re seeing is that complications such as graft-versus-host disease (GVHD) have really decreased over the last few years based on the type of medications we’re using and procedures we’re doing.  Now most of our patients that are about six months out from transplant are off immunosuppression and are living relatively normal lives.

Q: What excites you most about this advancement?

A: We’re very excited about something called the Alpha/beta T cell depletion (A/B TCD) . We’re one of the few hospitals in the country offering this process.

This means we’re able to collect the donor stem cells and remove the T cells in the lab. Particularly the A/B T cells, which cause GVHD. We’re able to do this successfully not needing any medications to suppress the immune system. This is really quite novel. A lot of those medications have different side effects on organs, especially the kidneys. Now we can do transplants, even from half-matched donors, without immunosuppression.

We want to expand to more and more patients in the next three to five years so that no patients will need immunosuppression.

Q: What do you look forward to in the next couple of years?

A: In the next few years, we’re excited to venture more into cellular and gene therapy. With regards to cellular therapy, we’re offering something called CAR T cells to patients with acute leukemia. And it’s possible that this will actually replace transplant in some very high-risk leukemia patients.

We’re also looking forward to offering gene therapy to patient with SCD and beta-thalassemia.

patient undergoing MRI

Brain tumor team performs first ever LIFU procedure on pediatric DIPG patient

patient undergoing MRI

The ultrasound waves activate the drug selectively within the tumor, causing tumor cell death. Credit: Image provided by Insightec.

A multidisciplinary brain tumor team at Children’s National Hospital successfully performed the first treatment with sonodynamic therapy utilizing low intensity focused ultrasound (LIFU) and 5-aminolevulinic acid (5-ALA) medication on a pediatric patient. The treatment, performed on a 5-year-old child diagnosed with a diffuse intrinsic pontine glioma (DIPG), was done noninvasively through an intact skull. The child was discharged from the hospital one day later.

What happened?

Shortly after announcing the use of LIFU, the brain tumor team at Children’s National treated the patient as part of a cutting-edge trial using LIFU combined with a novel medication.

The ultrasound waves – which are given while the child is asleep through an intact skull and does not require an invasive neurosurgical procedure – activate the drug selectively within the tumor, causing tumor cell death.

“This treatment is currently being trialed in adults diagnosed with recurrent glioblastoma tumors, but has never been attempted in pediatric patients,” said Hasan Syed, M.D., co-director of the Focused Ultrasound Program at Children’s National. “Similar to the adult trial, our protocol involves using a medication that is taken up by tumor cells and then targeting those cells with LIFU to induce tumor cell death, and hopefully leading to tumor control.”

Dr. Syed co-directs the program with Roger Packer, M.D., head of the Brain Tumor Institute, and Lindsay Kilburn, M.D., director of the Experimental Therapeutics Program.

How are we leading the way?

The launch and use of LIFU was possible thanks to the efforts of a multidisciplinary team from various departments that understood if too high a dose of ultrasound was utilized, there could be associated brain swelling and even death.

“Our efforts show great teamwork and a commitment from the hospital and our clinical teams to develop innovative means to treat a tumor that kills 90% of those children afflicted within 18 months of diagnosis,” Dr. Syed said.

The work shows expertise of the brain tumor team, as well as radiology, anesthesiology and intensive care units.

“Despite the risks involved, the use of focused ultrasound is a novel way to try to treat these very deep-seated lesions that have been highly resistant to all forms of therapy and is potentially the greatest breakthrough we’ve had in this disease in the past 50 years,” Dr. Packer said.

What has limited therapy in the past?

DIPGs are deep-seated in critical areas of brain, controlling breathing and heart rate and cannot be removed. The brain has an intrinsic system called a blood brain barrier which blocks drugs from getting to the tumor.

Focused ultrasound is a new way to overcome the brain’s ability to stop the drugs from getting there. It can also be used to activate a drug as it passes through the brain stem.

“We are extremely excited to have taken the first step in developing this novel and non-invasive approach to treating one of our most deadly brain tumors,” Dr. Kilburn said. “This is the first step of numerous steps toward evaluating the many potential uses of LIFU as part of combination therapies to treat children with DIPGs and eventually other pediatric brain tumors.”

Children’s National is partnering with other institutions across the world to perform these studies. But because of the commitment of its team and its expertise, it is the first to use this technique in a child.

“I think we’re in a unique position thanks to the collaborations possible at Children’s National and the expertise of those caring for children with brain tumors,” Dr. Packer added.

Why we’re excited

The Brain Tumor Institute at Children’s National is excited about making this a potential treatment option for DIPG patients, which currently have really no surgical options or alternatives. It’s a way to deliver the ultrasound and therapies in a potentially less toxic way, not requiring surgery.

This trial and subsequently others will give doctors more options for children with DIPGs and other malignant tumors.

