Surgical Innovation

Shriprasad Deshpande

Accelerating advanced cardiac treatments for tiny patients

Shriprasad Deshpande

Shriprasad Deshpande, M.B.B.S., M.S., a pediatric cardiologist, joins Children’s National Health System as the director of the advanced cardiac therapies and heart transplant program.

Shriprasad Deshpande, M.B.B.S., M.S., a pediatric cardiologist, has joined Children’s National Health System as the director of the advanced cardiac therapies and heart transplant program.

Dr. Deshpande, an intensivist and heart failure and transplant cardiologist, will work within the Children’s National Heart Institute (the Division of Cardiology and the Division of Cardiac Intensive Care) to guide the diagnosis and treatment of pediatric heart failure. He will also work with researchers, surgeons and engineers to accelerate the field of biomedical research and make it easy for patients to receive advanced therapies, such as mechanical pumps to support circulation, and, if necessary, heart transplant.

“Subspecializing in personalized care is critical for all patients right now, not just adults,” says Dr. Deshpande. “This is one of the reasons I’m looking forward to working with Children’s National, a leader in the many subdivisions of pediatric medicine and research.

“Our priority is to recognize the special needs of infants and children as they relate to heart failure,” he adds. “We want to provide the best care and advance science at the same time.”

As an example, a grant from the National Institutes of Health enabled Dr. Deshpande to test ventricular assist devices for infants. Through another NIH grant, he analyzed the safety of organ transplants by testing a donor’s DNA, instead of conducting invasive biopsies in children.

“The field of cardiology is in a unique position now to take advantage of discoveries happening in science, technology and engineering,” says Dr. Deshpande. “In addition to thinking about the logistics of heart transplants, we’re thinking about how we can delay the need for a heart transplant, understand how to grow tissue better and utilize technology to improve these outcomes. We’re investing in a child’s quality of life.”

As the medical director of Mechanical Circulatory Support Program at Children’s Healthcare of Atlanta, Dr. Deshpande led the mechanical circulatory support program and created a subspecialty clinic to provide treatment for pediatric heart failure patients. He started the Muscular Dystrophy Cardiomyopathy clinic, which analyzes and treats cardiovascular comorbidities associated with muscular dystrophy. While he was an assistant professor of pediatrics at Emory University School of Medicine, he created a curriculum for pediatric cardiologists and for nurses training in the cardiac intensive critical care unit.

Dr. Deshpande has published more than 70 studies and abstracts and will oversee clinical practice models, subspecialty clinics and academic research efforts at Children’s. His current research portfolio, inclusive of grants from the NIH and other funding agencies, is robust and varied: He’s studying how to improve mechanical support for complex heart disease patients, how to improve the performance of current pumps and how to develop new algorithms for these devices. Improving the diagnosis of transplant rejection, using technology to improve compliance and using new technologies to diagnose rejection, without invasive biopsies, are his other research interests.

Dr. Deshpande serves as the chair of the scientific committee at the nonprofit Enduring Hearts and is on the American Heart Association’s Strategically Focused Research Network committee.

neuron

Children’s National to host 29th Annual Pediatric Neurology Update

neuron

The Children’s National Health System Center for Neuroscience and Behavioral Medicine is proud to host the 29th Annual Pediatric Neurology Update course.

This year’s course will focus on three critical areas in pediatric neuroscience and neurodevelopment: epilepsy with focuses on innovations in epilepsy surgery and new therapeutics; tuberous sclerosis including neurosurgical advances and transition to adulthood; and autism spectrum disorder with emphasis on new understandings and pre-requisites for an “Autism Friendly Hospital.”

We invite you to join us for presentations from renowned experts in the field in this full-day, CME accredited event on April 11, 2019 at the Bethesda North Marriott Hotel & Conference Center in Rockville, MD.

For more information and to register, visit ChildrensNational.org/NeurologyUpdate.

Charles Berul and Rohan Kumthekar demonstrate tiny pacemaker

A new prototype for tiny pacemakers, faster surgery

Charles Berul and Rohan Kumthekar demonstrate tiny pacemaker

Charles Berul, M.D., chief of cardiology at Children’s National, and Rohan Kumthekar, M.D., a cardiology fellow working in Dr. Berul’s bioengineering lab at the Sheikh Zayed Institute for Pediatric Surgical Innovation, explore ways to make surgical procedures for infants and children less invasive.

Rohan Kumthekar, M.D., a cardiology fellow working in Dr. Charles Berul’s bioengineering lab at the Sheikh Zayed Institute for Pediatric Surgical Innovation, part of Children’s National Health System, presented a prototype for a miniature pacemaker at the American Heart Association’s Scientific Sessions 2018  on Sunday, Nov. 11. The prototype, approximately 1 cc, the size of an almond, is designed to make pacemaker procedures for infants less invasive, less painful and more efficient, measured by shorter surgeries, faster recovery times and reduced medical costs.

Kumthekar, a Cardiovascular Disease in the Young Travel Award recipient, delivered his oral abstract, entitled “Minimally Invasive Percutaneous Epicardial Placement of a Custom Miniature Pacemaker with Leadlet under Direct Visualization,” as part of the Top Translational Science Abstracts in Pediatric Cardiology session.

“As cardiologists and pediatric surgeons, our goal is to put a child’s health and comfort first,” says Kumthekar. “Advancements in surgical fields are tending toward procedures that are less and less invasive. There are many laparoscopic surgeries in adults and children that used to be open surgeries, such as appendix and gall bladder removals. However, placing pacemaker leads on infants’ hearts has always been an open surgery. We are trying to bring those surgical advances into our field of pediatric cardiology to benefit our patients.”

Instead of using open-chest surgery, the current standard for implanting pacemakers in children, doctors could implant the tiny pacemakers by making a relatively tiny 1-cm incision just below the ribcage.

“The advantage is that the entire surgery is contained within a tiny 1-cm incision, which is what we find groundbreaking,” says Kumthekar.

With the help of a patented two-channel, self-anchoring access port previously developed by Berul’ s research group, the operator can insert a camera into the chest to directly visualize the entire procedure. They can then insert a sheath (narrow tube) through the second channel to access the pericardial sac, the plastic-like cover around the heart. The leadlet, the short extension of the miniature pacemaker, can be affixed onto the surface of the heart under direct visualization. The final step is to insert the pacemaker into the incision and close the skin, leaving a tiny scar instead of two large suture lines.

The median time from incision to implantation in this thoracoscopic surgery study was 21 minutes, and the entire procedure took less than an hour on average. In contrast, pediatric open-heart surgery could take up to several hours, depending on the child’s medical complexities.

“Placing a pacemaker in a small child is different than operating on an adult, due to their small chest cavity and narrow blood vessels,” says Kumthekar. “By eliminating the need to cut through the sternum or the ribs and fully open the chest to implant a pacemaker, the current model, we can cut down on surgical time and help alleviate pain.”

The miniature pacemakers and surgical approach may also work well for adult patients with limited vascular access, such as those born with congenital heart disease, or for patients who have had open-heart surgery or multiple previous cardiovascular procedures.

The miniature pacemakers passed a proof-of-concept simulation and the experimental model is now ready for a second phase of testing, which will analyze how the tailored devices hold up over time, prior to clinical testing and availability for infants.

“The concept of inserting a pacemaker with a 1-cm incision in less than an hour demonstrates the power of working with multidisciplinary research teams to quickly solve complex clinical challenges,” says Charles Berul, M.D., a guiding study author, electrophysiologist and the chief of cardiology at Children’s National.

Berul’s team from Children’s National collaborated with Medtronic PLC, developers of the first implantable pacemakers, to develop the prototype and provide resources and technical support to test the minimally-invasive surgery.

The National Institutes of Health provided a grant to Berul’s research team to develop the PeriPath, the all-in-one 1-cm access port, which cut down on the number of incisions by enabling the camera, needle, leadlet and pacemaker to be inserted into one port, through one tiny incision.

Other study authors listed on the abstract presented at Scientific Sessions 2018 include Justin Opfermann, M.S., Paige Mass, B.S., Jeffrey P. Moak, M.D., and Elizabeth Sherwin, M.D., from Children’s National, and Mark Marshall, M.S., and Teri Whitman, Ph.D., from Medtronic PLC.

