Neonatology

Sarah Mulkey

Fetal MRI plus ultrasound assess Zika-related brain changes

Sarah Mulkey

Magnetic resonance imaging and ultrasound provide complementary data needed to assess ongoing changes to the brains of fetuses exposed to Zika in utero, says Sarah B. Mulkey, M.D., Ph.D.

For Zika-affected pregnancies, fetal magnetic resonance imaging (MRI) used in addition to standard ultrasound (US) imaging can better assess potential brain abnormalities in utero, according to research presented by Children’s National Health System during IDWeek 2017. In cases of abnormal brain structure, fetal MRI can reveal more extensive areas of damage to the developing brain than is seen with US.

“MRI and US provide complementary data needed to assess ongoing changes to the brains of fetuses exposed to Zika in utero,” says Sarah B. Mulkey, M.D., Ph.D., a fetal/neonatal neurologist at Children’s National Health System and lead author of the research paper. “In addition, our study found that relying on ultrasound alone would have given one mother the false assurance that her fetus’ brain was developing normally while the sharper MRI clearly pointed to brain abnormalities.”

As of Sept. 13, the Centers for Disease Control and Prevention (CDC) reported that 1,901 U.S. women were exposed to Zika at some point during their pregnancies but their infants appeared normal at birth. Another 98 U.S. women, however, gave birth to infants with Zika-related birth defects.  And eight more women had pregnancy losses with Zika-related birth defects, according to CDC registries.

The longitudinal neuroimaging study led by Children’s National enrolled 48 pregnant women exposed to the Zika virus in the first or second trimester whose infection was confirmed by reverse transcription polymerase chain reaction, which detects Zika viral fragments shortly after exposure, and/or Immunoglobulin M testing, which reveals antibodies the body produces to neutralize the virus. Forty-six of the study volunteers live in Barranquilla, Colombia, where Zika infection is endemic. Two women live in the Washington region and were exposed to Zika during travel elsewhere.

All of the women underwent at least one diagnostic imaging session while pregnant, receiving an initial MRI or US at 25.1 weeks’ gestational age. Thirty-six women underwent a second MRI/US imaging pair at roughly 31 weeks’ gestation. Children’s National radiologists read every image.

Three of 48 pregnancies, or 6 percent, were marked by abnormal fetal MRIs:

  • One fetus had heterotopias (clumps of grey matter located at the wrong place) and abnormal cortical indent (a deformation at the outer layer of the cerebrum, a brain region involved in consciousness). The US taken at the same gestational age for this fetus showed its brain was developing normally.
  • Another fetus had parietal encephalocele (an uncommon skull defect) and Chiari malformation Type II (a life-threatening structural defect at the base of the skull and the cerebellum, the part of the brain that controls balance). The US for this fetus also detected these brain abnormalities.
  • The third fetus had a thin corpus callosum (bundle of nerves that connects the brain’s left and right hemispheres), an abnormally developed brain stem, temporal cysts, subependymal heterotopias and general cerebral/cerebellar atrophy. This fetal US showed significant ventriculomegaly (fluid-filled structures in the brain that are too large) and a fetal head circumference that decreased sharply from the 32nd to 36th gestational week, a hallmark of microcephaly.

After they were born, infants underwent a follow-up MRI without sedation and US. For nine infants, these ultrasounds revealed cysts in the choroid plexus (cells that produce cerebrospinal fluid) or germinal matrix (the source for neurons and glial cells that migrate during brain development). And one infant’s US after birth showed lenticulostriate vasculopathy (brain lesions).

“Because a number of factors can trigger brain abnormalities, further studies are needed to determine whether the cystic changes to these infants’ brains are attributable to Zika exposure in the womb or whether some other insult caused these troubling results,” Dr. Mulkey says.

What Children’s has learned about congenital Zika infection

Roberta DeBiasi

Roberta DeBiasi, M.D., M.S., outlined lessons learned during a pediatric virology workshop at IDWeek2017, one of three such Zika presentations led by Children’s National research-clinicians during this year’s meeting of pediatric infectious disease specialists.

The Congenital Zika Virus Program at Children’s National Health System provides a range of advanced testing and services for exposed and infected fetuses and newborns. Data that the program has gathered in evaluating and managing Zika-affected pregnancies and births may offer instructive insights to other centers developing similar programs.

The program evaluated 36 pregnant women and their fetuses from January 2016 through May 2017. Another 14 women and their infants were referred to the Zika program for postnatal consultations during that time.

“As the days grow shorter and temperatures drop, we continue to receive referrals to our Zika program, and this is a testament to the critical need it fulfills in the greater metropolitan D.C. region,” says Roberta L. DeBiasi, M.D., M.S., chief of the Division of Pediatric Infectious Diseases and co-leader of the program. “Our multidisciplinary team now has consulted on 90 dyads (mothers and their Zika-affected fetuses/infants). The lessons we learned about when and how these women were infected and how their offspring were affected by Zika may be instructive to institutions considering launching their own programs.”

Dr. DeBiasi outlined lessons learned during a pediatric virology workshop at IDWeek2017, one of three such Zika presentations led by Children’s National research-clinicians during this year’s meeting of pediatric infectious disease specialists.

“The Zika virus continues to circulate in dozens of nations, from Angola to the U.S. Virgin Islands. Clinicians considering a strategic approach to managing pregnancies complicated by Zika may consider enlisting an array of specialists to attend to infants’ complex care needs, including experts in fetal imaging, pediatric infectious disease, physical therapists, audiologists, ophthalmologists and radiologists skilled at reading serial magnetic resonance images as well as ultrasounds,” Dr. DeBiasi says. “At Children’s we have a devoted Zika hotline to triage patient and family concerns. We provide detailed instructions for referring institutions explaining protocols before and after childbirth, and we provide continuing education for health care professionals.”

Of the 36 pregnant women possibly exposed to Zika during pregnancy seen in the program’s first year, 32 lived in the United States and traveled to countries where Zika virus was circulating. Two women had partners who traveled to Zika hot zones. And two moved to the Washington region from places where Zika is endemic. Including the postnatal cases, 89 percent of patients had been bitten by Zika-tainted mosquitoes, while 48 percent of women could have been exposed to Zika via sex with an infected partner.

Twenty percent of the women were exposed before conception; 46 percent were exposed to Zika in the first trimester of pregnancy; 26 percent were exposed in the second trimester; and 8 percent were exposed in the final trimester. In only six of 50 cases (12 percent) did the Zika-infected individual experience symptoms.

Zika infection can be confirmed by detecting viral fragments but only if the test occurs shortly after infection. Twenty-four of the 50 women (nearly 50 percent) arrived for a Zika consultation outside that 12-week testing window. Eleven women (22 percent) had confirmed Zika infection and another 28 percent tested positive for the broader family of flavivirus infections that includes Zika. Another detection method picks up antibodies that the body produces to neutralize Zika virus. For seven women (14 percent), Zika infection was ruled out by either testing method.

“Tragically, four fetuses had severe Zika-related birth defects,” Dr. DeBiasi says. “Due to the gravity of those abnormalities, two pregnancies were not carried to term. The third pregnancy was carried to term, but the infant died immediately after birth. The fourth pregnancy was carried to term, but that infant survived less than one year.”

Catherine Limperopoulous

Brain impairment in newborns with CHD prior to surgery

Catherine Limperopoulous

Children’s National researchers led by Catherine Limperopoulos, Ph.D., demonstrate for the first time that the brains of high-risk infants show signs of functional impairment before they undergo corrective cardiac surgery.

Newborns with congenital heart disease (CHD) requiring open-heart surgery face a higher risk for neurodevelopmental disabilities, yet prior studies had not examined whether functional brain connectivity is altered in these infants before surgery.

Findings from a Children’s National Health System study of this question suggest the presence of brain dysfunction early in the lives of infants with CHD that may be associated with neurodevelopmental impairments years later.

Using a novel imaging technique, Children’s National researchers demonstrated for the first time that the brains of these high-risk infants already show signs of functional impairment even before they undergo corrective open heart surgery. Looking at the newborns’ entire brain topography, the team found intact global organization – efficient and effective small world networks – yet reduced functional connectivity between key brain regions.

