Public Health

little boy using asthma inhaler

Searching for the molecular underpinnings of asthma exacerbations

little boy using asthma inhaler

It’s long been known that colds, flu and other respiratory illnesses are major triggers for asthma exacerbations, says asthma expert Stephen J. Teach, M.D., MPH. Consequently, a significant body of research has focused on trying to figure out what’s happening on the cellular or molecular level as these illnesses progress to exacerbations.

People with asthma can be indistinguishable from people who don’t have this chronic airway disease – until they have an asthma attack, also known as an exacerbation. During these events, their airways become inflamed and swollen and produce an abundance of mucus, causing dangerous narrowing of the bronchial tubes that leads to coughing, wheezing and trouble breathing. These events are a major cause of morbidity and mortality, leading to the deaths of 10 U.S. residents every day, according to the Centers for Disease Control and Prevention.

It’s long been known that colds, flu and other respiratory illnesses are major triggers for asthma exacerbations, says Children’s National in Washington, D.C., asthma expert Stephen J. Teach, M.D., MPH. Consequently, a significant body of research has focused on trying to figure out what’s happening on the cellular or molecular level as these illnesses progress to exacerbations. Targeted searches have identified several different molecular pathways that appear to be key players in this phenomenon. However, Dr. Teach says researchers have been missing a complete and unbiased snapshot of all the important pathways in illness-triggered exacerbations and how they interrelate.

To develop this big picture view, Dr. Teach and  Inner-City Asthma Consortium colleagues recruited 208 children ages 6-17 years old with severe asthma – marked by the need for daily doses of inhaled corticosteroids, two hospitalizations or systemic corticosteroid treatments over the past year, and a high concentration of asthma-associated immune cells – from nine pediatric medical centers across the country, including Children’s National. (Inhaled corticosteroids are a class of medicine that calms inflamed airways.) The researchers collected samples of nasal secretions and blood from these patients at baseline, when all of them were healthy.

Then, they waited for these children to show symptoms of respiratory illnesses. Within six days of cold symptoms, the researchers took two more samples of nasal secretions and blood. They also administered breathing tests to determine whether these respiratory illnesses led to asthma exacerbations and recorded whether these patients were treated with systemic corticosteroids to stem the associated respiratory inflammation.

The researchers examined nasal fluid samples for evidence of viral infection during illness and used analytical methods to identify the causative virus. They analyzed all the samples they collected for changes in concentrations of various immune cells. They also looked globally in these samples for changes in gene expression compared with baseline and between the two collection periods during respiratory illness.

Together, this information told the molecular story about what took place after these children got sick and after some of them developed exacerbations. Of the 208 patients recruited, 106 got respiratory illnesses during the six-month study period, leading to a total of 154 illness events. Of those, 47 caused exacerbations, and 107 didn’t.

About half the exacerbations appeared to have been triggered by a rhinovirus, a cause of common colds, the research team reports in a study published online April 8, 2019, in Nature Immunology. The other children’s cold-like symptoms could have been triggered by pollution, allergens or other irritants.

In most exacerbations, virally triggered or not, the researchers saw early activation of a network of genes that appeared to be associated with SMAD3, a signaling molecule already known to be involved in airway inflammation. At the same time, genes that control a set of immune cells known as lymphocytes were turned down. However, as the exacerbation progressed and worsened, the researchers saw gene networks turned on that related to airway narrowing, mucus hypersecretion and activation of other immune cells.

Exacerbations triggered by viruses were associated with multiple inflammatory pathways, in contrast to those in which viruses weren’t found, which were associated with molecular pathways that affected cells in the airway lining.

The researchers validated these findings in 19 patients who each got respiratory illnesses at least twice during the study period but only developed an exacerbation during one of these episodes, finding the same upregulated and downregulated molecular pathways in these patients as in the study population as a whole. They also identified a set of molecular risk factors in patients at baseline – signatures of gene activation that appeared to put patients at risk for exacerbations when they got sick. When patients were treated with systemic corticosteroids during exacerbations, these medicines appeared to restore only some of the affected molecular pathways to normal, healthy levels. Other molecular pathways remained markedly changed.

Each finding could represent a new target for drugs that could prevent or more effectively treat exacerbations, keeping more patients with asthma healthy and out of the hospital.

“Our consortium study found increased gene expression of enzymes that produce molecules that contribute to narrowed airways and dilated blood vessels,” Dr. Teach adds. “This is especially intriguing because drugs that target kallikreins or bradykinin may help treat asthma attacks that aren’t caused by viruses.”

In addition to Dr. Teach, study co-authors include Lead Author Matthew C. Altman, University of Washington; Michelle A. Gill, Baomei Shao and Rebecca S. Gruchalla, all of University of Texas Southwestern Medical Center; Elizabeth Whalen and Scott Presnell of Benaroya Research Institute; Denise C. Babineau and Brett Jepson of Rho, Inc.; Andrew H. Liu, Children’s Hospital Colorado; George T. O’Connor, Boston University School of Medicine; Jacqueline A. Pongracic, Ann Robert H. Lurie Children’s Hospital of Chicago; Carolyn M. Kercsmar and Gurjit K. Khurana Hershey, , Cincinnati Children’s Hospital; Edward M. Zoratti and Christine C. Johnson, Henry Ford Health System; Meyer Kattan, Columbia University College of Physicians and Surgeons; Leonard B. Bacharier and Avraham Beigelman, Washington University, St. Louis; Steve M. Sigelman, Peter J. Gergen, Lisa M. Wheatley and Alkis Togias, National Institute of Allergy and Infectious Diseases; and James E. Gern, William W. Busse and Senior author Daniel J. Jackson, University of Wisconsin School of Medicine and Public Health.

Funding for research described in this post was provided by the National Institute of Allergy and Infectious Diseases under award numbers 1UM1AI114271 and UM2AI117870; CTSA under award numbers UL1TR000150, UL1TR001422 and 5UL1TR001425; the National Institutes of Health under award number UL1TR000451;  CTSI under award number 1UL1TR001430; CCTSI under award numbers UL1TR001082 and 5UM1AI114271; and NCATS under award numbers UL1 TR001876 and UL1TR002345.

Epstein Barr virus

Fighting lymphoma with targeted T-cells

Epstein-Barr virus

The Epstein-Barr virus (EBV) is best known as the cause of mononucleosis, the ubiquitous “kissing disease” that most people contract at some point in their life. But in rare instances, this virus plays a more sinister role as the impetus of lymphomas, cancers that affect the white blood cells known as lymphocytes.

The Epstein-Barr virus (EBV) is best known as the cause of mononucleosis, the ubiquitous “kissing disease” that most people contract at some point in their life. But in rare instances, this virus plays a more sinister role as the impetus of lymphomas, cancers that affect the white blood cells known as lymphocytes. EBV-associated lymphomas account for about 40% of Hodgkin lymphomas, 20% of diffuse large B-cell lymphomas, and more than 90% of natural killer/T-cell lymphomas. This latter type of lymphoma typically has a very poor prognosis even with the “standard of care” lymphoma treatments such as chemotherapy and/or radiation.

When these interventions fail, the only curative approach is an allogeneic  hematopoietic stem cell transplant from a healthy donor, a treatment that’s tough on patients’ bodies and carries significant risks, says Lauren P. McLaughlin, M.D., a pediatrician specializing in hematology and oncology at Children’s National in Washington, D.C. Patients who receive these allogenic transplants are immune-compromised until the donor cells engraft; the grafts can attack patients’ healthy cells in a phenomenon called graft versus host disease; and if patients relapse or don’t respond to this treatment, few options remain.

To help improve outcomes, Dr. McLaughlin and colleagues tested an addition to the allogeneic hematopoietic stem cell transplant procedure for patients with EBV-associated lymphomas: infusion of a type of immune cell called T cells specifically trained to fight cells infected with EBV.

Dr. McLaughlin, along with Senior Author Catherine M. Bollard, M.D., M.B.Ch.B., director of the Center for Cancer and Immunology Research and the Program for Cell Enhancement and Technologies for Immunotherapy at Children’s National, and colleagues tested this therapy in 26 patients treated at Children’s National or Baylor College of Medicine. They published these results online on Sept. 27, 2018, in the journal Blood. The study was a Phase I clinical trial, meaning that the therapy was tested primarily for safety, with efficacy as a secondary aim.

Seven patients who received the therapy had active disease that had not responded to conventional therapies. The other 19 were patients deemed to be at high risk for relapse.

Before each patient received their stem cell transplant, their donors gave an additional blood sample to generate the cancer-fighting T cells. Over the next 8 to 10 weeks, the researchers painstakingly manufactured the immune cells known as T-cells that specifically targeted EBV, growing these cells into numbers large enough for clinical use. Then, as early as 30 days after transplant, the researchers infused these T-cells into patients administering at least two doses, spaced two weeks apart.

Over the next several weeks, the researchers at CNMC and Baylor College of Medicine monitored patients with comprehensive exams to see how they fared after these transplants. The results showed that adverse effects from the treatment were exceedingly rare. There were no immediate infusion-related toxicities to the T-cell therapy and only one incident of dose-limiting toxicity.

This therapy may be efficacious, depending on the individual patients’ circumstances, Dr McLaughlin adds. For those in complete remission but at high risk of relapsing, the two-year survival rate was 78%, suggesting that the administration of this novel T-cell therapy may give the immune system a boost to prevent the lymphoma from returning after transplant. For patients with active T-cell lymphomas, two-year survival rates were 60%. However, even these lower rates are better than the historical norm of 30-50%, suggesting that the targeted T-cell therapies could help fight disease in patients with this poor prognosis lymphoma.

