Public Health

Lee Beers

Lee Beers, M.D., F.A.A.P, begins term as AAP president

Lee Beers

“The past year has been a stark reminder about the importance of partnership and working together toward common goals,” says Dr. Beers. “I am humbled and honored to be taking on this role at such a pivotal moment for the future health and safety of not only children, but the community at large.”

Lee Savio Beers, M.D., F.A.A.P., medical director of Community Health and Advocacy at the Child Health Advocacy Institute (CHAI) at Children’s National Hospital, has begun her term as president of the American Academy of Pediatrics (AAP). The AAP is an organization of 67,000 pediatricians committed to the optimal physical, mental and social health and well-being for all children – from infancy to adulthood.

“The past year has been a stark reminder about the importance of partnership and working together toward common goals,” says Dr. Beers. “I am humbled and honored to be taking on this role at such a pivotal moment for the future health and safety of not only children, but the community at large.”

Dr. Beers has pledged to continue AAP’s advocacy and public policy efforts and to further enhance membership diversity and inclusion. Among her signature issues:

  • Partnering with patients, families, communities, mental health providers and pediatricians to co-design systems to bolster children’s resiliency and to alleviate growing pediatric mental health concerns.
  • Continuing to support pediatricians during the COVID-19 pandemic with a focus on education, pediatric practice support, vaccine delivery systems and physician wellness.
  • Implementation of the AAP’s Equity Agenda and Year 1 Equity Workplan.

Dr. Beers is looking forward to continuing her work bringing together the diverse voices of pediatricians, children and families as well as other organizations to support improving the health of all children.

“Dr. Beers has devoted her career to helping children,” says Kurt Newman, M.D., president and chief executive officer of Children’s National. “She has developed a national advocacy platform for children and will be of tremendous service to children within AAP national leadership.”

Read more about Dr. Beer’s career and appointment as president of the AAP.

child receiving COVID test

COVID testing results highlight importance of understanding virus in children

child receiving COVID test

A new study looking at the results of testing children for COVID-19 through a Children’s National Hospital community-based testing site found that one in four patients had a positive test.

A new study looking at the results of testing children for COVID-19 through a Children’s National Hospital community-based testing site found that one in four patients had a positive test. The findings, reported online Dec. 18 in The Journal of Pediatrics, reinforce that children and young adults are impacted by the virus more than originally believed, and that the continued understanding of their role in transmitting COVID-19 is essential to getting the virus under control.

Of the 1,445 patients tested at the specimen collection site for SARS-CoV-2 virus between March 21 and May 16, 2020, the median age was 8 years old, and more than 34% of positive patients were Hispanic, followed by non-Hispanic Black and non-Hispanic white. The daily positivity rate increased over the study period, from 5.4% during the first week to a peak of 47.4% in May. Children and adolescents were referred to the testing site because of risk of exposure or mild symptoms.

“We knew that community-based testing sites were key in minimizing exposure risk to other patients and health care workers, preserving PPE, centralizing specimen collection services, mitigating acute care site overcrowding and informing our community of the burden caused by this disease,” says Joelle Simpson, M.D., medical director of Emergency Preparedness at Children’s National.

Drive-through/walk-up testing sites outside of a traditional acute care setting have emerged around the world to meet the need for testing mildly ill or asymptomatic individuals. In March, Children’s National Hospital opened a drive-up/walk-up location — one of the first exclusively pediatric testing sites for the virus in the U.S. — where primary care doctors in the Washington, D.C., region could refer young patients for COVID-19 specimen collection and testing.

“At first, children were not the target of testing initiatives, but it is clear that making testing available to pediatric patients early was a very important part of the pandemic response,” says Meghan Delaney, D.O., M.P.H., chief of Pathology and Laboratory Medicine at Children’s National. “Not only can children get severe disease, they can be part of positive clusters with the adults they live with. The knowledge we have gained by testing many thousands of children over the pandemic has provided key information.”

Compared with non-Hispanic white children and after adjustments for age, sex and distance of residence from specimen collection site, minority children had a higher likelihood of infection.

“We wanted to identify the features of children tested at this site who did not require acute medical care and be able to compare demographic and clinical differences between patients who tested positive and negative for COVID-19,” says Dr. Simpson.

Patients with COVID-19 exposure and symptoms were more likely to have a positive test than patients without symptoms. This supports contact tracing for symptomatic cases and testing as an important tool in detecting and containing community spread, according to the study’s findings. Although most patients were referred because they lived with a family member with high risk for exposure or infection, this was not associated with positive test results.

“The impact of this virus is broad and affects planning for children, especially as schools and childcare centers work to reopen,” Dr. Simpson says. “In order to guide the development of measures to control the ongoing pandemic, we need better understand the transmission potential of these mildly symptomatic or well children and young adults.”

global connectedness concept illustration

Research partnerships and capacity building in the time of COVID-19

global connectedness concept illustration

“COVID infection anywhere in the world is COVID infection everywhere in the world,” said John Nkengasong, M.Sc., Ph.D., director of the Africa Centers for Disease Control (Africa CDC), during his remarks on the importance of shared science, innovation and diplomacy. Leading experts in global health met virtually on November 13, 2020, to discuss updates in the COVID-19 crisis and lessons learned in Africa. Children’s National Hospital, along with the George Washington University (GW) Institute for Africa Studies and the CNRS-EpiDaPo Lab, sponsored the half-day conference that captured the interest of international attendees committed to examining how best to expand strong and enduring partnerships between U.S. and African scientists, health professionals and research institutes to meet global challenges.

Trust, transparency and communication were common themes of expert panelists that included Elizabeth Bukusi, Ph.D., M.P.H., Kenya Medical Research Institute; Maryam DeLoffre, Ph.D., GW Humanitarian Action Initiative; Peter Kilmarx, M.D., National Institutes of Health (NIH) Fogarty International Center; Enock Motavu, Ph.D., Makerere University in Uganda; Jennifer Troyer, Ph.D., Human Health and Heredity in Africa Program (H3Africa) at NIH; Désiré Tshala-Katumbay, M.D., Ph.D., National Institute of Biomedical Research in Kinshasa; Eric Vilain, M.D., Ph.D., Center for Genetic Medicine Research at Children’s National, with Institute for African Studies Director Jennifer Cooke, and Jonathan LoTempio Jr and D’Andre Spencer of Children’s National as moderators and co-conveners. Read more about the panelists.

The keynote speaker, Nkengasong, updated the group on the massive efforts in bending the COVID-19 disease curve on the African continent which at present has two million cases and 46,000 deaths. This is fewer than many other regions, and Nkengasong attributes this in part to health systems strengthening and capacity building that already occurred with past pandemics like Ebola. He stressed the importance of focusing on the “4 Ps” — population, pathogen, politics and policy — in fighting the pandemic, and the need to ensure that citizens trust their leaders and the public health measures they advance. New endeavors by the Africa CDC include the Pathogen Genomic Initiative, which will help inform research and responses to COVID-19 and other emergent disease threats, and the African COVID-19 Vaccine Development and Access Strategy, which aims to ensure widespread access, delivery and uptake of effective vaccines across Africa. Africa CDC is surging to hotspots as lockdowns ease or shift, and is empowering universities to invest in proactive and, which has helped with the active response success. “Rising tides raise all boats in the sea,” said Nkengasong. He went on to say that there is great power in coordination and cooperation, and science diplomacy and technology are critical to winning the novel coronavirus war.

In a panel on research partnerships, speakers Motavu, Tshala-Katumbay, and Vilain emphasized the global benefits of scientific collaborations in Africa. Africa contains more human genetic variation than any other region of the world, and capturing that diversity in global understanding of the human genome — which is still heavily skewed toward individuals of European ancestry — will be a major factor in global medical advances of the future. And research into relatively localized diseases can lead to breakthroughs in broader understanding on connections between climate variation, environment, nutrition and child health. “The simplistic, localized, nationalist, way of doing science is over,” said Tshala-Katumbay, “and there is no way to go back.” The discipline of science diplomacy will take time for people to grasp, he added, “but it will be crucial for the future generation of scientists to go back.”