“A robust neural network is critical for neurons to travel to their intended destinations and for the body to carry out nerve cells’ instructions. In this study, we found the density of connections among rich club nodes was diminished, and there was reduced connectivity between critical brain hubs,” says Catherine Limperopoulos, Ph.D., director of the Developing Brain Research Laboratory at Children’s National and senior author of the study published online Sept. 28, 2017 in NeuroImage: Clinical. “CHD disrupts how oxygenated blood flows throughout the body, including to the brain. Despite disturbed hemodynamics, infants with CHD still are able to efficiently transfer neural information among neighboring areas of the brain and across distant regions.”

The research team led by Josepheen De Asis-Cruz, M.D., Ph.D., compared whole brain functional connectivity in 82 healthy, full-term newborns and 30 newborns with CHD prior to corrective heart surgery. Conventional imaging had detected no brain injuries in either group. The team used resting state functional connectivity magnetic resonance imaging (rs-fcMRI), a imaging technique that characterizes fluctuating blood oxygen level dependent signals from different regions of the brain, to map the effect of CHD on newborns’ developing brains.

The newborns with CHD had lower birth weights and lower APGAR scores (a gauge of how well brand-new babies fare outside the womb) at one and five minutes after birth. Before the scan, the infants were fed, wrapped snugly in warm blankets, securely positioned using vacuum pillows, and their ears were protected with ear plugs and ear muffs.

While the infants with CHD had intact global network topology, a close examination of specific brain regions revealed functional disturbances in a subnetwork of nodes in newborns with cardiac disease. The subcortical regions were involved in most of those affected connections. The team also found weaker functional connectivity between right and left thalamus (the region that processes and transmits sensory information) and between the right thalamus and the left supplementary motor area (the section of the cerebral cortex that helps to control movement). The regions with reduced functional connectivity depicted by rs-fcMRI match up with regional brain anomalies described in imaging studies powered by conventional MRI and diffusion tensor imaging.

“Global network organization is preserved, despite CHD, and small world brain networks in newborns show a remarkable ability to withstand brain injury early in life,” Limperopoulos adds. “These intact, efficient small world networks bode well for targeting early therapy and rehabilitative interventions to lower the newborns’ risk of developing long-term neurological deficits that can contribute to problems with executive function, motor function, learning and social behavior.”

mom and baby

Improving NICU discharge for families and staff

mom and baby

The day of discharge from a neonatal intensive care unit (NICU) can be overwhelming for families and for hospital staff. A Children’s National Health System team found that beginning discharge education early, communicating in ways attuned to families’ needs and using a classroom setting to teach hands-on skills for newborn care can improve parents’ experience during the discharge process, according to a study presented at the 2017 American Academy of Pediatrics (AAP) national conference.

“So much innovation in our NICU comes from listening to parents,” says Michelande Ridoré, M.S., program lead in Children’s Division of Neonatology. “Beyond caring for the child, we also care for the family, and input from parents helps improve our processes and improve parents’ readiness to care for their child when a NICU baby is ready to go home.”

With discharge, the first hint of a problem in the NICU came from lagging Press Ganey scores, measures of families’ satisfaction with their overall hospital experience. Parents whose very sick infants had round-the-clock care felt overwhelmed by the array of skills they needed to learn to replicate that care at home. NICU staff determined the root cause of the problem and, using the Institute for Healthcare Improvement’s Model for Improvement, former NICU parents, nurse educators, family support specialists and quality improvement managers crafted strategies to ameliorate them.

Already, Children’s NICU parents can “room in,” sleeping in their child’s room overnight as discharge nears in order to practice caring for a child with complex care needs. Children’s goal was to increase the number of discharge education sessions so that 90 percent of parents would receive discharge guidance more than 24 hours before their newborn was released from the NICU. The sessions included such staples as how to bathe and feed newborns who often were intubated; the benefits of skin-to-skin contact that characterizes kangaroo care; the child’s diagnosis and immunization status; optimal placement while sleeping; a hearing test and a car seat test, among other information.

“When we speak with parents, they said ‘I had no idea my car seat expired. I had no idea I needed to stay for a car seat test. You had an x, y and z list for me to take my child home. Now, I’ve interacted with someone who told me about that check list and how important it is,’ ” Ridoré says.

Many parents received the one-hour sessions in a classroom setting. On the door to their child’s room, they received alerts indicating whether they had completed courses. Beside the bed was a poster to help track progress toward discharge goals.

According to the study authors, the initiative boosted the number of parents who received discharge training in the 24 hours prior to discharge by 27 percent, a figure that grew over time to a 36 percent boost in such timely communication. Satisfaction scores improved and, in interviews, NICU staff said the process improvements streamlined how much time it takes to prepare families for discharge.

“Preparing parents for discharge in a classroom setting was a successful way to increase the number of families who receive this education before their child prepares to leave the NICU,” Ridoré says. “Families and nurses are happy. In the next phase of this research, we will quantify improvements in satisfaction and further refine pre-discharge training sessions.”

Latina mother playing with her baby boy son on bed

Helping parents of babies leaving NICU cope

Latina mother playing with her baby boy son on bed

A study team from Children’s National tried to determine factors closely associated with poor emotional function in order to identify at-risk parents most in need of mental health support.

Nearly half of parents reported depressive symptoms, anxiety and stress when their infants were discharged from the neonatal intensive care unit (NICU), and parents who were the most anxious were the most depressed. A Children’s National Health System team presented these research findings during the 2017 American Academy of Pediatrics (AAP) national conference.

Because their infants’ lives hang in the balance, NICU parents are at particular risk for poor emotional function, including mood disorders, anxiety and distress. Children’s National Neonatologist Lamia Soghier, M.D., and the study team tried to determine factors closely associated with poor emotional function in order to identify at-risk parents most in need of mental health support.

The study team enrolled 300 parents and infants in a randomized controlled clinical trial that explored the impact of providing peer-to-peer support to parents after their newborns are discharged from the NICU. The researchers relied on a 10-item tool to assess depressive symptoms and a 46-question tool to describe the degree of parental stress. They used regression and partial correlation to characterize the relationship between depressive symptoms, stress, gender and educational status with such factors as the infant’s gestational age at birth, birth weight and length of stay.

Some 58 percent of the infants in the study were male; 58 percent weighed less than 2,500 grams at birth; and the average length of stay for 54 percent of infants was less than two weeks. Eighty-nine percent of parents who completed the surveys were mothers; 44 percent were African American; and 45 percent reported having attained at least a college degree. Forty-three percent were first-time parents.

About 45 percent of NICU parents had elevated Center for Epidemiological Studies Depression Scale (CES-D) scores.

“The baby’s gender, gestational age at birth and length of NICU stay were associated with the parents having more pronounced depressive symptoms,” Dr. Soghier says. “Paradoxically, parents whose newborns were close to full-term at delivery had 6.6-fold increased odds of having elevated CES-D scores compared with parents of preemies born prior to 28 weeks’ gestation. Stress levels were higher in mothers compared with fathers, but older parents had lower levels of stress than younger parents.”

Dr. Soghier says the results presented at AAP are an interim analysis. The longer-term PCORI-funded study continues and explores the impact of providing peer support for parents after NICU discharge.

premature baby in hospital incubator

Improving neonatal intubation training to boost clinical competency

premature baby in hospital incubator

A research team from Children’s National Health System outlined gaps between current simulation training and clinical competency among pediatric residents and then shared recommendations to address them.

Redesigning the mannequins used in medical simulation training could improve residents’ readiness for clinical practice. Presenting at the 2017 American Academy of Pediatrics (AAP) national conference, a research team from Children’s National Health System outlined gaps between current simulation training and clinical competency among pediatric residents and then shared recommendations to address them.

The team noted that the transfer of skill from simulations to clinical encounters does not occur readily. They identified a number of differences between working with a training mannequin and caring for an actual infant: The mannequin’s tongue and head do not move naturally, no fluid lubricates its mouth and throat and, when tilting the head to insert the endotracheal tube, the mannequin’s neck does not flex realistically.

“Current mannequins lack physical and functional fidelity and those shortcomings take a toll on competency as pediatric residents transition from practice simulation sessions to the actual clinic,” says Children’s National Neonatologist Lamia Soghier, M.D., lead author of the poster presented during AAP. “Our work tried to tease out the most important differences between simulating neonatal intubation and actual clinical practice in order to ensure the next generation of mannequins and practice sessions translate to improved clinical competency.”

