Infectious Disease

coronavirus

Single institution study finds high rates of cardiac complications in MIS-C

coronavirus

At this year’s AHA Scientific Sessions, cardiologists from Children’s National Hospital presented a poster about an interesting finding in children with MIS-C.

During the height of the pandemic, researchers at Children’s National Hospital discovered that as many as one half of children diagnosed with multisystem inflammatory disease in children (MIS-C) at the hospital developed cardiac complications including coronary artery abnormalities, even when diagnosed and treated promptly.

The data was shared as part of a poster presentation at the American Heart Association Scientific Sessions in November 2020. Though analysis was limited to the data from one institution’s confirmed MIS-C cases, the findings are significant enough to warrant further study.

Interestingly, the authors noted that the high rate of cardiac complications far exceeds the rate of similar issues in children with Kawasaki disease — another pediatric inflammatory syndrome that shares many common symptoms with MIS-C. The two are so similar that immunomodulation therapies successfully deployed in children with MIS-C were based on those developed to treat Kawasaki disease.

Knowledge of common cardiac complications in Kawasaki disease also flagged the need for routine echocardiograms in patients with MIS-C, which helped identify the higher rates of cardiac complications seen in the MIS-C patient population.

“This finding, however, is another data point that shows how MIS-C and Kawasaki disease have some specific differences needing further study,” says Ashraf Harahsheh, M.D., a pediatric cardiologist at Children’s National Hospital who studies Kawasaki disease and the first author on the new study.

“Previous clinical advancements made in Kawasaki disease set the stage for our response to MIS-C early on,” he said. ”Now we also need to understand MIS-C as its own syndrome so we can better address what we are seeing in this patient population,” he says.

While most of the cardiac findings resolved during follow up, long-term studies are needed to determine if the cardiac abnormalities are associated with major cardiac events later.

“This work will help inform the community of the importance of diagnosing children with MIS-C promptly and following clinical guidelines for necessary tests and treatments once MIS-C is diagnosed,” Harahsheh concludes.

Next, the research team plans to take a deep dive into patient demographics as well as findings from clinical, laboratory and electrocardiogram data for children who developed cardiac complications with MIS-C. The goal will be to refine treatment algorithms and potentially identify a subgroup of patients who may require different or more intense therapy to prevent cardiac complications.

American Heart Association Scientific Sessions 2020 Poster Session
Cardiac Complications of SARS CoV-2 Associated Multi-System Inflammatory Syndrome in Children (MIS-C)
P1306
9:00am – 10:00am
Fri, Nov 13 (CST)

Research & Innovation Campus

Boeing gives $5 million to support Research & Innovation Campus

Research & Innovation Campus

Children’s National Hospital announced a $5 million gift from The Boeing Company that will help drive lifesaving pediatric discoveries at the new Children’s National Research & Innovation Campus.

Children’s National Hospital announced a $5 million gift from The Boeing Company that will help drive lifesaving pediatric discoveries at the new Children’s National Research & Innovation Campus. The campus, now under construction, is being developed on nearly 12 acres of the former Walter Reed Army Medical Center. Children’s National will name the main auditorium in recognition of Boeing’s generosity.

“We are deeply grateful to Boeing for their support and commitment to improving the health and well-being of children in our community and around the globe,” said Kurt Newman, M.D., president and CEO of Children’s National “The Boeing Auditorium will help the Children’s National Research & Innovation campus become the destination for discussion about how to best address the next big healthcare challenges facing children and families.”

The one-of-a-kind pediatric hub will bring together public and private partners for unprecedented collaborations. It will accelerate the translation of breakthroughs into new treatments and technologies to benefit kids everywhere.

“Children’s National Hospital’s enduring mission of positively impacting the lives of our youngest community members is especially important today,” said Boeing President and CEO David Calhoun. “We’re honored to join other national and community partners to advance this work through the establishment of their Research & Innovation Campus.”

Children’s National Research & Innovation Campus partners currently include Johnson & Johnson Innovation – JLABS, Virginia Tech, the National Institutes of Health (NIH), Food & Drug Administration (FDA), U.S. Biomedical Advanced Research and Development Authority (BARDA), Cerner, Amazon Web Services, Microsoft, National Organization of Rare Diseases (NORD) and local government.

The 3,200 square-foot Boeing Auditorium will be the focal point of the state-of-the-art conference center on campus. Nationally renowned experts will convene with scientists, medical leaders and diplomats from around the world to foster collaborations that spur progress and disseminate findings.

Boeing’s $5 million commitment deepens its longstanding partnership with Children’s National. The company has donated nearly $2 million to support pediatric care and research at Children’s National through Chance for Life and the hospital’s annual Children’s Ball. During the coronavirus pandemic, Boeing fabricated and donated 2,000 face shields to help keep patients and frontline care providers at Children’s National safe.

communication network concept image

Children’s National joins international AI COVID-19 initiative

communication network concept image

Children’s National Hospital is the first pediatric partner to join an international initiative led by leading technology firm NVIDIA and Massachusetts General Brigham Hospital, focused on creating solutions through machine and deep learning to benefit COVID-19 healthcare outcomes.

Children’s National Hospital is the first pediatric partner to join an international initiative led by leading technology firm NVIDIA and Massachusetts General Brigham Hospital, focused on creating solutions through machine and deep learning to benefit COVID-19 healthcare outcomes. The initiative, known as EXAM (EMR CXR AI Model) is the largest and most diverse federated learning enterprise, comprised of 20 leading hospitals from around the globe.

Marius George Linguraru, D.Phil., M.A., M.Sc., principal investigator at the Sheikh Zayed Institute for Pediatric Surgical Innovation at Children’s National Hospital, noted that one of the core goals of the initiative is to create a platform which brings resources together, from a variety of leading institutions, to advance the care of COVID-19 patients across the board, including children.

“Children’s National Hospital is proud to be the first pediatric partner joining the world’s leading healthcare institutions in this collaboration to advance global health,” says Linguraru. “We are currently living in a time where rapid access to this kind of global data has never been more important — we need solutions that work fast and are effective. That is not possible without this degree of collaboration and we look forward to continuing this important work with our partners to address one of the most significant healthcare challenges in our lifetime.”

A recent systematic review and meta-analysis from Children’s National Hospital became another core contribution to understanding how children are impacted by COVID-19. Led by Linguraru and accepted to be published in Pediatric Pulmonology, it offers the first comprehensive summary of the findings of various studies published thus far that describe COVID-19 lung imaging data across the pediatric population.

The review examined articles based on chest CT imaging in 1,026 pediatric patients diagnosed with COVID-19, and concluded that chest CT manifestations in those patients could potentially be used to prompt intervention across the pediatric population.

Marius George Linguraru

“Children’s National Hospital is proud to be the first pediatric partner joining the world’s leading healthcare institutions in this collaboration to advance global health,” says Marius George Linguraru, D.Phil., M.A., M.Sc.

“Until this point, pediatric COVID-19 studies have largely been restricted to case reports and small case series, which have prevented the identification of any specific pediatric lung disease patterns in COVID-19 patients,” says Linguraru. “Not only did this review help identify the common patterns in the lungs of pediatric patients presenting COVID-19 symptoms, which are distinct from the signs of other viral respiratory infections in children, it also provided insight into the differences between children and adults with COVID-19.”

