Surgical Innovation

illustration of diseased liver

Dominant Fontan approach may be associated with increased liver cirrhosis

illustration of diseased liver

The amount of long-term liver cirrhosis in children with single ventricle congenital heart disease who underwent the Fontan procedure may depend on which surgical approach is chosen by the pediatric cardiac surgeon.

The amount of long-term liver cirrhosis in children with single ventricle congenital heart disease who underwent the Fontan procedure may depend on which surgical approach is chosen by the pediatric cardiac surgeon, according to researchers at Children’s National Hospital who presented their findings this week at the American Association of Thoracic Surgery annual meeting. The full manuscript appears in the Journal of Thoracic and Cardiovascular Surgery.

What this means

Senior study author Yves d’Udekem, M.D., Ph.D., chief of Cardiac Surgery at Children’s National, says that the vast majority of Fontan procedures in the United States use an extracardiac conduit approach to redirect blood flow to the lungs. However, a retrospective review of 332 patients who underwent the Fontan at Children’s National showed that children who received the extracardiac Fontan may experience liver cirrhosis at a rate of 30% after 15 years compared to the lateral tunnel approach which showed 15-year liver cirrhosis at a significantly lower rate of 4.4%. The lateral tunnel was a well-established method pioneered in Europe by pediatric cardiac surgeon Marc de Leval in the 1980s. This technique lost traction in the field and people started in the 1990s to perform a variation of the technique called the extracardiac Fontan because it was thought that it would be giving more favorable flows and protect the patients against rhythm issues. Thirty years later, these predictions did not reveal themselves to be true.

“Since the 1990s, the vast majority of Fontan procedures in the United States are performed creating an extracardiac conduit rather than the lateral tunnel,” says Dr. d’Udekem. “But what we see when we follow long-term outcomes of these children is a consequence not reported before.”

Children’s National leads the way

Dr. d’Udekem and the research team, including presenter and first author Eiri Kisamori, M.D., a cardiac surgery fellow at Children’s National, are the first to report these findings based on reviews of 15-year outcome data. These retrospective reviews of long-term outcomes are a critical tool to inform and improve clinical approaches with the goal of optimizing the long-term quality of life for children born with these critical congenital conditions.

What’s next

While more research is needed, the authors hypothesize that the size of the conduit for blood flow may be the culprit for higher levels of liver damage. For children who have already received an extracardiac Fontan, Dr. d’Udekem says that widening their existing conduit in a reoperation may successfully improve blood flow to the liver. For future procedures, he notes that in his own practice, he now uses the lateral tunnel approach whenever possible.

Read the study: Alarming rate of liver cirrhosis after the small conduit Extracardiac Fontan. A comparative analysis with the Lateral Tunnel.

The endovascular embolic hemispherectomy team.

New hemimegalencephaly procedure is all about teamwork

Children’s National experts pioneered a novel approach of inducing strokes to stop seizures and improve neurodevelopmental outcomes in newborns under three months old with hemimegalencephaly (HME). The procedure, called an endovascular embolic hemispherectomy, can be safely used to provide definitive treatment of HME-related epilepsy in neonates and young infants. Monica Pearl, M.D., neurointerventional radiologist, and Panagiotis Kratimenos, M.D., Ph.D., neonatologist, discuss why having a multidisciplinary team skilled at this procedure is the reason we’re the only center in the world capable of providing this treatment.

baby with brain monitor

The history behind the novel hemimegalencephaly procedure

Traditionally, when a baby is diagnosed with hemimegalencephaly (HME), doctors turn to a hemispherectomy at 3 months of age, which involves surgically removing half of a baby’s brain. At Children’s National Hospital, our doctors pioneered the endovascular embolic hemispherectomy, an approach using induced controlled strokes to eliminate the affected part of the brain, halting seizures. Monica Pearl, M.D., neurointerventional radiologist, and Tammy Tsuchida, M.D., Ph.D., neonatal neurologist, talk about this life-changing procedure.

Angelique and family pose in front of their house

Inducing strokes to better treat babies with hemimegalencephaly

When a family from Texas received a shocking diagnosis for their newborn daughter, they knew there was one place they needed to go – Children’s National Hospital in Washington, D.C. At birth, Angelique was diagnosed with a rare and devastating condition known as hemimegalencephaly (HME) which causes uncontrollable and frequent seizures. Monica Pearl, M.D., neurointerventional radiologist, and the team at Children’s National have pioneered an approach to treat HME, where they induce controlled strokes to eliminate the affected part of the brain, halting seizures in their tracks. They’re the only team in the world doing this work. Angelique’s parents knew the clock was ticking — every day they waited meant irreversible damage to their daughter’s developing brain.

Cayden rides a horse with her father

Earliest hybrid HLHS heart surgery kids thrive 5 years later

Cayden rides a horse with her father

Five years ago, Cayden was born 6 weeks early weighing less than four pounds and at risk of dying from her critical congenital heart disease. Today, she’s a happy five-year-old who is excited to start kindergarten this fall.

Five years ago, Cayden was born 6 weeks early weighing less than four pounds and at risk of dying from her critical congenital heart disease. Today, she’s a happy five-year-old who is excited to start kindergarten this fall.

Early diagnosis of her hypoplastic right ventricle, double inlet left ventricle and critical coarctation of the aorta allowed for the team at Children’s National Hospital to create a careful plan for safe delivery and to offer an innovative hybrid HLHS surgical approach at the hospital within 24 hours after she was born.

“Truly in my own heart, I do not believe Cayden would be alive today without Dr. Yerebakan and those early hybrid procedures,” says her mom, Casey.

Can Yerebakan, M.D., associate chief of Cardiac Surgery, and Joshua Kanter, M.D., director of Interventional Cardiology, have performed more of these hybrid procedures together at Children’s National than just about anywhere else in the United States. And they are the only team in the country using a special toothpick-sized flexible stent in the ductus. They worked directly with the U.S. Food and Drug Administration to bring these right-sized tiny stents to the U.S. from Europe.

Cayden was one of the first babies to benefit from this cutting-edge approach. In the five-plus years since then, more than 50 high-risk babies, some born as early as 28 weeks of gestation or weighing as little as 2 pounds at birth, have also benefited from hybrid procedures. Soon, the team will start performing hybrid procedures with catheters only, preventing an incision in the chest. This will allow the smallest babies to get the care they need with fewer open-chest procedures.

Read the rest of Cayden’s story here.

IPOS logo

Global gathering of orthopaedic leaders at IPOS

IPOS logoThe 2023 International Pediatric Orthopaedic Symposium (IPOS) was a comprehensive four-day conference that addressed a wide range of pediatric and adolescent orthopaedic conditions. The meeting focused on hands-on teaching and state-of-the-art surgical approaches to pediatric orthopaedic surgery.