A recurring conference theme was that collaboration between countries is crucial for development of better care. Kilmarx told the event participants that in 2019, the National Institutes of Health supported some 1,668 collaborations with African research institutions. Investments in capacity building have yielded impressive results, and today some of Africa’s foremost leaders in science research and public health have received NIH training and support, stating: “If you plant acorns over the decades, you have some mighty oaks.” Bukusi, once such NIH trainee, now is engaged in training a new generation of African researchers and U.S. researchers based in Africa and expanding research partnerships at the Kenya Medical Research Institute.

Troyer showed the successes of the Human Heredity and Health in Africa Initiative, a large consortium that supports a pan-continental network of laboratories that aims to determine disease susceptibility and drug responses. Finally, DeLoffre underscored the need for long-term investments and the value of building local capacities to respond to current crises and anticipate future challenges.

Overall, there was optimism that innovative coalitions are a long-term strength in fighting pandemics and promoting reciprocal learning that will last after the crisis. Science can be a neutral platform that, combined with diplomacy and technology, builds bridges between peoples.

pile of plastic bottles

The linkage between chemicals used in plastics and cardiovascular disease

pile of plastic bottles

For people across the globe, plastics are synonymous with modern life and it’s impossible to avoid exposure to them, including clinical environments where a variety of frequently used materials, such as tubing and blood storage bags, are made from plastics.

For people across the globe, plastics are synonymous with modern life and it’s impossible to avoid exposure to them, including clinical environments where a variety of frequently used materials, such as tubing and blood storage bags, are made from plastics. Led by Nikki Posnack, Ph.D, principal investigator at The Sheikh Zayed Institute for Pediatric Surgical Innovation at Children’s National Hospital, a team of Children’s National researchers has been studying the potential effects of chemicals found in plastics, such as BPA and DEHP, as possible contributors to cardiovascular disease.

Along with conducting proprietary studies of the potential effects, Posnack and her team recently reviewed available scientific studies to further identify and illuminate the potential links between exposure to the synthetic additives contained in plastics and cardiovascular mortality. The article was published this month in Nature Reviews Cardiology.

In the article Posnack cites a 10-year longitudinal study with the finding that high exposure to BPA was associated with a 46-49% higher hazard ratio for cardiovascular and all-cause mortality, compared with low exposure to BPA.

“Plastics may be indispensable materials, but their ubiquity does raise concerns about the effects of our continuous exposure to plasticizer additives like di(2-ethylhexyl) phthalate (DEHP) and synthetic chemicals used to create polymers like BPA,” said Posnack. “Although disease causation can be difficult to pinpoint in population and epidemiological studies, experimental work has clearly demonstrated a direct link to plastic chemicals and cardiac dysfunction. It is clear that future collaborative endeavors are necessary to bridge the gap between experimental, epidemiological and clinical investigations to resolve the impact of plastics on cardiovascular health.”

Nikki Gillum Posnack

Nikki Posnack, Ph.D, principal investigator at The Sheikh Zayed Institute for Pediatric Surgical Innovation at Children’s National Hospital.

Posnack added that, given the omnipresence of plastics and their related chemicals, biomonitoring studies have reported detectable levels of DEHP and BPA in 75-90% of the population. Occupational or clinical environments can also result in elevated exposures to these dangerous chemicals. Previous epidemiological studies have reported links between elevated urinary levels of phthalate or bisphenol, common additives in plastic, and an increased risk of coronary and peripheral artery disease, chronic inflammation, myocardial infarction, angina, suppressed heart rate variability and hypertension.

Additionally, available research has shown that incomplete polymerization or degradation of BPA-based plastic products can result in unsafe human exposure to BPA. Despite these links, the article points out, both BPA and DEHP are still manufactured in high volumes and are used to produce a wide variety of consumer and commercial products.

Further exploring implications for pediatrics, a June 2020 article published by Posnack in Birth Defects Research looks at the potential effects of plastic chemicals on the cardiovascular health of fetal, infant and pediatric groups. The article highlighted experimental work that suggests plasticizer chemicals such as bisphenols and phthalates may exert negative influence on pediatric cardiovascular health. The article systematically called out areas of concern supported by research findings. Also addressing current gaps in knowledge, Posnack outlined future research endeavors that would be needed to resolve the relationship between chemical exposures and the impact on pediatric cardiovascular physiology.

In related work, Posnack and her team are expanding their work on plastics used in blood bags to also investigate the role of blood storage duration on health outcomes. A recently published first study demonstrates that “older” blood products (stored 35 or more days) directly impact cardiac electrophysiology, using experimental models. Published October 22, 2020 in the Journal of the American Heart Association, the study concludes that the cardiac effects are likely caused by biochemical alterations in the supernatant from red blood cell units that occur over time, including but not limited to, hyperkalemia (elevated potassium levels).

Research & Innovation Campus

Boeing gives $5 million to support Research & Innovation Campus

Research & Innovation Campus

Children’s National Hospital announced a $5 million gift from The Boeing Company that will help drive lifesaving pediatric discoveries at the new Children’s National Research & Innovation Campus.

Children’s National Hospital announced a $5 million gift from The Boeing Company that will help drive lifesaving pediatric discoveries at the new Children’s National Research & Innovation Campus. The campus, now under construction, is being developed on nearly 12 acres of the former Walter Reed Army Medical Center. Children’s National will name the main auditorium in recognition of Boeing’s generosity.

“We are deeply grateful to Boeing for their support and commitment to improving the health and well-being of children in our community and around the globe,” said Kurt Newman, M.D., president and CEO of Children’s National “The Boeing Auditorium will help the Children’s National Research & Innovation campus become the destination for discussion about how to best address the next big healthcare challenges facing children and families.”

The one-of-a-kind pediatric hub will bring together public and private partners for unprecedented collaborations. It will accelerate the translation of breakthroughs into new treatments and technologies to benefit kids everywhere.

“Children’s National Hospital’s enduring mission of positively impacting the lives of our youngest community members is especially important today,” said Boeing President and CEO David Calhoun. “We’re honored to join other national and community partners to advance this work through the establishment of their Research & Innovation Campus.”

Children’s National Research & Innovation Campus partners currently include Johnson & Johnson Innovation – JLABS, Virginia Tech, the National Institutes of Health (NIH), Food & Drug Administration (FDA), U.S. Biomedical Advanced Research and Development Authority (BARDA), Cerner, Amazon Web Services, Microsoft, National Organization of Rare Diseases (NORD) and local government.

The 3,200 square-foot Boeing Auditorium will be the focal point of the state-of-the-art conference center on campus. Nationally renowned experts will convene with scientists, medical leaders and diplomats from around the world to foster collaborations that spur progress and disseminate findings.

Boeing’s $5 million commitment deepens its longstanding partnership with Children’s National. The company has donated nearly $2 million to support pediatric care and research at Children’s National through Chance for Life and the hospital’s annual Children’s Ball. During the coronavirus pandemic, Boeing fabricated and donated 2,000 face shields to help keep patients and frontline care providers at Children’s National safe.

communication network concept image

Children’s National joins international AI COVID-19 initiative

communication network concept image

Children’s National Hospital is the first pediatric partner to join an international initiative led by leading technology firm NVIDIA and Massachusetts General Brigham Hospital, focused on creating solutions through machine and deep learning to benefit COVID-19 healthcare outcomes.

Children’s National Hospital is the first pediatric partner to join an international initiative led by leading technology firm NVIDIA and Massachusetts General Brigham Hospital, focused on creating solutions through machine and deep learning to benefit COVID-19 healthcare outcomes. The initiative, known as EXAM (EMR CXR AI Model) is the largest and most diverse federated learning enterprise, comprised of 20 leading hospitals from around the globe.