Dr. McLaughlin, the study’s lead author and a Lymphoma Research Foundation grantee, notes that researchers have more work to do before this treatment becomes mainstream. For example, this treatment will need to be tested in larger populations of patients with EBV-related lymphoma to determine who would derive the most benefit, the ideal dose and dose timing. It also may be possible to extend targeted T-cell treatments like this to other types of cancers. In the future, Dr. McLaughlin adds, it may be possible to develop T-cells that could be used “off the shelf”—in other words, they wouldn’t need to come from a matched donor and would be ready to use whenever a recipient needs them. Another future goal is using this therapy as one of the first lines of treatment rather than as a last resort.

“Our ultimate goal is to find a way to avoid chemotherapy and/or radiation therapy while still effectively treating a patient’s cancer,” she says. “Can you use the immune system to do that job? We’re working to answer that question.”

In addition to Drs. McLaughlin and Bollard, study co-authors include Rayne Rouce, Stephen Gottschalk, Vicky Torrano, George Carrum, Andrea M. Marcogliese, Bambi Grilley, Adrian P. Gee, Malcolm K. Brenner, Cliona M. Rooney and Helen E. Heslop, all of Baylor College of Medicine; Meng-Fen Wu from the Dan L. Duncan Comprehensive Cancer Center; and Fahmida Hoq and Patrick J. Hanley, Ph.D. from Children’s National in Washington, D.C.

mannequins in a sled

Training teams for timely NICU evacuation

mannequins in a sled

From June 2015 to August 2017, 213 members of NICU staff took part in simulated drills, honing their skills by practicing with mannequins with varying levels of acuity.

In late August 2011, a magnitude 5.8 earthquake – the strongest east of the Mississippi since 1944 – shook Washington, D.C., with such force that it cracked the Washington Monument and damaged the National Cathedral.

On the sixth floor of the neonatal intensive care unit (NICU) at Children’s National in Washington, D.C., staff felt the hospital swaying from side to side.

After the shaking stopped, they found the natural disaster exposed another fault: The unit’s 200-plus staff members were not all equally knowledgeable or confident regarding the unit’s plan for evacuating its 66 newborns or their own specific role during an emergency evacuation.

More than 900 very sick children are transferred to Children’s National NICU from across the region each year, and a high percentage rely on machines to do the work that their tiny lungs and hearts are not yet strong enough to do on their own.

Transporting fragile babies down six flights of stairs along with vital equipment that keeps them alive requires planning, teamwork and training.  

“Fires, tornadoes and other natural disasters are outside of our team’s control. But it is within our team’s control to train NICU staff to master this necessary skill,” says Lisa Zell, BSN, a clinical educator. Zell is also lead author of a Children’s National article featured on the cover of the July/September 2019 edition of The Journal of Perinatal & Neonatal Nursing. “Emergency evacuations trigger safety concerns for patients as well as our own staff. A robust preparedness plan that is continually improved can alleviate such fears,” Zell adds.

Children’s National is the nation’s No. 1 NICU, and its educators worked with a diverse group within Children’s National to design and implement periodic evacuation simulations. From June 2015 to August 2017, 213 members of NICU staff took part in simulated drills, honing their skills by practicing with mannequins with varying levels of acuity.

“Each simulation has three objectives. First, the trainee needs to demonstrate knowledge of their own individual role in an evacuation. Second, they need to know the evacuation plan so well they can explain it to someone else. And finally, they need to demonstrate that if they had to evacuate the NICU that day, they could do it safely,” says Lamia Soghier, M.D., FAAP, CHSE, NICU medical director and the study’s senior author.

The two-hour evacuation simulation training at Children’s National begins with a group prebrief. During this meeting, NICU educators discuss the overarching evacuation plan, outline individual roles and give a hands-on demonstration of all of the evacuation equipment.

This equipment includes emergency backpacks, a drip calculation sheet and an emergency phrase card. Emergency supply backpacks are filled with everything that each patient needs post evacuation, from suction catheters, butterfly needles and suture removal kits to flashlights with batteries.

Each room is equipped with that emergency backpack which is secured in a locked cabinet. Every nurse has a key to access the cabinet at any time.

Vertical evacuation scenarios are designed to give trainees a real-world experience. Mannequins that are intubated are evacuated by tray, allowing the nurse to provide continuous oxygen with the use of a resuscitation bag during the evacuation. Evacuation by sled allows three patients to be transported simultaneously. Patients with uncomplicated conditions can be lifted out of their cribs and swiftly carried to safety.

Teams also learn how to calm the nerves of frazzled parents and enlist their help. “Whatever we need to do, we will to get these babies out alive,” Joan Paribello, a clinical educator, tells 15 staff assembled for a recent prebriefing session.

An “X” on the door designates rooms already evacuated. A designated charge nurse and another member of the medical team remain in the unit until the final patient is evacuated to make a final sweep.

The simulated training ends with a debrief session during which issues that arose during the evacuation are identified and corrected prior to subsequent simulated trainings, improving the safety and expediency of the exercise.

Indeed, as Children’s National NICU staff mastered these evacuation simulations, evacuation times dropped from 21 minutes to as little as 16 minutes. Equally important, post evacuation surveys indicate:

  • 86% of staff report being more comfortable in being able to safely evacuate the Children’s National NICU
  • 94% of NICU staff understand the overall evacuation plan and
  • 97% of NICU staff know their individual role during an evacuation.

“One of the most surprising revelations regarded one of the most basic functions in any NICU,” Dr. Soghier adds. “Once intravenous tubing is removed from its pump, the rate at which infusions drip needs to be calculated manually. We created laminated cards with pre-calculated drip rates to enable life-saving fluid delivery to continue without interruption.”

In addition to Zell and Dr. Soghier, study co-authors include Carmen Blake, BSN; Dawn Brittingham, MSN; and Ann-Marie Brown, MSN.

View slideshow: Disaster preparedness: In the NICU

Test tube with DNA

“Liquid biopsies” could track diffuse midline gliomas

Test tube with DNA

A multi-institutional team led by researchers at Children’s National in Washington, D.C., developed and tested “liquid biopsy,” a measure of circulating tumor DNA in patients’ cerebrospinal fluid and blood plasma. They show that quantifying the amount of circulating tumor DNA possessing key mutations characteristic of diffuse midline gliomas could reliably predict the tumors’ response to radiotherapy.

Diffuse midline gliomas are rare, diagnosed in fewer than 800 Americans every year, the majority of whom are children. These cancers arise in the cellular “glue” that holds the brain and spinal cord’s neurons together, grow swiftly and have no cure. About half of patients with these cancers, including diffuse intrinsic pontine glioma, die within one year of diagnosis.

Clinical trials are increasingly investigating new treatments that could offer hope for patients and their families. Yet, thus far, there have been few ways to track the progression of these conditions, offering little insight on whether a treatment is hitting its intended goal.

To solve this problem, a multi-institutional team led by researchers at Children’s National in Washington, D.C., developed and tested “liquid biopsy,” a measure of circulating tumor DNA in patients’ cerebrospinal fluid and blood plasma. They show that quantifying the amount of circulating tumor DNA possessing key mutations characteristic of these cancers could reliably predict the tumors’ response to radiotherapy. The scientists published their results online Oct. 15, 2018, in Clinical Cancer Research.

“We heard from our clinician colleagues that many kids were coming in and their magnetic resonance imaging (MRI) suggested a particular type of tumor. But it was always problematic to identify the tumor’s molecular subtype,” says Javad Nazarian, Ph.D., MSC, a principal investigator in Children’s Center for Genetic Medicine Research. “Our colleagues wanted a more accurate measure than MRI to find the molecular subtype. That raised the question of whether we could actually look at their blood to determine the tumor subtype.”

Children’s liquid biopsy, which remains at the research phase, starts with a simple blood draw using the same type of needle as is used when people donate blood. When patients with brain tumors provide blood for other laboratory testing, a portion of it is used for the DNA detective work. Just as a criminal leaves behind fingerprints, tumors shed telltale clues in the blood. The team at Children’s National searches for the histone 3K27M (H3K27M), a mutation associated with worse clinical outcomes.

“With liquid biopsy, we were able to detect a few copies of tumor DNA that were hiding behind a million copies of healthy DNA,” Nazarian says. “The blood draw and liquid biopsy complement the MRI. The MRI gives the brain tumor’s ZIP code. Liquid biopsy gives you the demographics within that ZIP code.”

Working with collaborators around the nation, Children’s National continues to refine the technology to improve its accuracy.

Even though this research technique is in its infancy, the rapid, cheap and sensitive technology already is being used by people around the globe.

“People around the world are sending blood to us, looking for this particular mutation, H3K27M,” says Lindsay B. Kilburn, M.D., a neurooncologist, principal investigator at Children’s National for the Pacific Pediatric Neuro-Oncology Consortium, and study co-author. “In many countries or centers children to not have access to teams experienced in taking a biopsy of tumors in the brainstem, they can perform a simple blood draw and have that blood processed and analyzed by us. In only a few days, we can provide important molecular information on the tumor subtype previously only available to patients who had undergone a tumor biopsy.”

With that DNA finding, physicians can make more educated therapeutic decisions, including prescribing medications that could not have been given previously, Nazarian adds.