Nikki Gillum Posnack

Do plastic chemicals contribute to the sudden death of patients on dialysis?

Nikki Gillum Posnack

Nikki Posnack, Ph.D., assistant professor with the Children’s National Heart Institute, continues to explore how repeat chemical exposure from medical devices influences cardiovascular function.

In a review published in HeartRhythmNikki Posnack, Ph.D., an assistant professor at the Children’s National Heart Institute, and Larisa Tereshchenko, M.D., Ph.D., FHRS, a researcher with the Knight Cardiovascular Institute at Oregon Health and Science University, establish a strong foundation for a running hypothesis: Replacing BPA- and DEHP- leaching plastics for alternative materials used to create medical devices may help patients on dialysis, and others with impaired immune function, live longer.

While Drs. Tereshchenko and Posnack note clinical studies and randomized controlled trials are needed to test this theory, they gather a compelling argument by examining the impact exposure to chemicals from plastics used in dialysis have on a patient’s short- and long-term health outcomes, including sudden cardiac death (SCD).

“As our society modifies our exposure to plastics to mitigate health risks, we should think about overexposure to plastics in a medical setting,” says Posnack. “The purpose of the review in HeartRhythm is to gather data about the impact chemical compounds, leached from plastic devices, have on cardiovascular outcomes for patients spending prolonged periods of time in the hospital.”

In this review, the authors explore chemical risk exposures in a medical setting, starting with factors that influence sudden cardiac death (SCD) among dialysis patients.

Why study dialysis patients?

SCD in dialysis patients accounts for one-third of deaths in this population. This prompts a need to develop prevention strategies, especially among patients with end-stage renal disease (ESRD).

The highest mortality rate observed among dialysis patients is during the first year of hemodialysis, a dialysis process that requires a machine to take the place of the kidneys and remove waste from the bloodstream and replenish it with minerals, such as potassium, sodium and calcium. During this year, mortality during hemodialysis is observed more frequently during the first three months of treatment, especially among older patients.

Possible reasons for an increased risk of an earlier death include chemical exposure, which is casually associated with altered cardiac function, as well as genetic risks for irregular heart rhythms and heart failure. In the HeartRhythm review, Drs. Tereshchenko and Posnack analyze factors that influence mortality:

Hemodialysis treatment, dialysis, is associated with plastic chemical exposure

Drs. Tereshchenko and Posnack note that dialysis tubing and catheters are commonly manufactured using polyvinyl chloride (PVC) polymers. The phthalate plastics used to soften PVC can easily leech if exposed to lipid-like substances, like blood. Research shows phthalate chemical concentrations increase during a four-hour dialysis.

Di(2-ethylhexyl) phthalate (DEHP) is a common plastic used to manufacture dialysis tubes, thanks to its structure and economy.

Bisphenol-A (BPA) is another common material used in medical device manufacturing. From the membranes of medical tools to resins, or external coatings and adhesives, BPA leaves behind a chemical residue on PVC medical devices.

In reviewing the research, the authors find dialysis patients are often exposed to high levels of DEHP and BPA. The amount of exposure to these chemicals varies in regards to room temperature, time of contact, other circuit coatings and the flow rate of dialysis. A faster flow rate correlates with reductions in chemical leaching and lower mortality rates.

Plastic chemical exposure is casually associated with altered cardiac function

Drs. Tereshchenko and Posnack note a causal relationship already exists between chemicals absorbed from plastics and cardiovascular outcomes.

Dr. Posnack’s previous research found BPA concentrations impaired electrical conduction in neonatal cardiomyocytes – young, developing heart cells – potentially altering the heart’s normal rhythm and function.

To the best of their knowledge, no clinical research has been conducted on DEHP exposure and SCD. However, proof-of-concept models find in vivo phthalate exposure alters autonomic regulation, which can slow down natural heart-rate rhythm and create a lag in recovery time to stressful stimuli. For humans, this type of stressful stimulation would be equivalent to recovering from a bike ride, car accident, or in this case, ongoing dialysis treatment with impaired immune function.

In other models, BPA exposure has been shown to cause bradycardia, or a delayed heart rate. In excised whole heart models, BPA has also been shown to alter cardiac electrical activity.

Abnormal electrophysiological substrate in end-stage renal disease

Since the heart and kidneys work in tandem to transport blood throughout the body, and manage vital functions, such as our heart rate, blood flow and breathing, the authors cite additional factors that lead to ongoing heart and kidney problems, with a look at end-stage renal disease (ESRD).

General heart-function kidney risks include abnormal electrophysiological (EP) substrate, the underlying electrical activity of the cardiac tissue, and genetic risk factors, including the TBX3 gene, a gene associated with a unique positioning of the heart and SCD.

“We don’t want to cite alarm about having a medical procedure or about relying on external help, such as dialysis, for proper kidney function,” says Posnack. “Especially since dialysis is a life-saving medical intervention for patients with inadequate kidney function.”

Pre-existing abnormal EP substrate interacts with plastic chemical exposure in incident dialysis, which increases risk of SCD in genetically predisposed ESRD patients

To summarize their findings, Drs. Tereshchenko and Posnack list a handful of support areas, starting with observations about reductions in cardiovascular mortality and SCD following kidney transplants. They note hemodialysis catheters are associated with larger DEHP exposure and a higher risk of SCD, compared to arteriovenous fistulas, highways surgically created to connect blood from the artery to the vein.

Drs. Posnack and Tereshchenko also note a correlative observation about higher SCD rates observed six hours after hemodialysis, when peak levels of DEHP and BPA are circulating in the bloodstream.

To compare and control for these factors among dialysis patients, the researchers cite different mortality patterns with hemodialysis and peritoneal dialysis. Patients on hemodialysis experience higher mortality during the first year of treatment, compared to peritoneal dialysis, who have higher mortality rates after the second year of treatment. Hemodialysis relies on a machine to take the place of kidney function, while peritoneal dialysis relies on a catheter, a small tube surgically inserted into the stomach.

“Our goal is to build on our previous research findings by analyzing variables that have yet to be studied before, and to update the field of medicine in the process,” says Dr. Posnack. “This includes investigating the cardiovascular risks of using BPA- and DEHP-materials to construct medical devices. Ultimately, we hope to determine whether plastic materials contribute to cardiovascular risks, and investigate whether patients might benefit from the use of alternative materials for medical devices.

Drs. Tereshchenko and Posnack note that despite the associations between chemical exposure from medical devices and increased cardiovascular risks, there are no restrictions in the United States on the use of phthalates and BPA chemicals used to manufacture medical devices.

Their future research will explore how replacing BPA- and DEHP-leaching plastics influence mortality and morbidity rates of ESRD patients on dialysis, as well as other patients exposed to repeat chemical exposure, such as patients having cardiac surgery.

“We want to make sure we identify and then work to minimize any potential risks of plastic exposure in a medical setting,” adds Dr. Posnack. “Our goal is to put the health and safety of patients first.”

Dr. Posnack’s research is funded by two grants (R01HL139472, R00ES023477) from the National Institutes of Health.

Dr.-Jonas.-WSPCHS

Snapshot: The Sixth Scientific Meeting of the World Society for Pediatric and Congenital Heart Surgery

Dr.-Jonas.-WSPCHS

Dr. Richard Jonas shows surgical advancements using 3D heart models, which participants could bring back to their host institutions.

On July 22, 2018, more than 700 cardiac specialists met in Orlando, Fla. for the Sixth Scientific Meeting of the World Society for Pediatric and Congenital Heart Surgery (WSPCHS 2018).

The five-day conference hosted a mix of specialists, ranging from cardiothoracic surgeons, cardiologists and cardiac intensivists, to anesthesiologists, physician assistants and nurse practitioners, representing 49 countries and six continents.

To advance the vision of WSPCHS – that every child born with a congenital heart defect should have access to appropriate medical and surgical care – the conference was divided into eight tracks: cardiac surgery, cardiology, anesthesia, critical care, nursing, perfusion, administration and training.