Earlier this month, NVIDIA announced the EXAM initiative had – in just 20 days – developed an artificial intelligence (AI) model to determine whether a patient demonstrating COVID-19 symptoms in an emergency room would require supplemental oxygen hours – even days – after the initial exam. This data ultimately aids physicians in determining the proper level of care for patients, including potential ICU placement.

The EXAM initiative achieved a machine learning model offering precise prediction for the level of oxygen incoming patients would require.

In addition to Children’s National Hospital, other participants included Mass Gen Brigham and its affiliated hospitals in Boston; NIHR Cambridge Biomedical Research Centre; The Self-Defense Forces Central Hospital in Tokyo; National Taiwan University MeDA Lab and MAHC and Taiwan National Health Insurance Administration; Tri-Service General Hospital in Taiwan; Kyungpook National University Hospital in South Korea; Faculty of Medicine, Chulalongkorn University in Thailand; Diagnosticos da America SA in Brazil; University of California, San Francisco; VA San Diego; University of Toronto; National Institutes of Health in Bethesda, Maryland; University of Wisconsin-Madison School of Medicine and Public Health; Memorial Sloan Kettering Cancer Center in New York; and Mount Sinai Health System in New York.

antibodies attached to COVID

Study shows COVID-19 antibodies and virus can coexist

antibodies attached to COVID

Children’s National study shows that children can have COVID-19 antibodies and the virus in their system simultaneously.

With many questions remaining around how children spread COVID-19, Children’s National Hospital researchers set out to improve the understanding of how long it takes pediatric patients with the virus to clear it from their systems, and at what point they start to make antibodies that work against the coronavirus. The study, published Sept. 3 in the Journal of Pediatrics, finds that the virus and antibodies can coexist in young patients.

“With most viruses, when you start to detect antibodies, you won’t detect the virus anymore. But with COVID-19, we’re seeing both,” says Burak Bahar, M.D., lead author of the study and director of Laboratory Informatics at Children’s National. “This means children still have the potential to transmit the virus even if antibodies are detected.”

She adds that the next phase of research will be to test if the virus that is present alongside the antibodies can be transmitted to other people. It also remains unknown if antibodies correlate with immunity, and how long antibodies and potential protection from reinfection last.

The study also assessed the timing of viral clearance and immunologic response. It found the median time from viral positivity to negativity, when the virus can no longer be detected, was 25 days. The median time to seropositivity, or the presence of antibodies in the blood, was 18 days, while the median time to reach adequate levels of neutralizing antibodies was 36 days. Neutralizing antibodies are important in potentially protecting a person from re-infection of the same virus.

This study used a retrospective analysis of 6,369 children tested for SARS-CoV-2, the virus that causes COVID-19, and 215 patients who underwent antibody testing at Children’s National between March 13, 2020, and June 21, 2020. Out of the 215 patients, 33 had co-testing for both the virus and antibodies during their disease course. Nine of the 33 showed presence of antibodies in their blood while also later testing positive for the virus.

Also of note, researchers found patients 6 through 15 years old took a longer time to clear the virus (median of 32 days) compared to patients 16 through 22 years old (median of 18 days). Females in the 6-15 age group also took longer to clear the virus than males (median of 44 days for females compared to median of 25.5 days for males).

Although there is emerging data regarding this timing in adults with COVID-19, there is far less data when it comes to the pediatric population. The findings being gathered by Children’s National researchers and scientists around the world are critical to helping understand the unique impact on children and their role in viral transmission.

“The takeaway here is that we can’t let our guard down just because a child has antibodies or is no longer showing symptoms,” says Dr. Bahar. “The continued role of good hygiene and social distancing remains critical.”

Other researchers who contributed to this study include Cyril Jacquot, M.D.; Delores Y Mo,M.D.; Roberta L DeBiasi, M.D.; Joseph Campos, Ph.D.; and Meghan Delaney, D.O.

coronavirus

T-cells show promise to protect vulnerable patients from COVID-19 infection

coronavirus

Children’s National Hospital immunotherapy experts have found that T-cells taken from the blood of people who recovered from a COVID-19 infection can be successfully multiplied in the lab and maintain the ability to effectively target proteins that are key to the virus’s function.

Children’s National Hospital immunotherapy experts have found that T-cells taken from the blood of people who recovered from a COVID-19 infection can be successfully multiplied in the lab and maintain the ability to effectively target proteins that are key to the virus’s function. Their findings were published Oct. 26, 2020, in Blood.

“We found that many people who recover from COVID-19 have T-cells that recognize and target viral proteins of SARS-CoV-2, giving them immunity from the virus because those T-cells are primed to fight it,” says Michael Keller, M.D., a pediatric immunology specialist at Children’s National Hospital, who led the study. “This suggests that adoptive immunotherapy using convalescent T-cells to target these regions of the virus may be an effective way to protect vulnerable people, especially those with compromised immune systems due to cancer therapy or transplantation.”

Based on evidence from previous phase 1 clinical trials using virus-targeting T-cells “trained” to target viruses such as Epstein-Barr virus, the researchers in the Cellular Therapy Program at Children’s National hypothesized that the expanded group of COVID-19 virus-targeting T-cells could be infused into immunocompromised patients, helping them build an immune response before exposure to the virus and therefore protecting the patient from a serious or life-threatening infection.

“We know that patients who have immune deficiencies as a result of pre-existing conditions or following bone marrow or solid organ transplant are extremely vulnerable to viruses like SARS-CoV-2,” says Catherine Bollard, M.D., M.B.Ch.B., senior author of the study and director of the novel cell therapies program and the Center for Cancer and Immunology Research at Children’s National. “We’ve seen that these patients are unable to easily clear the virus on their own, and that can prevent or delay needed treatments to fight cancer or other diseases. This approach could serve as a viable option to protect or treat them, especially since their underlying conditions may make vaccines for SARS-CoV-2 unsafe or ineffective.”

The T-cells were predominantly grown from the peripheral blood of donors who were seropositive for SARS-CoV-2. The study also identified that SARS-CoV-2 directed T-cells have adapted to predominantly target specific parts of the viral proteins found on the cell membrane, revealing new ways that the immune system responds to COVID-19 infection.

Current vaccine research focuses on specific proteins found mainly on the “spikes” of the coronavirus SARS-CoV-2. The finding that T-cells are successfully targeting a membrane protein instead may add another avenue for vaccine developers to explore when creating new therapeutics to protect against the virus.

“This work provides a powerful example of how both scientific advances and collaborative relationships developed in response to a particular challenge can have broad and unexpected impacts on other areas of human health,” says Brad Jones, Ph.D., an associate professor of immunology in medicine in the Division of Infectious Diseases at Weill Cornell Medicine and co-author on the study, whose lab focuses on HIV cure research. “I began working with Dr. Bollard’s team several years ago out of our shared interest in translating her T-cell therapy approaches to HIV. This put us in a position to quickly team up to help develop the approach for COVID-19.”

The Cellular Therapy Program is now seeking approval from the U.S. Food and Drug Administration for a phase 1 trial that will track safety and effectiveness of using COVID-19-specific T-cells to boost the immune response in patients with compromised immune systems, particularly for patients after bone marrow transplant.

illustration of lungs surrounded by virus

COVID-19: First comprehensive review of pediatric lung imaging features

illustration of lungs surrounded by virus

A systematic review and meta-analysis by Children’s National Hospital researchers, published in Pediatric Pulmonology, provides the first comprehensive review of the findings of published studies describing COVID-19 lung imaging data in children.