Cancer cells

Searching for the key to treating neuroblastoma tumors in kids

Cancer cells

Jianhua Yang, Ph.D., has dedicated his research to finding the molecular mechanism of neuroblastoma development and is working to develop novel therapeutics.

There continues to be an urgent need to identify novel therapies for childhood cancers. Neuroblastoma (NB) is the most common malignant solid tumor in children and contributes to more than 15% of all pediatric cancer-related deaths. Despite strides made in chemotherapy treatment over the past 30 years, NB largely remains an incurable disease. That’s why Jianhua Yang, Ph.D., associate professor and research faculty at the Center for Cancer and Immunology Research at Children’s National Hospital, has dedicated his research to finding the molecular mechanism of NB development and is working to develop novel therapeutics to target molecules he and his team identify in the lab.

Q: What has driven you to do this research?

A: In order to design better and potentially more effective NB treatment approaches, we must further understand the mechanism that activates NB development. We don’t know what that mechanism is yet, and that’s what we’re working to unlock. I felt with my training in cell biology and immunology, I could use that background to help develop novel therapies.

The research is hard and can often times feel frustrating. But I feel I’m working on something that has the potential to make a huge difference. I tell the researchers I work with that you have to really believe in what we’re doing. We’re doing something very different. Before I moved to D.C. to join Children’s National, I sent a text to a former mentor to let him know I was joining the team here to continue my work. His reply said, “I’ve always had confidence in you,” and it’s that type of encouragement that drives me to keep going.

Q: What is your current focus in this area?

A: Specifically, we’re working on two targets right now:

  1. To define the role and regulation of CaM kinase-like vesicle-associated (CAMKV) in NB development and examining the therapeutic potential of CAMKV kinase inhibition for treating NB in pre-clinical models. We’ve found that CAMKV is highly expressed in NB tumor samples and its kinase activity is required for tumor growth. So, if we knock out this gene, tumor cells will die. We’re studying how it is being activated, and if we can find out what causes it, we can find a way to inhibit its activation. Targeting CAMKV is a novel concept for treating NB. CAMKV kinase inhibitors may serve not only as stand-alone therapies but also as effective adjuncts to current chemotherapeutic regimens treating this aggressive pediatric malignancy.
  2. To define the role and regulation of transmembrane protein 108 (TMEM108) in NB development and examine the therapeutic potential of TMEM108 functional blockade for treating NB in pre-clinical models. Evolutionarily, in human genome it has no other family member, it’s a loner. And if you knock it out in NB tumor cells, tumor cells will die. We’re learning how it functions through our basic research, which is quite difficult. But we’re thinking if we can find the antibody to bind to it and block its function, we could stop the tumor from growing or even cause the tumor to die.

Q: What excites you about doing this work within the Center for Cancer and Immunology Research?

A: At Children’s National, I’ll be able to combine my work with the incredible work in immunotherapy that Drs. Catherine Bollard and Muller Fabbri are doing. I’m excited to be here to have that strong collaboration with their labs to develop new therapies.

In the next 5 years, I feel we’ll be able to identify good blocking antibodies that we can then test combinations of to see how it blocks tumor growth. If we can find ways to combine that antibody therapy with traditional chemotherapy options, we can achieve a real cure for NB.

Learn more about the Center for Cancer and Immunology Research.

Researchers hope to uncover puzzling mechanism of vision loss in kids with $2.7M DOD award

The Department of Defense Neurofibromatosis Research Program awarded Children’s National Hospital $2.7M to better understand a pediatric tumor as a blinding disease. The study design will specifically focus on targeting immune responses during the development of the tumor as a means to prevent or preserve vision before the tumor-associated irreversible neurological damage.

Why it matters

Nearly 20% of individuals with neurofibromatosis type 1 (NF1) develop tumors along the anterior visual pathway, involving optic nerves, optic chiasm and optic tracts, known as NF1-associated optic pathway gliomas (NF1-OPGs). This tumor is mainly diagnosed in children younger than seven years, which could lead to a lifelong disability.

NF1-OPGs often grow extensively along the optic pathway, and surgery is a high-risk treatment option. Consequently, human tumor tissues are rarely available for research.

Why we’re excited

“We are very excited about this research because, if successful, we will provide a strategy to treat patients with NF1-OPGs before visual impairment becomes irreversible,” said Yuan Zhu, Ph.D., scientific director and Gilbert Family Endowed professor at the Gilbert Family Neurofibromatosis Institute and senior investigator at the Center for Cancer and Immunology Research, both part of Children’s National. “We combine the expertise of glioma at the Children’s National and retinal biology at the NIH/NEI.”

The research will combine the synergistic expertise between Zhu on NF1 and OPG using pre-clinical models and Drs. Han-Yu Shih and Wei Li at the National Eye Institute of the National Institutes of Health (NIH/NEI) on retinal biology and immunology.