The study team conducted in-depth interviews with 32 members of the clinical staff, including attending neonatologists and second- and third-year fellows, asking about critical differences in environment, equipment and context as they participated in practice intubations as well as actual intubations in the clinic.

Four key themes emerged, Dr. Soghier and co-authors say:

  • Mannequins’ vocal cords are marked clearly in white, a give-away for trainees tasked with correctly identifying the anatomical feature. In addition, the mannequins are so stiff they need more force when practicing how to position them properly. In the NICU, using that much force could result in trauma.
  • Because current equipment does not simulate color change with a Pedi-Capa non-toxic chemical that changes color in response to exhaled carbon dioxidetrainees can develop poor habits.
  • Training scenarios need to be designed with the learner in mind offering an opportunity to master tasks in a step-by-step fashion, to practice appropriate sedation techniques and for beginners to learn first before being timed.
  • There is a marked mismatch between the feel of a simulated training and the electric urgency of performing the same procedure in the clinic, eroding trainees’ ability to adjust to wildcards in the clinic in real time.

“We carefully design our sessions to provide trainees with the suite of skills they will need to perform well in clinic. Still, there is more we can do inside the hospital and in designing the next generation of mannequins to lead to optimal clinical outcomes,” Dr. Soghier adds. “As a whole, mannequins need to more closely resemble an actual newborn, with flexible vocal cord design in natural colors. The mannequin’s neck should flex with more degrees of freedom. The model’s skin and joints also need to be more flexible, and its head and neck need to move more naturally.”

Baby in the NICU

Reducing harm, improving quality in the NICU

Baby in the NICU

American health care is some of the most expensive in the world. To help make it more affordable, numerous efforts in all areas of medicine – from cancer care to primary care to specialized pediatrics – are focused on finding ways to improve quality and patient safety while also cutting costs.

About half a million babies born in the United States – or 10 percent to 15 percent of U.S. births – end up in the neonatal intensive care unit (NICU), most due to prematurity and very low birth weights. These vulnerable babies often need respiratory support in the form of a ventilator, which supplies oxygen to their lungs with a plastic endotracheal tube (ETT).

The typical care for these infants often involves frequent X-rays to verify the proper position of the tube. However, the American Academy of Pediatrics has counseled health care providers that ordering a daily chest X-ray simply to verify positioning of the ETT ratchets up costs without improving patient safety.

A quality-improvement initiative by Children’s National Health System’s NICU finds that these chest X-rays can be performed just twice weekly, lessening the chances of a breathing tube popping out accidentally, reducing infants’ exposure to radiation and saving an estimated $1.6 million per year.

“The new Children’s National protocol reduced the rate of chest X-rays per patient day without increasing the rate of unintended extubations,” says Michelande Ridoré, M.S., program lead in Children’s division of neonatology, who presented the research during the 2017 American Academy of Pediatrics (AAP) national conference. “That not only helps to improve patient safety – for newborns who are admitted to the NICU for longer periods, there is the additional benefit of providing significant savings to the health care system.”

Children’s NICU staff assessed how many chest X-rays were being performed per patient day before and after the protocol change, which applied to all intubated newborns in the NICU whose health condition was stable. Newborns had been undergoing a median of 0.45 chest X-rays per patient day. After the quality improvement project, that figure dropped to 0.23 chest X-rays per patient day.

When the project started in July 2015, the NICU’s monthly X-ray expenditure was $289,520. By the end of 2015, that monthly X-ray spend had fallen to $159,424 – resulting in nearly $1.6 million in annual savings.

The more restrictive strategy for ordering chest X-rays was a core component of a broader quality improvement effort aimed at lowering the number of unplanned extubations, which represent the fourth most common complication experienced by newborns in the nation’s NICUs.

“When you reduce the frequency of patients in the unit being moved, you decrease the chances of the breathing tube coming out accidentally,” Ridoré says. “By reducing unplanned extubations in the NICU, we can improve overall clinical outcomes, reduce length of stay, lower costs and improve patient satisfaction.”

When a breathing tube is accidentally dislodged, newborns can experience hypoxia (oxygen deficiency), abnormally high carbon dioxide levels in the blood, trauma to their airway, intraventricular hemorrhage (bleeding into the fluid-filled areas of the brain) and code events, among other adverse outcomes. What’s more, a patient with an unintended extubation can experience a nearly doubled hospital stay compared with the length of stay for newborns whose breathing tubes remain in their proper places. Each unplanned extubation can increase the cost of care by $36,000 per patient per admission.

To tackle this problem, Children’s National created the Stop Unintended Extubations “SUN” team. The team created a package of interventions for high-risk patients. Within one month, unintended extubations dropped from 1.18 events per 100 ventilator days to 0.59 events during the same time frame. And, within five months, that plummeted even further to 0.41 events per 100 ventilator days.

Their ultimate goal is to whittle that rate down even further to 0.3 events per 100 ventilator days, which has occurred sporadically. And the NICU notched up to 75 days between unintended extubations.

“Unintended extubation rates at Children’s National are lower than the median reported on various quality indices, but we know we can do more to enhance patient safety,” Ridoré says. ”Our SUN team will continue to address key drivers of this quality measure with the aim of consistently maintaining this rate at no more than 0.3 events per 100 ventilator days.”

$250K awarded to six winners presenting innovative pediatric medical devices

SZI Symposium Winners

Six companies presenting innovative medical device solutions that address significant unmet needs in pediatric health were awarded a total of $250,000 in grant money yesterday in San Jose, Calif. at the Fifth Annual Pediatric Device Innovation Symposium, organized by the Sheikh Zayed Institute for Pediatric Surgical Innovation at Children’s National Health System.

The “Make Your Medical Device Pitch for Kids!” competition is sponsored by the National Capital Consortium for Pediatric Device Innovation (NCC-PDI), an FDA-funded consortium led by Children’s National and the A. James Clark School of Engineering at the University of Maryland. Four companies were awarded $50,000 each and two were awarded $25,000. The six winners were selected from a field of twelve finalists. A record 98 total submissions from five countries were received for the competition this year.

“To improve care for children, it is imperative that we recognize and encourage relevant new solutions in pediatric medical devices, especially in light of the challenges innovators face in addressing this specialized market,” said Kurt Newman, M.D., president and CEO of Children’s National. “Children’s National is committed to fostering collaboration among innovators, clinicians, policy makers and investors to advance pediatric device development for the benefit of children everywhere.”

This year’s winning innovations receiving $50,000 awards are:

  • CorInnova, Houston, Texas – soft robotic, non-blood-contacting biventricular cardiac assist device for the treatment of heart failure in children
  • Green Sun Medical, Fort Collins, Colo. – novel device that provides necessary pressure for the correction of spinal deformity while providing real-time feedback to clinicians
  • Hub Hygiene and Georgia Institute of Technology, Atlanta, Ga. – low-cost, single-use cleaning technology to prevent central line-associated blood stream infections (CLABSI), a hospital-acquired infection by pediatric ICU patients
  • NAVi Medical Technologies, Houston, Texas – device to provide accurate information about the localization of an umbilical venous catheter (UVC) used in critically-ill newborns to reduce the risk of catheter malposition

Winning innovations receiving $25,000 awards are:

  • Prapela, LLC, Boston, Mass. – novel “baby box” that will allow for a non-pharmacological approach to help drug-exposed infants relax and sleep during withdrawal and post-withdrawal care
  • X-Biomedical, Inc., Philadelphia, Pa. – portable surgical microscope for use in surgeries for treatable causes of blindness in low-income countries and under-resourced setting

“We are honored to recognize these outstanding innovations with this funding,” said Kolaleh Eskandanian, Ph.D., executive director of the Sheikh Zayed Institute and NCC-PDI. “We are even more excited about welcoming this new cohort of companies to our family of pediatric device startups and entrepreneurs. Together we can move the needle a bit faster and safer to bring pediatric products to market.”

She added that in addition to the financial support and consultation services through NCC-PDI, the awardees can leverage the validation received through this highly competitive process to raise the additional capital needed for commercialization. Since inception in 2013, NCC-PDI has supported 67 pediatric devices and the companies and research labs owning these devices have collectively raised $55 million in additional funding.