The number COVID-19 studies focused on children have been small and with limited data. This has prevented the identification of specific pediatric lung disease patterns in COVID-19. Although children make up around 9.5% of COVID-19 infections, less than 2% of the literature on the virus, its symptoms and effects, have focused on kids.

A systematic review and meta-analysis by Children’s National Hospital researchers, published in Pediatric Pulmonology, provides the first comprehensive review of the findings of published studies describing COVID-19 lung imaging data in children. The analysis concludes that chest CT manifestations in children with COVID‐19 could potentially prompt intervention in the pediatric population.

Marius George Linguraru, D.Phil., M.A., M.Sc., principal investigator in the Sheikh Zayed Institute for Pediatric Surgical Innovation at Children’s National, discusses the importance of this work.

Q: What findings stand out to you?

A: We found that more than a third of children with COVID-19 had normal imaging. The lung imaging findings in these children were overall less frequent and less severe than in adult patients, but they were also more heterogeneous than in adults. Importantly, children with COVID-19 were three times more likely to have a normal exam than adults.

Several common lung imaging findings reported in adults were extremely rare or not found in the pediatric studies. These discoveries, and other recent reports in this space, support the fact that children’s symptoms may be less obvious than adults or even absent, but they still carry the virus and may be at risk for serious and life-threatening illness.

Marius George Linguraru

Marius George Linguraru, D.Phil., M.A., M.Sc., principal investigator in the Sheikh Zayed Institute for Pediatric Surgical Innovation at Children’s National.

Q: How will the findings of this study benefit pediatric care?

A: In our study, we showed how the health of the lungs of these children is impacted. Our results from data from 1,026 children (from newborns to 18 year old) with COVID-19 present chest manifestations that could potentially prompt informed intervention and better recovery.

Another conclusion of our study is that the abnormalities reported on the chest scans of children infected with COVID-19 are distinct from the typical lung images seen during other viral respiratory infections in the pediatric population. This is important for preparing for the cold and flu season.

Q: Why was this review important to our understanding of how COVID-19 impacts children?

A: This is the first systematic review and meta-analysis focused on the manifestation of the COVID-19 infection in the lungs of children. Our study, and others from colleagues at Children’s National, helps lead the efforts on elucidating how the pandemic affects the health of children.

Though children were initially thought to be less susceptible to infection, the data has made it clear that many children are at high risk for hospitalization and severe health complications. Although there are similarities between how children and adults are affected by the pandemic, there are also critical differences.

Given the limited knowledge in the manifestation of COVID-19 in children, with children susceptible to infection and hospitalization, and with children returning to school, continued efforts to understand the impact of COVID-19 on young patients is critically important. Understanding how children fare through the pandemic is the foundation of discovering better ways to take care of young patients and their health.

You can find the full study published in Pediatric Pulmonology. Learn more about the Sheikh Zayed Institute for Pediatric Surgical Innovation at Children’s National.

coronavirus

COVID-19 Pandemic: 3rd Annual CN – NIAID Virtual Symposium

The CN-NIAID Virtual Symposium highlighted work being done to fight the COVID-19 pandemic globally.

COVID-19 triage tent outside the hospital Emergency Department

Telehealth team shares its pandemic response and discusses the future of telehealth

COVID-19 triage tent outside the hospital Emergency Department

The telehealth team at Children’s National Hospital is featured in DataBank IMX’s latest Tech Talk podcast. They discuss how the organization scaled up and managed the telehealth program through the early and mid phases of the COVID-19 pandemic, as well as the future of telehealth.

Featured in the discussion are clinical, operational and revenue cycle leaders from Children’s National:

  • Mary Daymont, M.S.N., R.N., CCM, Vice President, Revenue Cycle & Care Management
  • Clarence Williams, MHA, MBA, Director, Telehealth Program
  • Alejandro Lopez-Magallon, M.D., Medical Director, Telehealth Program, Cardiac Critical Care Specialist

tech talk

sick boy in bed

Clinical features of COVID-19 versus influenza

sick boy in bed

In a cohort retrospective study comparing clinical features of COVID-19 and seasonal flu, researchers found surprisingly little difference in the rates of hospitalization, admission to the intensive care unit and mechanical ventilator use between the two groups.

As the fall approaches, pediatric hospitals will start seeing children with seasonal influenza A and B. At the same time, COVID-19 will be co-circulating in communities with the flu and other respiratory viruses, making it more difficult to identify and prevent the novel coronavirus.

With little published data directly comparing the clinical features of children with COVID-19 to those with seasonal flu, researchers at Children’s National Hospital decided to conduct a retrospective cohort study of patients in the two groups. Their findings — published September 8 in JAMA Network Open — surprised them.

The study — detailed in the article “Comparison of Clinical Features of US Children With COVID-19 vs Seasonal Influenza A and B” — showed no statistically significant differences in the rates of hospitalization, admission to the intensive care unit and mechanical ventilator use between the two groups.

The other unexpected finding was that more patients with COVID-19 than those with seasonal influenza reported fever, cough, diarrhea or vomiting, headache, body ache or chest pain at the time of diagnosis, says Xiaoyan Song, Ph.D., M.Sc., M.B., the study’s principal investigator.

“I didn’t see this coming when I was thinking about doing the study,” says Dr. Song, director of Infection Control and Epidemiology at Children’s National since 2007 and a professor of pediatrics at the George Washington University School of Medicine and Health Sciences. “It took several rounds of thinking and combing through the data to convince myself that this was the conclusion.”

Given that much remains unknown about COVID-19, the researchers’ discovery that children with the disease present with more symptoms at the time of diagnosis is a valuable one.

“It’s a good cue from a prevention and planning perspective,” says Dr. Song. “We always emphasize early recognition and early isolation with COVID. Having a clinical picture in mind will assist clinicians as they diagnose patients with symptoms of the coronavirus.”

The study included 315 children who were diagnosed with a laboratory-confirmed COVID-19 between March 25, 2020, and May 15, 2020, and 1,402 children who were diagnosed with a laboratory-confirmed seasonal influenza between Oct. 1, 2019, and June 6, 2020, at Children’s National. Asymptomatic patients who tested positive for COVID-19 during pre-admission or pre-procedural screening were excluded from the study.

Of the 315 patients who tested positive for COVID-19, 52% were male, with a median age of 8.4 years. Of these patients, 54 (17.1 %) were hospitalized, including 18 (5.7%) who were admitted to the intensive care unit (ICU) and 10 (3.2%) who received mechanical ventilator treatment.

Among the 1,402 patients who tested positive for influenza A or B, 52% were male, with a median age of 3.9 years, and 291 (21.2%) were hospitalized, including 143 for influenza A and 148 for influenza B. Ninety-eight patients (7.0%) were admitted to the ICU, and 27 (1.9%) received mechanical ventilator support.

The study showed a slight difference in the age of children hospitalized with COVID-19 compared to those hospitalized with seasonal influenza. Patients hospitalized with COVID-19 had a median age of 9.7 years vs. those hospitalized with seasonal influenza who had a median age of 4.2 years.

In both groups, fever was the most often reported symptom at the time of diagnosis followed by cough. A greater proportion of patients hospitalized with COVID-19 than those hospitalized with seasonal influenza reported fever (76% vs. 55%), cough (48% vs. 31%), diarrhea or vomiting (26% vs. 12%), headache (11% vs. 3%), body ache/myalgia (22% vs. 7%), and chest pain (11% vs. 3%).