“IPOS is unique in that, unlike many scientific meetings, there is less emphasis on original scientific content,” says Matthew Oetgen, M.D., chief of Orthopaedic Surgery and Sports Medicine at Children’s National Hospital and one of the faculty members of the symposium. “Instead, the focus is on providing instruction, hands-on learning and the introduction of new technology.”

Some session highlights include:

  • Essentials of Pediatric Orthopaedics – lectures on upper extremity and lower extremity trauma.
  • The Course for Mid-Career Surgeons – a talk full of valuable insights on mentorship and paying it forward.
  • The Author’s Preferred Techniques – surgical technique lectures on cavus foot reconstruction and repairing pediatric thumb fractures.

“Each of these sessions offer unique takeaways for a variety of learning levels from residents and fellows to course faculty members like myself,” says Dr. Oetgen. “Overall, this year’s IPOS was very educational and I was proud to have had a number of Children’s National faculty attend and experience the course.”

Dr. Oetgen participated in several sessions:

  • Essentials of Pediatric Orthopaedics II and III – Session Moderator
  • Essentials of Pediatric Orthopaedics: Back Pain, Kyphosis and Disc Disease – Lecture
  • Top Gun Surgical Simulation Competition – Faculty Leader
  • Hands-On Workshop – Pinning an Elbow – Faculty
  • Reconsidering How You Should Code for Fractures
  • EMR Hacks to Improve Wellness and Patient Experience – Lecture
  • Industry Spotlight Session nView Medical – Next Generation Pediatric 3D Imaging and Navigation – Simplifying Your Current Surgical Workflow – Lecture
    • Children’s National is was the first pediatric hospital in the country to use the 3D imaging technology by nView Medical in the operating room. Researchers studied its impact in the area of pediatric spine surgery, navigation and imaging. The team continues to be a major investigator and knowledge leader with this technology. Moving forward, researchers plan to study the technology’s impact in pediatric orthopaedic surgery.


collage of news outlet logos

Children’s National in the News: 2023

collage of news outlet logos
Explore some of the notable medical advancements and stories of bravery that defined 2023, showcasing the steadfast commitment of healthcare professionals at Children’s National Hospital and the resilient spirit of the children they support. Delve into our 2023 news highlights for more.

1. COVID during pregnancy dramatically increases the risk of complications and maternal death, large new study finds

According to a study published in British Medical Journal Global Health, women who get COVID during pregnancy are nearly eight times more likely to die and face a significantly elevated risk of ICU admission and pneumonia. Sarah Mulkey, M.D., prenatal-neonatologist neurologist, discussed findings based on her work with pregnant women and their babies.

2. Rest isn’t necessarily best for concussion recovery in children, study says

A study led by Christopher Vaughan, Psy.D., pediatric neuropsychologist, suggests that — despite what many people may presume — getting kids back to school quickly is the best way to boost their chance for a rapid recovery after a concussion.

3. Pediatric hospital beds are in high demand for ailing children. Here’s why

David Wessel, M.D., executive vice president, chief medical officer and physician-in-chief, explained that one reason parents were still having trouble getting their children beds in a pediatric hospital or a pediatric unit after the fall 2022 respiratory surge is that pediatric hospitals are paid less by insurance.

4. Anisha Abraham details impact of social media use on children: ‘True mental health crisis’

Anisha Abraham, M.D., M.P.H., chief of the Division of Adolescent and Young Adult Medicine, joined America’s Newsroom to discuss the impact social media access has had on children’s mental health.
(FOX News)

5. Saving Antonio: Can a renowned hospital keep a boy from being shot again?

After 13-year-old Antonio was nearly killed outside his mom’s apartment, Children’s National Hospital went beyond treating his bullet wounds. Read how our Youth Violence Intervention Program team supported him and his family during his recovery.
(The Washington Post)

6. Formerly conjoined twins reunite with doctors who separated them

Erin and Jade Buckles underwent a successful separation at Children’s National Hospital. Nearly 20 years later they returned to meet with some of the medical staff who helped make it happen.
(Good Morning America)

7. Asthma mortality rates differ by location, race/ethnicity, age

Shilpa Patel, M.D., M.P.H., medical director of the Children’s National IMPACT DC Asthma Clinic, weighed in on a letter published in Annals of Allergy, Asthma & Immunology, asserting that the disparities in mortality due to asthma in the United States vary based on whether they occurred in a hospital, ethnicity or race and age of the patient.

8. How one Afghan family made the perilous journey across the U.S.-Mexico border

After one family embarked on a perilous journey from Afghanistan through Mexico to the U.S.-Mexico border, they eventually secured entry to the U.S. where Karen Smith, M.D., medical director of Global Services, aided the family’s transition and provided their daughter with necessary immediate medical treatment.

9. When a child is shot, doctors must heal more than just bullet holes

With the number of young people shot by guns on the rise in the U.S., providers and staff at Children’s National Hospital are trying to break the cycle of violence. But it’s not just the physical wounds though that need treating: young victims may also need help getting back on the right track — whether that means enrolling in school, finding a new group of friends or getting a job.
(BBC News)

10. This 6-year-old is a pioneer in the quest to treat a deadly brain tumor

Callie, a 6-year-old diagnosed with diffuse intrinsic pontine glioma, was treated with low-intensity focused ultrasound (LIFU) at Children’s National Hospital and is the second child in the world to receive this treatment for a brain tumor. LIFU is an emerging technology that experts like Hasan Syed, M.D., and Adrianna Fonseca, M.D., are trialing to treat this fatal childhood brain tumor.
(The Washington Post)

11. F.D.A. approves sickle cell treatments, including one that uses CRISPR

The FDA approved a new genetic therapy, giving people with sickle cell disease new opportunities to eliminate their symptoms. David Jacobsohn, M.B.A., M.D., confirmed that Children’s National Hospital is one of the authorized treatment centers and talked about giving priority to the sickest patients if they are on Vertex’s list.
(The New York Times)

12. 6-year-old fulfils wish to dance in the Nutcracker

After the potential need for open-heart surgery threatened Caroline’s Nutcracker performance, Manan Desai, M.D., a cardiac surgeon, figured out a less invasive procedure to help reduce her recovery time so she could perform in time for the holidays.
(Good Morning America)

2023 with a lightbulb

The best of 2023 from Innovation District

2023 with a lightbulbAdvanced MRI visualization techniques to follow blood flow in the hearts of cardiac patients. Gene therapy for pediatric patients with Duchenne muscular dystrophy. 3D-printed casts for treating clubfoot. These were among the most popular articles we published on Innovation District in 2023. Read on for our full list.