What’s unique

To shed light on the chemical signaling that occurs in the optical nerve with the presence of gliomas, the research approach will have three aims:

  • Isolate and characterize this abnormally infiltrating inflammatory cells and perform multi-omics experiments, including sophisticated genomic, epigenomic and transcriptomic assays, to study them during OPG initiation and progression.
  • Prevent or alleviate OPG-associated nerve damage, RGC death and vision loss.
  • Develop a novel model using the newly established genetic system to identify signals that induce inflammatory responses.
Drs. Bollard and Hanley

Research into a new way to combat solid tumors earns part of a $25M award

Drs. Bollard and Hanley

Catherine Bollard, M.D., M.B.Ch.B., and Patrick Hanley, Ph.D.

Children’s National Hospital has developed multi-antigen specific T cells that have shown success in pre-clinical models in attacking pediatric solid tumors. Now the promising area of research earned a major boost from the Cancer Grand Challenges — founded in 2020 by the two largest funders of cancer research in the world – Cancer Research UK and the National Cancer Institute in the U.S.

This award supported the foundation of NexTGen, a team of scientists and clinicians with expertise in immunology, proteomics, mathematics and more, across eight institutions in the U.S., U.K. and France. Catherine Bollard, M.B.Ch.B, M.D., director of the Center for Cancer and Immunology Research at Children’s National, and Martin Pule, M.D., clinical associate professor at the University College of London are the co-leads of this effort.

The NexTGen team is one of four Cancer Grand Challenges’ new teams, representing a total investment of $100M to diverse, global teams to take on some of the toughest challenges in cancer research. NexTGen will create a new approach that performs clinical and basic research together to facilitate real-time knowledge exchange from the lab to the clinic and back again.

While the more widely known CAR T-cells have made tremendous progress for patients with B-cell leukemias, lymphomas and other blood cancers, the CAR T-cell field has not made the same impact for adult and pediatric solid tumors.

“A tumor cell is very clever because it tries to hide from the immune system by deleting or down regulating targets that the T cell is directed towards,” said Dr. Bollard.

Dr. Bollard further discusses the importance of having patient voices during the decision-making process in this quest, her hopes for their program and the concept of the combining tumor antigen-specific T cells with CAR-T cells that her team will develop.

Q: Can you explain the NexTGen vision?

A: The overall vision is that we will have developed the next generation of cell therapies to cure children with refractory solid tumors by the end of the five years. It is important to move the field forward, so we wanted to be innovative in our approach to this grand challenge for these children who have no other therapeutic options left.

Q: What are the most three important components of this project?

A: First, science and diplomacy played a significant role in bringing in the right set of investigators from diverse scientific backgrounds. What started as a conversation using the universal language of science, it quickly became an international project to address this complex issue. Second, we worked very hard with our patient advocates during the writing process, and they will be working side by side with the investigators at the bench and clinic. Third, we were the only group to have clinical trials in our proposal starting very early in the grant funding period, which is unprecedented.

Q: Can you describe NexTGen’s research model?

A: From our experience in leukemia, we know that progress is greatly accelerated if discovery occurs hand-in-hand with clinical development. Therefore, unlike classical programs where years of pre-clinical discovery and developmental work is required before the clinical translation, we will take a non-conventional non sequential approach.

Specifically, in the NexTGen Program, clinical development will start early with three cutting-edge clinical studies evaluating engineered T-cell technologies that we have recently developed understanding that there are some questions that can ONLY be answered in the clinic. To that end, clinical and translational data from these clinical trials will be able to feed into and enrich the discovery and pre-clinical science throughout the NexTGen Program in a circular fashion to promote this research program that goes from bedside to bench and back.

Q: How is Children’s National leading the way?

A: Children’s National is leading one of the three clinical trials that combine our non-gene engineered tumor antigen-specific T-cell platform with gene engineered T cells to generate a novel T-cell therapy against relapsed /refractory solid tumors. Combining tumor antigen specific T cells with the CAR T-cell platform represents a novel concept that may have more potency against these hardest to treat tumors in children.

Q: Why is it so important to include the patient voice during the discussion and decision making?

A: Because we are also physicians and scientists, we do not forget the patient and their families. Thus, we have a robust patient advocacy group embedded in this vision. The group will co-develop summaries explaining the challenges NextGen will address, how this will be achieved and how results will be used, with major input in clinical trial design and consent documents as well as key input into how patient tissue samples can be used to facilitate research discoveries. The patient advocacy team will also help find broad representation from multiple geographical locations of advocates with lived experience of different cancer types, including bereaved relatives and cancer survivors. These and many more strategies applied with patient advocacy groups will elevate the call for a broader and accelerated adoption of CAR-T clinical trials to broaden access to all patients.

Q: What excites you most about this?