More patients hospitalized with COVID-19 than those with seasonal influenza reported sore throat or congestion (22% vs. 20%) and shortness of breath (30% vs. 20%), but the differences were not statistically significant.

During the study period, the researchers noticed an abrupt decline of influenza cases at Children’s National after local schools closed in mid-March and stay-at-home orders were implemented about two weeks later to combat the community spread of COVID-19. Dr. Song says the impact of school closures on the spread of COVID-19 among children is the next area of study for her research team.

“We want to assess the quantitative impact of school closures so we can determine at what point the cost of closing schools and staying at home outweighs the benefit of reducing transmission of COVID-19 and burdens on the health care system,” she says.

Dr. Song urges members of the community “first and foremost to stay calm and be strong. We’re learning new and valuable things about this virus each day, which in turn improves care. The collision of the flu and COVID-19 this fall could mean an increase in pediatric hospitalizations. That’s why it’s important to get your flu shot, because it can help take at least one respiratory virus out of circulation.”

Other researchers who contributed to this study include Meghan Delaney, D.O.; Rahul K. Shah, M.D.; Joseph M. Campos, Ph.D.; David L. Wessel, M.D.; and Roberta L. DeBiasi, M.D.

young boy and teddy bear in face masks

Study provides important insight into spread of COVID-19 in children

young boy and teddy bear in face masks

New research suggests that children can shed SARS-CoV-2, the virus that causes COVID-19, even if they never develop symptoms or for long after symptoms have cleared. But many questions remain about the significance of the pediatric population as vectors for this sometimes deadly disease.

New research suggests that children can shed SARS-CoV-2, the virus that causes COVID-19, even if they never develop symptoms or for long after symptoms have cleared. But many questions remain about the significance of the pediatric population as vectors for this sometimes deadly disease, according to an invited commentary by Children’s National Hospital doctors that accompanies this new study published online Aug. 28, 2020 in JAMA Pediatrics. The commissioned editorial, written by Roberta L. DeBiasi, M.D., M.S., chief of the Division of Infectious Diseases, and Meghan Delaney, D.O., M.P.H., chief of the Division of Pathology and Lab Medicine, provides important insight on the role children might play in the spread of COVID-19 as communities continue to develop public health strategies to reign in this disease.

The study that sparked this commentary focused on 91 pediatric patients followed at 22 hospitals throughout South Korea. “Unlike in the American health system, those who test positive for COVID-19 in South Korea stay at the hospital until they clear their infections even if they aren’t symptomatic,” explains Dr. DeBiasi.

The patients here were identified for testing through contact tracing or developing symptoms. About 22% never developed symptoms, 20% were initially asymptomatic but developed symptoms later, and 58% were symptomatic at their initial test. Over the course of the study, the hospitals where these children stayed continued to test them every three days on average, providing a picture of how long viral shedding continues over time.

The study’s findings show that the duration of symptoms varied widely, from three days to nearly three weeks. There was also a significant spread in how long children continued to shed virus and could be potentially infectious. While the virus was detectable for an average of about two-and-a-half weeks in the entire group, a significant portion of the children — about a fifth of the asymptomatic patients and about half of the symptomatic ones — were still shedding virus at the three week mark.

Drs. DeBiasi and Delaney write in their commentary that the study makes several important points that add to the knowledge base about COVID-19 in children. One of these is the large number of asymptomatic patients — about a fifth of the group followed in this study. Another is that children, a group widely thought to develop mostly mild disease that quickly passes, can retain symptoms for weeks. A third and important point, they say, is the duration of viral shedding. Even asymptomatic children continued to shed virus for a long time after initial testing, making them potential key vectors.

However, the commentary authors say, despite these important findings, the study raises several questions. One concerns the link between testing and transmission. A qualitative “positive” or “negative” on testing platforms may not necessarily reflect infectivity, with some positives reflecting bits of genetic material that may not be able to make someone sick or negatives reflecting low levels of virus that may still be infectious.

Testing reliability may be further limited by the testers themselves, with sampling along different portions of the respiratory tract or even by different staff members leading to different laboratory results. It’s also unknown whether asymptomatic individuals are shedding different quantities of virus than those with symptoms, a drawback of the qualitative testing performed by most labs. Further, testing only for active virus instead of antibodies ignores the vast number of individuals who may have had and cleared an asymptomatic or mild infection, an important factor for understanding herd immunity.

Lastly, Drs. DeBiasi and Delaney point out, the study only tested for viral shedding from the respiratory tract even though multiple studies have detected the virus in other bodily fluids, including stool. It’s unknown what role these other sources might play in the spread of this disease.

Drs. DeBiasi and Delaney note that each of these findings and additional questions could affect public health efforts continually being developed and refined to bring COVID-19 under control in the U.S. and around the world. Children’s National has added their own research to these efforts, with ongoing studies to assess how SARS-CoV-2 infections proceed in children, including how antibodies develop both at the individual and population level.

“Each of these pieces of information that we, our collaborators and other scientists around the world are working to gather,” says Dr. DeBiasi, “is critical for developing policies that will slow the rate of viral transmission in our community.”

coronavirus

Higher COVID-19 rates seen in minority socioeconomically disadvantaged children

coronavirus

Minority and socioeconomically disadvantaged children have significantly higher rates of COVID-19 infection, a new study led by Children’s National Hospital researchers shows.

Minority and socioeconomically disadvantaged children have significantly higher rates of COVID-19 infection, a new study led by Children’s National Hospital researchers shows. These findings, reported online August 5 in Pediatrics, parallel similar health disparities for the novel coronavirus that have been found in adults, the authors state.

COVID-19, an infection caused by the novel coronavirus SARS-CoV-2 that emerged in late 2019, has infected more than 4.5 million Americans, including tens of thousands of children. Early in the pandemic, studies highlighted significant disparities in the rates of infection in the U.S., with minorities and socioeconomically disadvantaged adults bearing much higher burdens of infection. However, says Monika Goyal, M.D., M.S.C.E, a pediatric emergency medicine specialist and associate division chief in the Division of Emergency Medicine at Children’s National whose research focuses on health disparities, it’s been unclear whether these disproportionate rates of infection also extend to youth.

To investigate this question, she and her colleagues looked to data collected between March 21, 2020, and April 28, 2020, from a drive-through/walk-up COVID-19 testing site affiliated with Children’s National — one of the first exclusively pediatric testing sites for the virus in the U.S. To access this free testing site, funded by philanthropic support, patients between the ages of 0 and 22 years needed to meet specific criteria: mild symptoms and either known exposure, high-risk status, family member with high-risk status or required testing for work. Physicians referred patients through an online portal that collected basic demographic information, reported symptoms and the reason for referral.

When Dr. Goyal and her colleagues analyzed the data from the first 1,000 patients tested at this site, they found that infection rates differed dramatically among different racial and ethnic groups. While about 7% of non-Hispanic white children were positive for COVID-19, about 30% of non-Hispanic Black and 46% of Hispanic children were positive.

“You’re going from about one in 10 non-Hispanic white children to one in three non-Hispanic Black children and one in two Hispanic children. It’s striking,” says Dr. Goyal.