Richard Jonas, M.D., outgoing president of WSPCHS and the division chief of cardiac surgery at Children’s National Health System, provided the outgoing presidential address, delivered the keynote lecture on Transposition of the Great Arteries (TGA) and guided a surgical skills lab with printed 3-D heart models.

Other speakers from Children’s National include:

  • Gil Wernovsky, M.D., a cardiac critical care specialist, presented on the complex physiology of TGA, as well as long-term consequences in survivors of neonatal heart surgery, including TGA and single ventricle.
  • Mary Donofrio, M.D., a cardiologist and director of the Fetal Heart Program, presented “Prenatal Diagnosis: Improving Accuracy and Planning Delivery for babies with TGA,” “Systemic Venous Abnormalities in the Fetus,” “Intervention for Fetal Lesions Causing High Output Heart Failure” and “Fetal Cardiac Care – Can We Improve Outcomes by Altering the Natural History of Disease?”
  • Gerard Martin, M.D., a cardiologist and medical director of global services, presented “Is the Arterial Switch as Good as We Thought It Would Be?” and “Impact, MAPIT, NCPQIC – How and Why We Should All Embrace Quality Metrics.”
  • Pranava Sinha, M.D., a cardiac surgeon, presented the abstract “Cryopreserved Valved Femoral Vein Homografts for Right Ventricular Outflow Tract Reconstruction in Infants.”

Participants left with knowledge about how to diagnose and treat complex congenital heart disease, and an understanding of the long-term consequences of surgical management into adulthood. In addition, they received training regarding standardized practice models, new strategies in telemedicine and collaborative, multi-institutional research.

“It was an amazing experience for me to bring my expertise to a conference which historically concentrated on surgical and interventional care and long-term follow-up,” says Dr. Donofrio. “The collaboration between the fetal and postnatal care teams including surgeons, interventionalists and intensive care doctors enables new strategies to be developed to care for babies with CHD before birth. Our hope is that by intervening when possible in utero and by planning for specialized care in the delivery room, we can improve outcomes for our most complex patients”.

The Johns Hopkins University School of Medicine, Florida Board of Nursing, American Academy of Nurse Practitioners National Certification Program, American Nurses Credentialing Center and the American Board of Cardiovascular Perfusion provided continuing medical credits for eligible providers.

“I was so proud to be a member of the Children’s National team at this international conference,” notes Dr. Wernovsky. “We had to the opportunity to share our experience in fetal cardiology, outpatient cardiology, cardiac critical care, cardiac nursing and cardiac surgery with a worldwide audience, including surgical trainees, senior cardiovascular surgeons and the rest of the team members necessary to optimally care for babies and children with complex CHD. In addition, members of the nursing staff shared their research about advancements in the field. It was quite a success – both for our team and for all of the participants.”

Graph showing magnesium reduces arrhythmia risk

Magnesium helps prevent postsurgical arrhythmias in pediatric patients

Graph showing magnesium reduces arrhythmia risk

Magnesium (Mg) helps reduce arrhythmias, irregular heart rhythms, in adults. It also helps alleviate the symptoms of postoperative atrial fibrillation, or AFib, which can lead to blood clots, stroke and heart failure. Can it help prevent postsurgical arrhythmias in pediatric patients with congenital heart disease?

New research from Children’s National Health System finds a 25- or 50-mg dose of Mg used during congenital heart surgery (CHS) helps prevent arrhythmias, especially junctional ectopic tachycardia (JET) and atrial tachycardia (AT), common arrhythmias following CHS, according to a study published in the August 2018 edition of The Journal of Thoracic and Cardiovascular Surgery.

To reach this conclusion, the researchers separated 1,871 CHS patients from Children’s National into three groups: a control group of 750 patients who had surgery without Mg, a group of 338 patients receiving a 25-mg /kg dose of Mg during surgery and a group of 783 patients receiving a 50-mg/kg dose of Mg during surgery. The data looked at CHS cases over eight years, from 2005 to 2013, to determine if Mg administration during surgery alleviates postoperative arrhythmias and if the amount, measured by a 25- or 50-mg/kg dose, makes a difference.

“This study, the first conducted in pediatric patients, finds administering magnesium during congenital heart surgery reduces the likelihood of postsurgical arrhythmias,” says Charles Berul, M.D., a study author and the chief of cardiology at Children’s National. “We don’t detect a dose-dependent relationship, which means a small or larger amount of magnesium is equally effective at preventing arrhythmias following surgery.”

The researchers found that up to one-third of CHS patients experience postoperative arrhythmias, with JET and AT accounting for more than two-thirds of arrhythmias following CHS. They note that despite the administration of Mg during surgery, there continues to be a high incidence of postoperative arrhythmias – affecting 18 percent or about one in five CHS patients.

“We hope this study guides future research to see if adding new or additional agents to magnesium eliminates, or further reduces, postoperative arrhythmias,” notes Dr. Berul. “For now, we’re happy to find an algorithm to put into practice and to share with other medical centers, as a way to help pediatric patients recover from congenital heart surgery—stronger, faster and with a reduced risk of complications.”

The researchers note that postoperative arrhythmias impact the recovery period of CHS, increase the duration of intubation and CICU stay and prolong hospital stay.

Making the grade: Children’s National is nation’s Top 5 children’s hospital

Children’s National rose in rankings to become the nation’s Top 5 children’s hospital according to the 2018-19 Best Children’s Hospitals Honor Roll released June 26, 2018, by U.S. News & World Report. Additionally, for the second straight year, Children’s Neonatology division led by Billie Lou Short, M.D., ranked No. 1 among 50 neonatal intensive care units ranked across the nation.

Children’s National also ranked in the Top 10 in six additional services:

For the eighth year running, Children’s National ranked in all 10 specialty services, which underscores its unwavering commitment to excellence, continuous quality improvement and unmatched pediatric expertise throughout the organization.

“It’s a distinct honor for Children’s physicians, nurses and employees to be recognized as the nation’s Top 5 pediatric hospital. Children’s National provides the nation’s best care for kids and our dedicated physicians, neonatologists, surgeons, neuroscientists and other specialists, nurses and other clinical support teams are the reason why,” says Kurt Newman, M.D., Children’s President and CEO. “All of the Children’s staff is committed to ensuring that our kids and families enjoy the very best health outcomes today and for the rest of their lives.”

The excellence of Children’s care is made possible by our research insights and clinical innovations. In addition to being named to the U.S. News Honor Roll, a distinction awarded to just 10 children’s centers around the nation, Children’s National is a two-time Magnet® designated hospital for excellence in nursing and is a Leapfrog Group Top Hospital. Children’s ranks seventh among pediatric hospitals in funding from the National Institutes of Health, with a combined $40 million in direct and indirect funding, and transfers the latest research insights from the bench to patients’ bedsides.

“The 10 pediatric centers on this year’s Best Children’s Hospitals Honor Roll deliver exceptional care across a range of specialties and deserve to be highlighted,” says Ben Harder, chief of health analysis at U.S. News. “Day after day, these hospitals provide state-of-the-art medical expertise to children with complex conditions. Their U.S. News’ rankings reflect their commitment to providing high-quality care.”

The 12th annual rankings recognize the top 50 pediatric facilities across the U.S. in 10 pediatric specialties: cancer, cardiology and heart surgery, diabetes and endocrinology, gastroenterology and gastrointestinal surgery, neonatology, nephrology, neurology and neurosurgery, orthopedics, pulmonology and urology. Hospitals received points for being ranked in a specialty, and higher-ranking hospitals receive more points. The Best Children’s Hospitals Honor Roll recognizes the 10 hospitals that received the most points overall.

This year’s rankings will be published in the U.S. News & World Report’s “Best Hospitals 2019” guidebook, available for purchase in late September.

Research and Education Week awardees embody the diverse power of innovation

cnmc-research-education-week

“Diversity powers innovation” was brought to life at Children’s National April 16 to 20, 2018, during the eighth annual Research and Education Week. Children’s faculty were honored as President’s Award winners and for exhibiting outstanding mentorship, while more than 360 scientific poster presentations were displayed throughout the Main Atrium.