Marius George Linguraru, D.Phil., M.A., M.Sc., principal investigator at the Sheikh Zayed Institute for Pediatric Surgical Innovation at Children’s National Hospital, noted that one of the core goals of the initiative is to create a platform which brings resources together, from a variety of leading institutions, to advance the care of COVID-19 patients across the board, including children.

“Children’s National Hospital is proud to be the first pediatric partner joining the world’s leading healthcare institutions in this collaboration to advance global health,” says Linguraru. “We are currently living in a time where rapid access to this kind of global data has never been more important — we need solutions that work fast and are effective. That is not possible without this degree of collaboration and we look forward to continuing this important work with our partners to address one of the most significant healthcare challenges in our lifetime.”

A recent systematic review and meta-analysis from Children’s National Hospital became another core contribution to understanding how children are impacted by COVID-19. Led by Linguraru and accepted to be published in Pediatric Pulmonology, it offers the first comprehensive summary of the findings of various studies published thus far that describe COVID-19 lung imaging data across the pediatric population.

The review examined articles based on chest CT imaging in 1,026 pediatric patients diagnosed with COVID-19, and concluded that chest CT manifestations in those patients could potentially be used to prompt intervention across the pediatric population.

Marius George Linguraru

“Children’s National Hospital is proud to be the first pediatric partner joining the world’s leading healthcare institutions in this collaboration to advance global health,” says Marius George Linguraru, D.Phil., M.A., M.Sc.

“Until this point, pediatric COVID-19 studies have largely been restricted to case reports and small case series, which have prevented the identification of any specific pediatric lung disease patterns in COVID-19 patients,” says Linguraru. “Not only did this review help identify the common patterns in the lungs of pediatric patients presenting COVID-19 symptoms, which are distinct from the signs of other viral respiratory infections in children, it also provided insight into the differences between children and adults with COVID-19.”

Earlier this month, NVIDIA announced the EXAM initiative had – in just 20 days – developed an artificial intelligence (AI) model to determine whether a patient demonstrating COVID-19 symptoms in an emergency room would require supplemental oxygen hours – even days – after the initial exam. This data ultimately aids physicians in determining the proper level of care for patients, including potential ICU placement.

The EXAM initiative achieved a machine learning model offering precise prediction for the level of oxygen incoming patients would require.

In addition to Children’s National Hospital, other participants included Mass Gen Brigham and its affiliated hospitals in Boston; NIHR Cambridge Biomedical Research Centre; The Self-Defense Forces Central Hospital in Tokyo; National Taiwan University MeDA Lab and MAHC and Taiwan National Health Insurance Administration; Tri-Service General Hospital in Taiwan; Kyungpook National University Hospital in South Korea; Faculty of Medicine, Chulalongkorn University in Thailand; Diagnosticos da America SA in Brazil; University of California, San Francisco; VA San Diego; University of Toronto; National Institutes of Health in Bethesda, Maryland; University of Wisconsin-Madison School of Medicine and Public Health; Memorial Sloan Kettering Cancer Center in New York; and Mount Sinai Health System in New York.

antibodies attached to COVID

Study shows COVID-19 antibodies and virus can coexist

antibodies attached to COVID

Children’s National study shows that children can have COVID-19 antibodies and the virus in their system simultaneously.

With many questions remaining around how children spread COVID-19, Children’s National Hospital researchers set out to improve the understanding of how long it takes pediatric patients with the virus to clear it from their systems, and at what point they start to make antibodies that work against the coronavirus. The study, published Sept. 3 in the Journal of Pediatrics, finds that the virus and antibodies can coexist in young patients.

“With most viruses, when you start to detect antibodies, you won’t detect the virus anymore. But with COVID-19, we’re seeing both,” says Burak Bahar, M.D., lead author of the study and director of Laboratory Informatics at Children’s National. “This means children still have the potential to transmit the virus even if antibodies are detected.”

She adds that the next phase of research will be to test if the virus that is present alongside the antibodies can be transmitted to other people. It also remains unknown if antibodies correlate with immunity, and how long antibodies and potential protection from reinfection last.

The study also assessed the timing of viral clearance and immunologic response. It found the median time from viral positivity to negativity, when the virus can no longer be detected, was 25 days. The median time to seropositivity, or the presence of antibodies in the blood, was 18 days, while the median time to reach adequate levels of neutralizing antibodies was 36 days. Neutralizing antibodies are important in potentially protecting a person from re-infection of the same virus.

This study used a retrospective analysis of 6,369 children tested for SARS-CoV-2, the virus that causes COVID-19, and 215 patients who underwent antibody testing at Children’s National between March 13, 2020, and June 21, 2020. Out of the 215 patients, 33 had co-testing for both the virus and antibodies during their disease course. Nine of the 33 showed presence of antibodies in their blood while also later testing positive for the virus.

Also of note, researchers found patients 6 through 15 years old took a longer time to clear the virus (median of 32 days) compared to patients 16 through 22 years old (median of 18 days). Females in the 6-15 age group also took longer to clear the virus than males (median of 44 days for females compared to median of 25.5 days for males).

Although there is emerging data regarding this timing in adults with COVID-19, there is far less data when it comes to the pediatric population. The findings being gathered by Children’s National researchers and scientists around the world are critical to helping understand the unique impact on children and their role in viral transmission.

“The takeaway here is that we can’t let our guard down just because a child has antibodies or is no longer showing symptoms,” says Dr. Bahar. “The continued role of good hygiene and social distancing remains critical.”

Other researchers who contributed to this study include Cyril Jacquot, M.D.; Delores Y Mo,M.D.; Roberta L DeBiasi, M.D.; Joseph Campos, Ph.D.; and Meghan Delaney, D.O.

coronavirus

COVID-19 Pandemic: 3rd Annual CN – NIAID Virtual Symposium

The CN-NIAID Virtual Symposium highlighted work being done to fight the COVID-19 pandemic globally.

sick boy in bed

Clinical features of COVID-19 versus influenza

sick boy in bed

In a cohort retrospective study comparing clinical features of COVID-19 and seasonal flu, researchers found surprisingly little difference in the rates of hospitalization, admission to the intensive care unit and mechanical ventilator use between the two groups.

As the fall approaches, pediatric hospitals will start seeing children with seasonal influenza A and B. At the same time, COVID-19 will be co-circulating in communities with the flu and other respiratory viruses, making it more difficult to identify and prevent the novel coronavirus.

With little published data directly comparing the clinical features of children with COVID-19 to those with seasonal flu, researchers at Children’s National Hospital decided to conduct a retrospective cohort study of patients in the two groups. Their findings — published September 8 in JAMA Network Open — surprised them.

The study — detailed in the article “Comparison of Clinical Features of US Children With COVID-19 vs Seasonal Influenza A and B” — showed no statistically significant differences in the rates of hospitalization, admission to the intensive care unit and mechanical ventilator use between the two groups.

The other unexpected finding was that more patients with COVID-19 than those with seasonal influenza reported fever, cough, diarrhea or vomiting, headache, body ache or chest pain at the time of diagnosis, says Xiaoyan Song, Ph.D., M.Sc., M.B., the study’s principal investigator.

“I didn’t see this coming when I was thinking about doing the study,” says Dr. Song, director of Infection Control and Epidemiology at Children’s National since 2007 and a professor of pediatrics at the George Washington University School of Medicine and Health Sciences. “It took several rounds of thinking and combing through the data to convince myself that this was the conclusion.”

Given that much remains unknown about COVID-19, the researchers’ discovery that children with the disease present with more symptoms at the time of diagnosis is a valuable one.

“It’s a good cue from a prevention and planning perspective,” says Dr. Song. “We always emphasize early recognition and early isolation with COVID. Having a clinical picture in mind will assist clinicians as they diagnose patients with symptoms of the coronavirus.”

