Tag Archive for: immunotherapy

T cell

Clinical Trial Spotlight: Is more really better? Dose escalation of multi-antigen targeted T cells to illicit a more robust response

T cell

As the promise of immunotherapy in treating patients with cancer becomes more evident, physician researchers at Children’s National are pushing the needle further along. Holly Meany, M.D., is leading a Phase 1 dose-escalation trial to determine the safety and efficacy of administering rapidly generated tumor multi-antigen associated specific cytotoxic T lymphocytes (TAA CTL) to patients who have undergone allogeneic hematopoietic stem cell transplantation (HSCT) or traditional therapy for a high-risk solid tumor due to the presence of refractory, relapsed and/or residual detectable disease.

“In the escalation portion of our trial, we found that the highest dose evaluated did not have unfavorable toxicity in these patients and is our recommended dose,” Dr. Meany said. “Our next step is an expansion of the trial in five distinct disease categories – Wilms tumor, neuroblastoma, rhabdomyosarcoma, adenocarcinoma and esophageal carcinoma – to examine efficacy on a broader level at the recommended dose.”

Dr. Meany and fellow research clinicians at Children’s National will evaluate not only what happens to the patients when given the additional dosage, but also what happens to the cells – How long will they last? Will they remain targeted against the same antigens or will they shift to target other proteins?

This novel trial is currently enrolling patients at Children’s National Health System in Washington, D.C.

  • PI: Holly Meany, M.D.
  • Title: Research Study Utilizing Expanded Multi-antigen Specific Lymphocytes for the Treatment of Solid Tumors (REST)
  • Status: Currently enrolling

For more information about this trial, contact:

Holly Meany, M.D.
202-476-5697
hmeany@childrensnational.org 

Click here to view Open Phase 1 and 2 Cancer Clinical Trials at Children’s National.

The Children’s National Center for Cancer and Blood Disorders is committed to providing the best care for pediatric patients. Our experts play an active role in innovative clinical trials to advance pediatric cancer care. We offer access to novel trials and therapies, some of which are only available here at Children’s National. With research interests covering nearly aspect of pediatric cancer care, our work is making great advancements in childhood cancer.

Eugene Hwang in an exam room

Clinical Trial Spotlight: Creating a super army to target CNS tumors

Eugene Hwang in an exam room

Following the noted success of CAR-T cells in treating leukemia, Eugene Hwang, M.D., and a team of physicians at Children’s National are studying the efficacy of using these white blood cell “armies” to fight central nervous system (CNS) tumors.

Following the noted success of CAR-T cells in treating leukemia, physicians at Children’s National are studying the efficacy of using these white blood cell “armies” to fight central nervous system (CNS) tumors. Employing a strategy of “supertraining” the cells to target and attack three tumor targets as opposed to just one, Eugene Hwang, M.D., and the team at Children’s are optimistic about using this immunotherapy technique on a patient population that hasn’t previously seen much promise for treatment or cure. The therapy is built on the backbone of T cell technology championed by Catherine Bollard, M.B.Ch.B., M.D., director of the Center for Cancer and Immunology Research, which is only available at Children’s National. Hwang sees this trial as an exciting start to using T cells to recognize resistant brain cancer. “We have never before been able to pick out markers on brain cancer and use the immune system to help us attack the cancer cells. This strategy promises to help us find treatments that are better at killing cancer and lessening side effects,” he says.

This Phase 1 dose-escalation is designed to determine the safety and feasibility of rapidly generated tumor multiantigen associated specific cytotoxic T lymphocytes (TAA-T) in patients with newly diagnosed diffuse intrinsic pontine gliomas (DIPGs) or recurrent, progressive or refractory non-brainstem CNS malignancies. Pediatric and adult patients who have high-risk CNS tumors with known positivity for one or more Tumor Associated Antigens (TAA) (WT1, PRAME and/or surviving) will be enrolled in one of two groups: Group A includes patients with newly diagnosed DIPGs who will undergo irradiation as part of their upfront therapy and Group B includes patients with recurrent, progressive or refractory CNS tumors including medulloblastoma, non-brainstem high-grade glioma, and ependymoma, among others. TAA-T will be generated from a patient’s peripheral blood mononuclear cells (PBMCs) or by apheresis. This protocol is designed as a phase 1 dose-escalation study. Group A patients: TAA-T will be infused any time >2 weeks after completion of radiotherapy. Group B patients: TAA-T will be infused any time >2 after completing the most recent course of conventional (non-investigational) therapy for their disease AND after appropriate washout periods as detailed in eligibility criteria.