1. Advanced MRI hopes to improve outcomes for Fontan cardiac patients

Cardiac imaging specialists and cardiac surgeons at Children’s National Hospital are applying advanced magnetic resonance imaging visualization techniques to understand the intricacies of blood flow within the heart chambers of children with single ventricle heart defects like hypoplastic left heart syndrome. The data allows surgeons to make critical corrections to the atrioventricular valve before a child undergoes the single ventricle procedure known as the Fontan.
(3 min. read)

2. Children’s National gives first commercial dose of new FDA-approved gene therapy for Duchenne muscular dystrophy

Children’s National Hospital became the first pediatric hospital to administer a commercial dose of Elevidys (delandistrogene moxeparvovec-rokl), the first gene therapy for the treatment of pediatric patients with Duchenne muscular dystrophy (DMD). Elevidys is a one-time intravenous gene therapy that aims to delay or halt the progression of DMD by delivering a modified, functional version of dystrophin to muscle cells.
(2 min. read)

3. New model to treat Becker Muscular Dystrophy

Researchers at Children’s National Hospital developed a pre-clinical model to test drugs and therapies for Becker Muscular Dystrophy (BMD), a debilitating neuromuscular disease that is growing in numbers and lacks treatment options. The work provides scientists with a much-needed method to identify, develop and de-risk drugs for patients with BMD.
(2 min. read)

4. First infants in the U.S. with specially modified pacemakers show excellent early outcomes

In 2022, five newborns with life-threatening congenital heart disease affecting their heart rhythms were the first in the United States to receive a novel modified pacemaker generator to stabilize their heart rhythms within days of birth. Two of the five cases were cared for at Children’s National Hospital. In a follow-up article, the team at Children’s National shared that “early post-operative performance of this device has been excellent.”
(2 min. read)

5. AI: The “single greatest tool” for improving access to pediatric healthcare

Experts from the Food and Drug Administration, Pfizer, Oracle Health, NVIDIA, AWS Health and elsewhere came together to discuss how pediatric specialties can use AI to provide medical care to kids more efficiently, more quickly and more effectively at the inaugural symposium on AI in Pediatric Health and Rare Diseases, hosted by Children’s National Hospital and the Fralin Biomedical Research Institute at Virginia Tech.
(3 min. read)

6. AAP names Children’s National gun violence study one of the most influential articles ever published

The American Academy of Pediatrics (AAP) named a 2019 study led by clinician-researchers at Children’s National Hospital one of the 12 most influential Pediatric Emergency Medicine articles ever published in the journal Pediatrics. The findings showed that states with stricter gun laws and laws requiring universal background checks for gun purchases had lower firearm-related pediatric mortality rates but that more investigation was needed to better understand the impact of firearm legislation on pediatric mortality.
(2 min. read)

7. Why a colorectal transition program matters

Children’s National Hospital recently welcomed pediatric and adult colorectal surgeon Erin Teeple, M.D., to the Division of Colorectal and Pelvic Reconstruction. Dr. Teeple is the only person in the United States who is board-certified as both a pediatric surgeon and adult colorectal surgeon, uniquely positioning her to care for people with both acquired and congenital colorectal disease and help them transition from pediatric care to adult caregivers.
(3 min. read)

8. First-of-its-kind holistic program for managing pain in sickle cell disease

The sickle cell team at Children’s National Hospital received a grant from the Founders Auxiliary Board to launch a first-of-its-kind, personalized holistic transformative program for the management of pain in sickle cell disease. The clinic uses an inter-disciplinary approach of hematology, psychology, psychiatry, anesthesiology/pain medicine, acupuncture, mindfulness, relaxation and aromatherapy services.
(3 min read)

9. Recommendations for management of positive monosomy X on cell-free DNA screening

Non-invasive prenatal testing using cell-free DNA (cfDNA) is currently offered to all pregnant women regardless of the fetal risk. In a study published in the American Journal of Obstetrics and Gynecology, researchers from Children’s National Hospital provided context and expert recommendations for maternal and fetal evaluation and management when cfDNA screening is positive for monosomy X or Turner Syndrome.
(2 min. read)

10. Innovation in clubfoot management using 3D anatomical mapping

While clubfoot is relatively common and the treatment is highly successful, the weekly visits required for Ponseti casting can be a significant burden on families. Researchers at Children’s National Hospital are looking for a way to relieve that burden with a new study that could eliminate the weekly visits with a series of 3D-printed casts that families can switch out at home.
(1 min. read)

11. Gender Self-Report seeks to capture the gender spectrum for broad research applications

A new validated self-report tool provides researchers with a way to characterize the gender of research participants beyond their binary designated sex at birth. The multi-dimensional Gender Self-Report, developed using a community-driven approach and then scientifically validated, was outlined in a peer-reviewed article in the American Psychologist, a journal of the American Psychological Association.
(2 min. read)

12. Cardiovascular and bone diseases in chronic kidney disease

In a study published by Advances in Chronic Kidney Disease, a team at Children’s National Hospital reviewed cardiovascular and bone diseases in chronic kidney disease and end-stage kidney disease patients with a focus on pediatric issues and concerns.
(1 min. read)

Yves d’Udekem, M.D., Ph.D.,

Evidence and expertise drive cardiac surgery innovation at Children’s National Hospital

Yves d’Udekem, M.D., Ph.D.,

“Our goal is to do the difficult and the impossible,” says Yves d’Udekem, M.D., Ph.D.

“Our goal is to do the difficult and the impossible,” says Yves d’Udekem, M.D., Ph.D., chief of Cardiac Surgery at Children’s National Hospital.

Dr. d’Udekem and the cardiac surgeons at Children’s National apply technical skill and expertise to offer renewed hope for the highest risk children with critical congenital heart disease, including those with single ventricle anomalies like hypoplastic left heart syndrome.

“When families have nowhere else to turn, they can turn to us,” he adds.

Why it matters

The cardiac surgery team has welcomed families from across the United States and around the world who seek experts in the care of these critical heart conditions. Their experience is building an important evidence base for better surgical approaches that will improve long-term outcomes for children with many different types of congenital heart disease, but especially for single ventricle conditions.