Two clinical researchers received Mentorship Awards for excellence in fostering the development of junior faculty. Lauren Kenworthy, Ph.D received the award for Translational Science and Murray M. Pollack, M.D., M.B.A., was recognized in the Clinical Science category as part of Children’s National Health System’s Research and Education Week 2018.

Dr. Kenworthy has devoted her career to improving the lives of people on the autism spectrum and was cited by former mentees as an inspirational and tireless counselor. Her mentorship led to promising new lines of research investigating methods for engaging culturally diverse families in autism studies, as well as the impact of dual language exposure on cognition in autism.

Meanwhile, Dr. Pollack was honored for his enduring focus on motivating early-career professionals to investigate outcomes in pediatric critical care, emergency medicine and neonatology. Dr. Pollack is one of the founders of the Collaborative Pediatric Critical Care Research Network. He developed PRISM 1 and 2, which has revolutionized pediatric intensive care by providing a methodology to predict mortality and outcome using standardly collected clinical data. Mentees credit Dr. Pollack with helping them develop critical thinking skills and encouraging them to address creativity and focus in their research agenda.

In addition to the Mentorship and President’s Awards, 34 other Children’s National faculty, residents, interns and research staff were among the winners of Poster Presentation awards. The event is a celebration of the commitment to improving pediatric health in the form of education, research, scholarship and innovation that occurs every day at Children’s National.

Children’s Research Institute (CRI) served as host for the week’s events to showcase the breadth of research and education programs occurring within the entire health system, along with the rich demographic and cultural origins of the teams that make up Children’s National. The lineup of events included scientific poster presentations, as well as a full slate of guest lectures, educational workshops and panel discussions.

“It’s critical that we provide pathways for young people of all backgrounds to pursue careers in science and medicine,” says Vittorio Gallo, Ph.D., Children’s chief research officer and CRI’s scientific director. “In an accelerated global research and health care environment, internationalization of innovation requires an understanding of cultural diversity and inclusion of different mindsets and broader spectrums of perspectives and expertise from a wide range of networks,” Gallo adds.

“Here at Children’s National we want our current and future clinician-researchers to reflect the patients we serve, which is why our emphasis this year was on harnessing diversity and inclusion as tools to power innovation,” says Mark L. Batshaw, M.D., physician-in-chief and chief academic officer of Children’s National.

“Research and Education Week 2018 presented a perfect opportunity to celebrate the work of our diverse research, education and care teams, who have come together to find innovative solutions by working with local, national and international partners. This event highlights the ingenuity and inspiration that our researchers contribute to our mission of healing children,” Dr. Batshaw concludes.

Awards for the best posters were distributed according to the following categories:

  • Basic and translational science
  • Quality and performance improvement
  • Clinical research
  • Community-based research and
  • Education, training and program development.

Each winner illustrated promising advances in the development of new therapies, diagnostics and medical devices.

Diversity powers innovation: Denice Cora-Bramble, M.D., MBA
Diversity powers innovation: Vittorio Gallo, Ph.D.
Diversity powers innovation: Mark L. Batshaw, M.D.

child measuring belly with tape measure

Children’s obesity research team presents compelling new findings

child measuring belly with tape measure

Faculty from Children’s National Health System’s Department of Psychology & Behavioral Health set out to learn if any demographic, psychiatric, or cognitive factors play a role in determining if an adolescent should be eligible for bariatric surgery, and what their weight loss outcomes might be. Presenting at the Society for Pediatric Psychology Annual Conference earlier this month, a group of researchers, fellows and clinicians, including surgeons from Children’s National showcased their findings. One of the posters developed by Meredith Rose, LGSW, ML, who works as an interventionist on a Children’s National clinical research team, received special recognition in the Obesity Special Interest Group category.

One presentation reported on a total of 222 pediatric patients with severe obesity, which is defined as 120 percent of the 95th percentile for Body Mass Index. Mean age of the participants was 16 years of age, 71 percent were female and 80 percent where Hispanic or non-White. As part of their preparation for surgery, all patients were required to complete a pre-bariatric surgery psychological evaluation, including a clinical interview and Schedule for Affective Disorders and Schizophrenia (KSADS-PL) screening. The studies by the Children’s teams were based on a medical record review of the pre-screening information. Adolescents being evaluated for surgery had high rates of mental health diagnoses, particularly anxiety and depression, but also included Attention Deficit Hyperactivity Disorder, eating disorders, and intellectual disability.

Another Children’s presentation at the conference looked at weight loss outcomes for adolescents based on IQ and intellectual disability. Overall, neither Full Scale IQ from the Wechsler Abbreviated Intelligence Scale – 2nd edition, nor the presence of an intellectual disability predicted weight loss following surgery.

“The sum of our research found that kids do really well with surgery,” said Eleanor Mackey, PhD, assistant professor of psychology and behavioral health. “Adolescents, regardless of the presence of intellectual disability areas are likely to lose a significant amount of weight following surgery,” added Dr. Mackey.

“This is a particularly important fact to note because many programs and insurers restrict weight loss surgery to ‘perfect’ candidates, while these data points demonstrate that our institution does not offer or deny surgery on the basis of any cognitive characteristics,” says Evan P. Nadler, M.D., associate professor of surgery and pediatrics. “Without giving these kids a chance with surgery, we know they face a lifetime of obesity, as no other intervention has shown to work long-term in this patient population. Our research should empower psychologists and physicians to feel more confident recommending bariatric surgery for children who have exhausted all other weight loss options.”

The research team concluded that examining how individual factors, such as intellectual disability, psychiatric diagnoses, and demographic factors are associated with the surgery process is essential to ensuring adequate and empirically supported guidelines for referral for, and provision of bariatric surgery in adolescents. Next steps by the team will include looking into additional indicators of health improvement, like glucose tolerance, quality of life, or other lab values, to continue evaluating the benefits of surgery for this population.

Sean Donahue

Pediatric ophthalmology celebrates 75th anniversary in Washington, D.C.

Sean Donahue

Angeline M. Parks Visiting Professor Sean P. Donahue, M.D., Ph.D., (front left) enjoys a light moment during the celebration of the 75th anniversary while Anthony Sandler, M.D., Children’s surgeon in chief, senior vice president of the Joseph E. Robert Jr. Center for Surgical Care and director of the Sheikh Zayed Institute, speaks to the group.

After 75 years dedicated to the eyes of children, the world’s pediatric ophthalmologists gathered in Washington, D.C., the specialty’s birthplace, to share the latest research and innovation in the field. The group gathered for a joint meeting of the International Strabismological Association (ISA) and the American Association for Pediatric Ophthalmology and Strabismus (AAPOS), which was held March 18-22, 2018.

“This year marks the 75th anniversary of our specialty, which was founded right here, at Children’s National, in Washington, D.C., when Dr. Frank Costenbader restricted his practice exclusively to children and began to train residents in the nuance of treating children’s eyes,” says Mohamad S. Jaafar, M.D., chief of the Division of Ophthalmology at Children’s National Health Center. “It is a tremendous honor to welcome my colleagues back to the birthplace of pediatric ophthalmology on this grand occasion.”

In advance of the larger meeting, Children’s Division of Ophthalmology welcomed some of the international attendees to Children’s National for a special gathering on Saturday, March 17, 2018.

The event at Children’s featured a special lecture by this year’s Angeline M. Parks Visiting Professor, Sean P. Donahue, M.D., Ph.D. Dr. Donahue is the Sam and Darthea Coleman Chair in Pediatric Ophthalmology and Chief of Pediatric Ophthalmology at the Children’s Hospital at Vanderbilt. This Annual Visiting Professorship was established by the members of the Costenbader Society (The Children’s National Pediatric Ophthalmology Alumni Society) in memory of Angeline M. Parks, the wife of pediatric ophthalmologist Marshall M. Parks, M.D., to carry on her legacy of establishing a warm and supportive environment between physician and spouse, which benefits the physicians and their young patients.

Three former division chiefs of Ophthalmology at Children’s National, Drs. Costenbader, Parks and Friendly, have national lectureships established in their names to reflect their contributions to the field. Dr. Frank Costenbader, the society’s namesake, established the sub-specialty of pediatric ophthalmology. Dr. Parks founded the Children’s Eye Foundation and the AAPOS, and David S. Friendly, M.D., codified pediatric ophthalmology fellowship training across the United States.