In addition to Nazarian and Dr. Kilburn, study co-authors include Eshini Panditharatna, Madhuri Kambhampati, Heather Gordish-Dressman, Ph.D., Suresh N. Magge, M.D., John S. Myseros, M.D., Eugene I. Hwang, M.D., and Roger J. Packer, M.D., all of Children’s National; Mariam S. Aboian, Nalin Gupta, Soonmee Cha, Michael Prados and Co-Senior Author Sabine Mueller, all of University of California, San Francisco; Cassie Kline, UCSF Benioff Children’s Hospital;  John R. Crawford, UC San Diego; Katherine E. Warren, National Cancer Institute; Winnie S. Liang and Michael E. Berens, Translational Genomics Research Institute; and Adam C. Resnick, Children’s Hospital of Philadelphia.

Financial support for the research described in the report was provided by the V Foundation for Cancer Research, Goldwin Foundation, Pediatric Brain Tumor Foundation, Smashing Walnuts Foundation, The Gabriella Miller Kids First Data Resource Center, Zickler Family Foundation, Clinical and Translational Science Institute at Children’s National under award 5UL1TR001876-03, Piedmont Community Foundation, Musella Foundation for Brain Tumor Research, Mathew Larson Foundation, The Lilabean Foundation for Pediatric Brain Cancer Research, The Childhood Brain Tumor Foundation, the National Institutes of Health and American Society of Neuroradiology.

Cholesterol plaque in artery

Looking for atherosclerosis’ root cause

Cholesterol plaque in artery

A multi-institutional team led by research faculty at Children’s National in Washington, D.C., finds that extracellular vesicles derived from kids’ fat can play a pivotal role in ratcheting up risk for atherosclerotic cardiovascular disease well before any worrisome symptoms become visible.

According to the Centers for Disease Control and Prevention, about one in five U.S. kids aged 6 to 19 is obese, boosting their risk for a variety of other health problems now and later in life.

One of these is atherosclerosis, a term that translates literally as hardening of the arteries. Atherosclerosis causes blood vessels that carry oxygen-rich blood throughout the body to become inflamed. White blood cells called macrophages settle in the vessel wall, which becomes overloaded with cholesterol. A plaque forms that restricts blood flow. But it remains a mystery how fat cells residing in one place in the body can trigger mayhem in cells and tissues located far away.

Small, lipid-lined sacs called extracellular vesicles (EVs), released by cells into the bloodstream, are likely troublemakers since they enable intercellular communication. Now, a multi-institutional team led by research faculty at Children’s National in Washington, D.C., finds that EVs derived from kids’ fat can play a pivotal role in ratcheting up risk for atherosclerotic cardiovascular disease well before any worrisome symptoms become visible. What’s more, the team showed that EVs found in the body’s fat stores can disrupt disposal of cholesterol in a variety of kids, from lean to obese, the team reports online July 22, 2019, in the Journal of Translational Medicine.

“We found that seven specific small sequences of RNA (microRNA) carried within the extracellular vesicles from human fat tissue impaired the ability of white blood cells called macrophages to eliminate cholesterol,” says Robert J. Freishtat, M.D., MPH, senior scientist at the Center for Genetic Medicine Research at Children’s National and the study’s senior author. “Fat isn’t just tissue. It can be thought of as a metabolic organ capable of communicating with types of cells that predispose someone to develop atherosclerotic cardiovascular disease, the leading cause of death around the world.”

Research scientists and clinicians from Children’s National, the George Washington University, NYU Winthrop Hospital and the National Heart, Lung and Blood Institute collaborated to examine the relationship between the content of EVs and their effect on macrophage behavior. Their collaborative effort builds on previous research that found microRNA derived from fat cells becomes pathologically altered by obesity, a phenomenon reversed by weight-loss surgery.

Because heart disease can have its roots in adolescence, they enrolled 93 kids aged 12 to 19 with a range of body mass indices (BMIs), including the “lean” group, 15 youth whose BMI was lower than 22 and the “obese” group, 78 youths whose BMI was in the 99th percentile for their age. Their median age was 17. Seventy-one were young women. They collected visceral adipose tissue during abdominal surgeries and visited each other’s respective labs to perform the experiments.

“We were surprised to find that EVs could hobble the macrophage cholesterol outflow system in adolescents of any weight,” says Matthew D. Barberio, Ph.D., the study’s lead author, a former Children’s National scientist who now is an assistant professor at the George Washington University’s Milken Institute School of Public Health. “It’s still an open question whether young people who are healthy can tolerate obesity—or whether there are specific differences in fat tissue composition that up kids’ risk for heart disease.”

The team plans to build on the current findings to safeguard kids and adults against future cardiovascular risk.

“This study was a huge multi-disciplinary undertaking,” adds Allison B. Reiss, M.D., of NYU Winthrop Hospital and the study’s corresponding author. “Ultimately, we hope to learn which properties belonging to adipose tissue EVs make them friendly or unfriendly to the heart, and we hope that gaining that knowledge will help us decrease morbidity and mortality from heart disease across the lifespan.”

In addition to Dr. Freishtat, additional study co-authors include Samuel B. Epstein, Madeleine Goldberg, Sarah C. Ferrante, and Evan P. Nadler, M.D., director of the Bariatric Surgery Program, all of Children’s National’s Center for Genetic Medicine Research; Lead Author, Matthew D. Barberio, of Millken Institute School of Public Health at the George Washington University; Lora J. Kasselman, Heather A. Renna, Joshua DeLeon, Iryna Voloshyna, Ashley Barlev, Michael Salama and Allison B. Reiss, all of NYU Winthrop Hospital; and Martin P. Playford and Nehal Mehta, of the National Heart, Lung and Blood Institute.

Financial support for research described in this post was provided by the National Institutes of Health National Center for Advancing Translational Sciences under award number UL1TR000075, the National Heart, Lung and Blood Institute under award number Z1AHL-06193-4, the American Heart Association under award number 17POST33670787, the Clark Charitable Foundation, the Elizabeth Daniel Research Fund, and Robert Buescher.

Dr. DeBiasi

Staying one step ahead of deadly Ebola

Dr. DeBiasi

An ongoing outbreak of Ebola virus since 2018 in the Democratic Republic of the Congo that has resulted in millions of travelers being screened at checkpoints, hundreds of thousands of vaccinations and thousands of deaths is a stark reminder of the need to remain one step ahead of the deadly disease.

To that end, one-half dozen personnel from Children’s National in Washington, D.C., including infectious diseases experts, critical care nurses and laboratory personnel traveled to New York in mid-August for an interactive workshop sponsored by the National Ebola Training and Education Center. They covered how to correctly don and doff protective gear, safely collect, handle and process specimens and discuss the special circumstances that arise when caring for pediatric patients, among other topics.

“Since 2014, Children’s National has evaluated 6 children with exposure as Persons Under Investigation of  Ebola virus disease, 4 of  whom required extended inpatient hospitalization under full isolation precautions,” says Roberta L. DeBiasi, M.D., MS, chief of the Division of Pediatric Infectious Diseases. “As a designated Ebola Treatment Center, we must continue our preparedness to care for additional patients with suspected and proven Ebola infection.

“Hands-on training and  drilling offer Children’s National personnel an opportunity to continue to test, evaluate and optimize our institutional Ebola response plan and procedures to maintain our preparedness for the needs of future patients,” adds Dr. DeBiasi.

In addition to Dr. DeBiasi, members of the Children’s National Special Pathogens Isolation Unit team who attended the Emerging Infectious Disease Workshop included:

  • Zohreh Hojjati, Laboratory Medicine.
  • Kristin Elizabeth Mullins, Clinical Lab Director, Laboratory Medicine.
  • Daniel Schroeder, Registered Nurse II, Pediatric Intensive Care Unit (PICU).
  • Melissa Taylor, Registered Nurse II, PICU.
  • Heather Wellman, Registered Nurse II, PICU.

“Among the keys to Children’s National serving as a national exemplar for pediatric Ebola care, is the stability of our multidisiciplinary care team and our institutional commitment to ongoing training,” Dr. DeBiasi adds.

During a Grand Rounds presentation at Children’s National in mid-August, Dr. DeBiasi provided updates about recent global infectious disease outbreaks affecting pediatric patients including Ebola, measles, acute flaccid myelitis and Zika Virus. An interdisciplinary panel of Children’s National experts, including nurses, transport specialists, infectious disease and intensive care experts directly involved in caring for Ebola Persons Under Investigation, demonstrated personal protective equipment and fielded questions from staff. The overview also outlined Children’s National institutional expertise and response, including the Congenital Zika Virus Program, the Acute Flaccid Myelitis Task Force, the Special Isolation Unit for Ebola and other highly contagious infectious diseases.

View Ebola preparedness photo gallery.

Dr. Eurgenie Heitmiller

The origins of a go-to perioperative crisis app

Dr. Eurgenie Heitmiller

Children’s Chief of Anesthesiology and Pain Medicine, Dr. Heitmiller, was part of the team that originally launched the peer-reviewed perioperative crisis app, Pedi Crisis.

Around the same time that Atul Gawande and colleagues were developing adult operating room crisis checklists, a dedicated group of expert pediatric anesthesiologists were working on a set of checklists for pediatric specific, peer-reviewed algorithms to treat critical events in the perioperative setting.

Eugenie Heitmiller, M.D., chief of Anesthesiology, Pain and Perioperative Medicine at Children’s National Health System, was one of the initiators of what is known today as the Pedi Crisis App—a widely used reference tool designed to support clinician responses to life-threatening critical events.

Dr. Heitmiller and her colleagues on the Quality and Safety Committee of the Society for Pediatric Anesthesia (SPA) sought to create this series of standard algorithms that could be referenced both as teaching tools and as cognitive aids to be used in real time during rare critical occurrences in the perioperative setting.