A: What excites me the most is working with this incredible group of scientists, physicians and patient advocates all with rich and deep expertise who bring together an extensive and diverse knowledge base. The fact that we will be all working together toward a common goal of curing pediatric solid tumors in the next five to 10 years is extraordinarily energizing. This sizeable international collaboration comprises the right talent to get this done. It is also highly exciting to simultaneously have three clinical trials running in parallel with the discovery science and the pre-clinical work. I am extremely optimistic that we will realize NexTGen’s vision to bring next generation engineered T-cell therapies to the routine care of children with solid tumors within a decade.

Dr. Bollard and her laboratory

Catherine Bollard, M.D., M.B.Ch.B., selected to lead global Cancer Grand Challenges team

Dr. Bollard and her laboratory

Cancer Grand Challenges NexTGen team members (left to right): Amy Hont, M.D., AeRang Kim, M.D., Nitin Agrawal, Ph.D., Catherine Bollard, M.D., M.B.Ch.B., Conrad Russell Cruz, M.D., Ph.D., Patrick Hanley, Ph.D., and Anqing Zhang.

A world-class team of researchers co-led by Catherine Bollard, M.D., M.B.Ch.B., director of the Center for Cancer and Immunology Research at Children’s National Hospital, has been selected to receive a $25m Cancer Grand Challenges award to tackle solid tumors in children. Cancer Grand Challenges is a global funding platform, co-founded by Cancer Research UK and the National Cancer Institute in the U.S., that supports a community of diverse, global teams to come together, think differently and take on some of cancer’s toughest challenges.

The Cancer Grand Challenges NexTGen team, co-led by University College London’s Martin Pule, M.D., will be working to develop next-generation cell therapies for children with solid cancers. Cancer is a leading cause of death by disease in children worldwide. Although survival has increased for some pediatric cancers, such as blood cancers, survival for some solid tumors has seen little improvement for more than 30 years. The team hopes to build a much deeper understanding of childhood cancers and develop and optimize novel therapies for children with solid tumors, ultimately hoping to improve survival and diminish the lifelong toxicities often experienced by survivors.

“With our Cancer Grand Challenge, we hope to bring next-generation CAR T-cell therapies to children with solid tumors,” said Dr. Bollard. “What excites me most is the energized, passionate group of people we’ve brought together to take this challenge on. Big problems remain to be addressed, but we believe they can be solved, and that we’re the team to solve them.”

“NexTGen represents crucial and overdue work. It has hope written all over,” said Sara Wakeling, patient advocate on the team and CEO and co-founder of Alice’s Arc, a children’s charity for rhabdomyosarcoma. “NexTGen hopes to transform the way these aggressive solid tumors are treated with less toxic side-effects, giving the children a real chance at growing up and realizing their potential. I’m so proud to be part of this exceptional team of scientists, clinicians and advocates who want to change the story for those diagnosed.”

The NexTGen team unites scientists and clinicians with expertise in immunology, proteomics, mathematics and more, across eight institutions throughout the U.S., U.K. and France. The Children’s National investigators that will also join are:

  • Nitin Agrawal, Ph.D., associate professor in the Center for Cancer and Immunology Research at Children’s National.
  • Conrad Russell Cruz, M.D., Ph.D.,principal investigator for the Program for Cell Enhancement and Technologies for Immunotherapies at Children’s National.
  • Patrick Hanley, Ph.D., chief and director of the cellular therapy program at Children’s National and leader of the Good Manufacturing Practices laboratory.
  • Amy Hont, M.D., oncologist in the Center for Cancer and Immunology Research at Children’s National.
  • AeRang Kim, M.D., oncologist in The Center for Cancer and Blood Disorders at Children’s National.
  • Holly Meany, M.D., oncologist in The Center for Cancer and Blood Disorders at Children’s National.
  • Anqing Zhang, biostatistician in the Biostatistics and Study Methodology Department at Children’s National.

The team, co-funded by Cancer Research UK, the National Cancer Institute and The Mark Foundation for Cancer Research, aims to bring much needed new treatments to children with solid cancers.

The NexTGen team is one of four new teams announced today as part of Cancer Grand Challenges, representing a total investment of $100m to diverse, global teams to take on some of the toughest challenges in cancer research.

“Cancer is a global issue that needs to be met with global collaboration. This investment in team science encourages diverse thinking to problems that have long hindered research progress,” said David Scott, Ph.D., director of Cancer Grand Challenges, Cancer Research UK. “Cancer Grand Challenges provides the multidisciplinary teams the time, space and funding to foster innovation and a transformative approach. NexTGen is one of four newly funded teams joining a scientific community addressing unmet clinical needs across cancer research.”