The study included 315 children who were diagnosed with a laboratory-confirmed COVID-19 between March 25, 2020, and May 15, 2020, and 1,402 children who were diagnosed with a laboratory-confirmed seasonal influenza between Oct. 1, 2019, and June 6, 2020, at Children’s National. Asymptomatic patients who tested positive for COVID-19 during pre-admission or pre-procedural screening were excluded from the study.

Of the 315 patients who tested positive for COVID-19, 52% were male, with a median age of 8.4 years. Of these patients, 54 (17.1 %) were hospitalized, including 18 (5.7%) who were admitted to the intensive care unit (ICU) and 10 (3.2%) who received mechanical ventilator treatment.

Among the 1,402 patients who tested positive for influenza A or B, 52% were male, with a median age of 3.9 years, and 291 (21.2%) were hospitalized, including 143 for influenza A and 148 for influenza B. Ninety-eight patients (7.0%) were admitted to the ICU, and 27 (1.9%) received mechanical ventilator support.

The study showed a slight difference in the age of children hospitalized with COVID-19 compared to those hospitalized with seasonal influenza. Patients hospitalized with COVID-19 had a median age of 9.7 years vs. those hospitalized with seasonal influenza who had a median age of 4.2 years.

In both groups, fever was the most often reported symptom at the time of diagnosis followed by cough. A greater proportion of patients hospitalized with COVID-19 than those hospitalized with seasonal influenza reported fever (76% vs. 55%), cough (48% vs. 31%), diarrhea or vomiting (26% vs. 12%), headache (11% vs. 3%), body ache/myalgia (22% vs. 7%), and chest pain (11% vs. 3%).

More patients hospitalized with COVID-19 than those with seasonal influenza reported sore throat or congestion (22% vs. 20%) and shortness of breath (30% vs. 20%), but the differences were not statistically significant.

During the study period, the researchers noticed an abrupt decline of influenza cases at Children’s National after local schools closed in mid-March and stay-at-home orders were implemented about two weeks later to combat the community spread of COVID-19. Dr. Song says the impact of school closures on the spread of COVID-19 among children is the next area of study for her research team.

“We want to assess the quantitative impact of school closures so we can determine at what point the cost of closing schools and staying at home outweighs the benefit of reducing transmission of COVID-19 and burdens on the health care system,” she says.

Dr. Song urges members of the community “first and foremost to stay calm and be strong. We’re learning new and valuable things about this virus each day, which in turn improves care. The collision of the flu and COVID-19 this fall could mean an increase in pediatric hospitalizations. That’s why it’s important to get your flu shot, because it can help take at least one respiratory virus out of circulation.”

Other researchers who contributed to this study include Meghan Delaney, D.O.; Rahul K. Shah, M.D.; Joseph M. Campos, Ph.D.; David L. Wessel, M.D.; and Roberta L. DeBiasi, M.D.

young boy and teddy bear in face masks

Study provides important insight into spread of COVID-19 in children

young boy and teddy bear in face masks

New research suggests that children can shed SARS-CoV-2, the virus that causes COVID-19, even if they never develop symptoms or for long after symptoms have cleared. But many questions remain about the significance of the pediatric population as vectors for this sometimes deadly disease.

New research suggests that children can shed SARS-CoV-2, the virus that causes COVID-19, even if they never develop symptoms or for long after symptoms have cleared. But many questions remain about the significance of the pediatric population as vectors for this sometimes deadly disease, according to an invited commentary by Children’s National Hospital doctors that accompanies this new study published online Aug. 28, 2020 in JAMA Pediatrics. The commissioned editorial, written by Roberta L. DeBiasi, M.D., M.S., chief of the Division of Infectious Diseases, and Meghan Delaney, D.O., M.P.H., chief of the Division of Pathology and Lab Medicine, provides important insight on the role children might play in the spread of COVID-19 as communities continue to develop public health strategies to reign in this disease.

The study that sparked this commentary focused on 91 pediatric patients followed at 22 hospitals throughout South Korea. “Unlike in the American health system, those who test positive for COVID-19 in South Korea stay at the hospital until they clear their infections even if they aren’t symptomatic,” explains Dr. DeBiasi.

The patients here were identified for testing through contact tracing or developing symptoms. About 22% never developed symptoms, 20% were initially asymptomatic but developed symptoms later, and 58% were symptomatic at their initial test. Over the course of the study, the hospitals where these children stayed continued to test them every three days on average, providing a picture of how long viral shedding continues over time.

The study’s findings show that the duration of symptoms varied widely, from three days to nearly three weeks. There was also a significant spread in how long children continued to shed virus and could be potentially infectious. While the virus was detectable for an average of about two-and-a-half weeks in the entire group, a significant portion of the children — about a fifth of the asymptomatic patients and about half of the symptomatic ones — were still shedding virus at the three week mark.

Drs. DeBiasi and Delaney write in their commentary that the study makes several important points that add to the knowledge base about COVID-19 in children. One of these is the large number of asymptomatic patients — about a fifth of the group followed in this study. Another is that children, a group widely thought to develop mostly mild disease that quickly passes, can retain symptoms for weeks. A third and important point, they say, is the duration of viral shedding. Even asymptomatic children continued to shed virus for a long time after initial testing, making them potential key vectors.

However, the commentary authors say, despite these important findings, the study raises several questions. One concerns the link between testing and transmission. A qualitative “positive” or “negative” on testing platforms may not necessarily reflect infectivity, with some positives reflecting bits of genetic material that may not be able to make someone sick or negatives reflecting low levels of virus that may still be infectious.

Testing reliability may be further limited by the testers themselves, with sampling along different portions of the respiratory tract or even by different staff members leading to different laboratory results. It’s also unknown whether asymptomatic individuals are shedding different quantities of virus than those with symptoms, a drawback of the qualitative testing performed by most labs. Further, testing only for active virus instead of antibodies ignores the vast number of individuals who may have had and cleared an asymptomatic or mild infection, an important factor for understanding herd immunity.

Lastly, Drs. DeBiasi and Delaney point out, the study only tested for viral shedding from the respiratory tract even though multiple studies have detected the virus in other bodily fluids, including stool. It’s unknown what role these other sources might play in the spread of this disease.

Drs. DeBiasi and Delaney note that each of these findings and additional questions could affect public health efforts continually being developed and refined to bring COVID-19 under control in the U.S. and around the world. Children’s National has added their own research to these efforts, with ongoing studies to assess how SARS-CoV-2 infections proceed in children, including how antibodies develop both at the individual and population level.

“Each of these pieces of information that we, our collaborators and other scientists around the world are working to gather,” says Dr. DeBiasi, “is critical for developing policies that will slow the rate of viral transmission in our community.”

coronavirus

Higher COVID-19 rates seen in minority socioeconomically disadvantaged children

coronavirus

Minority and socioeconomically disadvantaged children have significantly higher rates of COVID-19 infection, a new study led by Children’s National Hospital researchers shows.

Minority and socioeconomically disadvantaged children have significantly higher rates of COVID-19 infection, a new study led by Children’s National Hospital researchers shows. These findings, reported online August 5 in Pediatrics, parallel similar health disparities for the novel coronavirus that have been found in adults, the authors state.

COVID-19, an infection caused by the novel coronavirus SARS-CoV-2 that emerged in late 2019, has infected more than 4.5 million Americans, including tens of thousands of children. Early in the pandemic, studies highlighted significant disparities in the rates of infection in the U.S., with minorities and socioeconomically disadvantaged adults bearing much higher burdens of infection. However, says Monika Goyal, M.D., M.S.C.E, a pediatric emergency medicine specialist and associate division chief in the Division of Emergency Medicine at Children’s National whose research focuses on health disparities, it’s been unclear whether these disproportionate rates of infection also extend to youth.

To investigate this question, she and her colleagues looked to data collected between March 21, 2020, and April 28, 2020, from a drive-through/walk-up COVID-19 testing site affiliated with Children’s National — one of the first exclusively pediatric testing sites for the virus in the U.S. To access this free testing site, funded by philanthropic support, patients between the ages of 0 and 22 years needed to meet specific criteria: mild symptoms and either known exposure, high-risk status, family member with high-risk status or required testing for work. Physicians referred patients through an online portal that collected basic demographic information, reported symptoms and the reason for referral.