“Most kids do well under anesthesia, but every once in a while, you have a child who has an event you don’t see that often, no matter how experienced you are,” she says. Having these checklists means we have a peer-reviewed, expert checklist at our fingertips.”

The original version of the checklists launched in 2010 as “Pediatric Critical Event Checklists”,  a Microsoft PowerPoint file that could be downloaded from the SPA website. Eventually, the checklists were adapted into an iPhone application as well as being translated into several languages.

Years after launch, these tools continue to be a mainstay for education, training, and critical event preparations for pediatric anesthesiologists and perioperative staff. A 2017 study found that in a three-month period of 2014, the app was accessed more than 4,000 times in 108 countries.

This year, the organizers of the joint SPA and American Academy of Pediatrics (AAP) meeting invited Dr. Heitmiller to moderate a panel that included talks on the launch of Pedi Crisis App 2.0 and its subsequent revisions. The newest edition of the Critical Events Checklists adds critical components including an updated smartphone app available for both the iPhone and Android, and the latest peer-reviewed content.

Pedi Crisis 2.0 also takes into account how people access and use the tool by incorporating elements that address human factors. The development team brought in  NASA senior research psychologist, Barbara Burian, Ph.D., to help make the content as intuitive as possible for quick access, accurate presentation, and recollection, even in a crisis. And, as Dr. Heitmiller points out, because pulling out a cell phone isn’t always the most realistic option in a sterile operating room environment, the content is always available for free outside of the mobile platform in a downloadable format on the SPA website so it can be accessed on any computer screen in any location.

Paradoxical outcomes for Zika-exposed tots

In the midst of an unprecedented Zika crisis in Brazil, there were a few flickers of hope: Some babies appeared to be normal at birth, free of devastating birth defects that affected other Brazilian children exposed to the virus in utero.

In the midst of an unprecedented Zika crisis in Brazil, there were a few flickers of hope: Some babies appeared to be normal at birth, free of devastating birth defects that affected other Brazilian children exposed to the virus in utero. But according to a study published online July 8, 2019, in Nature Medicine and an accompanying commentary co-written by a Children’s National clinician-researcher, the reality for Zika-exposed infants is much more complicated.

Study authors led by Karin Nielsen-Saines at David Geffen UCLA School of Medicine followed 216 infants in Rio de Janeiro who had been exposed to the Zika virus during pregnancy, performing neurodevelopmental testing when the babies ranged in age from 7 to 32 months. These infants’ mothers had had Zika-related symptoms themselves, including rash.

Although many children had normal assessments, 29% scored below average in at least one domain of neurological development, including cognitive performance, fine and gross motor skills and expressive language, Sarah B. Mulkey, M.D., Ph.D., and a colleague write in a companion commentary published online by Nature Medicine July 29, 2019.

The study authors found progressively higher risks for developmental, hearing and eye abnormality depending on how early the pregnancy was at the time the infants were exposed. Because Zika virus has an affinity for immature neurons, even babies who were not born with microcephaly remained at continued risk for suffering abnormalities.

Of note, 24 of 49 (49%) infants who had abnormalities at birth went on to have normal test results in the second or third year of life. By contrast, 17 of 68 infants (25%) who had normal assessments at birth had below-average developmental testing or had abnormalities in hearing or vision by age 32 months.

“This work follows babies who were born in 2015 and 2016. It’s heartening that some babies born with abnormalities tested in the normal range later in life, though it’s unclear whether any specific interventions help to deliver these positive findings,” says Dr. Mulkey, a fetalneonatal neurologist in the Division of Fetal and Transitional Medicine at Children’s National in Washington, D.C. “And it’s quite sobering that babies who appeared normal at birth went on to develop abnormalities due to that early Zika exposure.”

It’s unclear how closely the findings apply to the vast majority of U.S. women whose Zika infections were asymptomatic.

“This study adds to the growing body of research that argues in favor of ongoing follow-up for Zika-exposed children, even if their neurologic exams were reassuring at birth,” Dr. Mulkey adds. “As Zika-exposed children approach school age, it’s critical to better characterize the potential implications for the education system and public health.”

In addition to Dr. Mulkey, the perspective’s senior author, William J. Muller, Northwestern University, was the commentary’s lead author.

ID-KD vaccine induced T-cell cytotoxicity

Fighting lethal cancer with a one-two punch

The immune system is the ultimate yin and yang, explains Anthony D. Sandler, M.D., senior vice president and surgeon-in-chief of the Joseph E. Robert Jr. Center for Surgical Care at Children’s National in Washington, D.C. With an ineffective immune system, infections such as the flu or diarrheal illness can run unchecked, causing devastating destruction. But on the other hand, excess immune activity leads to autoimmune diseases, such as lupus or multiple sclerosis. Thus, the immune system has “checks and balances” to stay controlled.

Cancer takes advantage of “the checks and balances,” harnessing the natural brakes that the immune system puts in place to avoid overactivity. As the cancer advances, molecular signals from tumor cells themselves turn on these natural checkpoints, allowing cancers to evade immune attack.

Several years ago, a breakthrough in pharmaceutical science led to a new class of drugs called checkpoint inhibitors. These medicines take those proverbial brakes off the immune system, allowing it to vigorously attack malignancies. However, Dr. Sandler says, these drugs have not worked uniformly and in some cancers, they barely work at all against the cancer.

One of these non-responders is high risk neuroblastoma, a common solid tumor found outside the skull in children. About 800 U.S. children are diagnosed with this cancer every year. And kids who have the high-risk form of neuroblastoma have poor prognoses, regardless of which treatments doctors use.

However, new research could lead to promising ways to fight high-risk neuroblastoma by enabling the immune system to recognize these tumors and spark an immune response. Dr. Sandler and colleagues recently reported on these results in the Jan. 29, 2018, PLOS Medicine using an experimental model of the disease.

The researchers created this model by injecting the preclinical models with cancer cells from an experimental version of neuroblastoma. The researchers then waited several days for the tumors to grow. Samples of these tumors showed that they expressed a protein on their cell surfaces known as PD-L1, a protein that is also expressed in many other types of human cancers to evade immune system detection.

To thwart this protective feature, the researchers made a cancer vaccine by removing cells from the experimental model’s tumors and selectively turning off a gene known as Id2. Then, they irradiated them, a treatment that made these cells visible to the immune system but blocked the cells from dividing to avoid new tumors from developing.

They delivered these cells back to the experimental models, along with two different checkpoint inhibitor drugs – antibodies for proteins known as CLTA-4 and PD-L1 – over the course of three treatments, delivered every three days. Although most checkpoint inhibitors are administered over months to years, this treatment was short-term for the experimental models, Dr. Sandler explains. The preclinical models were completely finished with cancer treatment after just three doses.

Over the next few weeks, the researchers witnessed an astounding turnaround: While experimental models that hadn’t received any treatment uniformly died within 20 days, those that received the combined vaccine and checkpoint inhibitors were all cured of their disease. Furthermore, when the researchers challenged these preclinical models with new cancer cells six months later, no new tumors developed. In essence, Dr. Sandler says, the preclinical models had become immune to neuroblastoma.

Further studies on human patient tumors suggest that this could prove to be a promising treatment for children with high-risk neuroblastoma. The patient samples examined show that while tumors with a low risk profile are typically infiltrated with numerous immune cells, tumors that are high-risk are generally barren of immune cells. That means they’re unlikely to respond to checkpoint inhibiting drugs alone, which require a significant immune presence in the tumor microenvironment. However, Dr. Sandler says, activating an immune response with a custom-made vaccine from tumor cells could spur the immune response necessary to make these stubborn cancers respond to checkpoint inhibitors.

Dr. Sandler cautions that the exact vaccine treatment used in the study won’t be feasible for people. The protocol to make the tumor cells immunogenic is cumbersome and may not be applicable to gene targeting in human patients. However, he and his team are currently working on developing more feasible methods for crafting cancer vaccines for kids. They also have discovered a new immune checkpoint molecule that could make this approach even more effective.

“By letting immune cells do all the work we may eventually be able to provide hope for patients where there was little before,” Dr. Sandler says.

In addition to Dr. Sandler, study co-authors include Priya Srinivasan, Xiaofang Wu, Mousumi Basu and Christopher Rossi, all of the Joseph E. Robert Jr. Center for Surgical Care and The Sheikh Zayed Institute for Pediatric Surgical Innovation (SZI), at Children’s National in Washington, D.C.

Financial support for research described in this post was provided by the EVAN Foundation, the Catherine Blair foundation, the Michael Sandler Research Fund and SZI.

ID-KD vaccine induced T-cell cytotoxicity

Mechanism of Id2kd Neuro2a vaccination combined with α-CTLA-4 and α-PD-L1 immunotherapy in a neuroblastoma model. During a vaccine priming phase, CTLA-4 blockade enhances activation and proliferation of T-cells that express programmed cell death 1 (PD1) and migrate to the tumor. Programmed cell death-ligand 1 (PD-L1) is up-regulated on the tumor cells, inducing adaptive resistance. Blocking PD-L1 allows for enhanced cytotoxic effector function of the CD8+ tumor-infiltrating lymphocytes. Artist: Olivia Abbate

zika virus

Neuroimaging essential for Zika cases

zika virus

About three years ago, Zika virus emerged as a newly recognized congenital infection, and a growing body of research indicates the damage it causes differs from other infections that occur in utero.