Innovation in cardiac surgery

  • Hybrid surgical strategy: Cardiac Surgeon Can Yerebakan, M.D., and Interventional Cardiology Director Joshua Kanter, M.D., are national leaders in the use of a hybrid surgical strategy for high-risk infants with single ventricle heart conditions. They can perform this procedure on babies as small as 1.1 kilograms. It allows critical time for the lungs and other organs to recover and get stronger after birth before the child undergoes more invasive procedures.
  • New uses for artificial hearts: d’Udekem showed proof-of-concept for the use of an artificial heart to give a child with a single ventricle the time for their own heart to recover rather than being transplanted. In this case, the child was supported by a left-ventricle assist device (LVAD) long term. As their own heart recovered, surgeons then performed successful procedures that seemed impossible to perform before.
  • Novel complex pulmonary artery reconstruction: Children’s National performs the most complex lobar and sub-lobar pulmonary artery reconstruction for children with complex pulmonary stenosis. Cardiac Surgeon Manan Desai, M.D., says the approach leverages interventional cardiac imaging and precision surgical techniques to correct stenosis in smaller lung arteries. This helps establish better right-sided pressure in the heart and likely reduces the chance of heart failure down the road.
  • Pediatric-focused advanced lung care and transplant: Children’s National is poised to become one of only a few locations in the United States to offer comprehensive care for children with complex lung conditions. In 2024, Cardiac Surgeon Aybala Tongut, M.D., will begin performing pediatric lung transplants as part of the hospital’s Advanced Lung Disease Program focused on the unique needs of children.

Children’s National leads the way

“It’s time to combine firsthand expertise and long-term outcomes from decades of congenital heart surgical procedures to refine our surgical techniques,” says Dr. d’Udekem. “We need to ensure patients with congenital heart disease, especially those with single ventricle heart defects, can thrive long term.”
animation showing MRI cardiac imaging

Soon, the Children’s National team plans to re-examine the effectiveness of different techniques for the Fontan procedure. They’ll compare an extracardiac approach against the older lateral tunnel procedure to determine how best to reduce long-term pressure on the heart by creating larger conduits and improving blood flow.

More education is needed to ensure valve repairs for children with congenital heart disease, including single ventricle conditions, which have a high rate of failure and require reoperation, are as successful as can be. The goal is to avoid the need for reoperation or replacement procedures. This is why Children’s National recently hosted the inaugural Valve Repair Symposium. It featured practical cases illustrated with intraoperative video, echocardiography and MR images to bring critical knowledge about pediatric heart valve repair to more people in the field.

ARPA-H logo

Children’s National selected as member of ARPA-H Investor Catalyst Hub spoke network

ARPA-H logoThe hospital will advocate for the unique needs of children as part of nationwide network working to accelerate transformative health solutions.

Children’s National Hospital was selected as a spoke for the Investor Catalyst Hub, a regional hub of ARPANET-H, a nationwide health innovation network launched by the Advanced Research Projects Agency for Health (ARPA-H).

The Investor Catalyst Hub seeks to accelerate the commercialization of groundbreaking and accessible biomedical solutions. It uses an innovative hub-and-spoke model designed to reach a wide range of nonprofit organizations and Minority-Serving Institutions, with the aim of delivering scalable healthcare outcomes for all Americans.

“The needs of children often differ significantly from those of adults. This partnership reflects our commitment to advancing pediatric healthcare through innovation and making sure we’re addressing those needs effectively,” said Kolaleh Eskandanian, Ph.D., M.B.A., vice president and chief innovation officer at Children’s National. “Leveraging the strength of this hub-and-spoke model, we anticipate delivering transformative solutions to enhance the health and well-being of the patients and families we serve.”

Children’s National joins a dynamic nationwide network of organizations aligned to ARPA-H’s overarching mission to improve health outcomes through the following research focus areas: health science futures, proactive health, scalable solutions and resilient systems. Investor Catalyst Hub spokes represent a broad spectrum of expertise, geographic diversity and community perspectives.

“Our spoke network embodies a rich and representative range of perspectives and expertise,” said Mark Marino, vice president of Growth Strategy and Development for VentureWell and project director for the Investor Catalyst Hub. “Our spokes comprise a richly diverse network that will be instrumental in ensuring that equitable health solutions reach communities across every state and tribal nation.”

As an Investor Catalyst Hub spoke, Children’s National gains access to potential funding and flexible contracting for faster award execution compared to traditional government contracts. Spoke membership also offers opportunities to provide input on ARPA-H challenge areas and priorities, along with access to valuable networking opportunities and a robust resource library.

Alliance for Pediatric Device Innovation consortium members

Children’s National awarded nearly $7.5 million by FDA to lead pediatric device innovation consortium

Alliance for Pediatric Device Innovation consortium membersChildren’s National Hospital was awarded nearly $7.5 million in a five-year grant to continue its leadership of an FDA-funded pediatric device consortium. Building upon a decade of previous consortium leadership, the new consortium is Alliance for Pediatric Device Innovation (APDI) and features a new and expanded roster of partners that reflects its added focus on providing pediatric innovators with expert support on evidence generation, including the use of real-world evidence (RWE), for pediatric device development.

Collaborating for success

With the goal of helping more pediatric medical devices complete the journey to commercialization, APDI is led by Children’s National, with Kolaleh Eskandanian, Ph.D., M.B.A., vice president and chief innovation officer, serving as program director and principal investigator, and Julia Finkel, M.D., pediatric anesthesiologist and director of Pain Medicine Research and Development in the Sheikh Zayed Institute for Pediatric Surgical Innovation, serving as principal investigator.

Consortium members include Johns Hopkins University, CIMIT at Mass General Brigham, Tufts Medical Center, Medstar Health Research Institute and MedTech Color. Publicly traded OrthoPediatrics Corp., which exclusively focuses on advancing pediatric orthopedics, is serving as APDI’s strategic advisor and role model for device innovators whose primary focus is children.

Why we’re excited

Consortium initiatives got underway quickly with the announcement of a special MedTech Color edition of the “Make Your Medical Device Pitch for Kids!”competition that focuses on African American and Hispanic innovators. Interested innovators can find details and apply at MedTech Color Pitch Competition. The competition was announced at the recent MedTech Color networking breakfast on Oct. 10,2023 at The MedTech Conference powered by AdvaMed.

“We all benefit from greater equity and inclusion among pediatric MedTech founders, decision-makers, investigators and developers in more effectively addressing the needs of the entire pediatric population,” said Eskandanian. “We need the expertise and insights of innovators from diverse backgrounds, and we want to provide these talented individuals with more opportunities to present their work and share their perspectives on pediatric device development.”

Additional details

APDI is one of five FDA-funded consortia created to provide a platform of services, expertise and funding to help pediatric innovators bring medical devices to the market that specifically address the needs of children.


collage of hyperspectral imaging (sHSI) camera and brain surgery

Novel camera + machine learning = hope for more precise neurosurgery

collage of hyperspectral imaging (sHSI) camera and brain surgery

Researchers at Children’s National Hospital developed a compact imaging camera capable of seeing beyond the human visual spectrum to help segment healthy brain tissue from tumors during surgery. The groundbreaking technology will allow neurosurgeons to make more precise, real-time decisions in the operating room, rather than sending samples to pathology labs for biopsies.

In a manuscript published in Bioengineering, the team of engineers and neurosurgeons details how its snapshot hyperspectral imaging (sHSI) camera can be used to capture and process images of brain tissue, using the wide spectrum of light between visible and infrared wavelengths. That additional information — beyond the human eye — has the potential to allow for more accurate and complete tumor removal.