Honor Awards for Children’s pediatric ophthalmologists at ISA-AAPOS

During the ISA-AAPOS meeting, two current Children’s National pediatric ophthalmologists were recognized with Honor Awards for their long-term dedication to pediatric ophthalmology, their patients, and their engagement in the AAPOS to advance the field.

William Madigan, M.D., vice chief of Ophthalmology at Children’s, a professor of surgery at the Uniformed Services University of the Health Sciences, and a clinical professor of Ophthalmology and Pediatrics at the George Washington University School of Medicine and Health Sciences. He was recognized by AAPOS for his long-time service, including:

  • Chair of the organization’s audit committee and the Costenbader Lecture selection committee.
  • Membership on the fellowship directors’ committee that developed nationwide requirements for pediatric ophthalmology fellowships and established the certification process to insure high quality and uniform education in the specialty.
  • Invited lectures in Shanghai, China; Geneva, Switzerland; and Sao Paolo, Brazil, among others.
  • Many posters and presentations about clinical and research topics of importance for members of the AAPOS and other distinguished professional societies.

Marijean Miller, M.D., director of Neonatal Ophthalmology, division research director at Children’s National and clinical professor of Ophthalmology and Pediatrics at the George Washington University School of Medicine and Health Sciences, was recognized by AAPOS for her cumulative contributions to the society, including:

  • Multiple memberships on vital committees, including AAPOS’s training and accreditation committee and audit committee.
  • Presentation of original research via posters and oral presentations on topics including best practices in neonatal clinical care, innovative tools and applications and advocacy for patients and their families.

“We are so grateful to have a team that continues the tradition of excellence in pediatric ophthalmology here at Children’s National,” Dr. Jaafar says. “Drs. Madigan and Miller exemplify the dedication of our division to caring for the children we serve, and to advancing our field. Congratulations to both!”

Anthony Sandler

Anthony Sandler, M.D., Named Director of Sheikh Zayed Institute

Anthony Sandler

Children’s National Health System is pleased to announce that Anthony Sandler, M.D., current senior vice president and surgeon-in-chief of the Joseph E. Robert Jr. Center for Surgical Care at Children’s National, will now additionally assume the title of director, Sheikh Zayed Institute for Pediatric Surgical Innovation. He will succeed Peter Kim, M.D., the founding vice president of the Sheikh Zayed Institute, who is leaving to pursue other career opportunities after seven years at the helm of our surgical innovation center.

Dr. Sandler will be in a unique position, leading both in the research and clinical enterprises of Children’s National and will help to forge a stronger link between them, especially in the surgical subspecialties.

Internationally known for his work on childhood solid tumors and operative repair of congenital anomalies, Dr. Sandler is the Diane and Norman Bernstein Chair in Pediatric Surgery and is a professor of surgery and pediatrics at the George Washington University School of Medicine & Health Sciences. He is currently on the Board of Examiners for the Pediatric Surgery Qualifying Examination and has served on multiple committees for the American Pediatric Surgical Association and for the Children’s Oncology Group.

Dr. Sandler’s research interests focus on solid tumors of childhood and he’s presently studying tumor immunology and investigating immunotherapeutic vaccine strategies. He has co-developed a surgical polymer sealant that is R01 funded by the National Institutes of Health and is currently in pre-clinical trials. Dr. Sandler has over 120 peer-reviewed publications in clinical and scientific medical journals.

banner year

2017: A banner year for innovation at Children’s National

banner year

In 2017, clinicians and research faculty working at Children’s National Health System published more than 850 research articles about a wide array of topics. A multidisciplinary Children’s Research Institute review group selected the top 10 articles for the calendar year considering, among other factors, work published in high-impact academic journals.

“This year’s honorees showcase how our multidisciplinary institutes serve as vehicles to bring together Children’s specialists in cross-cutting research and clinical collaborations,” says Mark L. Batshaw, M.D., Physician-in-Chief and Chief Academic Officer at Children’s National. “We’re honored that the National Institutes of Health and other funders have provided millions in awards that help to ensure that these important research projects continue.”

The published papers explain research that includes using imaging to describe the topography of the developing brains of infants with congenital heart disease, how high levels of iron may contribute to neural tube defects and using an incisionless surgery method to successfully treat osteoid osteoma. The top 10 Children’s papers:

Read the complete list.

Dr. Batshaw’s announcement comes on the eve of Research and Education Week 2018 at Children’s National, a weeklong event that begins April 16, 2018. This year’s theme, “Diversity powers innovation,” underscores the cross-cutting nature of Children’s research that aims to transform pediatric care.

Matthew Oetgen

3D printed implant used to repair knee cartilage

Matthew Oetgen

“Our preliminary study shows this novel 3D printed material is able to allow ingrowth from the bone, so the body started to grow into the material to help fix it in place,” says Matthew Oetgen, M.D., M.B.A. “These are the first step requirements for an implant like this to be acceptable for treating lesions.”

Every year, an estimated 1 million children tear the articulate cartilage that lines their knees. Unfortunately, these types of injuries are extremely hard to repair because of the cartilage’s poor healing qualities and unique physiochemical properties.

Now, a new study by Children’s National Health System researchers has found that a three dimensional (3D) printed synthetic implant can be successfully used as a scaffold to encourage the healing and repair of articulate cartilage lesions.

Three bones meet in the knee joint: the femur, the tibia and the patella. The surface of these bones is covered with articulate cartilage, which can be damaged by injury or by normal wear and tear. Because articulate cartilage has poor healing qualities, these injuries will rarely heal or regenerate on their own, especially in younger and more active patients.

“These are active 12 to 19 year olds, so it can really affect relatively normal kids,” says Matthew Oetgen, M.D., M.B.A., Division Chief of Orthopaedic Surgery and Sports Medicine at Children’s National. “While there are many ways to repair these lesions — from implanting autogenous cells to using grafts to fill the defect — none of these options are perfect, and they all have some down sides.”

To facilitate repair of these injuries, a team of researchers led by Dr. Oetgen received a grant from the Pediatric Orthopaedic Society of North America (POSNA) to design a 3D printed implant that promotes bone and cartilage growth.

To make the implant, the team used nanoporous thermoplastic polyurethane (TPU), a biodegradable material that is highly elastic and yet strong, very much like the native cartilage in the osteochondral region. TPU is also porous, which allows blood and nutrient flow through the implant.

“The implant is designed to allow native cells to repair the lesions with normal articular cartilage and not scar tissues like some repairs,” says Dr. Oetgen.

The implant itself has a stratified structure: an upper region that contains micro channels to allow for increased perfusion; a middle zone with a nanoporous structure that mimics porous cartilage and encourages stem cell recruitment, growth and differentiation; and a lower region, or articular surface, that allows for smooth transition from the articulating surface to the implant surface and minimizes adverse interactions between the articulate cartilage and the meniscus.

When tested in vitro, the implant was able to support the growth of stem cells and vascular cells, and structurally mature vascularized bone was formed around the implant after 10 days. In animal models with full thickness osteochondral lesions the implant did just as well: The scaffold was able to promote bone, soft tissue and vascular growth without eliciting an immune response.

“Our preliminary study shows this novel 3D printed material is able to allow ingrowth from the bone, so the body started to grow into the material to help fix it in place,” says Dr. Oetgen. “These are the first step requirements for an implant like this to be acceptable for treating lesions.”

Because of the ease with which 3D printing can be scaled up, Dr. Oetgen is hopeful that the implant will one day become a viable option for repairing articulate cartilage injuries. He plans on trying the implants in a larger animal model and on larger lesions, and is also looking at custom printing for the implants to match natural lesion shapes and sizes.

Doctors-working-with-Digital-Tablet

New network will advance treatments for children

Doctors-working-with-Digital-Tablet

Three leaders from Children’s National Health System are among the investigators of a new FDA-funded program created to launch a global clinical trials network. The initial $1 million grant from the Food and Drug Administration (FDA) establishes a network among the Institute for Advanced Clinical Trials for Children (I-ACT for Children), the National Capital Consortium for Pediatric Device Innovation (NCC-PDI) (affiliated with Children’s National), PEDSnet, the James M. Anderson Center for Health Systems Excellence and the Critical Path Institute, to address the unmet medical needs of children by improving quality and efficiency in developing innovative pediatric drugs and devices.