The twelve finalists each made five-minute presentations to the symposium audience and then responded to judges’ questions. Finalists also included Anecare, LLC, Salt Lake City, Utah; ApnoSystems, Buenos Aires, Argentina; Deton Corp., Pasadena, Calif.; Kite Medical, Dublin, Ireland; Moyarta 2, LLC, The Plains, Va.; and Oculogica, Inc., New York, N.Y.

Serving on the distinguished panel of judges were Susan Alpert, M.D., of SFA Consulting, a former director of the FDA Office of Device Evaluation and former senior vice president and chief regulatory officer of Medtronic; Charles Berul, M.D., co-director, Children’s National Heart Institute; Andrew Elbardissi, M.D., of Deerfield Management; Rick Greenwald, Ph.D., of the New England Pediatric Device Consortium (NEPDC); James Love, J.D., of Oblon; Josh Makower, M.D., of NEA; Jennifer McCaney, Ph.D., of MedTech Innovator; Jackie Phillips, M.D., of Johnson & Johnson; and Tracy Warren of Astarte Ventures.

The pitch competition is a highlight of the annual symposium organized by the Sheikh Zayed Institute at Children’s National, designed to foster innovation that will advance pediatric healthcare and address the unmet surgical and medical device needs for children. New this year, the symposium co-located in a joint effort with The MedTech Conference powered by AdvaMed, the premier gathering of medtech professionals in North America.

Keynote speakers at the event included Daniel Kraft, M.D., faculty chair of Medicine & Neuroscience, Singularity University and executive director, Exponential Medicine; Vasum Peiris, M.D., chief medical officer, Pediatrics and Special Populations, FDA;  and Alan Flake, M.D., director of Center for Fetal Research, Children’s Hospital of Philadelphia.

Panel discussions focused on gap funding for pediatric innovation, the journey from ideation to commercialization, and the pediatric device needs assessment in the future regulatory environment.

Gerard Martin

European workgroup creates recommendations for CCHD pulse oximetry screening

Gerard Martin

Several experts, including Gerard R. Martin, M.D., recently published recommendations for the use and standardization of pulse oximetry screening for critical congenital heart defects in newborns.

The European Pulse Oximetry Screening Workgroup recently published recommendations for the use and standardization of pulse oximetry screening for critical congenital heart defects in newborns. Children’s National Medical Director of Global Services Gerard R. Martin, M.D., was among the experts that compiled the recommendations.

Approximately 1 in 500 babies is born with a critical congenital heart defect (CCHD). Because these conditions can cause serious, life-threatening symptoms, early detection and intervention is essential. Pulse oximetry screening (POS) – a method that measures oxygen saturation – is regarded as a simple, quick and reliable tool for early detection of CCHD, and was recommended for use in screening by the American Academy of Pediatrics and the American Heart Association in 2011.

In Europe, although POS is being used by an increasing number of hospitals, few countries have issued national guidelines recommending universal POS. To remedy this situation, neonatologists, experts in CCHD screening, and representatives from major scientific pediatric societies across Europe came together to create recommendations for the use and standardization of POS for early detection of CCHD across Europe.

Their recommendations, which were published in The Lancet, are as follows:

  • POS for critical congenital heart defects should be recommended for all European countries
  • POS should be done with new-generation equipment that is motion tolerant
  • Screening should occur after 6 hours of life or before discharge from the birthing centre (preferably within 24 hours after birth)
  • Screening should be done in two extremities: the right hand and either foot
  • Each country should consider the advantages and disadvantages of the two available protocols and use that which best suits their population
Vittorio Gallo

How the environment helps to shape the brain

Vittorio Gallo

“The strength, duration and timing of environmental experience influences plasticity in brain circuitry, which is made up of communication cables called axons that link neurons throughout the brain and are coated by myelin, a fatty substance that helps nerve impulses speed from place to place,” says Vittorio Gallo, Ph.D., Chief Research Officer at Children’s National and senior study author.

Researchers have long known that babies of all kinds need to be exposed to rich, complex environments for optimal brain health and potential. Exposure to new sights, sounds and other sensory experiences appears to be critical for strengthening infants’ developing brains and encouraging smoothly running neural networks. Until recently, little was known about the biological mechanisms behind this phenomenon.

In a review article published online Aug. 22, 2017 in Trends in Neurosciences, Children’s National Health System researchers discuss the role of environmental stimuli on the development of myelin—the fatty insulation that surrounds the extensions that connect cells throughout the nervous system and make up a large part of the brain’s white matter. Positive influences, such as exposure to a large vocabulary and novel objects, can boost the growth of myelin. Conversely, negative influences, such as neglect and social isolation, can harm it, potentially altering the course of brain development.

“The strength, duration and timing of environmental experience influences plasticity in brain circuitry, which is made up of communication cables called axons that link neurons throughout the brain and are coated by myelin, a fatty substance that helps nerve impulses speed from place to place,” says Vittorio Gallo, Ph.D., Chief Research Officer at Children’s National and senior study author. “As it responds to environmental stimuli, the brain continually shores up myelin’s integrity. Just as important, damaged myelin can leave gaps in the neural network which can lead to cognitive, motor and behavioral deficits.”

According to Gallo and study lead author Thomas A. Forbes, a pool of oligodendrocyte progenitor cells (OPCs) specialize in making myelin and do so from childhood into adulthood. The resulting oligodendrocyte cells (OLs) form an important working partnership with axons. From approximately 23 to 37 weeks’ gestation, OLs develop in the fetal brain and they continue to be generated after birth until adolescence.

“This dynamic feedback loop between myelin plasticity and neuronal excitability is crucial,” Forbes says. “It helps to strengthen motor and cognitive function and permits children and adults to learn new skills and to record new memories.”

In utero, genetics plays an outsized role in the initial structure of white matter, which is located in the subcortical region of the brain and takes its white color from myelin, the lipid and protein sheath that electrically insulates nerve cells. Defects in the microstructural organization of white matter are associated with many neurodevelopmental disorders. Once infants are born, environmental experiences also can begin to exert a meaningful role.

“The environment can be viewed as a noninvasive therapeutic approach that can be employed to bolster white matter health, either on its own or working in tandem with pharmacologic therapies,” Gallo adds. “The question is how to design the best environment for infants and children to grow and to achieve the highest cognitive function. An enriched environment not only involves the opportunity to move and participate in physical exercise and physical therapy; it is also an environment where there is novelty, new experiences and continuously active learning. It is equally important to minimize social stressors. It’s all about the balance.”

Among the potential interventions to boost brain power, independent of socioeconomic status:

  • Exposing children to new and different objects with an opportunity for physical activity and interaction with a number of playmates. This type of setting challenges the child to continuously adapt to his or her surroundings in a social, physical and experiential manner. In experimental models, enriched environments supported brain health by increasing the volume and length of myelinated fibers, the volume of myelin sheaths and by boosting total brain volume.
  • Exposure to music helps with cognition, hearing and motor skills for those who play an instrument, tapping multiple areas of the brain to work together collaboratively. Diffusion tensor imaging (DTI) reveals that professional pianists who began playing as children have improved white matter integrity and plasticity, Gallo and Forbes
  • At its heart, active learning requires interacting with and adapting to the environment. Generating new OLs influences learning new motor skills in the very young as well as the very old. And cognitive training and stimulation shapes and preserves white matter integrity in the aging.
  • DTI studies indicate that four weeks of integrative mind-body training alters myelination and improves white matter efficiency with especially pronounced changes in the area of the brain responsible for self-regulation, impulse control and emotion.
  • Voluntary exercise in experimental models is associated with OPCs differentiating into mature OLs. Imaging studies show a positive relationship between physical fitness, white matter health and the brain networks involved in memory.

Conversely, such negative influences as premature birth, poor nutrition, disease, neglect and social isolation can degrade myelin integrity, compromising the person’s ability to carry out basic motor skills and cognitive function. Usually, the pool of OPCs expands as the fetus is about to be born. But brain injury, lack of oxygen and restricted blood supply can delay maturation of certain brain cells and can cause abnormalities in white matter that diminish the brain’s capacity to synthesize myelin. Additional white matter insults can be caused by use of anesthesia and stress, among other variables.

The environmental influence has the potential to be “the Archimedes’ Lever to appropriating WM development among a limited range of only partially efficacious treatment options,” the authors conclude.

mitochondria

Mitochondria key for repairing cell damage in DMD

mitochondria

A research team led by Jyoti K. Jaiswal, M.S.C., Ph.D., found that dysfunctional mitochondria prevent repair of muscle cells in Duchenne muscular dystrophy.