“In the hands of a neurosurgeon, this camera, when combined with machine learning, could dramatically improve outcomes for some of our most vulnerable brain tumor patients,” said Richard Jaepyeong Cha, Ph.D., an optical engineer and principal investigator at the Sheikh Zayed Institute of Pediatric Surgical Innovation. “We are able to attach the camera to a surgical microscope and process a significant amount of information from the patient while in the operating room. Not only could this lead to more complete tumor resection, it will also allow the surgeon to save as much healthy brain tissue as possible and reduce lifelong neurological complications.”

Why we’re excited

Brain tumors are the most common solid tumors in children, accounting for the highest number of pediatric cancer deaths globally each year. To develop a treatment plan, neurosurgeons need to understand the tumor’s features, including its type, grade of malignancy, location and its categorization as a primary or metastatic cancer. This information leads to decisions about how to remove or biopsy a tumor.

Under the current protocols, surgeons evaluate tumor margins in the operating room by examining the appearance of the brain tissue and sending out small samples to the pathology department for biopsies. This can lead to longer surgeries and difficult real-time surgical decisions. For instance, some low-grade tumors are visually indistinguishable from healthy brain tissue.

In four investigational cases approved by the hospital’s institutional research board, the sHSI camera was used in the operating room to help segment healthy pediatric brain tissue from tumors. Unlike the conventional red-green-blue (RGB) imaging cameras, which use only those three colors, HSI captures spectral data at each pixel of the image — a task too complex for the human eye — and sends it instantly for processing by an algorithm designed to assist in tumor segmentation.

What’s ahead

Despite the small dataset, the researchers were able to successfully segment healthy brain tissue from lesions with a high specificity during pediatric brain tumor resection procedures. Significant work remains to refine the technology and the machine learning behind it. Researchers also plan to integrate the sHSI camera into a laparoscope to visualize tumors that are not on the brain’s surface and collect data from more angles.

“As we develop these groundbreaking tools, we plan to continue to expand the dataset and refine the algorithm to make pediatric neurosurgery continually more precise,” said Naomi Kifle, M.S., research and development engineer at Children’s National and first author on the paper. “As our dataset grows, we hope to create a model that can distinguish healthy brain tissue, tumor and skull. This groundbreaking surgical tool shows significant promise.”

AAP conference logo

Children’s National Hospital at the 2023 American Academy of Pediatrics meeting

There will be over 20 Children’s National Hospital-affiliated participants at this year’s American Academy of Pediatrics National Conference and Exhibition. The meeting will take place in Washington, D.C., from October 20 – October 24. We have compiled their sessions into a mini schedule below.


Date Time Presenter Title Division
10/20/2023 8:30 AM Vanessa Madrigal, M.D., M.S.C.E. Section on Cardiology & Cardiac Surgery Program: Day 1 Critical Care
10/20/2023 2:30 PM Kibileri Williams, M.B.B.S Appy Hour: a Current Update on Pediatric Appendicitis Surgery
10/20/2023 3:30 PM Roopa Kanakatti Shankar, M.D., M.S. Precocious Puberty: Puberty Suppression or Not? Endocrinology
10/21/2023 7:30 AM Allison Markowsky, M.D. What is Trending in the Newborn Nursery: Controversies and Evidence Hospital Medicine
10/21/2023 8:00 AM Jessica Herstek, M.D. Joint Program: Council on Clinical Information Technology and Council on Quality Improvement and Patient Safety Medical Informatics
10/21/2023 8:00 AM Nazrat Mirza, M.D., Sc.D. Section on Obesity Program IDEAL Clinic (Obesity Program)
10/21/2023 8:00 AM Hans Pohl, M.D. Section on Urology Program: Day 2 Urology
10/21/2023 9:00 AM Anil Darbari, M.D., M.B.B.S., M.B.A. Constipation: Getting it to Work Out in the End Gastroenterology, Hepatology and Nutrition
10/21/2023 9:00 AM Kibileri Williams, M.B.B.S Appy Hour: a Current Update on Pediatric Appendicitis Surgery
10/21/2023 1:30 PM Olanrewaju (Lanre) Falusi, M.D. Educational Program and Annual Assembly for Medical Students, Residents, and Fellowship Trainees Pediatrician
10/21/2023 2:00 PM Brian Reilly, M.D. Noise 201 – More than Headphones! Otolaryngology
10/21/2023 2:00 PM Erin Teeple, M.D. Hernias, Hydroceles, and Undescended Testicles: When to Wait and When to Operate Surgeon
10/21/2023 3:30 PM Amanda Stewart, M.D. Section on Emergency Medicine Program: Day 2 Emergency Medicine
10/21/2023 3:30 PM Shideh Majidi, M.D., M.S.C.S. Healthcare Disparities in Management of Type 1 Diabetes and Diabetes Technology Endocrinology
10/21/2023 3:30 PM Natasha Shur, M.D. Genetic Testing Boot Camp Geneticist (RDI)
10/21/2023 5:00 PM Danielle Dooley, M.D., M.Phil Connecting School Systems and Health Systems: Successes and Opportunities Pediatrician
10/22/2023 8:00 AM Jaytoya Manget, DNP, FNP Pediatricians and School Attendance: Innovative Approaches to Prevent Chronic Absenteeism
10/22/2023 8:00 AM Simone Lawson, M.D. Section on Emergency Medicine Program: Day 3 Emergency Medicine
10/22/2023 8:00 AM Hans Pohl, M.D. Section on Urology Program: Day 3 Urology
10/22/2023 1:00 PM Lenore Jarvis, M.D., M.Ed. Section on Early Career Physicians Program
10/22/2023 5:00 PM Brian Reilly, M.D. Pediatric Hearing Loss: What’s New in Diagnostics, Prevention and Treatments Otolaryngology
10/23/2023 8:00 AM Rosemary Thomas-Mohtat, M.D. Point-of-Care Ultrasound Fundamentals Course Emergency Medicine
10/23/2023 9:00 AM Matthew Oetgen, M.D., M.B.A. Section on Radiology Program: Imaging Diagnosis and Management of Osteoarticular Infections Orthopaedic Surgery and Sports Medicine
10/23/2023 9:00 AM Christina Feng, M.D. Masses for the Masses: Abdominal Masses in Children Surgeon
10/23/2023 9:00 AM Narendra Shet, M.D. Section on Radiology Program: Imaging Diagnosis and Management of Osteoarticular Infections Radiology
10/23/2023 9:00 AM Shireen Atabaki, M.D., M.P.H. Section on Advances in Therapeutics and Technology Program Telemedicine
10/23/2023 1:00 PM Brian Reilly, M.D. Pediatric Otolaryngology: Back to Basics Otolaryngology
10/23/2023 1:00 PM Sonali Basu, M.D. Point-of-Care Ultrasound Critical Competency Course CCM
10/23/2023 1:00 PM Vanessa Madrigal, M.D. Joint Program: Section on Bioethics, Section on LGBT Health and Wellness and Section on Minority Health, Equity, and Inclusion Critical Care
10/23/2023 2:00 PM Rebecca Persky, M.D. Menstrual Disorders: Primary or Secondary Amenorrhea Endocrinology
10/23/2023 5:00 PM Christina Feng, M.D. Masses for the Masses: Abdominal Masses in Children Surgeon
10/24/2023 9:00 AM Vanessa Madrigal, M.D. Section Showcase: Applying Ethics Principles and Tools To Advocate for Vulnerable Populations Critical Care