When Dr. Goyal and her colleagues analyzed the data from the first 1,000 patients tested at this site, they found that infection rates differed dramatically among different racial and ethnic groups. While about 7% of non-Hispanic white children were positive for COVID-19, about 30% of non-Hispanic Black and 46% of Hispanic children were positive.

“You’re going from about one in 10 non-Hispanic white children to one in three non-Hispanic Black children and one in two Hispanic children. It’s striking,” says Dr. Goyal.

Using data from the American Families Survey, which uses five-year census estimates derived from home address to estimate median family income, the researchers separated the group of 1,000 patients into estimated family income quartiles. They found marked disparities in COVID-19 positivity rates by income levels: while those in the highest quartile had infection rates of about 9%, about 38% of those in the lowest quartile were infected.

There were additional disparities in exposure status, Dr. Goyal adds. Of the 10% of patients who reported known exposure to COVID-19, about 11% of these were non-Hispanic white. However, non-Hispanic Black children were triple this number.

Although these numbers show clear disparities in COVID-19 infection rates, the authors are now trying to understand why these disparities occur and how they can be mitigated.

“Some possible reasons may be socioeconomic factors that increase exposure, differences in access to health care and resources, as well as structural racism,” says Dr. Goyal.

She adds that Children’s National is working to address those factors that might increase risk for COVID-19 infection and poor outcomes by helping to identify unmet needs — such as food and/or housing insecurity — and steer patients toward resources when patients receive their test results.

“As clinicians and researchers at Children’s National, we pride ourselves on not only being a top-tier research institution that provides cutting-edge care to children, but by being a hospital that cares about the community we serve,” says Denice Cora-Bramble, M.D., M.B.A., chief medical officer of Ambulatory and Community Health Services at Children’s National and the research study’s senior author. “There’s still so much work to be done to achieve health equity for children.”

Other Children’s National researchers who contributed to this study include Joelle N. Simpson, M.D.; Meleah D. Boyle, M.P.H, Gia M. Badolato, M.P.H; Meghan Delaney, D.O,. M.P.H.; and Robert McCarter Jr., Sc.D.

The science-policy interface

We can do better: Lessons learned on COVID-19 data sharing can inform future outbreak preparedness

Since COVID-19 emerged late last year, there’s been an enormous amount of research produced on this novel coronavirus disease. But the content publicly available for this data and the format in which it’s presented lack consistency across different countries’ national public health institutes, greatly limiting its usefulness, Children’s National Hospital scientists report in a new study. Their findings and suggestions, published online August 19 in Science & Diplomacy, could eventually help countries optimize their COVID-19-related data — and data for future outbreaks of other diseases — to help further new research, clinical decisions and policy-making around the world.

Recently, explains study senior author Emmanuèle Délot, Ph.D., research faculty at Children’s National Research Institute, she and her colleagues sought data on sex differences between COVID-19 patients around the world for a new study. However, she says, when they checked the information available about different countries, they found a startling lack of consistency, not only for sex-disaggregated data, but also for any type of clinical or demographic information.

“The prospects of finding the same types of formats that would allow us to aggregate information, or even the same types of information across different sites, was pretty dismal,” says Dr. Délot.

To determine how deep this problem ran, she and colleagues at Children’s National, including Eric Vilain, M.D., Ph.D., the James A. Clark Distinguished Professor of Molecular Genetics and the director of the Center for Genetic Medicine Research at Children’s National, and Jonathan LoTempio, a doctoral candidate in a joint program with Children’s National and George Washington University, surveyed and analyzed the data on COVID-19.

The research spanned data reported by public health agencies from highly COVID-19 burdened countries, viral genome sequence data sharing efforts, and data presented in publications and preprints.

PubMed entries with coronavirus

Publications with the term “coronavirus” archived in PubMed over time.

At the time of study, the 15 countries with the highest COVID-19 burden at the time included the US, Spain, Italy, France, Germany, the United Kingdom, Turkey, Iran, China, Russia, Brazil, Belgium, Canada, the Netherlands and Switzerland. Together, these countries represented more than 75% of the reported global cases. The research team combed through COVID-19 data presented on each country’s public health institute website, looking first at the dashboards many provided for a quick glimpse into key data, then did a deeper dive into other data on this disease presented in other ways.

The data content they found, says LoTempio, was extremely heterogeneous. For example, while most countries kept running totals on confirmed cases and deaths, the availability of other types of data — such as the number of tests run, clinical aspects of the disease such as comorbidities, symptoms, or admission to intensive care, or demographic information on patients, such as age or sex — differed widely among countries.

Similarly, the format in which data was presented lacked any consistency among these institutes. Among the 15 countries, data was presented in plain text, HTML or PDF. Eleven offered an interactive web-based data dashboard, and seven had comma-separated data available for download. These formats aren’t compatible with each other, LoTempio explains, and there was little to no documentation about where the data that supplies some formats — such as continually updated web-based dashboards — was archived.

The science-policy interface

Graphic representation of the science-policy interface.

Dr. Vilain says that a robust system is already in place to allow uniform sharing of data on flu genomes — the World Health Organization’s (WHO) Global Initiative on Sharing All Influenza Data (GISAID) — which has been readily adapted for the virus that causes COVID-19 and has already helped advance some types of research. However, he says, countries need to work together to develop a similar system for harmonized sharing other types of data for COVID-19. The study authors recommend that COVID-19 data should be shared among countries using a standardized format and standardized content, informed by the success of GISAID and under the backing of the WHO.

In addition, the authors say, the explosion of research on COVID-19 should be curated by experts who can wade through the thousands of papers published on this disease since the pandemic began to identify research of merit and help merge clinical and basic science.

“Identifying the most useful science and sharing it in a way that’s usable to most researchers, clinicians and policymakers, will not only help us emerge from COVID-19 but could help us prepare for the next pandemic,” Dr. Vilain says.

Other researchers who contributed to this study include D’Andre Spencer, MPH, Rebecca Yarvitz, BA, and Arthur Delot-Vilain.

screenshot of pitch competition

“COVID-19-edition” of pediatric medical device competition announces winners

NCC-PDI-COVID19-Edition-Competition

“COVID-19-edition” of pediatric medical device competition announces finalists

Sixteen finalists have been selected in the “Make Your Medical Device Pitch for Kids!” special COVID-19 edition competition presented by the National Capital Consortium for Pediatric Device Innovation (NCC-PDI). Representing innovations in COVID-19-related pediatric medical devices, the finalists will compete in a virtual pitch event held on July 20,2020 where up to $250,000 in awards will be given. Winners will receive grant funding of up to $50,000.

The competition is led by NCC-PDI co-founders the Sheikh Zayed Institute for Pediatric Surgical Innovation at Children’s National Hospital and the A. James Clark School of Engineering at the University of Maryland and powered by nonprofit accelerator and NCC-PDI member, MedTech Innovator.

This competition focuses on pediatric medical devices that support home health monitoring and telehealth, and improve sustainability, resiliency and readiness in diagnosing and treating children during a pandemic.

“As COVID -19 continues to threaten the health of families and children across the nation, we must continue to seek new and better ways to deliver quality care during a pandemic and offer technology solutions to reopen more safely,” says Kolaleh Eskandanian, Ph.D., MBA, PMP, vice president and chief innovation officer at Children’s National Hospital and principal investigator of NCC-PDI. “Competitions like this are vital to get ahead of the healthcare challenge that COVID-19 presents in the world of pediatrics. By supporting innovation, we provide critical breakthroughs that can positively impact the lives of the children and families we serve.”

Along with grant funding, one company from the competition will be selected by Johnson & Johnson Innovation – JLABS to receive a one-year residency at JLABS @ Washington, DC, which will be located on the new Children’s National Research & Innovation Campus currently under construction. In addition to the 2021 JLABS residency, the awardee will have access to the JLABS community and expert mentoring by the Johnson & Johnson family of companies.