Find out more

Cancer Grand Challenges supports a global community of diverse, world-class research teams with awards of £20m/$25m to come together, think differently and take on cancer’s toughest challenges. These are the obstacles that continue to impede progress and no one scientist, institution or country will be able to solve them alone. Cancer Grand Challenges teams are empowered to rise above the traditional boundaries of geography and discipline.

Founded by the two largest funders of cancer research in the world – Cancer Research UK and the National Cancer Institute* in the U.S. – Cancer Grand Challenges aims to make the progress against cancer we urgently need. Cancer Grand Challenges currently supports more than 700 researchers and advocates across 10 countries, representing 11 teams are supported to take on 10 of the toughest challenges in cancer research.

The Cancer Grand Challenges NexTGen team, announced June 16, 2022, is taking on the initiative’s Solid Tumours in Children challenge. It is led by Dr. Bollard (Children’s National) and Dr. Pule (University College London), along with 23 co-investigators and 7 patient advocates, and is spread across eight institutions across the U.S., U.K. and France: Cardiff University; Children’s Hospital of Philadelphia; Children’s National Hospital; INSERM; the Institute of Cancer Research; Stanford Medicine; Stanford University; University College London. The Cancer Grand Challenges NexTGen team is funded by Cancer Research UK, the National Cancer Institute in the U.S. and The Mark Foundation for Cancer Research.

*The National Cancer Institute is part of the National Institutes of Health.

 

US News Badges

Children’s National named to U.S. News & World Report’s Best Children’s Hospitals Honor Roll

US News BadgesChildren’s National Hospital in Washington, D.C., was ranked No. 5 nationally in the U.S. News & World Report 2022-23 Best Children’s Hospitals annual rankings. This marks the sixth straight year Children’s National has made the list, which ranks the top 10 children’s hospitals nationwide. In addition, its neonatology program, which provides newborn intensive care, ranked No.1 among all children’s hospitals for the sixth year in a row.

For the twelfth straight year, Children’s National also ranked in all 10 specialty services, with seven specialties ranked in the top 10.

“In any year, it would take an incredible team to earn a number 5 in the nation ranking. This year, our team performed at the very highest levels, all while facing incredible challenges, including the ongoing pandemic, national workforce shortages and enormous stress,” said Kurt Newman, M.D., president and chief executive officer of Children’s National. “I could not be prouder of every member of our organization who maintained a commitment to our mission. Through their resilience, Children’s National continued to provide outstanding care families.”

“Choosing the right hospital for a sick child is a critical decision for many parents,” said Ben Harder, chief of health analysis and managing editor at U.S. News. “The Best Children’s Hospitals rankings spotlight hospitals that excel in specialized care.”

The annual rankings are the most comprehensive source of quality-related information on U.S. pediatric hospitals and recognizes the nation’s top 50 pediatric hospitals based on a scoring system developed by U.S. News.

The bulk of the score for each specialty service is based on quality and outcomes data. The process includes a survey of relevant specialists across the country, who are asked to list hospitals they believe provide the best care for patients with the most complex conditions.

The seven Children’s National specialty services that U.S. News ranked in the top 10 nationally are:

The other three specialties ranked among the top 50 were cardiology and heart surgerygastroenterology and gastro-intestinal surgery, and urology.

illustration of the brain

LIFU successfully delivers targeted therapies past the blood-brain barrier

illustration of the brain

LIFU offers doctors the first opportunity to open the blood-brain barrier and treat the entire malignant brain tumor.

Children’s National Hospital will leverage low-intensity focused ultrasound (LIFU) to deliver therapy directly to a child’s high-grade glioma. The approach offers doctors the first opportunity to open the blood-brain barrier and treat the entire malignant brain tumor.

Children’s National will be the first hospital in the U.S. to treat high-grade pediatric brain tumors with LIFU to disrupt the blood-brain barrier. Crossing it has been a major hurdle for effective therapy. The barrier, a network of blood vessels and tissue, prevents harmful substances from reaching the brain but also stops molecular targeted therapy and immunotherapy from getting into the tumor site and staying there.

“LIFU gives us a way to potentially transiently open up the barrier, so we can deliver novel therapy directly to the tumor and improve the likelihood of survival,” said Roger Packer, M.D., senior vice president of the Center for Neurosciences and Behavioral Medicine at Children’s National. “It is the greatest breakthrough we’ve potentially had in the past 50 years or more for the management of these tumors. We made great strides in our understanding of molecular genetics and the molecular drivers of tumors, but we have not yet translated that knowledge into better therapies; this may be our most effective mechanism to overcome the barrier.”

In 2020, Children’s National was recognized as the first worldwide Center of Excellence by the Focused Ultrasound Foundation.

Focused ultrasound (FUS) is a non-invasive therapeutic technology with the potential to transform the treatment of many medical disorders by using ultrasonic thermal energy to specifically target tissue deep in the body. The technology can treat without incisions or the need of radiation.