Along with the fiscal 2017 funds, there is a potential for $1 million in funding each year for an additional four years to I-ACT for Children, contingent on annual appropriations and the availability of funding. I-ACT for Children is a new independent, nonprofit organization that works to improve the planning and completion of pediatric clinical trials. PEDSnet and the Anderson Center will serve as the network’s data and learning core, while the Critical Path Institute will serve as the regulatory science core and NCC-PDI will serve as the medical device core.

From Children’s National, the investigators include: Peter Kim, M.D., Ph.D., vice president of the Sheikh Zayed Institute for Pediatric Surgical Innovation; Kolaleh Eskandanian, Ph.D., executive director of the Sheikh Zayed Institute and NCC-PDI and Johannes van den Anker, M.D., Ph.D., division chief of Clinical Pharmacology and vice chair of Experimental Therapeutics.

“We are pleased that this grant addresses innovative reengineering of the pediatric device trials system,” says Eskandanian. “In contrast with drug trials, device trials are generally less optimally understood in academic medical centers and clinical sites.”

She explains that children have medical device needs that are considerably different from adults. Designing devices for children requires considerations such as growth and development, anatomical and physiological differences. Often, the lack of available devices for children forces clinicians to use an adult device off-label or to improvise. Off-label use may be the only option, but such use can bring risks of serious adverse events that could be avoided if there were more FDA–approved pediatric devices.

“Thanks to partnership with I-ACT we will be able to address the pressing need to improve clinical trials and post-market monitoring of pediatric devices,” says Eskandanian.

Leading the network as principal investigator is Edward Connor, M.D., president of I-ACT for Children and an emeritus professor of Pediatrics, Microbiology, Immunology, and Tropical Medicine at George Washington University School of Medicine and Children’s National.

Work has been initiated to integrate network components and engage public and private shareholders. Next steps include selecting priority projects for implementation in 2018 and beyond, and scaling the network in North America and abroad.

Funding for this work was made possible, in part, by the Food and Drug Administration through grant 1 U18 FD 006297. Views expressed in written materials or publications and by speakers and moderators do not necessarily reflect the official policies of the Department of Health and Human Services; nor does any mention of trade names, commercial practices, or organization imply endorsement by the United States Government.

William Gaillard

Putting childhood epilepsy in the spotlight at American Epilepsy Society Meeting

William Gaillard

“We aim to build the evidence base for treatments that are effective specifically for children with epilepsy,” says William D. Gaillard, M.D., chief of Child Neurology, Epilepsy and Neurophysiology, and director of the Comprehensive Pediatric Epilepsy Program.

While epilepsy affects people of all ages, the unique way it manifests in infants, children and adolescents can be attributed in part to the complexities of the growing and developing brain. Researchers from the Children’s National Comprehensive Pediatric Epilepsy Program brought their expertise on the challenges of understanding and treating epilepsy in children to the recent American Epilepsy Society Annual Meeting, the largest professional gathering on epilepsy in the world.

“We aim to build the evidence base for treatments that are effective specifically for children with epilepsy,” says William D. Gaillard, M.D., chief of Child Neurology, Epilepsy and Neurophysiology, and director of the Comprehensive Pediatric Epilepsy Program. “We have learned much from studies in adult populations but technologies like functional MRI allow us to get in-depth understanding, often in non-invasive ways, of precisely how epilepsy is impacting a child.”

Dr. Gaillard was also recently elected to serve as the Second Vice President of the American Epilepsy Society. “The AES is the largest multidisciplinary professional and scientific society dedicated to the understanding, treatment and eradication of epilepsy and associated disorders, and I am honored to serve as the new Second Vice President,” he said.

The team’s presentations and poster sessions focused on several key areas in pediatric epilepsy:

Better ways to see, measure and quantify activity and changes in the brain for children with epilepsy before, during and after surgery

  • Novel applications of fMRI for children with epilepsy
    • Evaluation of an fMRI tool that tracks verbal and visual memory in children with epilepsy – one of the first to capture memory functions in this population of children using noninvasive fMRI;
    • Early study of the use of “resting-state” fMRI to map language skills before epilepsy surgery – an important first step toward noninvasively evaluating children who are too young or neurologically impaired to follow tasks in traditional MRI studies;
  • A study of whether intraoperative MRI, i.e. imaging during neurosurgery, allows for more complete removal of abnormal brain tissue associated with focal cortical dysplasia in children, which is a common cause of intractable epilepsy;
  • A preliminary case review of existing data to see if arterial spin labeling MRI, which measures blood flow to the brain, has potential to identify blood flow changes in specific locations of the brain where seizures occur;
  • An analysis of language laterality – the dominant side of the brain controlling language –  questioning the true reasons that the brains of children with epilepsy have differences in the hemisphere that predominantly controls language;
  • A review of some common assessments of language and working memory that are used pre- and post-operatively to gauge the impacts of pediatric epilepsy surgery. The study found that using multiple assessments, and studying results individually rather than as a group average, resulted in a more complete picture of the outcomes of surgery on these areas of brain function;
  • A preliminary study examining whether continuous EEG monitoring of neonates with hypoxic ischemic encephalopathy, or lack of oxygen to the brain, can be a reliable predictor of neurodevelopmental outcomes while the infant is undergoing therapeutic hypothermia.

“In order to expand our understanding of causes, impacts and outcomes, the range of research is broad given the complexity of epilepsy,” says Madison M. Berl, Ph.D. “This is the only way we can contribute to the goal of providing our colleagues and the families they serve with better resources to make informed decisions about how best to assess and treat pediatric epilepsy.”

The molecular, genetic and biological factors that contribute to onset and severity of pediatric epilepsy

  • A retrospective study of young patients with malformations in cortical development that are important causes of childhood epilepsy;
  • Investigation of a simple saliva test to effectively identify the presence of two common viral infections, human herpesvirus-6B and Epstein-Barr virus, that may be contributors to onset of epilepsy in otherwise normally functioning brains;
  • A preliminary review of the possible relationship between febrile infection-related epilepsy syndrome and the co-occurrence of another neuro-inflammatory condition – hemophagocytic lymphohistiocytosis.

Madison Berl, Ph.D., director of research in the Division of Pediatric Neuropsychology, and a pediatric neuropsychologist in the Comprehensive Pediatric Epilepsy Program, adds, “In order to expand our understanding of causes, impacts and outcomes, the range of research is broad given the complexity of epilepsy. This is the only way we can contribute to the goal of providing our colleagues and the families they serve with better resources to make informed decisions about how best to assess and treat pediatric epilepsy.”

$250K awarded to six winners presenting innovative pediatric medical devices

SZI Symposium Winners

Six companies presenting innovative medical device solutions that address significant unmet needs in pediatric health were awarded a total of $250,000 in grant money yesterday in San Jose, Calif. at the Fifth Annual Pediatric Device Innovation Symposium, organized by the Sheikh Zayed Institute for Pediatric Surgical Innovation at Children’s National Health System.

The “Make Your Medical Device Pitch for Kids!” competition is sponsored by the National Capital Consortium for Pediatric Device Innovation (NCC-PDI), an FDA-funded consortium led by Children’s National and the A. James Clark School of Engineering at the University of Maryland. Four companies were awarded $50,000 each and two were awarded $25,000. The six winners were selected from a field of twelve finalists. A record 98 total submissions from five countries were received for the competition this year.

“To improve care for children, it is imperative that we recognize and encourage relevant new solutions in pediatric medical devices, especially in light of the challenges innovators face in addressing this specialized market,” said Kurt Newman, M.D., president and CEO of Children’s National. “Children’s National is committed to fostering collaboration among innovators, clinicians, policy makers and investors to advance pediatric device development for the benefit of children everywhere.”