The 16 pediatric device innovations that judges selected for the final competition include:

  • Adipomics – simple and fast, one-step COVID-19 diagnostic kit for home or school use
  • Bloom Standard (Kaaria) – wearable, AI-driven ultrasound for infant cardiac and pulmonary screening and diagnostics
  • CereVu Medical – remote COVID-19 sensor, monitor and centralized data hub that measures blood oxygen saturation, muscle aches, temperature and trouble breathing
  • Children’s Hospital of Philadelphia – a transparent reusable DIY origami facemask that reveals facial expressions & improves communication
  • Children’s National Hospital – Lab-on-a-chip device for high-throughput combination drug screening
  • Hopscotch – gamified cognitive behavioral therapy-based computer exercises to encourage kids to stay engaged and complete treatment programs
  • Medichain – cost effective, accurate COVID-19 test with results in minutes and can detect the virus in the early stage
  • Medipines – monitor device that displays critical respiratory parameters analyzed from a patient’s breathing sample
  • OtoPhoto – a smart otoscope that quickly and accurately aids diagnosis of ear infections for home telehealth use
  • OxiWear – continuous wear oxygen-monitoring device used to reduce patient insecurity
  • REALTROMINS – real time, continuously updated predictive analytics to identify impending mortality in children
  • SurgiPals – digital assistant and urine biochemical sensor to aid in outpatient care of children with COVID-19
  • TGV-Dx – a novel, phenotype-based test system for rapid selection of effective antibiotic regimen
  • VitaScope – quick, accurate infant vital signs to facilitate high-quality virtual care
  • Vitls – wearable platform for remote patient monitoring of the vitals clinicians require to assess a patient
  • X-Biomedical – rugged, portable smart ICU ventilator for pediatric and adult patients

Funding for the competition is made possible by a grant from the Food and Drug Administration (FDA) and a philanthropic gift from Mei Xu, founder of e-commerce platform Yes She May, a site dedicated to women-owned brands.

In addition to this COVID-19 special edition event, NCC-PDI recently revealed the ten finalists in its prestigious 8th annual “Make Your Medical Device Pitch for Kids!” competition. Cardiovascular, NICU, and orthopaedic and spine device innovations are the focus of the fall competition, taking place October 7, 2020 as part of the 8th Annual Symposium on Pediatric Device Innovation, presented by Children’s National and co-located with The MedTech Conference powered by AdvaMed.

pitch competition finalists

zika virus

The importance of following the Zika population long-term

zika virus

Invited commentary by Sarah Mulkey, M.D., Ph.D., prenatal-neonatal neurologist in the Division of Prenatal Pediatrics at Children’s National Hospital, emphasizes importance of studying the Zika population long term.

A simple measuring tape could be the key to identifying which children could develop neurological and developmental abnormalities from Zika virus exposure during gestation. This is according to an invited commentary published July 7, 2020 in JAMA Network Open and written by Sarah Mulkey, M.D., Ph.D., prenatal-neonatal neurologist in the Division of Prenatal Pediatrics at Children’s National Hospital.

Zika virus (ZIKV), first isolated in 1947 in the Zika Forest in Uganda, made headlines in 2015-2016 for causing a widespread epidemic that spread through parts of North and South America, several islands in the Pacific and parts of Southeast Asia. Although previously linked with no or mild symptoms, researchers discovered during this epidemic that Zika can cross from a pregnant woman to her gestating fetus, leading to a syndrome marked by microcephaly (decreased brain growth), abnormal neurologic tone, vision and hearing abnormalities and joint contractures.

“For the 90% to 95% of ZIKV-exposed infants who fortunately were not born with severe abnormalities at birth and were normocephalic, our hope was that these children would have normal neurodevelopmental outcomes,” Dr. Mulkey writes in the commentary. “Unfortunately, this has not been the case.”

Her commentary expands on a study in the same issue entitled “Association between exposure to antenatal Zika virus and anatomic and neurodevelopmental abnormalities in children” by Cranston et al. In this study, the researchers find that head circumference — a simple measure taken regularly at postnatal appointments in the U.S. — can provide insight into which children were most likely to develop neurologic abnormalities. Their findings show that 68% of those whose head circumference was in the “normal” range at birth developed neurologic problems. Those whose head circumference was at the upper end of this range were significantly less likely to have abnormalities than those at the lower end.

Just this single measurement offers considerable insight into the risk of developing neurologic problems after Zika exposure. However, notes Dr. Mulkey, head circumference growth trajectory is also key. Of the 162 infants whose heads were initially in the normocephalic range at birth, about 10.5% went on to develop microcephaly in the months after birth.

“Because early head growth trajectory is associated with cognitive outcomes in early childhood,” Dr. Mulkey writes, “following the head circumference percentile over time can enable recognition of a child with increased risk for poor outcome who could benefit from early intervention therapies.”

This simple assessment could be significantly augmented with neuroimaging, she adds. The study by Cranston et al., as well as others in the field, have shown that brain imaging often reveals problems in ZIKV-exposed children, such as calcifications and cerebral atrophy, even in those with normal head circumferences. This imaging doesn’t necessarily need to take place at birth, Dr. Mulkey says. Postnatal development of microcephaly, failure to thrive or developmental delay can all be triggers for imaging later on.

Together, Dr. Mulkey says, the study by Cranston et al. and others that focus on ZIKV-exposed children support the need for following these patients long term. Children exposed to ZIKV in the epidemic nearly five years ago are now approaching school age, a time fraught with more complicated cognitive and social demands. Through her own research at Children’s National’s Congenital Zika Virus Program and collaboration with colleagues in Colombia, Dr. Mulkey is following multiple cohorts of ZIKV exposed children as they grow. She recently published a study on neurological abnormalities in one of these cohorts in JAMA Pediatrics in January 2020.

“It’s really important to follow these children as long as possible so we’ll really know the outcomes of this virus,” Dr. Mulkey says.

US News Badges

Children’s National ranked a top 10 children’s hospital and No. 1 in newborn care nationally by U.S. News

US News Badges

Children’s National Hospital in Washington, D.C., was ranked No. 7 nationally in the U.S. News & World Report 2020-21 Best Children’s Hospitals annual rankings. This marks the fourth straight year Children’s National has made the list, which ranks the top 10 children’s hospitals nationwide.

In addition, its neonatology program, which provides newborn intensive care, ranked No.1 among all children’s hospitals for the fourth year in a row.

For the tenth straight year, Children’s National also ranked in all 10 specialty services, with seven specialties ranked in the top 10.

“Our number one goal is to provide the best care possible to children. Being recognized by U.S. News as one of the best hospitals reflects the strength that comes from putting children and their families first, and we are truly honored,” says Kurt Newman, M.D., president and CEO of Children’s National Hospital.

“This year, the news is especially meaningful, because our teams — like those at hospitals across the country — faced enormous challenges and worked heroically through a global pandemic to deliver excellent care.”

“Even in the midst of a pandemic, children have healthcare needs ranging from routine vaccinations to life-saving surgery and chemotherapy,” said Ben Harder, managing editor and chief of Health Analysis at U.S. News. “The Best Children’s Hospitals rankings are designed to help parents find quality medical care for a sick child and inform families’ conversations with pediatricians.”

The annual rankings are the most comprehensive source of quality-related information on U.S. pediatric hospitals. The rankings recognize the nation’s top 50 pediatric hospitals based on a scoring system developed by U.S. News. The top 10 scorers are awarded a distinction called the Honor Roll.

The bulk of the score for each specialty service is based on quality and outcomes data. The process includes a survey of relevant specialists across the country, who are asked to list hospitals they believe provide the best care for patients with the most complex conditions.