How it works

Doctors at Children’s National will be using LIFU in two different types of procedures:

  • 5-ALA: Doctors will give the patient 5-aminolevulinic acid (5-ALA) with the LIFU treatment. 5-ALA enters rapidly dividing cells and is activated by the ultrasound to a state where it kills the dividing cells of the tumor. The surrounding normal brain cells around the tumor are not dividing, so they do not take up the 5-ALA and are left unharmed after ultrasound therapy.
  • Microbubbles: While receiving different doses of LIFU over a one- to two-hour period, the patient is given “microbubbles,” which are widely used in medical imaging and as carriers for targeted drug delivery. These microbubbles bounce around against the walls like seltzer, opening the blood vessels and transiently opening that space.

Both studies are the first in the world for pediatric gliomas of the brain stem, allowing experts to treat patients 4-6 weeks after radiotherapy. The patient then receives medication orally or intravenously as it passes through the bloodstream. It does not go at high levels anywhere within the brain except where the blood-brain-barrier was opened, allowing oral medication or immune therapies to rush into the tumor.

The launch of this program comes a few months after the hospital successfully performed the first-ever high-intensity focused ultrasound surgery on a pediatric patient with neurofibromatosis.

Watch this video to learn more.

mother and daughter embracing

Understanding end-of-life treatment preferences for adolescents

mother and daughter embracing

FACE-TC effectively increases communication between adolescents with cancer and their families about the patients’ preferences.

Talking about death and dying is taboo. Some families believe it is their role alone to make end-of-life healthcare decisions or they may believe pediatric advance care planning is against their religion.

In a recent trial, Maureen Lyon, Ph.D., a clinical health psychologist at Children’s National Hospital and lead author of the study, analyzed the value of high-quality pediatric advance care planning and how this enabled families to know their adolescents’ end-of-life treatment preferences.

This is the first fully powered randomized controlled trial to focus on adolescents with cancer and their engagement with their families in pediatric advance care planning conversations.

What this means

Some physicians believe it is not their role to discuss the “what ifs.” Others report that they do not have the training or time to do so. As a result, in clinical practice, adolescents living with a serious illness rarely have documented advance care plans. The default is to provide intensive treatments that potentially increase suffering.

“Despite cancer being the leading cause of disease-related death in adolescents, conversations about goals of care and documentation of end-of-life care and treatment preferences for adolescents with cancer are not a routine and standard part of care,” Dr. Lyon said.

Why it matters

Family-centered advance care planning for teens with cancer (FACE-TC) effectively increases communication between adolescents with cancer and their families about the patients’ end-of-life preferences. This meets the first challenge of pediatric advance care planning – knowledge of patient’s preferences.

This low-tech intervention commits to more deeply respecting adolescents with cancer, integrating them into health care decision-making and giving them some control in a low control situation.

The patient and family benefits

“FACE-TC strengthens communication between adolescents with cancer and their families about adolescents’ understanding of their illness, their hopes and fears, their goals of care and their end-of-life treatment preferences,” Dr. Lyon added. “With increased access to palliative care services and pediatric advance care planning, families may better understand that stopping intensive medical interventions when their child is dying is not giving up, but rather choosing how best to spend the final days of one’s life.”

Dr. Lyon and the team at Children’s National have pioneered this effort to give seriously ill adolescents a voice and help families break the ice so they know what their child would want if the worst were to happen. The team also aims to provide an extra level of support for busy clinicians so the first conversation about goals of end-of-life care does not happen in the intensive care unit.

You can read the full trial, An Intervention in Congruence for End-of-Life Treatment Preference: A Randomized Trial, in Pediatrics.

You can also read the last manuscript from this clinical trial, Effect of the Family-Centered Advance Care Planning for Teens with Cancer Intervention on Sustainability of Congruence About End-of-Life Treatment Preferences, in JAMA Network.

girl hugging stuffed animal

Developing next-generation T cells to fight cancer

girl hugging stuffed animal

In the last decade, researchers have witnessed significant advances in the immunotherapy field. Most recently, a study in Nature claimed a novel CAR T-cell therapy “cured” a patient.

In the last decade, researchers have witnessed significant advances in the immunotherapy field. Most recently, a study in Nature claimed a novel CAR T-cell therapy “cured” a patient. Given the landmark scientific achievement for patients with different types of leukemia and lymphoma, Children’s National Hospital experts chimed in on the technology they have developed beyond CAR T cells.

Catherine Bollard, M.D., M.B.Ch.B., director of the Center for Cancer and Immunology Research at Children’s National Hospital, discusses the implications of this research, how it relates to the work she’s doing at Children’s National and the future of T-cell therapies.

Q: What did the research published in Nature find?