Seventy-one of 110 Brazilian infants at the highest risk for experiencing problems due to exposure to the Zika virus in the womb experienced a wide spectrum of brain abnormalities, including calcifications and malformations in cortical development, according to a study published July 31, 2019 in JAMA Network Open.

The infants were born at the height of Brazil’s Zika epidemic, a few months after the nation declared a national public health emergency. Already, many of the infants had been classified as having the severe form of congenital Zika syndrome, and many had microcephaly, fetal brain disruption sequence, arthrogryposis and abnormal neurologic exams at birth.

These 110 infants “represented a group of ZIKV-exposed infants who would be expected to have a high burden of neuroimaging abnormalities, which is a difference from other reported cohorts,” Sarah B. Mulkey, M.D., Ph.D., writes in an invited commentary published in JAMA Network Open that accompanies the Rio de Janeiro study. “Fortunately, many ZIKV-exposed infants do not have abnormal brain findings or a clinical phenotype associated with congenital Zika syndrome,” adds Dr. Mulkey, a fetalneonatal neurologist in the Division of Fetal and Transitional Medicine at Children’s National in Washington, D.C.

Indeed, a retrospective cohort of 82 women exposed to Zika during their pregnancies led by a research team at Children’s National found only three pregnancies were complicated by severe fetal brain abnormalities. Compared with the 65% abnormal computed tomography (CT) or magnetic resonance imaging (MRI) findings in the new Brazilian study, about 1 in 10 (10%) of babies born to women living in the continental U.S. with confirmed Zika infections during pregnancy had Zika-associated birth defects, according to the Centers for Disease Control and Prevention.

“There appears to be a spectrum of brain imaging abnormalities in ZIKV-exposed infants, including mild, nonspecific changes seen at cranial US [ultrasound], such as lenticulostriate vasculopathy and germinolytic cysts, to more significant brain abnormalities, such as subcortical calcifications, ventriculomegaly and, in its most severe form, thin cortical mantle and fetal brain disruption sequence,” Dr. Mulkey writes.

About three years ago, Zika virus emerged as a newly recognized congenital infection, and a growing body of research indicates the damage it causes differs from other infections that occur in utero. Unlike congenital cytomegalovirus infection, cerebral calcifications associated with Zika are typically subcortical, Dr. Mulkey indicates. What’s more, fetal brain disruption sequence seen in Zika-exposed infants is unusual for other infections that can cause microcephaly.

“Centered on the findings of Pool, et al, and others, early neuroimaging remains one of the most valuable investigations of the Zika-exposed infant,” Dr. Mulkey writes, including infants who are not diagnosed with congenital Zika syndrome.  She recommends:

  • Cranial ultrasound as the first-line imaging option for infants, if available, combined with neurologic and ophthalmologic exams, and brainstem auditory evoked potentials
  • Zika-exposed infants with normal cranial ultrasounds do not need additional imaging unless they experience a developmental disturbance
  • Zika-exposed infants with abnormal cranial ultrasounds should undergo further neuroimaging with low-dose cranial CT or brain MRI.

Autonomic nervous system appears to function well regardless of mode of childbirth

Late in pregnancy, the human body carefully prepares fetuses for the rigors of life outside the protection of the womb. Levels of cortisol, a stress hormone, ramp up and spike during labor. Catecholamines, another stress hormone, also rise at birth, helping to kick start the necessary functions that the baby will need to regulate breathing, heartbeat, blood pressure and energy metabolism levels at delivery. Oxytocin surges, promoting contractions for the mother during labor and stimulating milk production after the infant is born.

These processes also can play a role in preparing the fetal brain during the transition to life outside the womb by readying the autonomic nervous system and adapting its cerebral connections. The autonomic nervous system acts like the body’s autopilot, taking in information it needs to ensure that internal organs run steadily without willful action, such as ensuring the heart beats and eyelids blink at steady intervals. Its yin, the sympathetic division, stimulates body processes while its yang, the parasympathetic division, inhibits them.

Infants born preterm have reduced autonomic function compared with their full-term peers and also face possible serious neurodevelopmental impairment later in life. But is there a difference in autonomic nervous system function for full-term babies after undergoing labor compared with infants delivered via cesarean section (C-section)?

A team from the Children’s National Inova Collaborative Research Program (CNICA) – a research collaboration between Children’s National in Washington, D.C., and Inova Women’s and Children’s Hospital in Virginia – set out to answer that question in a paper published online July 30, 2019, in Scientific Reports.

They enrolled newborns who had experienced normal, full-term pregnancies and recorded their brain function and heart performance when they were about 2 days old. Infants whose conditions were fragile enough to require observation in the neonatal intensive care unit were excluded from the study. Of 167 infants recruited for the prospective cohort study, 118 newborns had sufficiently robust data to include them in the research.  Of these newborns:

  • 62 (52.5%) were born by vaginal delivery
  • 22 (18.6%) started out with vaginal delivery but ultimately switched to C-section based on failure to progress, failed labor induction or fetal intolerance to labor
  • And 34 (28.8%) were born by elective C-section.

The CNICA research team swaddled infants for comfort and slipped electrode nets over their tiny heads to simultaneously measure heart rate variability and electrocortical function through non-invasive techniques. The team hypothesized that infants who had been exposed to labor would have enhanced autonomic tone and higher cortical electroencephalogram (EEG) power than babies born via C-section.

“In a low-risk group of babies born full-term, the autonomic nervous system and cortical systems appear to function well regardless of whether infants were exposed to labor prior to birth,” says Sarah B. Mulkey, M.D., Ph.D., a fetalneonatal neurologist in the Division of Fetal and Transitional Medicine at Children’s National and the study’s lead author.

However, infants born by C-section following a period of labor had significantly increased accelerations in their heart rates. And the infants born by C-section during labor had significantly lower relative gamma frequency EEG at 25.2 hours old compared with the other two groups studied.

“Together these findings point to a possible increased stress response and arousal difference in infants who started with vaginal delivery and finished delivery with C-section,” Dr. Mulkey says. “There is so little published research about the neurologic impacts of the mode of delivery, so our work helps to provide a normal reference point for future studies looking at high-risk infants, including babies born preterm.”

Because the research team saw little differences in autonomic tone or other EEG frequencies when the infants were 1 day old, future research will explore these measures at different points in the newborns’ early life as well as the role of the sleep-wake cycle on heart rate variability.

In addition to Dr. Mulkey, study co-authors include Srinivas Kota, Ph.D., Rathinaswamy B. Govindan, Ph.D., Tareq Al-Shargabi, MSc, Christopher B. Swisher, BS, Laura Hitchings, BScM, Stephanie Russo, BS, Nicole Herrera, MPH, Robert McCarter, ScD, and Senior Author Adré  J. du Plessis, M.B.Ch.B., MPH, all of Children’s National; and Augustine Eze Jr., MS, G. Larry Maxwell, M.D., and Robin Baker, M.D., all of Inova Women’s and Children’s Hospital.

Financial support for research described in this post was provided by the National Institutes of Health National Center for Advancing Translational Sciences under award numbers UL1TR001876 and KL2TR001877.

Gavel in front of a pistol

Saving children’s lives with stricter gun laws

Gavel in front of a pistol

A new study led by clinician-researchers at Children’s National finds states with stricter gun laws had lower firearm-related deaths among children and adolescents.

A new study led by clinician-researchers at Children’s National in Washington, D.C., shows an apparent benefit to stricter laws regulating firearm access: They can save children’s lives.

The study published online July 15, 2019, in Pediatrics shows that states with stricter gun laws had lower firearm-related deaths among children and adolescents. In addition, state laws that had been in place for more than five years requiring universal background checks for firearm purchases were associated with a 35% lower firearm-related death rate among children.

The authors say the findings underscore the need for robust research to understand the interplay between legislation type and pediatric deaths due to firearm injuries.

The cross-sectional study examined 2011 to 2015 firearm fatality data from the Web-based Injury Statistics Query and Reporting System (WISQARS), de-identified data collected by the Centers for Disease Control and Prevention about fatal injuries in the U.S. The team used the Brady Campaign to Prevent Gun Violence’s gun law scorecards which measure the strength or weakness of state laws, with higher scores designating states with consistently strong firearm laws.

Some 21,241 children aged 21 years and younger died from firearm-related injuries over the five-year study period, or about 4,250 deaths per year.

“Firearm injuries represent the second-leading cause of death for U.S. children. That’s about 10 funerals a day for kids whose untimely deaths could have been prevented,” says Monika K. Goyal, M.D., MSCE, director of research in the Division of Emergency Medicine and Trauma Services at Children’s National and the study’s lead author. “For every 10-point increase in the strictness of firearm legislation, there was a 4% drop in firearm-related mortality rates among children and youth.”

States that had laws in effect for five years or longer requiring universal background checks for firearm purchase had 35% lower rates of death due to firearms in children.

“Our findings demonstrate a powerful association between the strength of firearm legislation and pediatric firearm-related mortality, Dr. Goyal adds. “This association remains strong even after we adjust for rates of firearm ownership and other population variables, such as education level, race/ethnicity and household income.”

Just as a combination of evidence-based public health approaches – including legislation mandating seatbelt use – reduced mortality from motor vehicle crashes (6.1 deaths per 100,000 children in 2015 compared with 9.8 deaths per 100,000 in 2007), the authors contend that a similar strategy could help to inform decision-making to reduce childhood injuries and deaths due to firearms.