What’s known

Duchenne muscular dystrophy (DMD), one of the most severe forms of muscular dystrophy, is caused by a defect in the dystrophin gene. The protein that this gene encodes is responsible for anchoring muscle cells’ inner frameworks, or cytoskeletons, to proteins and other molecules outside these cells, the extracellular matrix. Without functional dystrophin protein, the cell membranes of muscle cells become damaged, and the cells eventually die. This cell death leads to the progressive muscle loss that characterizes this disease. Why these cells are unable to repair this progressive damage has been unknown.

What’s new

A research team led by Jyoti K. Jaiswal, M.S.C., Ph.D., a principal investigator in the Center for Genetic Medicine Research at Children’s National Health System, investigated this question in two experimental models of DMD that carry different mutations of the dystrophin gene. The researchers monitored the effects of the lack of functional dystrophin protein in these preclinical models on the level and function of muscle cell. They found that mitochondria – organelles that act as powerhouses to supply the chemical energy to drive cellular activities – are among the first to be affected. They found that the decline in mitochondrial level and activity over time in these experimental models preceded the onset of symptoms. The research team also looked at the ability of the experimental models’ muscle cells to repair damage. As the muscle cell mitochondria lost function, the cells’ ability to repair damage also declined. Efforts to increase mitochondrial activity after these organelles became dysfunctional did not improve muscle repair. This suggests that poor muscle repair may not be caused by a deficit in energy production by mitochondria.

Questions for future research

Q: Does similar mitochondrial dysfunction occur in human patients with DMD?
Q: How can the mitochondrial dysfunction be prevented?
Q: Is there a way to reverse mitochondrial dysfunction to better preserve the ability of muscle cells to repair from DMD-related damage?

Source: “Mitochondria mediate cell membrane repair and contribute to Duchenne muscular dystrophy.” Vila, M.C., S. Rayavarapu, M.W. Hogarth, J.H. Van der Meulen, A. Horn, A. Defour, S. Takeda, K.J. Brown, Y. Hathout, K. Nagaraju and J.K. Jaiswal. Published by Cell Death and Differentiation February 2017.

LCModel output from 32 GA baby

Understanding the long-term consequences of prematurity

LCModel output from 32 GA baby

Children’s National Health System researchers processed H1-MRS data using LCModel software to calculate absolute metabolite concentrations for N-acetyl-aspartate (NAA), choline (Cho) and creatine (Cr). Preterm infants had significantly lower cerebellar NAA (p=<0.025) and higher Cho (p=<0.001) when compared with healthy term-equivalent infants. The area of the brain within the red box is the cerebellum, the region of interest for this study.

Premature birth, a condition that affects approximately 10 percent of births in the United States, often is accompanied by health problems ranging from difficulties breathing and eating to long-term neurocognitive delays and disabilities. However, the reasons for these problems have been unclear.

In a study published online Aug. 15, 2017 in Scientific Reports, a team of Children’s National Health System clinician-researchers reports that prematurity is associated with altered metabolite profiles in the infants’ cerebellum, the part of the brain that controls coordination and balance. Pre-term infants in the study had significantly lower levels of a chemical marker of nerve cell integrity and significantly higher concentrations of a chemical marker of cellular membrane turnover.

“These data suggest that interrupting the developing fetal brain’s usual growth plan during gestation – which can occur through early birth, infection or experiencing brain damage – might trigger a compensatory mechanism. The infant’s brain tries to make up for lost time or heal injured tissue by producing a certain type of cells more quickly than it normally would,” says Catherine Limperopoulos, Ph.D., director of the Developing Brain Research Laboratory at Children’s National and senior study author. “The more sensitive imaging technique that we used also revealed nerve cell damage from brain injuries extends beyond the site of injury, a finding that contrasts with what is found through conventional magnetic resonance imaging (MRI).”

It has long been clear that prematurity – birth before 37 weeks gestation – is accompanied by a number of immediate and long-term complications, from potential problems breathing and feeding at birth to impairments in hearing and sight that can last throughout an individual’s life.

Neurocognitive developmental delays often accompany pre-term birth, many of which can have long-lasting consequences. Studies have shown that children born prematurely are more likely to struggle in school, have documented learning disabilities and experience significant delays in developing gross and fine motor skills compared with children born at full-term.

Several studies have investigated the root cause of these issues in the cerebrum, the structure that takes up the majority of the brain and is responsible for functions including learning and memory, language and communication, sensory processing and movement. However, the cerebellum – a part of the brain that plays an important role in motor control – has not received as much research attention.

In the new study, Limperopoulos and colleagues used a specialized MRI technique that allowed them to parse out differences in which molecules are present in the cerebellum of full-term infants compared with premature infants. Their findings show a variety of differences that could offer clues to explain developmental differences between these two populations – and potentially identify ways to intervene to improve outcomes.

The researchers recruited 59 premature infants, born at 32 or fewer weeks’ gestation, and 61 healthy, full-term infants. Each baby received a special type of MRI known as proton magnetic resonance spectroscopy, or H1-MRS, that measures the concentrations of particular molecules in the brain. The full-term infants had these MRIs shortly after birth; the pre-term infants had them at 39 to 41 weeks gestational age, or around the time that they would have been born had the pregnancy continued to term.

Looking specifically at the cerebellum, the researchers found that the pre-term infants overall had significantly lower concentrations of N-acetyl-aspartate (NAA), a marker of the integrity of nerve cells. They also had significantly higher concentrations of choline, a marker of cell membrane integrity and membrane turnover.

Concentrations of creatine, a marker of stores of cellular energy, were about the same overall between the two groups. However, the researchers found that brain injuries, which affected 35 of the pre-term infants but none of the full-term infants, were associated with significantly lower concentrations of NAA, choline and creatine. Having a neonatal infection, which affected 21 of the pre-term infants but none of the full-term ones, was associated with lower NAA and creatine.

The findings could offer insight into exactly what’s happening in the brain when infants are born pre-term and when these vulnerable babies develop infections or their brains become injured – conditions that convey dramatically higher risks for babies born too early, Limperopoulos says. The differences between the full-term babies and the pre-term ones reflect disturbances these cells are experiencing at a biochemical level, she explains.

Limperopoulos and colleagues note that more research will be necessary to connect these findings to what is already known about developmental problems in pre-term infants. Eventually, she says, scientists might be able to use this knowledge to develop treatments that might be able to change the course of brain development in babies born too early, getting them on track with infants born at term.

“We know that the bodies of pre-term infants demonstrate a remarkable ability to catch up with peers who were born at full-term, in terms of weight and height. Our challenge is to ensure that preemies’ brains also have an opportunity to develop as normally as possible to ensure optimal long-term outcomes,” Limperopoulos says.

Patricio Ray

Toward a better definition for AKI in newborns

Patricio Ray

The National Institute of Diabetes and Digestive and Kidney Diseases convened a meeting of expert neonatologists and pediatric nephrologists, including Dr. Patricio Ray, to review state-of-the-art knowledge about acute kidney injury in neonates and to evaluate the best method to assess these patients’ kidney function.

Each year, thousands of infants in the United States end up in neonatal intensive care units (NICUs) with acute kidney injury (AKI), a condition in which the kidneys falter in performing the critical role of filtering waste products and excess fluid from the blood to produce urine. Being able to identify neonates during the early stages of AKI is critical to doctors and clinician-scientists who treat and study this condition, explains Patricio Ray, M.D., a nephrologist at Children’s National Health System.

Without an accurate definition and early identification of newborns with AKI, it is difficult for doctors to limit the use of antibiotics or other medications that can be harmful to the kidneys. Neonates who have AKI should not receive large volumes of fluids, a treatment that can cause severe complications when the kidneys do not properly function.

Until recently, there was no standard definition for AKI, leaving doctors and researchers to develop their own guidelines. Lacking set criteria led to confusion, Dr. Ray says. For example, different studies estimating the percentage of infants in NICUs with AKI ranged from 8 percent to 40 percent, depending on which definition was used. In 2012, a group known as the Kidney Disease Improved Global Outcome (KDIGO) issued practice guidelines for AKI that provide a standard for doctors and researchers to follow. They focus largely on measuring the relative levels of serum creatinine, a protein produced by muscles that is filtered by the kidneys, and the amount of urine output, which typically declines in adults and older children with failing kidneys.