Using data from the American Families Survey, which uses five-year census estimates derived from home address to estimate median family income, the researchers separated the group of 1,000 patients into estimated family income quartiles. They found marked disparities in COVID-19 positivity rates by income levels: while those in the highest quartile had infection rates of about 9%, about 38% of those in the lowest quartile were infected.

There were additional disparities in exposure status, Dr. Goyal adds. Of the 10% of patients who reported known exposure to COVID-19, about 11% of these were non-Hispanic white. However, non-Hispanic Black children were triple this number.

Although these numbers show clear disparities in COVID-19 infection rates, the authors are now trying to understand why these disparities occur and how they can be mitigated.

“Some possible reasons may be socioeconomic factors that increase exposure, differences in access to health care and resources, as well as structural racism,” says Dr. Goyal.

She adds that Children’s National is working to address those factors that might increase risk for COVID-19 infection and poor outcomes by helping to identify unmet needs — such as food and/or housing insecurity — and steer patients toward resources when patients receive their test results.

“As clinicians and researchers at Children’s National, we pride ourselves on not only being a top-tier research institution that provides cutting-edge care to children, but by being a hospital that cares about the community we serve,” says Denice Cora-Bramble, M.D., M.B.A., chief medical officer of Ambulatory and Community Health Services at Children’s National and the research study’s senior author. “There’s still so much work to be done to achieve health equity for children.”

Other Children’s National researchers who contributed to this study include Joelle N. Simpson, M.D.; Meleah D. Boyle, M.P.H, Gia M. Badolato, M.P.H; Meghan Delaney, D.O,. M.P.H.; and Robert McCarter Jr., Sc.D.

Youssef Kousa

Dr. Youssef Kousa awarded Pediatric Epilepsy Research Grant

zika virus

The Child Neurology Foundation has awarded Youssef A. Kousa, M.S., D.O., Ph.D., the 2020 Pediatric Epilepsy Research Foundation Shields Research Grant. The funds will support his work on identifying genetic risk factors in congenital Zika syndrome.

The Child Neurology Foundation has awarded Youssef A. Kousa, M.S., D.O., Ph.D., physician-scientist within the Division of Neurology at Children’s National Hospital, and founder and director of the Zika Genetics Consortium, the 2020 Pediatric Epilepsy Research Foundation Shields Research Grant. The funds will support his work on identifying genetic risk factors in congenital Zika syndrome.

This prestigious grant provides $100,000 of research funding to help identify treatments and cures for pediatric neurologic diseases. It will allow Dr. Kousa to test the hypothesis that rare genetic variants in individuals contributed to being affected with congenital Zika syndrome and the severity of the phenotype for those who were affected.

“Despite decades of research, identifying those at greatest risk of congenital infection or being severely affected remains an elusive goal,” says Dr. Kousa. “This research is important because identifying genetic risk or protective factors for developmental brain malformations can help teach us how the brain develops.”

Youssef Kousa

In 2015, Dr. Kousa established the Zika Genetic Consortium to investigate whether maternal and fetal genetic factors can modify the risk of brain injury from congenital infections.

Dr. Kousa adds that this work will provide key insights into maternal and fetal genetic factors that can contribute to brain malformations. The hope is that these insights may one day translate into targeted prevention efforts.

“Dr. Kousa’s project is very creative and has a fantastic opportunity to look at factors of Zika on brain development,” says William D. Gaillard, M.D., division chief of both Epilepsy and Neurophysiology, and Neurology at Children’s National. “This is a very competitive award. It’s a tremendous achievement that few accomplish.”

Children’s National is the leading site for this international research study.

In 2015, Dr. Kousa established the Zika Genetic Consortium to investigate whether maternal and fetal genetic factors can modify the risk of brain injury from congenital infections. Dr. Kousa is the principal investigator of the consortium, which includes 19 co-investigators representing 13 different institutions.

The consortium is bringing together cohorts of 12,000 mother-infant participants retrospectively and prospectively. These cohorts come from 15 international health centers in seven countries in collaboration with partners at the National Institutes of Health, and the Centers for Disease Control and Prevention.

“This support gives us the opportunity to test our hypothesis,” says Dr. Kousa. “We also hope what we continue to learn about Zika can play a role in helping us understand other congenital infections and neurodevelopment diseases.”

The science-policy interface

We can do better: Lessons learned on COVID-19 data sharing can inform future outbreak preparedness

Since COVID-19 emerged late last year, there’s been an enormous amount of research produced on this novel coronavirus disease. But the content publicly available for this data and the format in which it’s presented lack consistency across different countries’ national public health institutes, greatly limiting its usefulness, Children’s National Hospital scientists report in a new study. Their findings and suggestions, published online August 19 in Science & Diplomacy, could eventually help countries optimize their COVID-19-related data — and data for future outbreaks of other diseases — to help further new research, clinical decisions and policy-making around the world.

Recently, explains study senior author Emmanuèle Délot, Ph.D., research faculty at Children’s National Research Institute, she and her colleagues sought data on sex differences between COVID-19 patients around the world for a new study. However, she says, when they checked the information available about different countries, they found a startling lack of consistency, not only for sex-disaggregated data, but also for any type of clinical or demographic information.

“The prospects of finding the same types of formats that would allow us to aggregate information, or even the same types of information across different sites, was pretty dismal,” says Dr. Délot.

To determine how deep this problem ran, she and colleagues at Children’s National, including Eric Vilain, M.D., Ph.D., the James A. Clark Distinguished Professor of Molecular Genetics and the director of the Center for Genetic Medicine Research at Children’s National, and Jonathan LoTempio, a doctoral candidate in a joint program with Children’s National and George Washington University, surveyed and analyzed the data on COVID-19.

The research spanned data reported by public health agencies from highly COVID-19 burdened countries, viral genome sequence data sharing efforts, and data presented in publications and preprints.

PubMed entries with coronavirus

Publications with the term “coronavirus” archived in PubMed over time.

At the time of study, the 15 countries with the highest COVID-19 burden at the time included the US, Spain, Italy, France, Germany, the United Kingdom, Turkey, Iran, China, Russia, Brazil, Belgium, Canada, the Netherlands and Switzerland. Together, these countries represented more than 75% of the reported global cases. The research team combed through COVID-19 data presented on each country’s public health institute website, looking first at the dashboards many provided for a quick glimpse into key data, then did a deeper dive into other data on this disease presented in other ways.

The data content they found, says LoTempio, was extremely heterogeneous. For example, while most countries kept running totals on confirmed cases and deaths, the availability of other types of data — such as the number of tests run, clinical aspects of the disease such as comorbidities, symptoms, or admission to intensive care, or demographic information on patients, such as age or sex — differed widely among countries.

Similarly, the format in which data was presented lacked any consistency among these institutes. Among the 15 countries, data was presented in plain text, HTML or PDF. Eleven offered an interactive web-based data dashboard, and seven had comma-separated data available for download. These formats aren’t compatible with each other, LoTempio explains, and there was little to no documentation about where the data that supplies some formats — such as continually updated web-based dashboards — was archived.

The science-policy interface

Graphic representation of the science-policy interface.

Dr. Vilain says that a robust system is already in place to allow uniform sharing of data on flu genomes — the World Health Organization’s (WHO) Global Initiative on Sharing All Influenza Data (GISAID) — which has been readily adapted for the virus that causes COVID-19 and has already helped advance some types of research. However, he says, countries need to work together to develop a similar system for harmonized sharing other types of data for COVID-19. The study authors recommend that COVID-19 data should be shared among countries using a standardized format and standardized content, informed by the success of GISAID and under the backing of the WHO.