In addition to Dr. Goyal, additional study authors include Gia M. Badolato, MPH, coauthor, Shilpa J. Patel, M.D., MPH, coauthor and emergency medicine specialist, Kavita Parikh, M.D., MSHS, coauthor and hospitalist, and Robert McCarter Jr., ScD, coauthor and research section head, design and biostatistics, all of Children’s National; and Sabah F. Iqbal, M.D., PM Pediatrics, coauthor.

illustration of brain showing cerebellum

Focusing on the “little brain” to rescue cognition

illustration of brain showing cerebellum

Research faculty at Children’s National in Washington, D.C., with colleagues recently published a review article in Nature Reviews Neuroscience that covers the latest research about how abnormal development of the cerebellum leads to a variety of neurodevelopmental disorders.

Cerebellum translates as “little brain” in Latin. This piece of anatomy – that appears almost separate from the rest of the brain, tucked under the two cerebral hemispheres – long has been known to play a pivotal role in voluntary motor functions, such as walking or reaching for objects, as well as involuntary ones, such as maintaining posture.

But more recently, says Aaron Sathyanesan, Ph.D., a postdoctoral research fellow at the Children’s Research Institute, the research arm of Children’s National  in Washington, D.C., researchers have discovered that the cerebellum is also critically important for a variety of non-motor functions, including cognition and emotion.

Sathyanesan, who studies this brain region in the laboratory of Vittorio Gallo, Ph.D., Chief Research Officer at Children’s National and scientific director of the Children’s Research Institute, recently published a review article with colleagues in Nature Reviews Neuroscience covering the latest research about how altered development of the cerebellum contributes to a variety of neurodevelopmental disorders.

These disorders, he explains, are marked by problems in the nervous system that arise while it’s maturing, leading to effects on emotion, learning ability, self-control, or memory, or any combination of these. They include diagnoses as diverse as intellectual disability, autism spectrum disorder (ASD), attention-deficit/hyperactivity disorder and Down syndrome.

“One reason why the cerebellum might be critically involved in each of these disorders,” Sathyanesan says, “is because its developmental trajectory takes so long.”

Unlike other brain structures, which have relatively short windows of development spanning weeks or months, the principal cells of the cerebellum – known as Purkinje cells – start to differentiate from stem cell precursors at the beginning of the seventh gestational week, with new cells continuing to appear until babies are nearly one year old.  In contrast, cells in the neocortex, a part of the brain involved in higher-order brain functions such as cognition, sensory perception and language is mostly finished forming while fetuses are still gestating in the womb.

This long window for maturation allows the cerebellum to make connections with other regions throughout the brain, such as extensive connections with the cerebral cortex, the outer layer of the cerebrum that plays a key role in perception, attention, awareness, thought, memory, language and consciousness. It also allows ample time for things to go wrong.

“Together,” Sathyanesan says, “these two characteristics are at the root of the cerebellum’s involvement in a host of neurodevelopmental disorders.”

For example, the review article notes, researchers have discovered both structural and functional abnormalities in the cerebellums of patients with ASD. Functional magnetic resonance imaging (MRI), an imaging technique that measures activity in different parts of the brain, suggests that significant differences exist between connectivity between the cerebellum and cortex in people with ASD compared with neurotypical individuals. Differences in cerebellar connectivity are also evident in resting-state functional connectivity MRI, an imaging technique that measures brain activity in subjects when they are not performing a specific task. Some of these differences appear to involve patterns of overconnectivity to different brain regions, explains Sathyanesan; other differences suggest that the cerebellums of patients with ASD don’t have enough connections to other brain regions.

These findings could clarify research from Children’s National and elsewhere that has shown that babies born prematurely often sustain cerebellar injuries due to multiple hits, including a lack of oxygen supplied by infants’ immature lungs, he adds. Besides having a sibling with ASD, premature birth is the most prevalent risk factor for an ASD diagnosis.

The review also notes that researchers have discovered structural changes in the cerebellums of patients with Down syndrome, who tend to have smaller cerebellar volumes than neurotypical individuals. Experimental models of this trisomy recapitulate this difference, along with abnormal connectivity to the cerebral cortex and other brain regions.

Although the cerebellum is a pivotal contributor toward these conditions, Sathyanesan says, learning more about this brain region helps make it an important target for treating these neurodevelopmental disorders. For example, he says, researchers are investigating whether problems with the cerebellum and abnormal connectivity could be lessened through a non-invasive form of brain stimulation called transcranial direct current stimulation or an invasive one known as deep brain stimulation. Similarly, a variety of existing pharmaceuticals or new ones in development could modify the cerebellum’s biochemistry and, consequently, its function.

“If we can rescue the cerebellum’s normal activity in these disorders, we may be able to alleviate the problems with cognition that pervade them all,” he says.

In addition to Sathyanesan and Senior Author Gallo, Children’s National study co-authors include Joseph Scafidi, D.O., neonatal neurologist; Joy Zhou and Roy V. Sillitoe, Baylor College of Medicine; and Detlef H. Heck, of University of Tennessee Health Science Center.

Financial support for research described in this post was provided by the National Institute of Neurological Disorders and Stroke under grant numbers 5R01NS099461, R01NS089664, R01NS100874, R01NS105138 and R37NS109478; the Hamill Foundation; the Baylor College of Medicine Intellectual and Developmental Disabilities Research Center under grant number U54HD083092; the University of Tennessee Health Science Center (UTHSC) Neuroscience Institute; the UTHSC Cornet Award; the National Institute of Mental Health under grant number R01MH112143; and the District of Columbia Intellectual and Developmental Disabilities Research Center under grant number U54 HD090257.

INSAR 2019 logo

Autism’s heterogeneity on display at INSAR 2019

INSAR 2019 logo

At the INSAR Annual Meeting, presentations from around the world share a common goal: finding better ways to support and care for people with autism.

There are countless aspects of autism spectrum disorder (ASD) to study, as evidenced by the 1,800-plus abstracts accepted at the 2019 International Society for Autism Research’s (INSAR) annual meeting. Presentations from investigators around the world ranged from pre-clinical studies of the genetic and biological underpinnings to community-based studies of diagnosis, assessment and treatment.

Along that broad spectrum of autism research, the work at Children’s National emphasizes better understanding of the clinical implications and community experiences of autism, with a particular focus on:

  • How well diagnostic and assessment tools capture the many differences between subpopulations of children with autism, whether based on sex/gender identity, cultural background or age
  • Understanding what children and adolescents with autism, and their parents, really need to help them thrive, and how to target supports to their unique needs
  • Finding the best ways to deliver vital information to autistic youth and their families in clear and accessible ways.

Researchers from Children’s Center for Autism Spectrum Disorders (CASD) presented nearly 20 scientific panels, oral presentations and posters at INSAR highlighting their most recent findings in these areas.

In addition to their own research, the CASD team attended sessions from INSAR’s global community of researchers, clinicians, and others with vested interest in the study of ASD. Lauren Kenworthy, Ph.D., CASD’s director, shared some of her key takeaways from the meeting with the ASD-focused publication Spectrum.

“At many levels of analyses, we are learning that a diagnostic label may not always be the best construct for identifying, treating or probing the biology underlying a person’s problems,” she said. “The keynote by Jason Lerch, professor at Oxford University, for example, was an elegant synthesis of imaging and genetic findings that made a strong case for the importance of exploring subtypes within autism and across developmental and psychiatric problems.”

“We also received another powerful reminder of our field’s complex heterogeneity,” Dr. Kenworthy noted. “Katherine Gotham, assistant professor at Vanderbilt University, was able to divide groups of autistic individuals in a study according to different criteria than the study’s initial design and effectively erase what appeared to be clear, statistically significant differences between typically developing and autistic participants. Her presentation demonstrated once more the importance of looking deeply at our data from many angles before drawing conclusions based on study outcomes.”

These studies, both at Children’s and elsewhere, all share one common theme: the importance of asking these questions and exploring the answers, with the goal of finding better ways to support and care for the millions of people around the world with autism and their families, no matter what autism looks like for them.

CASD presentations at INSAR 2019

Panel presentation: Clinical Presentation of ASD and Access to Care Among Girls

Allison Ratto, Ph.D., chaired a panel focused on the differences in performance on standard diagnostic tools based on the sex of autistic youth. The panel included presentations such as:

  • Sex Differences in Youth with ASD: Language Phenotype and Relation to Autism Behaviors from the ACE GENDAAR Network, presented by Sara Jane Webb of the University of Washington
  • Social Strengths of Autistic Girls: Sex Differences in Clinician-Rated and Parent-Reported Autistic Traits, presented by Dr. Ratto
  • Gender and Psychiatric Symptoms among Youth with ASD and ADHD, Alyssa Verbalis, Ph.D.
  • Evidence for Undertreatment of ADHD in Girls with ASD in the National Survey of Children’s Health, Kelly Register-Brown, M.D., MSc.

Oral and poster presentations

Oral session: Comparing Online and in-Person Parent Trainings to Support Executive Function and Self-Regulation: Feasibility, Acceptability, and Outcomes, presented by Lauren Kenworthy, Ph.D.