For more information about this trial, contact:

Eugene Hwang, M.D.
202-476-5046
ehwang@childrensnational.org

Click here to view Open Phase 1 and 2 Cancer Clinical Trials at Children’s National.

The Children’s National Center for Cancer and Blood Disorders is committed to providing the best care for pediatric patients. Our experts play an active role in innovative clinical trials to advance pediatric cancer care. We offer access to novel trials and therapies, some of which are only available here at Children’s National. With research interests covering nearly aspect of pediatric cancer care, our work is making great advancements in childhood cancer.

Assorted foods

Food allergies: a research update

Assorted foods

Promising new therapies for food allergies are on the horizon, including an experimental immunotherapy awaiting federal approval that enables people who are very allergic to eat peanut protein without suffering serious side effects.

Good news, right?

As it turns out, the idea of a child who is highly allergic to a specific food eating that same food item makes kids with lifelong food allergies and their parents a bit queasy.

“It’s a very big paradigm shift. From diagnosis, children are told to avoid their food triggers at all cost. But now they may be counseled to approach the very thing that scares them, put it in their body and see what happens,” says Linda Herbert, Ph.D., an assistant professor in Children’s Division of Psychology and Behavioral Health.

“On the flip side, these new protections could reduce long-term anxieties, replacing daily anxiety about accidental exposure with a newfound sense of empowerment. Either way, a lot of families will need support as they try these new treatments that enable them to ingest a food allergen daily or wear a patch that administers a controlled dose of that food allergen,” Herbert says.

She will discuss food allergy treatments in the pipeline and families’ psychosocial concerns related to daily life as she presents a research update during the American Academy of Allergy, Asthma & Immunology (AAAAI) 2019 Annual Meeting. A select group, including Herbert, has been recognized with an AAAAI Foundation Heritage Lectureship, which honors distinguished AAAAI members with a special lecture and plaque.

Herbert’s symposium targets allied health professionals at the annual meeting, including psychologists, dietitians and nurse practitioners who attend to a host of psychosocial concerns felt by families affected by allergies to foods like eggs, nuts and cow’s milk.

“When patients arrive for outpatient therapy, they feel anxious about being safe when they’re out in public. They have anxieties about their children feeling safe at school as well as managing restaurant meals. They explain difficulties being included in social events like birthday parties, field trips and shared vacations,” Herbert says. “Some families restrict social activities due to stress and anxiety.”

Children’s National Health System takes a multidisciplinary approach for complex conditions like food allergies, she says, combining the expertise of psychologists, medical providers, research nurses, clinical nurses, registered dietitians and other allied health professionals.

“When we all communicate, we can see the complete picture. It strengthens the care that the child receives, and it’s especially powerful that it can happen all at once – rather than going to multiple appointments,” she adds.

During such group huddles, the team agrees on a plan together that is communicated to the family. One ongoing challenge is that one-third of school children with food allergies are bullied or teased.

“A lot of parents don’t necessarily know to ask or how to ask. I frequently suggest that clinicians discuss peer concerns more in clinic.”

American Academy of Allergy, Asthma & Immunology 2019 Annual Meeting presentation

  • “Allied Health Plenary – Food Allergy Updates.”

Friday, Feb. 22, 2019, 4:15-5:30 p.m. (PST)

Linda Herbert, Ph.D., director of Children’s Division of Allergy and Immunology’s psychosocial clinical program.

Javad Nazarian

Meeting of the minds: Children’s National hosts first DIPG Round Table Discussion

Javad Nazarian at DIPG Round Table Discussion

Spearheaded by Javad Nazarian, Ph.D., MSC, Scientific Director of the Children’s National Brain Tumor Institute, the focused DIPG Round Table Discussion brought investigators, neurosurgeons and clinicians from North America, Europe and Australia to Children’s National in Washington, D.C.

Over 40 experts involved in the study and treatment of diffuse intrinsic pontine gliomas (DIPG) convened at the inaugural DIPG Round Table Discussion at Children’s National Health System Sept. 30-Oct. 2.

Spearheaded by Javad Nazarian, Ph.D., MSC, Scientific Director of the Children’s National Brain Tumor Institute, the focused DIPG Round Table Discussion brought investigators, neurosurgeons and clinicians from North America, Europe and Australia to Children’s National in Washington, D.C., to engage in dialogue and learn about the changing landscape of DIPG tumor biology and therapeutics. Attendees discussed the recent discoveries in DIPG research, precision medicine, preclinical modeling, immunotherapy, data sharing and the design of next generation clinical trials.