In addition, the authors say, the explosion of research on COVID-19 should be curated by experts who can wade through the thousands of papers published on this disease since the pandemic began to identify research of merit and help merge clinical and basic science.

“Identifying the most useful science and sharing it in a way that’s usable to most researchers, clinicians and policymakers, will not only help us emerge from COVID-19 but could help us prepare for the next pandemic,” Dr. Vilain says.

Other researchers who contributed to this study include D’Andre Spencer, MPH, Rebecca Yarvitz, BA, and Arthur Delot-Vilain.

Neisseria meningitidis bacteria

Case report highlights importance of antibiotic stewardship

Neisseria meningitidis bacteria

Neisseria meningitidis is the leading cause of bacterial meningitis in adolescents and an important cause of disease in younger children as well.

A recent meningitis case treated at Children’s National Hospital raises serious concerns about a rise in antibiotic resistance in the common bacterium that caused it, researchers from the hospital write in a case report. Their findings, published online August 3 in the Journal of the Pediatric Infectious Disease Society, could change laboratory and clinical practice across the U.S. and potentially around the globe.

Neisseria meningitidis is the leading cause of bacterial meningitis in adolescents and an important cause of disease in younger children as well, say case report authors Gillian Taormina, D.O., a third year fellow in Pediatric Infectious Diseases at Children’s National, who was on service for this recent case, and Joseph Campos, Ph.D., D(ABMM), FAAM, director of the Microbiology Laboratory and the Infectious Diseases Molecular Diagnostics Laboratory at Children’s National. As standard clinical practice in the U.S., they explain, patients who are thought to have this infection are typically treated first with the broad spectrum antibiotic ceftriaxone while they wait for a microbiology lab to identify the causative organism from blood or cerebrospinal fluid samples. Once the organism is identified as N. meningitidis, patients are typically treated with penicillin or ampicillin, antibiotics with a narrower spectrum of activity that’s less likely to lead to ceftriaxone resistance. Family members and other close contacts are often prophylactically treated with an antibiotic called ciprofloxacin.

Because N. meningitidis has historically been sensitive to these antibiotics, most laboratories do not perform tests to confirm drug susceptibility, Dr. Campos says. But the protocol at Children’s National is to screen these isolates for penicillin and ampicillin resistance with a rapid 5-minute test. The isolate from Dr. Taormina’s five-month-old patient – a previously healthy infant from Maryland who came to the Children’s National emergency room after six days of fever and congestion – yielded surprising results: N. meningitidis grown from the patient’s blood was positive for beta-lactamase, an enzyme that destroys the active component in the family of antibiotics that includes penicillin and ampicillin. This isolate was also found resistant to ciprofloxacin.

“The lab used a rapid test, and after just a few minutes, it was positive,” Dr. Campos says. “We did it again to make sure it was accurate, and the results were reproducible. That’s when we knew we needed to share this finding with the public health authorities.”

Dr. Campos, Dr. Taormina and their colleagues sent samples of the antibiotic-resistant bacteria first to the Washington, D.C. Public Health Laboratory and the Maryland Department of Health, and later to the Centers for Disease Control and Prevention (CDC). When the CDC asked other state laboratories to send their own N. meningitidis samples to be tested, 33 were positive for beta-lactamase. And like the bacterium isolated from Dr. Taormina’s patient, 11 of these were also resistant to ciprofloxacin.

“These bacteria wouldn’t have been susceptible to the common antibiotics that we would normally use for this infection,” Dr. Taormina says, “so it’s entirely possible that the infections caused by these bacteria could have been treated inappropriately if doctors used the standard protocol.”

Dr. Taormina says that her patient cleared his infection after staying on ceftriaxone, the original antibiotic he’d been prescribed, for the recommended seven days. His six family members and close contacts were prophylactically treated with rifampin instead of ciprofloxacin.

Although this case had a positive outcome, Dr. Campos says it raises the alarm for other N. meningitidis infections in the U.S., where antibiotic resistance is a growing concern. The danger is even higher in other countries, where the vaccine that children in the U.S. commonly receive for N. meningitidis at age 11 isn’t available.

In the meantime, Drs. Taormina and Campos say their case highlights the need for the appropriate use of antibiotics, known as antibiotic stewardship, which is only possible with close partnerships between infectious disease doctors and microbiology laboratories.

“Our lab and the infectious diseases service at Children’s National interact every day on cases like this to make sure we’re doing the best job we can in diagnosing and managing infections,” says Dr. Campos. “We’re a team.”

Other Children’s National authors who contributed to this case report include infectious disease specialist Benjamin Hanisch, M.D.

mother measuring sick child's temperature

Connections between Kawasaki disease and MIS-C

mother measuring sick child's temperature

A new review article enumerates some key similarities and differences between MIS-C and Kawasaki disease.

Since May 2020, there has been some attention in the general public and the news media to a specific constellation of symptoms seen in children with COVID-19 or who have been exposed to COVID-19. For a time, headlines even called it a “Kawasaki-like” disease. At first glance, both the symptoms and the effective treatments are remarkably similar. However, a new review published in Trends in Cardiovascular Medicine finds that under closer scrutiny, the two conditions have some interesting differences as well.

“At the beginning of this journey, we thought we might be missing actual cases of Kawasaki disease because we identified a few patients who presented late and developed coronary artery abnormalities,” says Ashraf Harahsheh, M.D., senior author of the review article, “Multisystem inflammatory syndrome in children: Is there a linkage to Kawasaki disease?” and a cardiologist at Children’s National Hospital. “But as time passed, children exposed to COVID-19 started to present with a particular constellation of symptoms that actually had some important similarities and distinctions from Kawasaki.”

Similarities between Kawasaki disease and MIS-C

Both disease patterns seem to have a common trigger that provokes the inflammatory cascade reaction in genetically susceptible children, the authors write. However, there is also early evidence that children with each disease have different genetic markers, meaning different populations are genetically susceptible to each disease.

Additionally, the authors found that the massive activation of pro-inflammatory cytokines seen in MIS-C, also known as a “cytokine storm,” overlaps with a similar occurrence seen in Kawasaki disease, adult COVID-19 patients, toxic shock syndrome and some other viral infections.

Primary differences between Kawasaki disease and MIS-C

Overall, when compared to Kawasaki disease, children with MIS-C tend to:

  • Present at an older age
  • Have a more profound form of inflammation
  • Have more gastrointestinal manifestation
  • Show different laboratory findings
  • Have greater risk of left ventricle dysfunction and shock

Further study of both Kawasaki and MIS-C needed

Despite noted differences, the authors are also careful to credit the documented similarities between Kawasaki disease and MIS-C as a key to the quick identification of the new syndrome in children. The study of Kawasaki disease also gave clinicians a valid basis to begin developing diagnostic recommendations and treatment protocols.

The review’s first author Yue-Hin Loke, M.D., who is also a cardiologist at Children’s National, says, “The quick recognition of MIS-C is only possible because of meticulous research conducted by Dr. Tomisaku Kawasaki, who recently passed away on June 5th, 2020. Even though some aspects of both are still shrouded in mystery, the previous research and clinical advancements made in Kawasaki disease set the stage for our immediate response to MIS-C.”