Poster sessions:

  • Executive Function and School-Based Interventions
    • Self-Report and Parent-Report Reveal Similar Patterns of Executive Function Problems in Autistic Adolescents, presented by Rachael Clinton and Charlotte Jeppsen
    • What Services Are Families of Children with Executive Function Challenges Getting? What Do Parents Say They Want?
    • A Mixed Methods Approach to Evaluation of Student Acceptability of the School-Based Interventions Unstuck and on Target and Parents and Teachers Supporting Students
    • A New Way to Help Parents? Exploring the Impact of School-Based Interventions on Parenting Outcomes
    • Executive Function and Academic Achievement in Autism Spectrum Disorder
    • Development of an Interactive, E-Learning Tool to Support Parent Implementation of an Executive Function Intervention
    • The Moderating Effects of Implementation Factors on Improvement in Classroom Behaviors in Unstuck and on Target and Contingency Behavior Management
  • Youth with ASD making the transition to adulthood
    • Preliminary Outcomes of a New Executive Function Treatment for Transition-Age Youth with ASD, presented by Cara Pugliese, Ph.D.
    • Self-determination in transition-aged individuals with autism spectrum disorder.
  • ASD population subgroups, including gender and ethnically diverse:
    • Parent-Teacher Discrepancy in Ratings of Executive Functioning in Black and White Children with ASD, presented by Serene Habayeb
    • Capturing the Autistic Experience: Self-Advocates Develop Self-Assessment Tools to Inform Autism Diagnosis and Validate Neuroimaging Findings across the Gender Spectrum
    • Comparing Parent-Report of Non-Intellectually Disabled Asian-American Youth with ASD and ADHD to Their White Peers
    • Autistic Traits in Transgender Youth: Dysphoria, Stigma, and Barriers to Care
    • Higher Rates of Gender Diversity in Children with ASD Based on Self-Report, Not Parent Report
Denice Cora-Bramble with the Mayor’s Commission on Healthcare Systems Transformation

Denice Cora-Bramble, M.D., MBA, selected for Mayor’s Commission on Healthcare Systems Transformation

Denice Cora-Bramble with the Mayor’s Commission on Healthcare Systems Transformation

Photo credit: Executive Office of the Mayor

Denice Cora-Bramble, M.D., MBA, chief medical officer and executive vice president of Ambulatory and Community Health Services at Children’s National, has been selected to serve as a member of the Mayor’s Commission on Healthcare Systems Transformation. Established by Mayor Muriel Bowser, the commission will make recommendations on strategies and investments necessary to transform health care delivery in the District of Columbia.

Dr. Cora-Bramble is one of three representatives appointed to the commission from specialty hospitals in the District. “I am honored to have been invited to participate in the commission’s important discussions,” she says.

While D.C. has many resources related to health care and is home to several acute care hospitals, residents still need help accessing services. The 27-member commission will work to alleviate these challenges and over the next six months they will develop recommendations for improving access to primary, acute and specialty care services, addressing health system capacity issues for inpatient, outpatient, pre-hospital and emergency room services and maternal health.

The commission will also work to promote equitable acute care and specialty services in communities east of the Anacostia River.

“I’m looking forward to serving as a resource to citizens living within the District,” says Dr. Cora-Bramble.  “I am hopeful that the group’s recommendations will improve the delivery of health services, particularly for vulnerable and underserved populations.”

Dr. Cora-Bramble joined Children’s National in 2002. In her role as chief medical officer, she leads the tri-state clinical operations of Children’s National primary and specialty sites, including regional outpatient centers, emergency departments, community health centers, pediatric practices, school-based health centers, mobile medical units and nursing services in D.C. Public Schools and Public Charter Schools. She also oversees the telemedicine program and the Children’s National Health Network.

Children’s National ranked No. 6 overall and No. 1 for newborn care by U.S. News

Children’s National in Washington, D.C., is the nation’s No. 6 children’s hospital and, for the third year in a row, its neonatology program is No.1 among all children’s hospitals providing newborn intensive care, according to the U.S. News Best Children’s Hospitals annual rankings for 2019-20.

This is also the third year in a row that Children’s National has been in the top 10 of these national rankings. It is the ninth straight year it has ranked in all 10 specialty services, with five specialty service areas ranked among the top 10.

“I’m proud that our rankings continue to cement our standing as among the best children’s hospitals in the nation,” says Kurt Newman, M.D., President and CEO for Children’s National. “In addition to these service lines, today’s recognition honors countless specialists and support staff who provide unparalleled, multidisciplinary patient care. Quality care is a function of every team member performing their role well, so I credit every member of the Children’s National team for this continued high performance.”

The annual rankings recognize the nation’s top 50 pediatric facilities based on a scoring system developed by U.S. News. The top 10 scorers are awarded a distinction called the Honor Roll.

“The top 10 pediatric centers on this year’s Best Children’s Hospitals Honor Roll deliver outstanding care across a range of specialties and deserve to be nationally recognized,” says Ben Harder, chief of health analysis at U.S. News. “According to our analysis, these Honor Roll hospitals provide state-of-the-art medical expertise to children with rare or complex conditions. Their rankings reflect U.S. News’ assessment of their commitment to providing high-quality, compassionate care to young patients and their families day in and day out.”

The bulk of the score for each specialty is based on quality and outcomes data. The process also includes a survey of relevant specialists across the country, who are asked to list hospitals they believe provide the best care for patients with challenging conditions.

Below are links to the five specialty services that U.S. News ranked in the top 10 nationally:

The other five specialties ranked among the top 50 were cardiology and heart surgery, diabetes and endocrinology, gastroenterology and gastro-intestinal surgery, orthopedics, and urology.

Vittorio Gallo Alpha Omega Alpha Award

Vittorio Gallo, Ph.D., inducted into Alpha Omega Alpha

Vittorio Gallo Alpha Omega Alpha Award

Vittorio Gallo, Ph.D., Chief Research Officer at Children’s National, was inducted into Alpha Omega Alpha (AΩA), a national medical honor society that since 1902 has recognized excellence, leadership and research in the medical profession.

“I think it’s great to receive this recognition. I was very excited and surprised,” Gallo says of being nominated to join the honor society.

“Traditionally AΩA membership is based on professionalism, academic and clinical excellence, research, and community service – all in the name of ‘being worthy to serve the suffering,’ which is what the Greek letters AΩA stand for,” says Panagiotis Kratimenos, M.D., Ph.D., an ΑΩΑ member and attending neonatologist at Children’s National who conducts neuroscience research under Gallo’s mentorship. Dr. Kratimenos nominated his mentor for induction.

“Being his mentee, I thought Gallo was an excellent choice for AΩΑ faculty member,” Dr. Kratimenos says. “He is an outstanding scientist, an excellent mentor and his research is focused on improving the quality of life of children with brain injury and developmental disabilities – so he serves the suffering. He also has mentored numerous physicians over the course of his career.”

Gallo’s formal induction occurred in late May 2019, just prior to the medical school graduation at the George Washington University School of Medicine & Health Sciences (GWSMHS) and was strongly supported by Jeffrey S. Akman, Vice President for Health Affairs and Dean of the university’s medical school.

“I’ve been part of Children’s National and in the medical field for almost 18 years. That’s what I’m passionate about: being able to enhance translational research in a clinical environment,” Gallo says. “In a way, this recognition from the medical field is a perfect match for what I do. As Chief Research Officer at Children’s National, I am charged with continuing to expand our research program in one of the top U.S. children’s hospitals. And, as Associate Dean for Child Health Research at GWSMHS, I enhance research collaboration between the two institutions.”

nurse checking boy's blood sugar levels

Improving glycemic control in diabetic children

nurse checking boy's blood sugar levels

A 10-week pilot study at Children’s National Health System integrated weekly caregiver coaching, personalized glucose monitoring and incentives into standard treatment for 25 pediatric patients with type 1 diabetes, lowering A1c by .5%

The life of a type 1 diabetes patient – taking daily insulin shots or wearing an insulin pump, monitoring blood sugar, prioritizing healthful food choices and fitting in daily exercise – can be challenging at age 5 or 15, especially as holidays, field trips and sleepovers can disrupt diabetes care routines, creating challenges with compliance. This is why endocrinologists from Children’s National Health System experimented with using health coaches over a 10-week period to help families navigate care for children with type 1 diabetes.

By assembling a team of diabetes educators, dietitians, social workers, psychologists and health care providers, Fran Cogen, M.D., C.D.E., director of diabetes care at Children’s National, helped pediatric patients with type 1 diabetes manage their glycemic status, or blood-sugar control.

On Saturday, June 8, 2019, Dr. Cogen will share results of the pilot program as poster 1260-P, entitled “A Clinical Care Improvement Pilot Program: Individualized Health Coaching and Use of Incentives for Youth with Type 1 Diabetes and their Caregivers,” at the American Diabetes Association’s 79th Scientific Sessions, which takes place June 7-11 at the Moscone Center in San Francisco.

Dr. Cogen’s study was offered at no cost to caregivers of 179 patients at Children’s National seeking treatment for type 1 diabetes. The pilot program included two components: 1) Weekly phone calls or emails from a health coach to a caregiver with personalized insulin adjustments, based on patient blood sugars submitted through continuous glucose monitoring apps; and 2) Incentives for patients to participate in the program and reach health targets.

Twenty-five participants, ages 4-18, with a mean age of 11.6 and A1c ranges between 8.6 – 10% joined the study. The average A1c was 9.4% at the beginning of the program and dropped by an average of .5% at the end of the trial. Twenty of the 25 participants, 80%, improved A1c levels by .5%. Seventeen participants, 68%, improved A1c levels by more than .5%, while seven participants, 28%, improved A1c levels by more than 1%.

“Chronic disease is like a marathon,” says Dr. Cogen. “You need to have constant reinforcement and coaching to get people to do their best. Sometimes what drives people is to have people on the other end say, ‘Keep it up, you’re doing a good job, keep sending us information so that we can make changes to improve your child’s blood sugar management,’ which gives these new apps and continuous glucose monitoring devices a human touch.”