Families affected by DIPG also had an opportunity to participate in day 2 of the event. Many voiced the necessity of data sharing to ensure progress in the field. Dr. Nazarian seconded that point of view: “It is critical to get raw data and have it harmonized and integrated so that the end users (researchers) can utilize and do cross-data analysis…We need to break down the silos.” The highlight of the data sharing session was the Open DIPG Initiative that is spearheaded by Dr. Nazarian and the Children’s Brian Tumor Tissue Consortium (CBTTC).

Nazarian Lab at DIPG Roundtable Meeting

Eshini Panditharatna, Ph.D., Madhuri Kambhampati, Sridevi Yadavilli, M.D., Ph.D., and Erin Bonner of Children’s National at the DIPG Round Table.

As recent technological and molecular advances in DIPG biology have pushed the field forward, focus groups have become essential to share data, ideas and resources with the overarching goal of expediting effective treatments for children diagnosed with DIPG. An extremely aggressive form of pediatric brain cancer, DIPG accounts for roughly 10 to 15 percent of all brain tumors in children. Between 300 and 400 children in the United States are diagnosed with DIPG each year, but the 5-year survival for the brain tumor is less than 5 percent, a strikingly low number in comparison with other types of childhood cancer. DIPG research and clinical initiatives have changed in the past years mainly due to the generous support of families for basic research. The DIPG Open Table meeting was designed to coalesce a team of experts to expedite the first crack at curing this devastating childhood cancer.

Michael Keller

Virus-specific t-cells show promise before transplant in SCID patients

Michael Keller

“Today, we know that virus-specific T-cells can help protect patients from dangerous viruses after stem cell transplants,” says Michael Keller, M.D. “Through this research, we used the same therapy and approach, but applied it pre-transplant with the hope of providing the same benefit of protection against life-threatening viruses to patients who need it the most.”

Experts at Children’s National Health System have been successfully studying the use of virus-specific T-cells (VST) to help protect immunocompromised patients from life-threatening viruses after bone marrow transplants. Research published recently in the Biology of Blood and Marrow Transplantation presents promising new findings from testing the use of these same VSTs before transplant to help give patients with severe combined immunodeficiency (SCID) a better chance at long-term survival.

Babies born with SCID are highly susceptible to severe infections that are often fatal if not treated with immune-restoring treatments, like hematopoietic stem cell transplants (HSCT). However, undergoing an HSCT with an infection present has shown to lead to a decrease in survival at two years old for SCID patients when compared to those who start the HSCT infection-free. The study lead, Michael Keller, M.D., hypothesized that the success of HSCTs in SCID patients may be improved by controlling severe viral infections before the patient undergoes the transplant.

“Today, we know that virus-specific T-cells can help protect patients from dangerous viruses after stem cell transplants,” says Dr. Keller. “Through this research, we used the same therapy and approach, but applied it pre-transplant with the hope of providing the same benefit of protection against life-threatening viruses to patients who need it the most.”

Dr. Keller administered the VSTs from a healthy third-party donor in a five-month-old infant fighting adenovirus before undergoing a HSCT to cure him of SCID. Today, the baby is healthy and has a normal immune system. Ultimately, this research shows that the use of VSTs is likely safe in the pre-HSCT period in patients with SCID and may be an effective therapy for viral infections when they are resistant to antiviral therapy.

“I believe this VST therapy could make a real and lasting impact for patients with SCID,” said Dr. Keller. “It gives them a real chance at a long life.”

Anthony Sandler

Treatment of neuroblastoma with immunotherapy and vaccine combination shows promise

Anthony Sandler

“Treatment options like these that help the body use its own immune system to fight off cancer are incredibly promising, and we look forward to continuing this work to understand how we can best help our patients and their families,” said Anthony Sandler, M.D.

Despite being the most common extracranial solid tumor found in children and having multiple modes of therapy, neuroblastoma continues to carry a poor prognosis. However, a recent cutting-edge pre-clinical study, PD-L1 checkpoint inhibition and anti-CTLA-4 whole tumor cell vaccination counter adaptive immune resistance: A mouse neuroblastoma model that mimics human disease, published in PLOS Medicine shows the first signs of success in treating high-risk neuroblastoma, a promising step not only for neuroblastoma patients, but potentially for other types of cancer and solid tumors as well. While the research was conducted on mouse models and is in the early stages, the lead author of the study, Anthony Sandler, M.D., senior vice president and surgeon-in-chief of the Joseph E. Robert, Jr., Center for Surgical Care at Children’s National, believes these findings are an encouraging development for the field.