A: It reported a decade-long experience with this novel T-cell therapy called CD19 CAR T cells. These were used to treat patients with a type of leukemia or lymphoma that expresses the CD19 on its surface. While the article reported the experience of Children’s Hospital of Philadelphia and the University of Pennsylvania, multiple groups throughout the country did similar trials that have used these unique CD19 CAR T cells to treat children and adults with these refractory blood cancers.

Q: What are your thoughts on the implications of this research?

A: We now have three FDA-approved commercial CD19 CAR T-cell products developed by several academic institutions. This is revolutionary for our patients who have B-cell leukemias and lymphomas. It’s incredibly exciting for our T-cell therapy field in general because this was the first time the FDA approved a T-cell therapy. What it means now is the field is extremely excited to develop similar effective therapies for other patients with cancer.

Q: How does this relate to your work at Children’s National?

A: While CAR T cells have made tremendous progress for patients with B-cell leukemias, lymphomas and other blood cancers, the CAR T-cell field has not made the same impact for adult and pediatric solid tumors. We think the field is going to expand the type of T-cell therapies we’re generating beyond just CAR T cells. That’s where the work we’re doing comes in – not only by developing new T cells that don’t need gene engineering but also T cells that can be used as a platform for next-generation engineering approaches. We think the technology we’ve developed at Children’s National will help make an impact, especially in the solid tumor space. I hope in the next 10 years, we’ll be having a conversation not just about CAR T cells, but about other types of T cells that are now making an impact for solid tumors.

Q: How are the CAR T cells you develop different than those in the Nature article?

A: We think our multi-antigen specific T cells are complimentary and could have more potency than conventional CAR T cells for solid tumors especially when used in combination. This is in part because they can identify multiple targets on a tumor cell. Tumor cells are very clever and try to hide from T-cell therapies by down regulating the target that the T cell is directed towards. However, our novel T-cell therapies get around that escape by targeting multiple targets in a single product, making it much harder for the cancer cell to hide from the immune attack by the T cells.

Additionally, we’re excited by our approach because not all of our products require gene engineering, unlike CAR T cells. We have effectively used our T cells to target viruses in the “off-the-shelf” setting and we’re now about to start a first human clinical trial at Children’s National using an off the shelf T-cell product for children with solid tumors. It makes the T-cell therapy more like an “off-the-shelf” drug therapy that will allow us to treat many more children and adults nationally, as well as we hope, internationally.

doctor and cancer patient smiling

Manufactured leukemia-specific T cells may help increase survival rates

doctor and cancer patient smiling

Infusion of a novel, multi-targeted donor-derived T-cell therapy is safe and well-tolerated in patients with high-risk or relapsed leukemia after a donated bone marrow transplant, according to a new study published in Blood Advances.

Infusion of a novel, multi-targeted donor-derived T-cell therapy is safe and well-tolerated in patients with high-risk or relapsed leukemia after a donated bone marrow transplant, according to a new study published in Blood Advances. The findings suggest that this strategy may make a difference in these patients, as will be evaluated in later phase trials.

“A tumor cell is very clever because it tries to hide from T-cell therapies by deleting or down regulating targets that the T cell is directed towards,” said Catherine Bollard, M.D., M.B.Ch.B., director of the Center for Cancer and Immunology Research at Children’s National Hospital and co-senior author. “This novel cell therapy has the potential to get around that escape by targeting multiple proteins in a single product, making it much harder for the cancer cell to hide from the immune attack by the T cells.”

The tumor-associated antigen-specific T cell (TAA-T) product targets WT1, survivin and PRAME, which are proteins that play a role in cancer cell proliferation and survival. They are overexpressed in leukemia and many other human malignancies. The researchers chose to expand the T cells to target many malignancies through at least one expressed antigen. The manufactured TAA-T products are derived from peripheral blood mononuclear cells (PBMCs) obtained from the patient’s own BMT donor.

The hold-up in the field

Conventional therapies for patients with high-risk or relapsed malignancies often fail due to toxicity associated with additional chemotherapy and second transplant, particularly in those who relapse early after transplant. This novel cellular immunotherapy approach is shown to be safe and targets antigens that are found in CD19 positive and negative blood cancers, which may broaden the applicability to other cancer types, such as acute myeloid leukemia, that are currently lacking effective T cell therapy options.

What’s next

“Evaluation and tracking of unique T cell receptor clonotypes in patients following TAA-T cell infusion demonstrated expansion and persistence of some clonotypes up to 6 months to one-year post-infusion,” said Hannah Kinoshita, M.D., oncology fellow at Children’s National and co-lead author. “In future studies, we are hoping to identify and track unique target antigen-specific clonotypes from the T cell product infused to better understand the immunobiological effect of the infused T cells and how that can be translated into improved clinical outcomes.”

Children’s National Hospital leads the way

The Cell Enhancement and Technologies for Immunotherapy (CETI) program at Children’s National specializes in developing and analyzing novel cellular therapeutics such as this one.