healthcare workers putting on PPE

“Mask up!” Soon, AI may be prompting healthcare workers

Researchers at Children’s National Hospital are embarking on an effort to deploy computer vision and artificial intelligence (AI) to ensure medical professionals appropriately use personal protective equipment (PPE). This strikingly common problem touches almost every medical specialty and setting.

With nearly $2.2 million in grants from the National Institutes of Health, the team is combining their expertise with information scientists at Drexel University and engineers at Rutgers University to build a system that will alert doctors, nurses and other medical professionals of mistakes in how they are wearing their PPE. The goal is to better protect healthcare workers (HCWs) from dangerous viruses and bacteria that they may encounter — an issue laid bare with the COVID-19 pandemic and PPE shortages.

“If any kind of healthcare setting says they don’t have a problem with PPE non-adherence, it’s because they’re not monitoring it,” said Randall Burd, M.D., Ph.D., division chief of Trauma and Burn Surgery at Children’s National and the principal investigator on the project. “We need to solve this problem, so the medical community will be prepared for the next potential disaster that we might face.”

The big picture

The World Health Organization has estimated that between 80,000 and 180,000 HCWs died globally from COVID-19 between January 2020 and May 2021 — an irreplaceable loss of life that created significant gaps in the pandemic response. Research has shown that HCWs had an 11-fold greater infection risk than the workers in other professions, and those who were not wearing appropriate PPE had a 1/3 higher infection risk, compared to peers who followed best practices.

Burd said the Centers for Disease Control and Prevention has recommended that hospitals task observers to stand in the corner with a clipboard to watch clinicians work and confirm that they are being mindful of their PPE. However, “that’s just not scalable,” he said. “You can’t always have someone watching, especially when you may have 50 people in and out of an operating room on a challenging case. On top of that, the observers are generally trained clinicians who could be filling other roles.”

What’s ahead

Bringing together the engineering talents at Drexel and Rutgers with the clinical and machine-learning expertise at Children’s National, the researchers plan to build a computer-vision system that will watch whether HCWs are properly wearing PPE such as gloves, masks, eyewear, gowns and shoe covers.

The team is contemplating how the system will alert HCWs to any errors and is considering haptic watch alerts and other types of immediate feedback. The emerging power of AI brings tremendous advantages over the current, human-driven systems, said Marius George Linguraru, D.Phil., M.A., M.Sc., the Connor Family Professor in Research and Innovation at Children’s National and principal investigator in the Sheikh Zayed Institute for Pediatric Surgical Innovation.

“Human observers only have one pair of eyes and may fatigue or get distracted,” Linguraru said. “Yet artificial intelligence, and computers in general, work without getting tired. We are excited to figure out how a computer can do this work – without ever blinking.”

Children’s National Hospital leads the way

Linguraru says that Children’s National and its partners make up the ideal team to tackle this vexing challenge because of their ability to assemble a multidisciplinary team of scientists and engineers who can work together with clinicians. “This is a dialogue,” he said. “A computer scientist, like myself, needs to understand the intricacies of complicated clinical realities, while a clinician needs to understand how AI can impact the practice of medicine. The team we are bringing together is intentional and poised to fix this problem.”

Bone Marrow–Derived MSC Treatment Mitigates Structural Abnormalities Resulting From CPB

Cell therapy mitigates neurological impacts of cardiac surgery in pre-clinical model

Differences of cortical fractional anisotropy between cardiopulmonary bypass and control (left), cardiopulmonary bypass + mesenchymal stromal cells and cardiopulmonary bypass (center), and 3 groups (right).

A pre-clinical study in the journal JACC: Basic to Translational Science shows that infusing bone marrow-derived mesenchymal stromal cells (BM-MSCs) during cardiac surgery provides both cellular-level neuroprotection for the developing brain and improvements in behavior alterations after (or resulting from) surgery.

What this means

According to lead author Nobuyuki Ishibashi, M.D., Oxidative and inflammatory stresses that are thought to be related to cardiopulmonary bypass cause prolonged microglia activation and cortical dysmaturation in the neonatal and infant brain. These issues are a known contributor to neurodevelopmental impairments in children with congenital heart disease.

This study found that, in a pre-clinical model, the innovative use of cardiopulmonary bypass to deliver these mesenchymal stromal cells minimizes microglial activation and neuronal apoptosis (cell death), with subsequent improvement of cortical dysmaturation and behavioral alteration after neonatal cardiac surgery.

Additionally, the authors note that further transcriptomic analyses provided a possible mechanism for the success: Exosome-derived miRNAs such as miR-21-5p, which may be key drivers of the suppressed apoptosis and STAT3-mediated microglial activation observed following BM-MSC infusion.

Why it matters

Significant neurological delay is emerging as one of the most important current challenges for children with congenital heart disease, yet few treatment options are currently available.

Applications of BM-MSC treatment will provide a new therapeutic paradigm for potential MSC-based therapies as a form of neuroprotection in children with congenital heart disease.

Children’s National Hospital leads the way

The Ishibashi lab is the first research team to demonstrate the safety, efficacy and utility of using cardiopulmonary bypass to deliver BM-MSCs with the goal of improving neurological impairments in children undergoing surgery for congenital heart disease. In addition to this pre-clinical research, a phase 1 clinical trial, MeDCaP, is underway at Children’s National.

Recent additional funding from the NIH will allow the team to identify molecular signatures of BM-MSC treatment and mine specific BM-MSC exosomes for unique cardiopulmonary bypass pathology to further increase understanding of precisely how and why this cell-based treatment shows success.

Attendees at the inaugural symposium on AI in Pediatric Health and Rare Diseases

AI: The “single greatest tool” for improving access to pediatric healthcare

Attendees at the inaugural symposium on AI in Pediatric Health and Rare Diseases

The daylong event drew experts from the Food and Drug Administration, Pfizer, Oracle Health, NVIDIA, AWS Health and elsewhere to start building a community aimed at using data for the advancement of pediatric medicine.