“Previous research provided key information for cardiologists facing this new syndrome, including the necessity of routine echocardiograms to watch for coronary artery abnormalities (CAAs) and for use of  intravenous immunoglobulin (IVIG) to mitigate  the development of CAAs,” says Charles Berul, M.D., chief of Cardiology at Children’s National and a co-author. “Both of these factors have played a key role in reducing the mortality of MIS-C to almost zero.”

The authors note that more research is needed to understand both Kawasaki disease and the specifics of MIS-C, but that what is learned about the mechanisms of one can and should inform study and treatment of the other. And in the meantime, caution and continued surveillance of these patients, especially with respect to coronary artery and myocardial function, will continue to improve the long-term outcomes for both syndromes.

screenshot of pitch competition

“COVID-19-edition” of pediatric medical device competition announces winners

NCC-PDI-COVID19-Edition-Competition

“COVID-19-edition” of pediatric medical device competition announces finalists

Sixteen finalists have been selected in the “Make Your Medical Device Pitch for Kids!” special COVID-19 edition competition presented by the National Capital Consortium for Pediatric Device Innovation (NCC-PDI). Representing innovations in COVID-19-related pediatric medical devices, the finalists will compete in a virtual pitch event held on July 20,2020 where up to $250,000 in awards will be given. Winners will receive grant funding of up to $50,000.

The competition is led by NCC-PDI co-founders the Sheikh Zayed Institute for Pediatric Surgical Innovation at Children’s National Hospital and the A. James Clark School of Engineering at the University of Maryland and powered by nonprofit accelerator and NCC-PDI member, MedTech Innovator.

This competition focuses on pediatric medical devices that support home health monitoring and telehealth, and improve sustainability, resiliency and readiness in diagnosing and treating children during a pandemic.

“As COVID -19 continues to threaten the health of families and children across the nation, we must continue to seek new and better ways to deliver quality care during a pandemic and offer technology solutions to reopen more safely,” says Kolaleh Eskandanian, Ph.D., MBA, PMP, vice president and chief innovation officer at Children’s National Hospital and principal investigator of NCC-PDI. “Competitions like this are vital to get ahead of the healthcare challenge that COVID-19 presents in the world of pediatrics. By supporting innovation, we provide critical breakthroughs that can positively impact the lives of the children and families we serve.”

Along with grant funding, one company from the competition will be selected by Johnson & Johnson Innovation – JLABS to receive a one-year residency at JLABS @ Washington, DC, which will be located on the new Children’s National Research & Innovation Campus currently under construction. In addition to the 2021 JLABS residency, the awardee will have access to the JLABS community and expert mentoring by the Johnson & Johnson family of companies.

The 16 pediatric device innovations that judges selected for the final competition include:

  • Adipomics – simple and fast, one-step COVID-19 diagnostic kit for home or school use
  • Bloom Standard (Kaaria) – wearable, AI-driven ultrasound for infant cardiac and pulmonary screening and diagnostics
  • CereVu Medical – remote COVID-19 sensor, monitor and centralized data hub that measures blood oxygen saturation, muscle aches, temperature and trouble breathing
  • Children’s Hospital of Philadelphia – a transparent reusable DIY origami facemask that reveals facial expressions & improves communication
  • Children’s National Hospital – Lab-on-a-chip device for high-throughput combination drug screening
  • Hopscotch – gamified cognitive behavioral therapy-based computer exercises to encourage kids to stay engaged and complete treatment programs
  • Medichain – cost effective, accurate COVID-19 test with results in minutes and can detect the virus in the early stage
  • Medipines – monitor device that displays critical respiratory parameters analyzed from a patient’s breathing sample
  • OtoPhoto – a smart otoscope that quickly and accurately aids diagnosis of ear infections for home telehealth use
  • OxiWear – continuous wear oxygen-monitoring device used to reduce patient insecurity
  • REALTROMINS – real time, continuously updated predictive analytics to identify impending mortality in children
  • SurgiPals – digital assistant and urine biochemical sensor to aid in outpatient care of children with COVID-19
  • TGV-Dx – a novel, phenotype-based test system for rapid selection of effective antibiotic regimen
  • VitaScope – quick, accurate infant vital signs to facilitate high-quality virtual care
  • Vitls – wearable platform for remote patient monitoring of the vitals clinicians require to assess a patient
  • X-Biomedical – rugged, portable smart ICU ventilator for pediatric and adult patients

Funding for the competition is made possible by a grant from the Food and Drug Administration (FDA) and a philanthropic gift from Mei Xu, founder of e-commerce platform Yes She May, a site dedicated to women-owned brands.

In addition to this COVID-19 special edition event, NCC-PDI recently revealed the ten finalists in its prestigious 8th annual “Make Your Medical Device Pitch for Kids!” competition. Cardiovascular, NICU, and orthopaedic and spine device innovations are the focus of the fall competition, taking place October 7, 2020 as part of the 8th Annual Symposium on Pediatric Device Innovation, presented by Children’s National and co-located with The MedTech Conference powered by AdvaMed.

pitch competition finalists

zika virus

The importance of following the Zika population long-term

zika virus

Invited commentary by Sarah Mulkey, M.D., Ph.D., prenatal-neonatal neurologist in the Division of Prenatal Pediatrics at Children’s National Hospital, emphasizes importance of studying the Zika population long term.

A simple measuring tape could be the key to identifying which children could develop neurological and developmental abnormalities from Zika virus exposure during gestation. This is according to an invited commentary published July 7, 2020 in JAMA Network Open and written by Sarah Mulkey, M.D., Ph.D., prenatal-neonatal neurologist in the Division of Prenatal Pediatrics at Children’s National Hospital.

Zika virus (ZIKV), first isolated in 1947 in the Zika Forest in Uganda, made headlines in 2015-2016 for causing a widespread epidemic that spread through parts of North and South America, several islands in the Pacific and parts of Southeast Asia. Although previously linked with no or mild symptoms, researchers discovered during this epidemic that Zika can cross from a pregnant woman to her gestating fetus, leading to a syndrome marked by microcephaly (decreased brain growth), abnormal neurologic tone, vision and hearing abnormalities and joint contractures.

“For the 90% to 95% of ZIKV-exposed infants who fortunately were not born with severe abnormalities at birth and were normocephalic, our hope was that these children would have normal neurodevelopmental outcomes,” Dr. Mulkey writes in the commentary. “Unfortunately, this has not been the case.”

Her commentary expands on a study in the same issue entitled “Association between exposure to antenatal Zika virus and anatomic and neurodevelopmental abnormalities in children” by Cranston et al. In this study, the researchers find that head circumference — a simple measure taken regularly at postnatal appointments in the U.S. — can provide insight into which children were most likely to develop neurologic abnormalities. Their findings show that 68% of those whose head circumference was in the “normal” range at birth developed neurologic problems. Those whose head circumference was at the upper end of this range were significantly less likely to have abnormalities than those at the lower end.

Just this single measurement offers considerable insight into the risk of developing neurologic problems after Zika exposure. However, notes Dr. Mulkey, head circumference growth trajectory is also key. Of the 162 infants whose heads were initially in the normocephalic range at birth, about 10.5% went on to develop microcephaly in the months after birth.

“Because early head growth trajectory is associated with cognitive outcomes in early childhood,” Dr. Mulkey writes, “following the head circumference percentile over time can enable recognition of a child with increased risk for poor outcome who could benefit from early intervention therapies.”