This year’s winning innovations receiving $50,000 awards are:

  • CorInnova, Houston, Texas – soft robotic, non-blood-contacting biventricular cardiac assist device for the treatment of heart failure in children
  • Green Sun Medical, Fort Collins, Colo. – novel device that provides necessary pressure for the correction of spinal deformity while providing real-time feedback to clinicians
  • Hub Hygiene and Georgia Institute of Technology, Atlanta, Ga. – low-cost, single-use cleaning technology to prevent central line-associated blood stream infections (CLABSI), a hospital-acquired infection by pediatric ICU patients
  • NAVi Medical Technologies, Houston, Texas – device to provide accurate information about the localization of an umbilical venous catheter (UVC) used in critically-ill newborns to reduce the risk of catheter malposition

Winning innovations receiving $25,000 awards are:

  • Prapela, LLC, Boston, Mass. – novel “baby box” that will allow for a non-pharmacological approach to help drug-exposed infants relax and sleep during withdrawal and post-withdrawal care
  • X-Biomedical, Inc., Philadelphia, Pa. – portable surgical microscope for use in surgeries for treatable causes of blindness in low-income countries and under-resourced setting

“We are honored to recognize these outstanding innovations with this funding,” said Kolaleh Eskandanian, Ph.D., executive director of the Sheikh Zayed Institute and NCC-PDI. “We are even more excited about welcoming this new cohort of companies to our family of pediatric device startups and entrepreneurs. Together we can move the needle a bit faster and safer to bring pediatric products to market.”

She added that in addition to the financial support and consultation services through NCC-PDI, the awardees can leverage the validation received through this highly competitive process to raise the additional capital needed for commercialization. Since inception in 2013, NCC-PDI has supported 67 pediatric devices and the companies and research labs owning these devices have collectively raised $55 million in additional funding.

The twelve finalists each made five-minute presentations to the symposium audience and then responded to judges’ questions. Finalists also included Anecare, LLC, Salt Lake City, Utah; ApnoSystems, Buenos Aires, Argentina; Deton Corp., Pasadena, Calif.; Kite Medical, Dublin, Ireland; Moyarta 2, LLC, The Plains, Va.; and Oculogica, Inc., New York, N.Y.

Serving on the distinguished panel of judges were Susan Alpert, M.D., of SFA Consulting, a former director of the FDA Office of Device Evaluation and former senior vice president and chief regulatory officer of Medtronic; Charles Berul, M.D., co-director, Children’s National Heart Institute; Andrew Elbardissi, M.D., of Deerfield Management; Rick Greenwald, Ph.D., of the New England Pediatric Device Consortium (NEPDC); James Love, J.D., of Oblon; Josh Makower, M.D., of NEA; Jennifer McCaney, Ph.D., of MedTech Innovator; Jackie Phillips, M.D., of Johnson & Johnson; and Tracy Warren of Astarte Ventures.

The pitch competition is a highlight of the annual symposium organized by the Sheikh Zayed Institute at Children’s National, designed to foster innovation that will advance pediatric healthcare and address the unmet surgical and medical device needs for children. New this year, the symposium co-located in a joint effort with The MedTech Conference powered by AdvaMed, the premier gathering of medtech professionals in North America.

Keynote speakers at the event included Daniel Kraft, M.D., faculty chair of Medicine & Neuroscience, Singularity University and executive director, Exponential Medicine; Vasum Peiris, M.D., chief medical officer, Pediatrics and Special Populations, FDA;  and Alan Flake, M.D., director of Center for Fetal Research, Children’s Hospital of Philadelphia.

Panel discussions focused on gap funding for pediatric innovation, the journey from ideation to commercialization, and the pediatric device needs assessment in the future regulatory environment.

Exchanging ideas

Exchanging ideas, best practices in China

Exchanging ideas

Physicians from the Children’s National delegation attended the Shanghai Pediatric Innovation Forum in June 2017. Pictured (left to right): Roberta DeBiasi, M.D., Michael Mintz, M.D., Robert Keating, M.D., Lawrence Jung, M.D., Peter Kim, M.D., and Sarah Birch, D.N.P., A.P.R.N.

In late June, a delegation of international pediatric experts from Children’s National Health System journeyed across the world to learn about the practice of pediatric medicine in China and to exchange ideas with colleagues there. Leaders from several of Children’s key specialties joined the delegation, including:

  • Sarah Birch, D.N.P., C.P.N.P.-P.C., director, Advance Practice Nursing
  • Roberta DeBiasi, M.D., chief, Infectious Disease
  • William Gaillard, M.D., chief, Epilepsy and Neurophysiology
  • Lawrence Jung, M.D., chief, Rheumatology
  • Robert Keating, M.D., chief, Neurosurgery
  • Peter Kim, M.D., vice president, Sheikh Zayed Institute for Pediatric Surgical Innovation, associate surgeon-in-chief
  • Yang Liu, Ph.D., director, Center for Cancer and Immunology Research
  • Michael Mintz, Psy.D., developmental psychologist
  • Pamela Mudd, M.D., otolaryngologist
  • Xiaoyan Song, Ph.D., director, Infection Control/Epidemiology

The group, led by Drs. Keating and Gaillard, traveled to China with Children’s Outreach Coordinator John Walsh, whose longtime connections and close familiarity with the pediatric medical community in Hangzhou and Shanghai made the collaboration possible. The team toured several of the largest children’s hospitals in country, including The Children’s Hospital of Zhejiang University School of Medicine in Hangzhou and Shanghai Children’s Medical Center, connecting with pediatric specialists there.

“Some of the most important parts of this trip were the opportunities to exchange ideas and solidify long term relationships that will allow us to work closely with our peers in China as they develop their pediatric programs. The potential is tremendous for unique collaborations between our teams and theirs for research and the development of clinical care improvements for children,” said Roger Packer, M.D., senior vice president of the Center for Neuroscience and Behavioral Medicine, who joined the delegation in Beijing.

A keynote lecture and more at the 3rd China International Forum on Pediatric Development

The delegation also was honored with an invitation to participate in the 3rd China International Forum on Pediatric Development. The forum is one of the largest pediatric focused meetings in the country and is led by all the major children’s hospitals in China, including those in Beijing and Shanghai. Close to 4,000 pediatricians attended the meeting, and presenters included esteemed international leaders in pediatric medicine from around the world.

Dr. Packer delivered one of the opening keynote lectures, entitled, “Translation of molecular advances into care: the challenge ahead for children’s hospitals.” His talk focused on the tremendous promise and significant challenges posed by the latest scientific advances, through the lens of a neurologist.

“Across the world, we are looking at the same challenges: How can we use scientific advances to find better outcomes? How can we financially support the new types of interventions made possible by these molecular biologics insights when they can cost millions of dollars for one patient?”

“There’s palpable excitement that these new developments will give us potential therapies we never dreamed about before, ways to reverse what we initially thought was irreversible brain damage, ways to prevent severe illnesses including brain tumors, but the issue is how to turn this promise into reality. That’s a worldwide issue, not simply a single country’s issue,” he continued.

He also flagged mental health and behavioral health as a crucial, universal challenge in need of addressing on both sides of the Pacific.

The Children’s National delegation, including Drs. DeBiasi, Song, Keating, Gaillard and Packer were also honored to share their insight in a series of specialty-specific breakout sessions at the Forum.

Overall, the long journey opened a dialogue between Children’s National and pediatric care providers in China, paving the way for future discussion about how to learn from each other and collaborate to enhance all institutions involved.

two doctors perform surgery

Working miracles to control seizures and preserve brain power in newborns

Oluigbo and Myseros neurosurgery

In the spring of 2017, a multidisciplinary team applied an innovative approach to help preserve function in the working right hemisphere of a baby who experienced her first seizure hours after birth.

When orderly early fetal brain development is disturbed in one half of the brain, infants can be born with hemimegalencephaly—a rare occurrence—that results in one of the brain’s two hemispheres being oversized, heavy and malformed. This brain malformation arises early in the fetal period of life, is not inherited and is associated with seizures early in life.

Children with hemimegalencephaly can develop horrible seizures within the first hours or days of life. According to published research, every month these infants experience uncontrolled seizures correlates to a steep decline in IQ.