The future of pediatric medicine holds the promise of artificial intelligence (AI) that can help diagnose rare diseases, provide roadmaps for safer surgeries, tap into predictive technologies to guide individual treatment plans and shrink the distance between patients in rural areas and specialty care providers.

These and dozens of other innovations were contemplated as scientists came together at the inaugural symposium on AI in Pediatric Health and Rare Diseases, hosted by Children’s National Hospital and the Fralin Biomedical Research Institute at Virginia Tech. The daylong event drew experts from the Food and Drug Administration, Pfizer, Oracle Health, NVIDIA, AWS Health and elsewhere to start building a community aimed at using data for the advancement of pediatric medicine.

“AI is the single greatest tool for improving equity and access to health care,” said symposium host Marius George Linguraru, D.Phil., M.A., M.Sc., principal investigator at the Sheikh Zayed Institute for Pediatric Surgical Innovation. “As a population, kids are vastly underrepresented in scientific research and resulting treatments, but pediatric specialties can use AI to provide medical care to kids more efficiently, more quickly and more effectively.”

What they’re saying

Scientists shared their progress in building digital twins to predict surgical outcomes, enhancing visualization to increase the precision of delicate interventions, establishing data command centers to anticipate risks for fragile patients and more. Over two dozen speakers shared their vision for the future of medicine, augmented by the power of AI:

  • Keynote speaker Subha Madhavan, Ph.D., vice president and head of AI and machine learning at Pfizer, discussed various use cases and the potential to bring drugs to market faster using real-world evidence and AI. She saw promise for pediatrics. “This is probably the most engaging mission: children’s health and rare diseases,” she said. “It’s hard to find another mission that’s as compelling.”
  • Brandon J. Nelson, Ph.D., staff fellow in the Division of Imaging, Diagnostics and Software Reliability at the Food and Drug Administration, shared ways AI will improve diagnostic imaging and reduce radiation exposure to patients, using more advanced image reconstruction and denoising techniques. “That is really our key take-home message,” he said. “We can get what … appear as higher dose images, but with less dose.”
  • Daniel Donoho, M.D., a neurosurgeon at Children’s National, introduced the audience to the potential of “Smart ORs”: operating rooms where systems can ingest surgery video and provide feedback and skill assessments. “We have to transform the art of surgery into a measurable and improvable scientific practice,” he said.
  • Debra Regier, M.D., chief of Genetics and Metabolism at Children’s National, discussed how AI could be used to diagnose and treat rare diseases by conducting deep dives into genetics and studying dysmorphisms in patients’ faces. Already, Children’s National has designed an app – mGene – that measures facial features and provides a risk score to help anyone in general practice determine if a child has a genetic condition. “The untrained eye can stay the untrained eye, and the family can continue to have faith in their provider,” she said.

What’s next

Linguraru and others stressed the need to design AI for kids, rather than borrow it from adults, to ensure medicine meets their unique needs. He noted that scientists will need to solve challenges, such as the lack of data inherent in rare pediatric disorders and the simple fact that children grow. “Children are not mini-adults,” Linguraru said. “There are big changes in a child’s life.”

The landscape will require thoughtfulness. Naren Ramakrishnan, Ph.D., director of the Sanghani Center for Artificial Intelligence & Analytics at Virginia Tech and symposium co-host, said that scientists are heading into an era with a new incarnation of public-private partnerships, but many questions remain about how data will be shared and organizations will connect. “It is not going to be business as usual, but what is this new business?” he asked.

U.S. News Badges

Children’s National Hospital ranked #5 in the nation on U.S. News & World Report’s Best Children’s Hospitals Honor Roll

U.S. News BadgesChildren’s National Hospital in Washington, D.C., was ranked #5 in the nation on the U.S. News & World Report 2023-24 Best Children’s Hospitals annual rankings. This marks the seventh straight year Children’s National has made the Honor Roll list. The Honor Roll is a distinction awarded to only 10 children’s hospitals nationwide.

For the thirteenth straight year, Children’s National also ranked in all 10 specialty services, with eight specialties ranked in the top 10 nationally. In addition, the hospital was ranked best in the Mid-Atlantic for neonatology, cancer, neurology and neurosurgery.

“Even from a team that is now a fixture on the list of the very best children’s hospitals in the nation, these results are phenomenal,” said Kurt Newman, M.D., president and chief executive officer of Children’s National. “It takes a ton of dedication and sacrifice to provide the best care anywhere and I could not be prouder of the team. Their commitment to excellence is in their DNA and will continue long after I retire as CEO later this month.”

“Congratulations to the entire Children’s National team on these truly incredible results. They leave me further humbled by the opportunity to lead this exceptional organization and contribute to its continued success,” said Michelle Riley-Brown, MHA, FACHE, who becomes the new president and CEO of Children’s National on July 1. “I am deeply committed to fostering a culture of collaboration, empowering our talented teams and charting a bold path forward to provide best in class pediatric care. Our focus will always remain on the kids.”

“I am incredibly proud of Kurt and the entire team. These rankings help families know that when they come to Children’s National, they’re receiving the best care available in the country,” said Horacio Rozanski, chair of the board of directors of Children’s National. “I’m confident that the organization’s next leader, Michelle Riley-Brown, will continue to ensure Children’s National is always a destination for excellent care.”

The annual rankings are the most comprehensive source of quality-related information on U.S. pediatric hospitals and recognizes the nation’s top 50 pediatric hospitals based on a scoring system developed by U.S. News.

“For 17 years, U.S. News has provided information to help parents of sick children and their doctors find the best children’s hospital to treat their illness or condition,” said Ben Harder, chief of health analysis and managing editor at U.S. News. “Children’s hospitals that are on the Honor Roll transcend in providing exceptional specialized care.”

The bulk of the score for each specialty service is based on quality and outcomes data. The process includes a survey of relevant specialists across the country, who are asked to list hospitals they believe provide the best care for patients with the most complex conditions.

The eight Children’s National specialty services that U.S. News ranked in the top 10 nationally are:

The other two specialties ranked among the top 50 were cardiology and heart surgery, and urology.

Erin Teeple

Why a colorectal transition program matters

Erin Teeple

Erin Teeple, M.D.

Children’s National Hospital recently welcomed pediatric and adult colorectal surgeon Erin Teeple, M.D., to the Division of Colorectal and Pelvic Reconstruction. Dr. Teeple is the only person in the United States who is board-certified as both a pediatric surgeon and adult colorectal surgeon, uniquely positioning her to care for people with both acquired and congenital colorectal disease and help them transition from pediatric care to adult caregivers.

What is the Colorectal Transition Program?