You can read the full study “Outcome of Donor-derived TAA-T cell therapy in Patients with High-risk or Relapsed Acute Leukemia Post Allogeneic BMT,” in Blood Advances. Children’s National researchers worked in partnership with Rick Jones, M.D., co-senior author and Kenneth Cooke, M.D., Ph.D., co-lead author, both at Johns Hopkins Medicine.

Illustration of white blood cells attacking a cancer cell

Alpha/beta T cell depletion lifts barriers to transplantation

Illustration of white blood cells attacking a cancer cell

Removal of A/B T cells from the infused cell product significantly minimizes the risk of GvHD and eliminates the need for immunosuppressive medications after transplant.

Alpha/beta T cell depletion (A/B TCD) is a cutting-edge hematopoietic stem cell transplant (HSCT) technique by which donor derived immune cells, called A/B T cells, can be removed by selectively using magnetic beads before the donor cells are infused into the recipient’s body. A/B T cells have the potential to cause life threatening inflammation in the recipient’s body, called graft-versus-host disease (GVHD). GVHD is a major complication after transplant, especially when the donor is not fully matched. Therefore, removal of A/B T cells from the infused cell product (graft) significantly minimizes the risk of GVHD and eliminates the need for immunosuppressive medications after transplant.

Unlike previous methodologies that completely remove all immune cells, the novel A/B TCD approach preserves beneficial immune cells (like gamma delta T cells, natural killer cells, monocytes and dendritic cells) in the graft to preserve the capability to fight viral infections and residual cancer. Therefore, this innovative transplant approach can cure leukemia while decreasing the risk of life threatening infections and relapse after transplant.

In this Q&A, Anant Vatsayan, M.D., blood and marrow transplant specialist at Children’s National Hospital, tells us more about this new exciting technique.

Q: What is the specific research question that you are hoping to answer?

A: Children’s National Hospital is participating in the largest multicenter pediatric trial of A/B TCD hematopoietic stem cell transplant in the United States. The primary objective of this research is to assess whether disease-free survival at one-year after-HCT for children with high-risk leukemia and myelodysplastic syndrome can be improved with A/B TCD hematopoietic stem cell transplant.

Patients with other types of blood disorders may also be eligible to undergo A/B TCD hematopoietic stem cell transplant in this study based on the discretion of the principal investigator. The study will also assess the overall survival and rates of acute and chronic GVHD. Another objective is to compare the cost of transplantation using half-matched (haploidentical) donors versus other stem cell sources (for example, matched unrelated adult donors or cord blood donors) at participating centers.

Q: Why is this work exciting?

A: A/B TCD hematopoietic stem cell transplant has several benefits:

  • One of the remarkable benefits of this technique is the possibility of using haploidentical related donors for transplant if a fully matched related or unrelated donor is not available. This is a common scenario for patients of certain races (African American) and ethnicities (Hispanic) where it is difficult to identify a fully matched unrelated donor. Therefore, A/B TCD hematopoietic stem cell transplant expands the pool of donor options and ensures more equitable donor availability across every race and ethnicity.
  • A/B TCD significantly decreases the risk of severe GVHD and post-transplant infections. It eliminates the need for post-transplant immunosuppressive medications (like cyclosporine, tacrolimus or sirolimus) that can have numerous side effects and require frequent monitoring of drug levels in the blood.
  • The A/B TCD technique also promotes faster recovery of blood counts (engraftment) after transplant. Therefore, patients take fewer medications, have shorter durations of hospitalization for transplant and need less frequent blood tests and clinic visits after transplant. Hence, this patient friendly and family centric transplantation strategy will ensure that patients can spend more time with their family and have a better quality of life.

Q: How do you hope this will benefit patients?

A: Alpha/beta T cell depleted HSCT using half matched (haploidentical) donors will ensure donor availability for almost every patient regardless of race/ethnicity and probability of finding a matched related/unrelated donor. This methodology has tremendous prospects for wider applications, including the use of matched related and unrelated donors with the intent to eliminate the need for post-transplant immunosuppressive medications. This could be especially beneficial for patients with Fanconi anemia or other patients who are at risk of developing severe side effects from the use of immunosuppressive medications.

Q: How unique is this work?

A: The Shirley and William Howard Cellular Therapy Laboratory Stem Cell Processing program processes stem cells and performs cutting edge clinical trials while providing innovative care for patients. This work benefits from access to CliniMACS Plus Cell Selection Device, along with a multidisciplinary team with laboratory and clinical expertise to perform A/B TCD hematopoietic stem cell transplant. Access to our state of the art Cellular Therapy Laboratory allows us to further complement this transplantation strategy with other cellular therapies after transplant, such as virus specific and leukemia targeting T cells, which further mitigate the risk of post-transplant viral infections and leukemia relapse.