The problem with these guidelines, Dr. Ray explains, is they are not sensitive enough to identify newborns experiencing the early stages of AKI during the first week of life. Newborns can have high serum creatinine levels during the first week of life due to residual levels transferred from mothers through the placenta. Also, because their kidneys are immature, failure often can mean higher – not diminished – urine production.

In 2013, the National Institute of Diabetes and Digestive and Kidney Diseases, part of the National Institutes of Health, convened a meeting of leading neonatologists and pediatric nephrologists – including Dr. Ray – to review state-of-the-art knowledge about AKI in neonates and to evaluate the best manner to assess kidney function in these patients. They published a summary of their discussion online June 12, 2017 in Pediatric Research.

Among other findings, the group concluded that the current definition of AKI lacks the sensitivity needed to identify the early stages of AKI in neonates’ first week of life. They also said that more research was needed to fill this gap.

That’s where Dr. Ray’s current research comes in. Working with fellow Children’s Nephrologist Charu Gupta, M.D., and Children’s Neonatologist An Massaro, M.D., the three clinician-scientists reviewed the medical records of 106 infants born at term with a condition known as hypoxic ischemic encephalopathy (HIE), in which the brain doesn’t receive enough oxygen. Not only does this often lead to brain injury, but it also greatly increases the risk of AKI.

Because these babies had been followed closely in the NICU to assess the possibility of AKI, their serum creatinine had been checked frequently. The researchers found that about 69 percent of the infants with HIE followed at Children’s National never developed signs of kidney failure during their first week of life. These babies’ serum creatinine concentrations dropped by 50 percent or more by the time they were 1 week old, about the same as reported previously in healthy neonates. Another 12 percent of the infants with HIE developed AKI according to the definition established by the KDIGO group in 2012. These infants:

  • Required more days of mechanical ventilation and medications to increase their blood pressure
  • Had higher levels of antibiotics in their bloodstreams
  • Retained more fluid
  • Had lower urinary levels of a molecule that their kidneys should have been cleared and
  • Had to stay in the hospital longer

A third group of the infants with HIE, about 19 percent, did not meet the standard criteria for AKI. However, these babies had a rate of decline of serum creatinine that was significantly slower than the normal newborns and the infants with HIE who had excellent outcomes. Rather, their outcomes matched those of infants with established AKI.

Dr. Ray notes that by following the rate of serum creatinine decline during the first week of life physicians could identify neonates with impaired kidney function. This approach provides a more sensitive method to identify the early stages of AKI in neonates. “By looking at how fast babies were clearing their serum creatinine compared with the day they were born, we could predict how well their kidneys were working,” he says. Dr. Ray and colleagues published these findings July 2016 in Pediatric Nephrology.

He adds that further studies will be necessary to confirm the utility of this new approach to assess the renal function of term newborns with other diseases and preterm neonates. Eventually, he hopes this new approach will become uniform clinical practice.

Catherine Limperopoulos

A closer look at the placenta to predict FGR

Catherine Limperopoulos

Using three-dimensional magnetic resonance imaging, a Children’s National research team that included Catherine Limperopoulos, Ph.D., characterized the shape, volume, morphometry and texture of placentas during pregnancy and, using a novel framework, predicted with high accuracy which pregnancies would be complicated by fetal growth restriction.

Early in development, cells from the fertilized egg form the placenta, a temporary organ that serves as an interface between the mother and her growing offspring. When things go right, as occurs in the vast majority of pregnancies, the placenta properly delivers nutrients from the mother’s diet and oxygen from the air she breathes to the developing fetus while siphoning away its waste products. This organ also plays important immune-modulating and endocrine roles.

However, in a number of pregnancies, the placenta does not do an adequate job. Unable to effectively serve the fetus, a variety of adverse conditions can develop, including preeclampsia, fetal growth restriction (FGR), preterm birth and even fetal death.

Despite the key role that the placenta plays in fetal health, researchers have few non-invasive ways to assess how well it works during pregnancy. In fact, placental disease might not be suspected until very late.

In a new study, a team of Children’s National Health System research scientists is beginning to provide insights into the poorly understood placenta.

Using three-dimensional (3D) magnetic resonance imaging (MRI), the research team characterized the shape, volume, morphometry and texture of placentas during pregnancy and, using a novel framework, predicted with high accuracy which pregnancies would be complicated by FGR.

“When the placenta fails to carry out its essential duties, both the health of the mother and fetus can suffer and, in extreme cases, the fetus can die. Because there are few non-invasive tools that reliably assess the health of the placenta during pregnancy, unfortunately, placental disease may not be discovered until too late – after impaired fetal growth already has occurred,” says Catherine Limperopoulos, Ph.D., co-director of research in the Division of Neonatology at Children’s National Health System and senior author of the study published online July 22 in Journal of Magnetic Resonance Imaging. “Identifying early biomarkers of placental disease that may impair fetal growth and well-being open up brand-new opportunities to intervene to protect vulnerable fetuses.”

The Children’s research team acquired 124 fetal scans from 80 pregnancies beginning at the 18th gestational week and continuing through the 39th gestational week. Forty-six women had normal pregnancies and healthy fetuses while 34 women’s pregnancies were complicated by FGR, defined by estimated fetal weight that fell below the 10th percentile for gestational age. The placenta was described by a combination of shape and textural features. Its shape was characterized by three distinct 3D features: Volume, thickness and elongation. Its texture was evaluated by three different sets of textural features computed on the entire placenta.

“The proposed machine learning-based framework distinguished healthy pregnancies from FGR pregnancies with 86 percent accuracy and 87 percent specificity. And it estimated the birth weight in both healthy and high-risk fetuses throughout the second half of gestation reasonably well,” says the paper’s lead author, Sonia Dahdouh, Ph.D., a research fellow in Children’s Developing Brain Research Laboratory.

“We are helping to pioneer a very new frontier in fetal medicine,” Limperopoulos adds. “Other studies have developed prediction tools based on fetal brain features in utero. To our knowledge, this would be the first proposed framework for semi-automated diagnosis of FGR and estimation of birth weight using structural MRI images of the placental architecture in vivo. This has the potential to address a sizable clinical gap since we lack methods that are both sufficiently sensitive and specific to reliably detect FGR in utero.”

The research team writes that its findings underscore the importance of future studies on a larger group of patients to expand knowledge about underlying placenta mechanisms responsible for disturbed fetal growth, as well as to more completely characterize other potential predictors of fetal/placental development in high-risk pregnancies, such as genetics, physiology and nutrition.

Zhe Han, PhD

Lab led by Zhe Han, Ph.D., receives $1.75 million from NIH

Zhe Han, PhD

A new four-year NIH grant will enable Zhe Han, Ph.D., to carry out the latest stage in the detective work to determine how histone-modifying genes regulate heart development and the molecular mechanisms of congenital heart disease caused by these genetic mutations.

The National Institutes of Health (NIH) has awarded $1.75 million to a research lab led by Zhe Han, Ph.D., principal investigator and associate professor in the Center for Genetic Medicine Research, in order to build models of congenital heart disease (CHD) that are tailored to the unique genetic sequences of individual patients.

Han was the first researcher to create a Drosophila melanogaster model to efficiently study genes involved in CHD, the No.1 birth defect experienced by newborns, based on sequencing data from patients with the heart condition. While surgery can fix more than 90 percent of such heart defects, an ongoing challenge is how to contend with the remaining cases since mutations of a vast array of genes could trigger any individual CHD case.

In a landmark paper published in 2013 in the journal Nature, five different institutions sequenced the genomes of more than 300 patients with CHD and their families, identifying 200 mutated genes of interest.

“Even though mutations of these genes were identified from patients with CHD, these genes cannot be called ‘CHD genes’ since we had no in vivo evidence to demonstrate these genes are involved in heart development,” Han says. “A key question to be answered: How do we efficiently test a large number of candidate disease genes in an experimental model system?”

In early 2017, Han published a paper in Elife providing the answer to that lingering question. By silencing genes in a fly model of human CHD, the research team confirmed which genes play important roles in development. The largest group of genes that were validated in Han’s study were histone-modifying genes. (DNA winds around the histone protein, like thread wrapped around a spool, to become packed into a higher-level structure.)