The Colorectal Transition Program helps young adults with congenital or acquired colorectal conditions transition their care from pediatric care providers to adult care providers. It is critical that they receive guided transitional care because they often have complex medical and surgical histories from the time they are born affecting more than one organ system. A transitional care team which knows the patient on the pediatric side and can help deliver them to the right doctors and care providers in an adult setting will smooth the transition. Collaborative care across specialties including colorectal surgery, gynecology, urology and gastroenterology helps ensure continued care of all organ systems affected. Similar transition programs already exist for other conditions such as congenital heart disease and cystic fibrosis.

What’s new about this program?

I am both a pediatric surgeon and an adult colorectal surgeon, which means I can care for these children even prenatally and continue that care throughout adulthood. There is no other program in the United States led by a practicing pediatric surgeon who is also board-certified in adult colorectal surgery.

In addition, the collaboration between Children’s National Hospital and Medstar means we can bring unprecedented partnerships with urology, gynecology and gastroenterology on the adult side to offer collaborative care akin to the kind of care we offer our pediatric patients in the Division of Colorectal and Pelvic Reconstruction.

Who will benefit from this program?

Teenagers and adults with congenital and acquired colorectal disease, such as cloaca and other anorectal malformations, Hirschsprung disease, inflammatory bowel disease (IBD), pelvic floor dysfunction, familial adenomatous polyposis (FAP), those who have cecostomy or have had in their past a complex reconstruction will benefit the most from this program.

We have started to transition our existing young adults into this program. We also have seen many adults who have struggled to find care since leaving a pediatric care setting decades ago. These people have come from the local area as well as nationally and internationally to find experienced and collaborative care they have desperately sought.

How is Children’s National Hospital leading the way?

By recruiting the only U.S. surgeon boarded in both pediatric surgery and colorectal surgery, Children’s National will offer unique expertise to both initial surgical reconstruction and care and add a wealth of experience to the care of these children as they age into adulthood.

Having a devoted clinician with a foot in both the pediatric and adult worlds will foster long term relationships and build the depth of the team providing clinical care to all our patients and their families.

Why do you think it is so important to involve a surgeon with your training in the care of these kids?

A pediatric colorectal surgeon is critical to the initial care of an infant with congenital colorectal disease. My knowledge as an adult colorectal surgeon adds a different perspective to the treatment plan for our young patients but also will bring key insight to the process of transitioning that care to providers who specialize in adults later down the road. I also bring the knowledge and experience of a pediatric surgeon to the adult side, which gives me the ability to know the complex congenital anatomy that needed to be reconstructed when the patient was a child and to bring together a team optimized for the care of often complex conditions. Adults with these conditions also have unique needs that are different from the typical adult colorectal patient, and my specific expertise gives me the right skills to help them.

chest x-ray showing placement of tiny pacemaker

First infants in the U.S. with specially modified pacemakers show excellent early outcomes

chest x-ray showing placement of tiny pacemaker

Chest/abdominal x-ray of neonate receiving a modified pediatric-sized implantable pulse generator, demonstrating epicardial suture-on bipolar lead and pulse generator in the upper abdominal pocket.

In 2022, five tiny, fragile newborns with life-threatening congenital heart disease affecting their heart rhythms were the first in the United States to receive a novel modified pacemaker generator to stabilize their heart rhythms within days of birth.

An article in the journal Heart Rhythm assesses the outcomes to date for the infants who received pacemakers that were modified to work better in the smallest children who need them. The authors, including first author Charles Berul, M.D., chief of Cardiology at Children’s National Hospital, share that after following for between 6 and 9 months, “early post-operative performance of this device has been excellent.”

The big picture

Even the tiniest pacemakers and defibrillators on the market today aren’t small enough for infants and young children with heart rhythm abnormalities. So, for several years, Dr. Berul and colleagues at several other institutions have collaborated to adapt existing pacemakers, including the Medtronic Micra leadless pacing system, for use in tiny, critically ill newborns.

The specially modified pediatric-sized implantable pulse generator, called the Pediatric IPG, includes a Medtronic Micra sub-assembly that connects to an epicardial lead. While this makes the leadless pacemaker into one that uses leads, the resulting IPG is significantly smaller than any commercially available pacemaker previously on the market in the U.S.

The five infants in this case profile each received the modified Pediatric IPG at four separate institutions, and each surgery to implant the device was performed by a different cardiac surgeon. Two of the five cases were cared for at Children’s National. Cardiac surgeons Can Yerebakan, M.D., Ph.D., and Manan Desai, M.D. each performed one procedure.

The Pediatric IPG was authorized for use by emergency use exemptions from the federal Food and Drug Administration and with review and approval by each hospital’s Institutional Review Board, based on successful laboratory and pre-clinical models with favorable, though limited, results.

The patient benefit

All five infants were diagnosed with congenital complete heart block and required urgent pacing immediately after birth. The authors write:

“Permanent pacing in adults and older children is a routine, relatively simple implantation procedure. In the smallest of children, however, the generator is typically placed in the abdomen and can still present challenges in tiny babies under 2.5kg due to its bulk and dimensions, with risks of wound dehiscence, generator erosion and other complications.”

The authors note that the smaller profile of the Pediatric IPG reduces and has the potential to eliminate some of these challenges.

What’s next: Better delivery

Innovating smaller devices, including adapting current technology like the Medtronic Micra for pediatric use, is a good start but won’t be enough to eliminate some of the challenges for these patients. When a newborn or young child needs any pacemaker or defibrillator, they face open chest surgery. Their arteries and veins are just too small for even the smallest size transvenous pacemaker catheter.

That’s why Dr. Berul and engineers in the Sheikh Zayed Institute for Pediatric Surgical Innovation are working on a first-of-its-kind minimally invasive pericardial access tool. The team hypothesizes that this tool will allow for pacing and defibrillation therapy to be delivered through a single small port inserted through the skin that is about the size of a drinking straw.

You can read the full article Creative Concepts: Tiny Pacemakers for Tiny Babies in the journal Heart Rhythm.

infographic explaining tiny pacemaker

imaging of blood flow in the heart

4D flow explained: Advanced imaging measures critical blood flow characteristics of single ventricle hearts

Yue-Hin “Tom” Loke, M.D., pediatric cardiologist and director of the 3D Cardiac Visualization Laboratory at Children’s National Hospital, uses magnetic resonance imaging and software rendering to create novel 4D flow images of children with single ventricle congenital heart disease.

“My research measures the degree of vortex formation (and) the degree of energy loss in the atrium as potential measurements of heart health and uses these measurements as a potential gauge of the heart health of children born with single ventricle conditions including hypoplastic left heart syndrome,” he says. “This information can be used to guide the management of the care for children with congenital heart disease. This technology provides valuable insight into how well the heart is working, especially before the Fontan procedure.”

Learn more about the approach and how it impacts clinical care decisions in the Children’s National Heart Institute.