This simple assessment could be significantly augmented with neuroimaging, she adds. The study by Cranston et al., as well as others in the field, have shown that brain imaging often reveals problems in ZIKV-exposed children, such as calcifications and cerebral atrophy, even in those with normal head circumferences. This imaging doesn’t necessarily need to take place at birth, Dr. Mulkey says. Postnatal development of microcephaly, failure to thrive or developmental delay can all be triggers for imaging later on.

Together, Dr. Mulkey says, the study by Cranston et al. and others that focus on ZIKV-exposed children support the need for following these patients long term. Children exposed to ZIKV in the epidemic nearly five years ago are now approaching school age, a time fraught with more complicated cognitive and social demands. Through her own research at Children’s National’s Congenital Zika Virus Program and collaboration with colleagues in Colombia, Dr. Mulkey is following multiple cohorts of ZIKV exposed children as they grow. She recently published a study on neurological abnormalities in one of these cohorts in JAMA Pediatrics in January 2020.

“It’s really important to follow these children as long as possible so we’ll really know the outcomes of this virus,” Dr. Mulkey says.

Staphylococcus

Airway microbial diversity in children with Cystic Fibrosis

Staphylococcus

Despite having less overall microbial richness, children with Cystic Fibrosis displayed a greater presence of Staphylococcus species.

Cystic Fibrosis (CF) is a disease that mainly affects the lungs and arises from mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene that encodes for the CFTR membrane protein located on certain secretory cells. CFTR dysfunction leads to complications such as the production of abnormally viscous mucus which causes chronic suppurative lung infections that require antibiotics to treat. New drugs called CFTR modulators can help improve CFTR protein function and some are even FDA-approved for use in children. In addition to CFTR protein function, the lung’s resident microbiota and its richness of diversity, plays an important role in both health and disease, including CF.

In a new study published in Heliyon, scientists from Children’s National Hospital examined the difference in the upper airway microbiome between children with CF and healthy controls. Age-related differences among children with CF and the impact of CFTR modulators on microbial diversity were also assessed. Seventy-five children between 0-6 years of age participated in the study, including 25 children with CF and 50 healthy controls. For CF participants, oropharyngeal swabs and clinical data were obtained from the biorepository, while data for controls were obtained during a single clinical visit.

Analysis revealed that CF patients had less microbial diversity and different composition of the upper airway microbiome compared to age similar controls, a finding that is consistent with research on the lower airways. Despite having less overall microbial richness, children with CF displayed a greater presence of Staphylococcus species, (a main driver of the pulmonary exacerbations characteristic of CF), three Rothia operational taxonomic units (OTUs) and two Streptococcus OTUs. CF patients received a significantly higher number of antibiotics courses within the previous year compared to healthy controls, and further investigation will be necessary to understand the impact of antibiotics on the upper airway microbiome of infants and children with CF.

Longitudinal comparisons to study effects of age and CFTR modulation on the microbiome of children with CF were also undertaken. Younger CF patients (those 0 to <3 years of age at study enrollment), were more likely to have culturally-normal respiratory flora and more stable microbial composition over time than older CF patients (those ≥ 3–6 years of age at study enrollment), with no significant differences in alpha or beta diversity. Older CF patients were significantly more likely to be receiving a CFTR modulator than younger patients. CF patients receiving CFTR modulators had higher microbial diversity measures than those not receiving CFTR modulators and were closer (but still significantly lower) in microbial richness to healthy controls. No significant differences in beta diversity were found between the three groups.

This study adds to the growing body of evidentiary support for the use of CFTR modulators in improving airway microbial diversity in CF patients. Future studies with a larger cohort and greater focus on the impact on early initiation of CFTR modulators on microbial diversity and clinical outcomes is necessary.

The study, “Airway microbial diversity is decreased in young children with cystic fibrosis compared to healthy controls but improved with CFTR modulation,” was recently published in Heliyon. The lead author is Andrea Hahn, M.D., M.S., an investigator at the Children’s National Research Institute. Notable authors include Aszia Burrell; Emily Ansusinha; Hollis Chaney, M.D.; Iman Sami, M.D.; Geovanny F. Perez, M.D.; Anastassios C. Koumbourlis, M.D., M.P.H.; Robert McCarter, Sc.D.; and Robert J. Freishtat, M.D., M.P.H..

NCC-PDI-COVID19-Edition-Competition

NCC-PDI launches special pediatric medical device competition focused on covid-19 innovations

Kolaleh-Eskandanian

“Innovation in children’s medical devices consistently lags behind that of adults and we need to change that if we are to confront the challenge to children’s health of COVID-19 and future pandemics,” said Kolaleh Eskandanian, Ph.D., MBA, PMP, vice president and chief innovation officer at Children’s National Hospital and principal investigator of NCC-PDI. 

As medical data increasingly highlights the serious impact of COVID-19 on children’s health, the National Capital Consortium for Pediatric Device Innovation (NCC-PDI) announces a special pitch competition focused on COVID-19-related pediatric medical devices that support home health monitoring and telehealth, and improve sustainability, resiliency and readiness in diagnosing and treating children during a pandemic.

The “Make Your Medical Device Pitch for Kids!” COVID19 edition is led by NCC-PDI co-founders the Sheikh Zayed Institute for Pediatric Surgical Innovation at Children’s National Hospital and the A. James Clark School of Engineering at the University of Maryland and powered by nonprofit accelerator and NCC-PDI member, MedTech Innovator. The finals in the virtual pitch event will be held on July 20, 2020. Winners will each receive a grant award of up to $50,000.

“Despite early reports that COVID-19 posed less of a threat to children, a recent study published by Children’s National shows that considerable numbers of pediatric patients are hospitalized and become critically ill from the disease,” said Kolaleh Eskandanian, Ph.D., MBA, PMP, vice president and chief innovation officer at Children’s National Hospital and principal investigator of NCC-PDI. “Innovation in children’s medical devices consistently lags behind that of adults and we need to change that if we are to confront the challenge to children’s health of COVID-19 and future pandemics.”

Funding for the competition is made possible by a grant from the Food and Drug Administration (FDA) and a philanthropic gift from Mei Xu, founder of e-commerce platform Yes She May, a site dedicated to women-owned brands.

Along with grant funding, one company from the competition will be selected by Johnson & Johnson Innovation – JLABS to receive a one-year residency at JLABS @ Washington, DC, which will be located on the new Children’s National Research & Innovation Campus currently under construction. In addition to the 2021 JLABS residency, the awardee will have access to the JLABS community and expert mentoring by the Johnson & Johnson family of companies.

Submissions for the competition are being accepted now through Monday, July 6, 2020z at the NCC-PDI website, Innovate4Kids.org, where complete details can be found.

NCC-PDI is one of five members in the FDA’s Pediatric Device Consortia Grant Program created to support the development and commercialization of medical devices for children, which lags significantly behind the progress of adult medical devices. Along with Children’s National, University of Maryland and Medtech Innovator, NCC-PDI members include accelerator BioHealth Innovation and design firm Archimedic.

To date, NCC-PDI has mentored over 100 medical device sponsors to help advance their pediatric innovations, with seven devices having received either their FDA market clearance or CE marking. The consortium hosts a major pediatric pitch competition annually that showcases and awards promising pediatric innovations and provides a first-of-its-kind pediatric-focused accelerator program for finalists.

NCC-PDI-COVID19-Edition-Competition