The new four-year NIH grant will enable Han to carry out the next stage of the detective work to determine precisely how histone-modifying genes regulate heart development. In order to do so, his group will silence the function of histone-modifying genes one by one, to study their function in the fly heart development and to identify the key histone-modifying genes for heart development. And because patients with CHD can have more than one mutated gene, he will silence multiple genes simultaneously to determine how those genes work in partnership to cause heart development to go awry.

By the end of the four-year research project, Han hopes to be able to identify all of the histone-modified genes that play pivotal roles in development of the heart in order to use those genes to tailor make personalized fly models corresponding to individual patient’s genetic makeup.

Parents with mutations linked to CHD are likely to pass heart disease risk to the next generation. One day, those parents could have an opportunity to sequence their genes to learn the degree of CHD risk their offspring face.

“Funding this type of basic research enables us to understand which genes are important for heart development and how. With this knowledge, in the near future we could predict the chances of a baby being born with CHD, and cure it by using gene-editing approaches to prevent passing disease to the next generation,” Han says.

Panel: Significant Zika risks linger for pregnant women and developing fetuses in US

Roberta DeBiasi

The threat from Zika “is not over. It is just beginning for the families who are affected by this,” says Roberta L. DeBiasi, M.D., M.S., chief of the Division of Pediatric Infectious Diseases and co-director of the Congenital Zika Virus Program at Children’s National Health System.

The Zika virus epidemic may have fallen off the radar for many media outlets, but significant risks continue to linger for pregnant women and developing fetuses, a panel of experts told staff working for U.S. Congressional leaders.

“The threat of this virus is real, and the threat continues,” Margaret Honein, Ph.D., M.P.H., of the Centers for Disease Control and Prevention’s (CDC) pregnancy and birth defects task force, said during the July 13 briefing held in the Russell Senate Office Building.

Dr. Honein told about 100 attendees that more than 200 Zika-affected babies have been born in the United States suffering from serious birth defects, such as rigid joints, inconsolable distress that causes them to cry continuously and difficulties swallowing. Some of these infants experience seizures that cause further brain damage.

Predicting what Zika will do next in the United States is very difficult, Dr. Honein said, adding that local outbreaks could occur “at any time.” A map she displayed showed Zika’s impact in shades of blue, with Zika infections documented in nearly every state and the highest number of infections – and deepest shade of blue­ – for California, Florida and Texas.

The threat from Zika “is not over. It is just beginning for the families who are affected by this,” agreed Roberta L. DeBiasi, M.D., M.S., chief of the Division of Pediatric Infectious Diseases and co-director of the Congenital Zika Virus Program at Children’s National Health System.

Since Children’s National launched its Zika program in May 2016, the multidisciplinary team has consulted on 65 mother-fetus/infant pairs, Dr. DeBiasi said. Because in utero Zika infection can result in a wide range of side effects, the Children’s team includes pediatric infectious diseases experts, fetal/neonatal neurologists to consult on seizures, audiologists to assess hearing, physical therapists and orthopaedists to contend with limb contractures, pulmonologists to relieve breathing problems and ophthalmologists to diagnose and treat vision disorders – among other specialists.

“You really need a program that has all of these areas of expertise available for a family,” Dr. DeBiasi told attendees. “It is not possible for a family to organize 27 different appointments if you have a child with these needs.”

Children’s Zika experts also collaborate with researchers in Colombia to gauge the ability of magnetic resonance imaging to produce earlier Zika diagnoses, to assess the role of viral load as biomarkers and to document Zika’s long-term impact on children’s neurodevelopment. The Colombia study has enrolled an additional 85 women/infant pairs.

In one presentation slide, Dr. DeBiasi showed sharp magnetic resonance imaging scans from their research study of a fetal brain at 18 and 22 weeks gestation that indicated clear abnormalities, including abnormal cortical folding. Ultrasound images taken at the exact same time points did not detect these abnormalities, she said.

Asked for advice by an attendee whose clinic treats women who regularly travel between California and Mexico, Dr. DeBiasi underscored the fact that Zika infection poses a risk to developing fetuses even if the pregnant woman has no symptoms of infection. “Whether or not they’re symptomatic, the risk is the same. It’s hard for people to understand that. That is No. 1,” she said.

Another challenge is for women who scrupulously follow the CDC’s guidance on lowering their infection risk while traveling. Upon return, those women may be unaware that they could still be exposed to Zika through unprotected sex with their partner who also has travelled, for as long as six months after travel.

US News Honor Roll 2017-18

Children’s National is #1 in Neonatology and Top 10 overall in U.S. News & World Report Survey

US News Honor Roll 2017-18Children’s National is proud to be named #1 in Neonatology in the U.S. News & World Report 2017-18 Best Children’s Hospitals survey. Also, Children’s National was once again named to the coveted Honor Roll, placing them among the Top 10 children’s hospitals in the country.

Being the #1 ranked Neonatology program reflects the quality of care throughout Children’s National because it requires the support and partnership of many other specialties, including cardiology, neurology and surgery. In addition to this honor, Children’s National ranked in the Top 10 in four additional services: Cancer (#7), Neurology and Neurosurgery (#9), Orthopedics (#9) and Nephrology (#10).  For the seventh year in a row, Children’s National has ranked in all ten services, a testament to the pediatric care experts across the organization and their commitment to children and families.

“This recognition is a great achievement for Children’s National, affirming our place as a premier destination for pediatric care, and the commitment of our people, partners and supporters to helping every child grow up stronger,” said Kurt Newman, M.D., President and CEO of Children’s National. “I’m particularly proud of our #1 ranking in Neonatology as, in many ways it reflects the quality of care across our hospital. Treating these tiny patients often encompasses many other specialties, including our Fetal Medicine Institute.”

Children’s National is dedicated to improving the lives of children through innovative research, expert care and advocacy on behalf of children’s needs. In addition to being recognized among the “best of the best” by U.S. News & World Report, Children’s National is a Magnet® designated hospital for excellence in nursing and is a Leapfrog Group Top Hospital. As a top NIH-funded pediatric health system, Children’s National marries cutting-edge research with the highest quality care, to deliver the best possible outcomes for children today and in the future.

Oluigbo and Myseros neurosurgery

Working miracles to quiet seizures and preserve brain power in newborns

Oluigbo and Myseros neurosurgery

In the spring of 2017, a multidisciplinary team applied an innovative approach to help preserve function in the working right hemisphere of a baby who experienced her first seizure hours after birth.

When orderly fetal brain development is disturbed, infants can be born with hemimegalencephaly – a rare occurrence – that results in one of the brain’s two hemispheres being oversized, heavy and malformed. Children with hemimegalencephaly can develop horrible seizures within the first few moments of life. According to published research, every month these infants experience uncontrolled seizures correlates to a steep decline in IQ.

Because these types of seizures do not respond to multiple seizure medications – and anticonvulsant medicines cause worrisome side effects of their own – care teams attempt to schedule surgery as soon as feasible to neutralize the hemisphere triggering the damaging seizures. They either remove it, or they sever nerve fibers and that hemisphere’s blood supply in order to leave it in place.

“The ‘bad’ brain does not sustain any function and it interferes with the ‘good’ brain doing what it needs to do,” says William D. Gaillard, M.D., chief of Children’s National Division of Epilepsy and Neurophysiology and chief of Neurology.

Hemispherectomy is intricate surgery on an organ that is softer than normal and crisscrossed with a tangle of blood vessels that supply the damaged hemisphere with blood. Because of the risks of life-threatening blood loss in very young infants, the dramatic surgery usually does not occur until babies are at least 3 months old and weigh at least 10 pounds.

The challenge: The vulnerable babies who most need relief, infants who have been seizing since delivery, are too young for the operation.

Children’s Pediatric Neurosurgeon Chima Oluigbo, M.D., F.R.C.S.C., had pioneered an innovative approach to clamp off the carotid artery to reduce blood loss during the surgery. Dr. Gaillard says that inspired approach got the team thinking: What if we use embolization – blocking blood supply to targeted locations in the brain – to achieve the same effect?

“It was eye-opening for us to think about actually inflicting brain injury as a way of treating something in the brain that was causing seizures. That is really novel in itself: We’re thinking out of the box in applying existing techniques in a different age group. The conventional thinking with newborns is to let them be; their seizures don’t look that bad,” says Taeun Chang, M.D., director of Children’s Neonatal Neurology and Neonatal Neurocritical Care Program.