Because these types of seizures do not respond to multiple anti-seizure medications—medicines which may also cause worrisome side effects of their own in neonates—care teams attempt to schedule surgery as soon as feasible to remove or disconnect the hemisphere triggering the damaging seizures. “The ‘bad’ brain does not sustain any function and it interferes with the ‘good’ brain doing what it needs to do,” says William D. Gaillard, M.D., chief of Children’s division of Epilepsy and Neurophysiology and chief of Neurology.

Hemispherectomy is intricate surgery on an organ that is softer than normal and crisscrossed with a tangle of blood vessels that supply the damaged hemisphere with blood. Because of the risks of life-threatening blood loss in very young infants, the dramatic surgery is usually not performed until babies are at least 3 months old and weigh at least 10 pounds.

The challenge: The vulnerable babies who most need relief, infants who have been seizing since early life, are too young for the operation.

Neurosurgeons have clamped the carotid artery that supplies blood to the brain to minimize blood loss when the hemisphere is surgically removed. Dr. Gaillard says knowledge of that approach led the team to think: What if we use embolization—blocking blood supply to targeted locations in the brain—to achieve the same effect?  The plan effectively destroys the malformed brain from within, neutralizing its ability to cause the seizures.

“It was eye-opening for us to think about actually inflicting brain injury as a way of treating something in the brain that was causing seizures. That is really novel in itself: We’re thinking out of the box in applying existing techniques in a different age group. The conventional thinking with newborns is to let them be; their seizures don’t look that bad,” says Taeun Chang, M.D., director of Children’s Neonatal Neurology and Neonatal Neurocritical Care Program.

“We have evidence to suggest this is a safe and effective way of avoiding recurrent seizures and minimizing the need to give these infants potentially toxic medications so early in life. Ultimately, this helps a select group of babies who need the surgery to get to the point of being old enough to have it—all the while, sparing the healthy part of their brain,” Dr. Gaillard adds.

Darcy hemimegalencephaly

Once the embolization ended Darcy’s most severe seizures, the little girl could make eye contact, started smiling, and then graduated from smiling to full laughs. In weekly physical therapy, the infant works on tummy time, head control and ensuring her eyes track.

In the spring of 2017, the multidisciplinary team applied the innovative approach to help preserve function in the working right hemisphere of a baby named Darcy Murphy. Darcy experienced her first seizure hours after she was born, and when she arrived at Children’s National had been in and out of two different emergency rooms in another state for the first few weeks of her life.

The team explained to the Murphy family that Darcy was on multiple medications, but her seizures continued unabated. The options included inducing a coma, sending Darcy home despite ongoing seizures or minimally invasive embolization.

“We would not have even posed this if we were not confident in our ability to do the procedure and deal with potential complications,” Dr. Chang says.

“Oh my gosh, as a parent you know what you’re doing is permanent,” says Rachel Murphy, 29, Darcy’s mom said of the decisions that she and husband Ryan, 33, faced for the youngest of their three children. “What if it’s not the right decision? What if in a week they come out with a new procedure you could have done? We were horrified all the time. The nice part with this procedure is the reward is apparent very quickly, and it just gets better. You don’t have to wait two years to know you made the right decision. You can see half a brain is better than the whole thing for this specific child.”

Once the embolization ended Darcy’s most severe seizures, the little girl could initiate and maintain eye contact with family members, started smiling and then graduated from smiling to full laughs. In weekly physical therapy, the infant works on tummy time, head control and ensuring her eyes track.

Children’s multidisciplinary care team includes experts in newborn intensive care (neonatologists) to aggressively manage seizures in the traditional fashion as they occur and to monitor vital signs; a neonatal neurologist/neurointensivist at the bedside and in the Angio suite monitoring Darcy’s brain activity; a neonatal epileptologist; a surgical epilepsy team; an interventional neuroradiologist; neurosurgeons to perform the delicate functional hemispherectomy to remove any residual brain tissue from the bad hemisphere; and physical therapists working to help Darcy achieve maximum function after surgery.

“We were just like one unit in the sense of being able to provide coherent, comprehensive care. It’s about blood pressure management, breathing, electrolytes, making sure everything is right for going to the operating room,” Dr. Chang explains. “Darcy’s case highlights the ways in which Children’s National is different and offers personalized care that is superior to other centers.”

The team, which recently published a case report of two previous serial embolizations followed by hemispherectomy, plans follow-up papers describing EEG manifestations during an acute stroke in a newborn, advice to the field on best practices for the embolization and using cooling to control the planned brain injury during embolization hemispherectomy.

Revised Nov. 7, 2017

Related resources

Chima Oluigbo

A novel way to treat intractable epilepsy caused by hemimegalencephaly

Chima Oluigbo

A multidisciplinary team led by Chima Oluigbo, M.D., F.R.C.S.C., pioneered a novel technique to preserve newborns’ healthy brain tissue, buying time until the infants became old enough to undergo a hemispherectomy.

PDF Version

What’s known

Hemimegalencephaly is an extremely rare birth defect in which one side of the brain grows larger than the other. This anomaly typically leads to severe, recurrent seizures that can be difficult to control solely with medications. While the seizures themselves are detrimental to the developing brain, the amount of medications used to reduce seizure frequency often come with significant side effects and have the potential to hamper brain growth. Hemispherectomy, a radical surgery in which one half of the brain is removed, is often the most successful way to treat severe and intractable epilepsy. However, this surgery can be challenging to perform successfully in very young babies.

What’s new

In this case report, the Children’s National Health System Epilepsy Team led by Chima Oluigbo, M.D., F.R.C.S.C., a pediatric neurosurgeon; Tammy N. Tsuchida, M.D., PhD., a pediatric surgical epileptologist; Monica Pearl, M.D., a pediatric interventional neuroradiologist; Taeun Chang, M.D., a neonatal neurointensivist; and the neonatal intensive care team explored the possibility of using minimally invasive surgery to cut off the blood supply to the brain hemisphere responsible for generating seizures in newborns with hemimegalencephaly. This procedure, they reasoned, could buy time for babies to mature and become more resilient to withstand the future hemispherectomy while also lessening the damage caused by uncontrolled, recurrent seizures. The case report focused on the first two patients with hemimegalencephaly who had sequential procedures to gradually restrict blood flow to the affected brain hemisphere within their first few weeks of life, followed by hemispherectomies at a few months of age. This novel approach significantly lessened their seizures until hemispherectomy, allowing these children to continue to grow and develop seizure-free.

Questions for future research

Q: Which patients are best suited for this surgical procedure?
Q: How can surgeons reduce the risk of excessive blood loss during hemispherectomy caused by the growth of additional blood vessels after flow through the brain’s major vessels has been blocked?
Q: What are the long-term outcomes for infants who undergo these procedures?

Source: “ ‘Endovascular embolic hemispherectomy’: A strategy for the initial management of catastrophic holohemispheric epilepsy in the neonate.” Oluigbo, C., M.S. Pearl, T.N. Tsuchida, T. Chang, C.-Y. Ho and W. D. Gaillard. Published by Child’s Nervous System October 29, 2016.
STAR Team

STAR robot is finalist in NASA iTech challenge

STAR Team

Children’s National Health System’s proprietary robotic surgical technology Smart Tissue Autonomous Robot (STAR) has been named one of the top ten finalists in the 2017 NASA iTech call for ideas challenge.

The Sheikh Zayed Institute for Pediatric Surgical Innovation’s intelligent Smart Tissue Autonomous Robot (STAR) has been named one of the top ten finalists in the 2017 NASA iTech challenge.

The team will present the project at the NASA iTech Forum on July 12-13, 2017 at the National Institute of Aerospace in Hampton, VA, where leaders from NASA and prospective stakeholders will evaluate the 10 finalists and select three top solutions.

“We’re honored to be selected as a finalist in this prestigious challenge,” said Peter C. Kim, M.D., vice president and associate surgeon in chief at Sheikh Zayed Institute at Children’s National. “Our technology is capable of many solutions that would be useful as part of NASAs deep space exploration, including intelligent pods capable of common intelligent autonomous surgical procedures.”

A cutting-edge system, STAR was the first to perform a successful autonomous robotic soft tissue surgery on a live subject in May 2016 and is licensed to Omniboros.