Below are links to the seven Children’s National specialty services that U.S. News ranked in the top 10 nationally:

The other three specialties ranked among the top 50 were cardiology and heart surgery, gastroenterology and gastro-intestinal surgery, and urology.

doctor and patient filling out paperwork

How advance care planning can improve life in a pandemic and beyond

doctor and patient filling out paperwork

New research, published in AIDS and Behavior, shows the effectiveness of an Advance Care Planning model developed through participatory research with adolescents in improving palliative care among adult people living with HIV (PLWH).

Since the beginning of the COVID-19 pandemic, there has been a dramatic increase in advance care planning (ACP) and the creation of advance directives, also known as living wills, in the United States. New research, published in AIDS and Behavior, shows the effectiveness of an ACP model developed through participatory research with adolescents in improving palliative care among adult people living with HIV (PLWH).

These findings demonstrate that ACP positively contributes to the palliative care of adult PLWH by relieving suffering and maximizing quality of life. The intervention was based on the FAmily CEntered (FACE) Advance Care Model, which was developed and tested by principal investigator Maureen E. Lyon, Ph.D., and her colleagues.

Dr. Lyon’s team used this model successfully with adolescents living with HIV as part of five-year, five-site trial that included Children’s National Hospital. The trial was co-funded by the National Institutes of Health and National Institute of Nursing Research. The success of that study was parlayed into a new five-year study testing a slightly modified ACP intervention in adults, with Children’s National serving as the coordinating center. “The adolescents showed us the way,” says Dr. Lyon.

The paper details the findings of a longitudinal, two arm, randomized controlled clinical trial examining whether an ACP intervention aimed at adult PLWH and their families correlated with higher congruence in treatment preferences, as well as higher congruence over time. Patient-surrogate dyads were randomized to an ACP intervention arm or an active control arm at a 2:1 ratio (86 intervention dyads and 43 control dyads at 18-month follow up), due to prior demonstrated benefit of ACP.

The ACP intervention consisted of two 60-minute, patient-focused sessions. During session 1, Respecting Choices Next Steps® ACP Conversation, both patients and their surrogate decision-makers focused on the patients’ understanding of HIV, experience of symptoms, fears, hopes and worries. Next, a patient’s treatment preferences were explored via the Statement of Treatment Preferences (SoTP), which became a part of the patient’s electronic health record (EHR). Surrogates were questioned on their comprehension and willingness to comply with the patient’s wishes. Session 1 was acknowledged as the beginning of a conversation, and continued conversation between the dyad was encouraged.

Session 2, Five Wishes©, involved a facilitator guiding the dyad through a Five Wishes© advance directive. Session 2 resulted in legal documentation of a patient’s preferences in five specific areas: The patient’s preferred health care decision-maker, the kind of medical treatment the patient wants, how comfortable the patient wants to be, how the patient wants people to treat him/her and what the patient wants loved ones to know. The patient, surrogate and treating physicians all received a copy, and a copy was also submitted to the patient’s EHR.

Dyads in the control arm participated in two 60-minute sessions entitled Developmental or Relationship History (excluding any medical questions) and Nutrition & Exercise.

The researchers then assessed treatment preference congruence for each patient-surrogate dyad by presenting them with five different hypothetical scenarios. After the first session, congruence across all scenarios was significantly higher among ACP intervention dyads compared to control dyads. ACP patients were also significantly more likely to give their surrogates leeway in treatment decision making compared to control patients.

Compared to control dyads, ACP dyads were significantly more likely to maintain High → High congruence transition and significantly less likely to experience Low → Low congruence transition as measured from immediately post-intervention to 12-months post-intervention. The only two cases of Low → High congruence transition occurred in the intervention arm. Of note, ACP surrogates accurately reported on changes in patient preferences over one year, showing the positive impact of early conversation on longitudinal congruence.

Dr. Lyon hopes these results will encourage people to talk to their loved ones as soon as possible about ACP, not only during the current pandemic but into the future. “People can use what’s happening in the news as a trigger to begin these conversations,” she says. “The 1990 Patient Self-Determination Act (PSDA) encourages persons of all ages– including children and their parents– to decide the type and extent of medical care they want to accept or refuse if they become unable to make those decisions due to illness. Our research shows conversations matter.”

The original research paper, “Effect of FAmily CEntered (FACE®)Advance Care Planning on Longitudinal Congruence in End-of-Life Treatment Preferences: A Randomized Clinical Trial,” was recently published in AIDS and Behavior. Dr. Maureen E. Lyon, Ph.D., FABPP, of the Center for Translational Research/Children’s Research Institute, was the principal investigator of the trial and a co-senior of the paper.

Matt Oetgen and patient

Periop procedures improve scoliosis surgery infection rates

Matt Oetgen and patient

Matthew Oetgen, M.D., MBA, chief of orthopaedics and sports medicine at Children’s National Hospital, presented findings from a study aimed at improving quality and safety for pediatric spinal fusion procedures by reducing surgical site infection rates.

Pediatric orthopaedic surgery as a field is focused on improving quality and value in pediatric spine surgery, especially when it comes to eliminating surgical site infections (SSI). Many studies have documented how and why surgical site infections occur in pediatric spinal fusion patients, however, there is very little data about what approaches are most effective at reducing SSIs for these patients in a sustainable way.

At the Pediatric Orthopaedic Society of North America’s 2020 Annual Meeting, Matthew Oetgen, M.D., MBA, chief of orthopaedic surgery and sports medicine at Children’s National Hospital, presented findings from a long-term single institution study of acute SSI prevention measures.

“These findings give us specific insight into the tactics that are truly preventing, and in our case sometimes even eliminating, SSIs for pediatric scoliosis surgery,” says Dr. Oetgen, who also served on the annual meeting program committee. “By analyzing patient records across more than a decade, we were able to see that some strategies are quite effective, and others, that we thought would move the needle, just don’t.”

The team reviewed medical records and radiographs dating back to 2008 for 1,195 patients who had spinal fusion for scoliosis, including idiopathic scoliosis as well as other forms such as neuromuscular or syndromic scoliosis. Over that period of time, the division of orthopaedics and sports medicine at Children’s National was collaborating with the hospital’s infection control team to achieve several programmatic implementation milestones, including:

  • January 2012: Standardized infection surveillance program
  • July 2013: Standardized perioperative infection control protocols including those for pre-operative surgical site wash, surgical site preparation and administration of antibiotics before and after surgery
  • March 2015: Standardized comprehensive spinal care pathway including protocols for patient temperature control, fluid and blood management, and drain and catheter management

Over the study time period, the team found that SSIs did decrease, but interestingly, the rate did not progressively decrease with each subsequent intervention.

“Instead, we found that the rate went down and was even eliminated for some subgroups when the perioperative infection control protocols were implemented in 2013 and sustained through the study period end,” says Dr. Oetgen. “The other programmatic efforts that started in 2012 and 2015 had no impact on infection rates.”

He also notes that the study’s findings have identified a crucial component in the process for infection control in pediatric spinal surgery—perioperative protocols. “A relatively uncomplicated perioperative infection control protocol did the best job decreasing SSI in spinal fusion. Future efforts to optimize this particular protocol may help improve the rates even further.”

Vittorio Gallo and Mark Batshaw

Children’s National Research Institute releases annual report

Vittorio Gallo and Marc Batshaw

Children’s National Research Institute directors Vittorio Gallo, Ph.D., and Mark Batshaw, M.D.

The Children’s National Research Institute recently released its 2019-2020 academic annual report, titled 150 Years Stronger Through Discovery and Care to mark the hospital’s 150th birthday. Not only does the annual report give an overview of the institute’s research and education efforts, but it also gives a peek in to how the institute has mobilized to address the coronavirus pandemic.

“Our inaugural research program in 1947 began with a budget of less than $10,000 for the study of polio — a pressing health problem for Washington’s children at the time and a pandemic that many of us remember from our own childhoods,” says Vittorio Gallo, Ph.D., chief research officer at Children’s National Hospital and scientific director at Children’s National Research Institute. “Today, our research portfolio has grown to more than $75 million, and our 314 research faculty and their staff are dedicated to finding answers to many of the health challenges in childhood.”