The treatment method combines a novel personalized vaccine and a combination of drugs that target checkpoint inhibitors enabling the immune system to identify and kill cancer cells. When these checkpoints are blocked, it’s similar to taking the brakes off the immune system so that the body’s T cells can be primed by the vaccine, identify the tumor and allow for targeted tumor cell killing. The vaccine then brings in reinforcements to double down on the attack, helping to eradicate the tumor. The vaccine could also be used as a way to prevent recurrence of disease. After a patient has received the vaccine, the T cells would live in the body, remembering the tumor cells, and attack reemerging cancer in a similar way that a flu vaccine helps fight off the flu virus.

“Treatment options like these that help the body use its own immune system to fight off cancer are incredibly promising, and we look forward to continuing this work to understand how we can best help our patients and their families,” said Dr. Sandler.

Allistair Abraham

Q&A with leading blood and marrow transplantation specialist

Allistair Abraham

Children’s National Health System is proud to be the home of some of the world’s leading hematology experts, including Allistair Abraham, M.D., blood and marrow transplantation specialist within the Center for Cancer and Blood Disorders, who was recently selected to participate in the American Society of Hematology-Harold Amos Medical Faculty Development Program (ASH-AMFDP). Designed to increase the number of underrepresented minority scholars in the field of hematology, the ASH-AMFDP has awarded Dr. Abraham $420,000 that includes an annual stipend and research grant over the next four years. Here, Dr. Abraham tells us more about his research and what it means for the future of patients with sickle cell disease.

Q: What does this award mean to you?
A: This award comes at a critical time in my early career as I learn how to become an independent grant-funded researcher. It gives me an opportunity to dedicate 70 percent of my time to research for the next four years, during which I will hone my research skills and have access to highly accomplished mentors at Children’s National and from the ASH-AMFDP faculty.

Q: Your research for this grant focuses on improving curative hematopoietic stem cell transplantation for sickle cell disease. Why do they need to be improved?

A: Sickle cell disease causes significant health problems for children, which can worsen as they become adults, and even shorten their lifespan. Curative therapies to date are limited for many patients since most do not have a suitably matched donor for a curative bone marrow transplant. Many of us in the field hope we can provide a safe option for as many patients as possible so they can be cured in childhood and not have to face the negative impacts of the disease as they grow older.

Q: You will also be evaluating virus-specific T-cell (VST) recovery after transplantation. What will this mean for patients?

A: As we explore more transplant donor options such as unrelated donors and mismatched family donors, we have observed delayed immune system recovery. Viral infections are particularly problematic, as they can be life-threatening and respond poorly to available medications. Ultimately, a recovered immune system would address the infection problem. We hope to generate immune cells that are protective against viruses from the transplant donor and give them to patients as part of their transplant procedure.

Q: How do you envision your research improving the future of treatment for sickle cell patients?

A: My hope is that we get closer to having a safer transplant option for most patients who, despite optimal therapy, continue to suffer from complications of sickle cell disease. Ideally, these transplants would not only be widely available, but the treatment would also be simplified to the point where most of the therapy could take place in an outpatient setting.

Q:  Why did you decide to work in this field?

A:  Sickle cell disease has lagged behind other disorders in terms of new treatment strategies for quite some time. I experienced this as a medical trainee and struggled when parents would ask me to “do something” for their child when most of the time all I could offer was pain medication. In the last five years or so, there has been more focus on sickle cell disease from the field and the community, so now is the time to work toward developing a widely available cure.

American Society of Hematology logo

Leading blood disorder experts from Children’s National convene in Atlanta for 59th American Society of Hematology annual meeting

In early December 2017, more than 25,000 attendees from around the world, including several experts from Children’s National Health System, convened in Atlanta for the American Society of Hematology’s annual meeting and exposition, the world’s premiere hematology event. For four days, physicians, nurses and other healthcare professionals attended sessions, listened to speakers and collaborated with each other, focusing on enhancing care and treatment options for patients with blood disorders and complications, including leukemia, sickle cell disease and transplants.

As nationally recognized leaders in the field, the Children’s National team led educational sessions and gave keynote speeches highlighting groundbreaking work underway at the hospital, which sparked engaging and productive conversations among attendees. Highlights from the team include:

  • Catherine Bollard, M.D., M.B.Ch.B., Director of the Center for Cancer and Immunology Research, educating global experts on cellular immunotherapy for non-Hodgkin lymphoma.
  • Kirsten Williams, M.D., bone and marrow transplant specialist, presenting novel work utilizing TAA-specific T cells for hematologic malignancies with Dr. Bollard, the sponsor of this first-in-man immunotherapy; moderating sessions on immunotherapy and late complications and survivorship after hematopoietic stem cell transplantation (HSCT).
  • Allistair Abraham, M.D., blood and marrow transplantation specialist, moderating a session on hemoglobinopathies.
  • David Jacobsohn, M.D., ScM, Division Chief of Blood and Marrow Transplantation, moderating a session on allogeneic transplantation results.
  • Naomi Luban, M.D., hematologist and laboratory medicine specialist, introducing a plenary speaker on the application of CRISPR/Cas 9 technology for development of diagnostic reagents for diagnosis of alloimmunization from stem cells.