“We have evidence to suggest this is a safe and effective way of avoiding recurrent seizures and minimizing the need to give these infants toxic medications so early in life. Ultimately, this helps a select group of  kids who need the surgery to get to the point of being old enough to have it – all the while sparing the healthy part of their brain,” Dr. Gaillard adds.

In the spring of 2017, the multidisciplinary team applied the innovative approach to help preserve function in the working right hemisphere of a baby named Darcy Murphy. Darcy experienced her first seizure hours after she was born, and when she arrived at Children’s National had been in and out of two different emergency rooms in another state for the first few weeks of her life.

Darcy hemimegalencephaly

Once the embolization ended Darcy’s most severe seizures, the little girl could make eye contact, started smiling, and then graduated from smiling to full laughs. In weekly physical therapy, the infant works on tummy time, head control and ensuring her eyes track.

The team explained to the Murphy family that Darcy was on multiple medications but her seizures continued unabated. The options included inducing a coma, sending Darcy home despite ongoing seizures or minimally invasive embolization.

“We would not have even posed this if we were not confident in our ability to do the procedure and deal with potential complications,” Dr. Chang says.

“Oh my gosh, as a parent you know what you’re doing is permanent,” says Rachel Murphy, 29, Darcy’s mom said of the decisions that she and husband Ryan, 33, faced for the youngest of their three children. “What if it’s not the right decision? What if in a week they come out with a new procedure you could have done? We were horrified all the time. The nice part with this procedure is the reward is apparent very quickly, and it just gets better. You don’t have to wait two years to know you made the right decision. You can see half a brain is better than the whole thing for this specific child.”

Once the embolization ended Darcy’s most severe seizures, the little girl could make eye contact, started smiling, and then graduated from smiling to full laughs. In weekly physical therapy, the infant works on tummy time, head control and ensuring her eyes track.

“With hemispherectomy, the kids will lose half of their vision in both eyes. It’s not that they’re blind. Their eyes work fine. When images are sent back to brain to be reflected, there is nothing on the left side reflecting back,” Rachel adds.

Children’s multidisciplinary care team includes experts in newborn intensive care (neonatologists) to aggressively manage seizures in the traditional fashion as they occur and to monitor vital signs; a neonatal neurologist/neurointensivist at the bedside and in the Angio suite monitoring Darcy’s brain activity; a neonatal epileptologist; a surgical epilepsy team; an interventional neuroradiologist from Johns Hopkins; neurosurgeons to perform the delicate functional hemispherectomy; and physical therapists working to help Darcy achieve maximum function after surgery.

“We were just like one unit in the sense of being able to provide coherent, comprehensive care. It’s about blood pressure management, breathing, electrolytes, making sure everything is right for going to the operating room,” Dr. Chang explains. “Darcy’s case highlights the ways in which Children’s National is different and offers personalized care that is superior to other centers.”

The team, which has already published a case report of two previous serial embolizations followed by hemispherectomy, plans follow-up papers describing EEG manifestations during an acute stroke in a newborn, advice to the field on best practices for the embolization and using cooling to minimize brain herniation.

Related resources

Chima Oluigbo

A novel way to treat intractable epilepsy caused by hemimegalencephaly

Chima Oluigbo

A multidisciplinary team led by Chima Oluigbo, M.D., F.R.C.S.C., pioneered a novel technique to preserve newborns’ healthy brain tissue, buying time until the infants became old enough to undergo a hemispherectomy.

What’s known

Hemimegalencephaly is an extremely rare birth defect in which one side of the brain grows larger than the other. This anomaly typically leads to severe, recurrent seizures that can be difficult to control solely with medications. While the seizures themselves are detrimental to the developing brain, the amount of medications used to reduce seizure frequency often come with significant side effects and have the potential to hamper brain growth. Hemispherectomy, a radical surgery in which one half of the brain is removed, is often the most successful way to treat severe and intractable epilepsy. However, this surgery can be challenging to perform successfully in very young babies.

What’s new

In this case report, the Children’s National Health System Epilepsy Team led by Chima Oluigbo, M.D., F.R.C.S.C., a pediatric neurosurgeon; Tammy N. Tsuchida, M.D., PhD., a pediatric surgical epileptologist; Monica Pearl, M.D., a pediatric interventional neuroradiologist; Taeun Chang, M.D., a neonatal neurointensivist; and the neonatal intensive care team explored the possibility of using minimally invasive surgery to cut off the blood supply to the brain hemisphere responsible for generating seizures in newborns with hemimegalencephaly. This procedure, they reasoned, could buy time for babies to mature and become more resilient to withstand the future hemispherectomy while also lessening the damage caused by uncontrolled, recurrent seizures. The case report focused on the first two patients with hemimegalencephaly who had sequential procedures to gradually restrict blood flow to the affected brain hemisphere within their first few weeks of life, followed by hemispherectomies at a few months of age. This novel approach significantly lessened their seizures until hemispherectomy, allowing these children to continue to grow and develop seizure-free.

Questions for future research

Q: Which patients are best suited for this surgical procedure?
Q: How can surgeons reduce the risk of excessive blood loss during hemispherectomy caused by the growth of additional blood vessels after flow through the brain’s major vessels has been blocked?
Q: What are the long-term outcomes for infants who undergo these procedures?

Source: “ ‘Endovascular embolic hemispherectomy’: A strategy for the initial management of catastrophic holohemispheric epilepsy in the neonate.” Oluigbo, C., M.S. Pearl, T.N. Tsuchida, T. Chang, C.-Y. Ho and W. D. Gaillard. Published by Child’s Nervous System October 29, 2016.

Children’s National earns five awards at the 2017 SPR Annual Meeting

Radiology PULSE Suite

Several technologists, fellows and faculty in the Division of Diagnostic Imaging and Radiology at Children’s National Health System were recognized at the 2017 Society of Pediatric Radiology (SPR) Annual Meeting in Vancouver, Canada, May 16-20. Each year, the international conference recognizes society members for outstanding research and education in pediatric care on the topics of imaging and image-guided care. Out of 15 major awards, Children’s National staff earned five, including two Caffey Awards – SPR’s most prestigious awards for academic excellence.

The awards received are as follows:

The Society of Pediatric Radiology Caffey Award for Best Clinical Research Paper went to attending radiologist, Dorothy Bulas, M.D., for her clinical research paper titled, “CXR Reduction Protocol in the Neonatal Intensive Care Unit (NICU) – Lessons Learned,” which highlighted collaboration with the NICU team to reduce the reliance on x-rays to monitor neonates. This method decreases the radiation dose with no risk to the patient.

The Society of Pediatric Radiology Caffey Award for Educational Exhibit was given to Benjamin Smith, M.D., a pediatric radiology fellow, for his educational poster “Sonographic Evaluation of Diaphragmatic Motion: A Practical Guide to Performance and Interpretation.” The exhibit displayed a unique technique for examining the motion of the diaphragm using ultrasound to make an accurate diagnosis of diaphragm paralysis or motion. Dr. Smith’s exhibit was also recognized by The American Academy of Pediatrics and was given the Outstanding Clinical Education Poster Award along with radiologist Hansel Otero, M.D.; sonographer Tara K. Cielma, R.D.M.S, R.D.C.S, R.V.T.; and faculty member Anjum N. Bandarkar, M.D.

The Society of Pediatric Radiology Radiographer Best Poster Award was given to Dr. Bandarkar for her poster titled, “Infantile Hypertrophic Pyloric Stenosis: Value of measurement technique to avoid equivocal exam.” The World Federation of Pediatric Imaging also awarded Dr. Bandarkar, Adebunmi O. Adeyiga, M.D. and Tara Cielma the 2017 Outstanding Radiographer Educational Poster Award for their collaborative poster on, “A Sonographic Walk‐Through: Infantile Hypertrophic Pyloric Stenosis.”

Division Chief of Diagnostic Imaging and Radiology, Raymond Sze, M.D., remarked, “This is a major win not only for the department but also for the entire hospital. The support and collaboration of our Children’s National colleagues across many departments allowed us to advance the field of pediatric imaging and earn national recognition for the high-quality and impactful research and education that’s happening at our institution.”