Highlights from the Children’s National Research Institute annual report

  • In 2018, Children’s National began construction of its new Research & Innovation Campus (CNRIC) on 12 acres of land transferred by the U.S. Army as part of the decommissioning of the former Walter Reed Army Medical Center campus. In 2020, construction on the CNRIC will be complete, and in 2012, the Children’s National Research Institute will begin to transition to the campus.
  • In late 2019, a team of scientists led by Eric Vilain, M.D., Ph.D., director of the Center for Genetic Medicine Research, traveled to the Democratic Republic of Congo to collect samples from 60 individuals that will form the basis of a new reference genome data set. The researchers hope their project will generate better reference genome data for diverse populations, starting with those of Central African descent.
  • A gift of $5.7 million received by the Center for Translational Research’s director, Lisa Guay-Woodford, M.D., will reinforce close collaboration between research and clinical care to improve the care and treatment of children with polycystic kidney disease and other inherited renal disorders.
  • The Center for Neuroscience Research’s integration into the infrastructure of Children’s National Hospital has created a unique set of opportunities for scientists and clinicians to work together on pressing problems in children’s health.
  • Children’s National and the National Institute of Allergy and Infectious Diseases are tackling pediatric research across three main areas of mutual interest: primary immune deficiencies, food allergies and post-Lyme disease syndrome. Their shared goal is to conduct clinical and translational research that improves what we know about those conditions and how we care for children who have them.
  • An immunotherapy trial has allowed a little boy to be a kid again. In the two years since he received cellular immunotherapy, Matthew has shown no signs of a returning tumor — the longest span of time he’s been tumor-free since age 3.
  • In the past 6 years, the 104 device projects that came through the National Capital Consortium for Pediatric Device Innovation accelerator program raised $148,680,256 in follow-on funding.
  • Even though he’s watched more than 500 aspiring physicians pass through the Children’s National pediatric residency program, program director Dewesh Agrawal, M.D., still gets teary at every graduation.

Understanding and treating the novel coronavirus (COVID-19)

In a short period of time, Children’s National Research Institute has mobilized its scientists to address COVID-19, focusing on understanding the virus and advancing solutions to ameliorate the impact today and for future generations. Children’s National Research Institute Director Mark Batshaw, M.D., highlighted some of these efforts in the annual report:

  • Eric Vilain, M.D., Ph.D., director of the Center for Genetic Medicine Research, is looking at whether or not the microbiome of bacteria in the human nasal tract acts as a defensive shield against COVID-19.
  • Catherine Bollard, M.D., MBChB, director of the Center for Cancer and Immunology Research, and her team are seeing if they can “train” T cells to attack the invading coronavirus.
  • Sarah Mulkey, M.D., Ph.D., an investigator in the Center for Neuroscience Research and the Fetal Medicine Institute, is studying the effects of, and possible interventions for, coronavirus on the developing brain.

You can view the entire Children’s National Research Institute academic annual report online.

coronavirus

Study finds children can become seriously ill with COVID-19

coronavirus

Despite early reports suggesting COVID-19 does not seriously impact children, a new study shows that children who contract COVID-19 can become very ill.

In contrast to the prevailing view that the novel coronavirus known as COVID-19 does not seriously impact children, a new study finds that children who contract the virus can become very ill—many of them critically so, according to physician researchers at Children’s National Hospital. Their results, published in the Journal of Pediatrics and among the first reports from a U.S. institution caring for children and young adults, shows differences in the characteristics of children who recovered at home, were hospitalized, or who required life support measures. These findings highlight the spectrum of illness in children, and could help doctors and parents better predict which pediatric patients are more likely to become severely ill as a consequence of the virus.

In late 2019, researchers identified a new coronavirus, known as SARS-CoV-2, which causes COVID-19. As the disease spread around the world, the vast majority of reports suggested that elderly patients bear the vast majority of the disease burden and that children are at less risk for either infection or severe disease. However, study leader Roberta DeBiasi, M.D., M.S., chief of the Division of Infectious Diseases at Children’s National, states that she and her colleagues began noticing an influx of children coming to the hospital for evaluation of a range of symptoms starting in mid-March 2020, who were tested and determined to be infected with COVID-19. One quarter of these children required hospitalization or life support.

“It was very apparent to us within the first several weeks of the epidemic that this was a very different situation than our colleagues on the West Coast of the US had described as their experience just weeks before,” DeBiasi says. “Right away, we knew that it was important for us to not only care for these sick children, but to examine the factors causing severe disease, and warn others who provide medical care to children.”

To better understand this phenomenon, she and her colleagues examined the medical records of symptomatic children and young adults who sought treatment at Children’s National for COVID-19 between March 15 and April 30, 2020. Each of these 177 children tested positive using a rapid assay to detect SARS-CoV-2 performed at the hospital. The researchers gathered data on each patient, including demographic details such as age and sex; their symptoms; whether they had any underlying medical conditions; and whether these patients were non-hospitalized, hospitalized, or required critical care.

The results of their analysis show that there was about an even split of male and female patients who tested positive for COVID-19 at Children’s National during this time period. About 25% of these patients required hospitalization. Of those hospitalized, about 75% weren’t considered critically ill and about 25% required life support measures. These included supplemental oxygen delivered by intubation and mechanical ventilation, BiPAP, or high-flow nasal cannula – all treatments that support breathing – as well as other support measures such as dialysis, blood pressure support and medications to treat infection as well as inflammation.

Although patients who were hospitalized spanned the entire age range, more than half of them were either under a year old or more than 15 years old. The children and young adults over 15 years of age, Dr. DeBiasi explains, were more likely to require critical care.

About 39% of all COVID-19 patients had underlying medical conditions, including asthma, which has been highlighted as a risk factor for worse outcomes with this infection. However, DeBiasi says, although underlying conditions were more common as a whole in hospitalized patients – present in about two thirds of hospitalized and 80% of critically ill – asthma didn’t increase the risk of hospitalization or critical illness. On the other hand, children with underlying neurological conditions, such as cerebral palsy, microcephaly, or global developmental delay, as well as those with underlying cardiac, hematologic, or oncologic conditions were significantly more likely to require hospitalization.

In addition, although early reports of COVID-19 suggested that fever and respiratory symptoms are hallmarks of this infection, Dr. DeBiasi and her colleagues found that fewer than half of patients had both concurrently. Those with mild, upper respiratory symptoms, such as runny nose, congestion, and cough were less likely to end up hospitalized than those with more severe respiratory symptoms, such as shortness of breath. The frequency of other symptoms including diarrhea, chest pain and loss of sense of smell or taste was similar among hospitalized and non-hospitalized patients.

Dr. DeBiasi notes that although other East Coast hospitals are anecdotally reporting similar upticks in pediatric COVID-19 patients who become seriously ill, it’s currently unclear what factors might account for differences from the less frequent and milder pediatric illness on the West Coast. Some factors might include a higher East Coast population density, differences between the genetic, racial and ethnic makeup of the two populations, or differences between the viral strains circulating in both regions (an Asian strain on the West Coast, and a European strain on the East Coast).

Regardless, she says, the good news is that the more researchers learn about this viral illness, the better prepared parents, medical personnel and hospitals will be to deal with this ongoing threat.

Other researchers from Children’s National who participated in this study include Xiaoyan Song, Ph.D., M.Sc.Meghan Delaney, D.O., M.P.H.Michael Bell, M.D. Karen Smith, M.D.Jay Pershad, M.D., Emily Ansusinha, Andrea Hahn, M.D., M.S., Rana Hamdy, M.D., M.P.H., MSCE, Nada Harik, M.D.Benjamin Hanisch, M.D.Barbara Jantausch, M.D., Adeline Koay, MBBS, MS.c., Robin Steinhorn, Kurt Newman, M.D. and David Wessel, M.D.