Minimally invasive surgery brings lasting relief to pediatric achalasia patients

tkane_atmospheric_2015

Achalasia affects only a small number of people around the world, estimated at 1.6 per 100,000, and children make up fewer than 5 percent of that total. In most cases, the causes are unknown, but it is attributed to a combination of heredity and autoimmune or nerve cell disorders. For adults, treatment might include oral medication to prevent narrowing, balloon dilation, or botulinum toxin injections to relax the muscle at the end of the esophagus. For a growing child, who faces not just months but a lifetime of injections and potential repeat procedures, these methods aren’t viable. Instead, surgical correction is the standard of care. In the past 10 years, the surgical option evolved from a traditional open procedure with weeks of recovery and pain to less-invasive approaches.

“The total number of children with achalasia is small,” says Timothy D. Kane, M.D., Division Chief of General and Thoracic Surgery at Children’s National Health System. “But Children’s National treats more of these cases than most other children’s hospitals around the world, and that gives us the ability to look at a larger population and see what works.”

Dr. Kane is senior author of a study recently published in the Journal of Pediatric Surgery that analyzed the outcomes from nearly a decade’s worth of these cases to gauge the effectiveness of two different minimally invasive surgical approaches for children with achalasia.

A look at the two surgical options

The most common surgical intervention is laparoscopic Heller myotomy, performed through small incisions in the belly. Additionally, Dr. Kane and the Children’s surgical team are one of only two teams in the country who perform a different procedure called peroral endoscopic myotomy (POEM) on children. The POEM procedure is completed entirely through the mouth using an endoscope, with no additional incision needed. The procedure is commonly used for adult achalasia cases, but is not widely available for children elsewhere as it requires specialized training and practice to perform.

“Heller myotomy works very well for most kids — that’s why it’s the standard of care,” Dr. Kane says. “Our study found that patients who underwent the POEM procedure experienced the same successful outcomes as Heller patients, and we already knew from adult data that POEM patients reported less pain following surgery — a win-win for children.”

The retrospective study included all children who had undergone surgical treatment for achalasia at Children’s from 2006 to 2015. Since achalasia cases are few and far between, with most children’s hospitals seeing maybe one to five cases over 10 years, collecting reliable data on outcomes is challenging. This study provides a large enough sample to allow doctors to use the findings as a guide to find the interventions that are the best fit for each patient.

“Now we’re very comfortable presenting families with two really good options and letting them choose the one that works best for them,” he concludes.

Imagine the feeling of food stuck in your throat. For children with esophageal achalasia, that feeling is a constant truth: The muscles in the esophagus fail to function properly and the lower valve, or sphincter, of the esophagus controlling the flow of food into the stomach doesn’t relax enough to allow in food — causing a backup, heartburn, chest pain, and many other painful symptoms. For children, surgery is the best hope for permanent relief.

hands on simulation training at AAP

At AAP: hands-on simulation training with life-saving technology

aap_nshah_techdependentinfants_atmospheric

Recent medical breakthroughs have enabled very premature infants and children with rare genetic and neurological diseases to survive what had once been considered to be fatal conditions. This has resulted in a growing number of children with medically complex conditions whose very survival depends on ongoing use of technology to help their brains function, their lungs take in oxygen, and their bodies remain nourished.

“Many pediatricians care for technology-dependent children with special health needs,” says Neha Shah, M.D., M.P.H., an associate professor of pediatrics in the Division of Hospitalist Medicine at Children’s National Health System. “These kids have unique risks – some of which may be associated with that life-saving device malfunctioning.” Because there is no standard residency training for these devices, many clinicians may feel ill-equipped to address their patients’ device-related issues. To bridge that training gap, Dr. Shah and co-presenters, Priti Bhansali, M.D., M.Ed., and Anjna Melwani, M.D., will lead hands-on simulation training during the American Academy of Pediatrics 2016 National Conference.

“Inevitably, these things happen at 3 in the morning,” Dr. Shah adds. “Individual clinicians’ skill level and comfort with the devices varies. We should all have the same core competency.”

How the training works

During the simulation, the audience is given a specific case. They have eight minutes to troubleshoot and resolve the issue, using mannequins specially fitted with devices, such as trach tubes and feeding tubes, in need of urgent attention. Depending on their actions, the mannequin may decompensate with worsened breathing and racing heartbeats. The high-stakes, hands-on demo is followed by a 12-minute debrief, a safe environment to review lessons learned. Once they complete one simulation, attendees move to the next in the series of four real-life scenarios.

“We’ve done this a few times and my heart rate still goes up,” Dr. Shah admits. After giving similar training sessions at other academic meetings, participants said that having a chance to touch and feel the devices and become familiar with them in a calm environment is a benefit.

Dr. Shah came up with the concept for the hands-on training by speaking with a small group of peers, asking about how comfortable they felt managing kids with medical complex cases. The vast majority favored additional education about common devices, such as gastronomy tubes, tracheostomy tubes, and ventriculoperitoneal shunts.  In addition to the in-person training, the team has created a web-based curriculum discussing dysautonomia, spasticity, gastroesophageal reflux disease, enteric feeding tubes, venous thromboembolism, and palliative care, which they described in an article published in the Fall 2015 edition of the Journal of Continuing Education in the Health Professions.

“Most times, clinicians know what they need to do and the steps they need to follow. They just haven’t done it themselves,” Dr. Bhansali adds. “The simulation forces people to put their hands on these devices and use them.”

AAP 2016 presentations:
Saturday, October 22, 2016

  • W1059- “Emergencies in the Technology-Dependent Child: What Every Pediatrician Should Know” 8:30 a.m. to 10 a.m. (SOLD OUT)
  • W1131-  “Emergencies in the Technology-Dependent Child: What Every Pediatrician Should Know” (Encore) 2 p.m. to 3:30PM