Instead of waiting three months between appointments to talk about ways a family can make changes to support a child’s insulin control and function, caregivers received feedback from coaches each week. Health coaches benefitted, too: They reported feeling greater empathy for patients, while becoming more engaged in personalizing care plans.

Families who participated received a gift card to a local grocery store, supporting a child’s dietary goals. Children who participated were also entered into an iPad raffle. Improvements in A1c levels generated extra raffle tickets per child, which motivated participants, especially teens.

“These incentives are helpful in order to get kids engaged in their health and in an immediate way,” says Dr. Cogen. “Teenagers aren’t always interested in long-term health outcomes, but they are interested in what’s happening right now. Fluctuating blood sugars can cause depression and problems with learning, while increasing risk for future complications, including eye problems, kidney problems and circulation problems. As health care providers, we know the choices children make today can influence their future health outcomes, which is why we designed this study.”

Moving forward, Dr. Cogen and the endocrinologists at Children’s National would like to study the impact of using this model over several months, especially for high-risk patients, while  asynchronously targeting information to drive behavior change – accommodating the needs of families, while delivering dose-specific recommendations from health care providers.

Dr. Cogen adds, “We’re moving away from office-centric research models and creating interventions where they matter: at home and with families in real time.”

Read more about the study at Healio.com and dLife.

Additional study authors, all of whom work within the division of diabetes and endocrinology at Children’s National, include Lauren Clary, Ph.D., Sue-Ann Airborne, C.D.E., Andrew Dauber, M.D., Meredith Dillon, R.D., L.D.N., C.D.E., Beakel Eshete, B.S.N., R.N., C.D.E., Shaina Hatchell, B.S.N., R.N., Shari Jones, R.N., C.D.E., and Priya Vaidyanathan, M.D.

Robert J. Freishtat working in the lab

Detecting early signs of type 2 diabetes through microRNA

Robert J. Freishtat working in the lab

Obesity is a major risk factor for insulin resistance and type 2 diabetes. Now researchers understand the pathogenesis better among teens with mid-level obesity, thanks to clues released from circulating adipocyte-derived exosomes.

Researchers know that exosomes, tiny nanoparticles released from fat cells, travel through the bloodstream and body, regulating a variety of processes, from growth and development to metabolism. The exosomes are important in lean, healthy individuals in maintaining homeostasis, but when fat gets ‘sick’ – the most common reason for this is too much weight gain – it can change its phenotype, becoming inflammatory, and disrupts how our organs function, from how our skeletal muscle and liver metabolize sugar to how our blood vessels process cholesterol.

Robert J. Freishtat, M.D., M.P.H., the chief of emergency medicine at Children’s National Health System and a professor of precision medicine and genomics at the George Washington University School of Medicine and Health Sciences, and Sheela N. Magge M.D., M.S.C.E., who is now the director of pediatric endocrinology and an associate professor of medicine at the Johns Hopkins School of Medicine, were curious about what this process looked like in teens who fell in the mid-range of obesity.

Obesity is a major risk factor for insulin resistance and type 2 diabetes, but Dr. Freishtat and Dr. Magge wanted to know: Why do some teens with obesity develop type 2 diabetes over others? Why are some teens in this mid-range of obesity metabolically healthy while others have metabolic syndrome? Can fat in obese people become sick and drive disease?

To test this, Dr. Freishtat and Dr. Magge worked with 55 obese adolescents, ages 12 to 17, as part of a study at Children’s National. The participants – 32 obese normoglycemic youth and 23 obese hyperglycemic youth – were similar in age, sex, race, pubertal stage, body mass index and overall fat mass. The distinguishing factor: The hyperglycemic study participants, the teens with elevated blood sugar, differed in where they stored fat. They had extra visceral fat (or adipose tissue) storage, the type of fat that surrounds the liver, pancreas and intestines, a known risk factor for type 2 diabetes.

Dr. Magge and Dr. Freishtat predicted that circulating exosomes from the teens with elevated blood sugar are enriched for microRNAs targeting carbohydrate metabolism.

They used three tests to examine study participants’ metabolism, body composition and circulating exosomes. The first test, an oral glucose tolerance test, measures how efficiently the body metabolizes sugar; the second test is the whole body DXA, or dual-energy x-ray absorptiometry, which analyzes body composition, including lean tissue, fat mass and bone mineral density; and the third test, the serum adipocyte-derived exosomal microRNA assays, is an analysis of circulating fat signals in the bloodstream.

They found that teens with elevated blood sugar and increased visceral fat had different circulating adipocyte-derived exosomes. These study participants’ exosomes were enriched for 14 microRNAs, targeting 1,304 mRNAs and corresponding to 179 canonical pathways – many of which are directly associated with carbohydrate metabolism and visceral fat.

Dr. Magge will present this research, entitled “Changes in Adipocyte-Derived Exosomal MicroRNAs May Play a Role in the Progression from Obese Normoglycemia to Hyperglycemia/Diabetes,” as an oral abstract at the American Diabetes Association’s 79th Scientific Sessions on Saturday, June 8.

Dr. Freishtat envisions having this information will be especially helpful for a patient in a mid-range of obesity. Exosomes primarily consist of small non-coding RNAs. In the current study, the altered RNAs affect P13K/AKT and STAT3 signaling, vital pathways for metabolic and immune function.

“Instead of waiting until someone has the biochemical changes associated with type 2 diabetes, such as hyperglycemia, hyperlipidemia and insulin resistance, we’re hoping physicians will use this information to work with patients earlier,” says Dr. Freishtat. “Through earlier detection, clinicians can intervene when fat shows sign of illness, as opposed to when the overt disease has occurred. This could be intervening with diet and lifestyle for an obese individual or intervening with medication earlier. The goal is to work with children and teens when their system is more plastic and responds better to intervention.”

As this research evolves, Dr. Freishtat continues to look at the intergenerational effects of circulating adipocyte-derived exosomes. Through ongoing NIH-funded research in India, he finds these exosomes, similar in size to lipoproteins, can travel across the placenta, affecting development of the fetus in utero.

“What we’re finding in our initial work is that these exosomes, or ‘sick’ fat, cross the placenta and affect fetal development,” Dr. Freishtat says. “Some of the things that we’re seeing are a change in body composition of the fetus to a more adipose phenotype. Some of our work in cell cultures shows changes in stem cell function and differentiation, but what’s even more interesting to us is that if the fetus is a female sex that means her ovaries are developing while she’s in utero, which means a mother’s adipocyte-derived exosomes could theoretically be affecting her grandchild’s phenotype – influencing the health of three generations.”

While this research is underway, Dr. Freishtat is working with JPOD @ Boston, co-located with the Cambridge Innovation Center in Cambridge, Massachusetts, to develop a test to provide analyses of adipocyte-derived exosomal microRNAs.

“It’s important for families to know that these studies are designed to help researchers and doctors better understand the development of disease in its earliest stages, but there’s no need for patients to wait for the completion of our studies,” says Dr. Freishtat. “Reaching and maintaining a healthy body weight and exercising are important things teens and families can do today to reduce their risk for obesity and diabetes.”

Gustavo Nino

Gustavo Nino, M.D., honored with national award from American Thoracic Society

Gustavo Nino

Gustavo Nino, M.D., a pulmonologist who directs the Sleep Medicine program at Children’s National, was honored by the American Thoracic Society with The Robert B. Mellins, M.D. Outstanding Achievement Award in recognition of his contributions to pediatric pulmonology and sleep medicine.

“I am humbled and pleased to be recognized with this distinction,” says Dr. Nino. “This national award is particularly special because it honors both academic achievements as well as research that I have published to advance the fields of pediatric pulmonology and sleep medicine.”

After completing a mentored career development award (K Award) from the National Institutes of Health (NIH), Dr. Nino established an independent research program at Children’s National funded by three different NIH R-level grants, an R01 research project grant; an R21 award for new, exploratory research; and an R4 small business/technology transfer award to stimulate research innovation.

The research team Dr. Nino leads has made important contributions to developing novel models to study the molecular mechanisms of airway epithelial immunity in newborns and infants. He also has pioneered the use of computer-based lung imaging tools and physiological biomarkers to predict early-life respiratory disease in newborns and infants.

Dr. Nino has published roughly 60 peer-review manuscripts including in the “Journal of Allergy and Clinical Immunology,” the “European Respiratory Journal,” and the “American Journal of Respiratory and Critical Care Medicine,” the three top journals in the field of respiratory medicine. He has been invited to chair sessions about sleep medicine during meetings held by the Pediatric Academic Societies, American College of Chest Physicians and the American Thoracic Society (ATS).

Dr. Nino also has served as NIH scientific grant reviewer of the Lung Cellular and Molecular Immunology Section; The Infectious, Reproductive, Asthma and Pulmonary Conditions Section; and The Impact of Initial Influenza Exposure on Immunity in Infants NIH/National Institute of Allergy and Infectious Diseases Special Emphasis Panel.

In addition to his research and academic contributions, over the past five years Dr. Nino has led important clinical and educational activities at Children’s National and currently directs the hospital’s Sleep Medicine program, which has grown to become one of the region’s largest programs conducting more than 1,700 sleep studies annually.

He has developed several clinical multidisciplinary programs including a pediatric narcolepsy clinic and the Advanced Sleep Apnea Program in collaboration with the Division of Ear, Nose and Throat at Children’s National. In addition, Dr. Nino started a fellowship program in Pediatric Sleep Medicine accredited by the Accreditation Council for Graduate Medical Education in collaboration with The George Washington University and has served as clinical and research mentor of several medical students, pediatric residents and fellows.