Additional presentations from the Children’s National team included an oral abstract on the hospital’s work to improve hydroxyurea treatment for sickle cell disease by pediatric resident Sarah Kappa, M.D., who also received an ASH Abstract Achievement Award; another key session on hemoglobinopathies moderated by Andrew Campbell, M.D., director of the Comprehensive Sickle Cell Disease Program; an abstract on the clinical use of CMV- specific T-cells derived from CMV-native donors, presented by Patrick Hanley, Ph.D.; a leukemia study presented by Anne Angiolillo, M.D., oncologist; and a presentation about pain measurement tools in sickle cell disease by Deepika Darbari, M.D., hematologist.

Advances in T-cell immunotherapy at ISCT

Healthy Human T Cell

T-cell immunotherapy, which has the potential to deliver safer, more effective treatments for cancer and life-threatening infections, is considered one of the most promising cell therapies today. Each year, medical experts from around the world – including leaders in the field at Children’s National Health System – gather at the International Society for Cellular Therapy (ISCT) Conference to move the needle on cell therapy through several days of innovation, collaboration and presentations.

Dr. Catherine Bollard, Children’s National chief of allergy and immunology and current president of ISCT, kicked off the week with a presentation on how specific approaches and strategies have contributed to the success of T-cell immunotherapy, a ground-breaking therapy in this fast-moving field.

Later in the week, Dr. Kirsten Williams, a blood and marrow transplant specialist, presented encouraging new findings, demonstrating that T-cell therapy could be an effective treatment for leukemia and lymphoma patients who relapse after undergoing a bone marrow transplant. Results from her phase 1 study showed that four out of nine patients achieved complete remission. Other medical options for the patients involved – those who relapsed between 2 and 12 months post-transplant – are very limited. Looking to the future, this developing therapy, while still in early stages, could be a promising solution.

Other highlights include:

  • Both Allistair Abraham, blood and marrow transplantation specialist, and Dr. Michael Keller, immunologist, presented oral abstracts, the former titled “Successful Engraftment but High Viral Reactivation After Reduced Intensity Unrelated Umbilical Cord Blood Transplantation for Sickle Cell Disease” and the latter “Adoptive T Cell Immunotherapy Restores Targeted Antiviral Immunity in Immunodeficient Patients.
  • Patrick Hanley engaged attendees with his talk, “Challenges of Incorporating T-Cell Potency Assays in Early Phase Clinical Trials,” and his poster presentation “Cost Effectiveness of Manufacturing Antigen-Specific T-Cells in an Academic GMP Facility.” He also co-chaired a session titled “Early Stage Professionals Session 1 – Advanced Strategic Innovations for Cell and Gene Therapies.”
  • To round out this impressive group, Shabnum Piyush Patel gave a talk on genetically modifying HIV-specific T-cells to enhance their anti-viral capacity; the team plans to use these HIV-specific T-cells post-transplant in HIV-positive patients with hematologic malignancies to control their viral rebound.

This exciting team is leading the way in immunology and immunotherapy, as evidenced by the work they shared at the ISCT conference and their ongoing commitment to improving treatments and outcomes for patients at Children’s National and across the country. To learn more about the team, visit the Center for Cancer and Blood Disorders site.

Cell therapy virtuoso: Catherine Bollard

Catherine Bollard

In the Medicine Maker piece, Cell Therapy Virtuoso, Children’s National Medical System’s Chief of Allergy and Immunology, Catherine Bollard M.D., discusses why she chose a career in medicine, the personal experience that ignited her interest in cell therapies, and her insights on the current state and future of the immunotherapy field. Highlights from the interview include:

  • On the promise of T-cell therapy: “We’ve now developed several T-cell therapies that give complete remission rates of approximately 75% and two-year progression-free survival rates ranging from 50 percent to over 90 percent depending on the patient population.”
  • Regarding the future of immunotherapy: “The field has expanded dramatically over the last 25 years. In particular, T-cell therapies for cancer have grown rapidly and now the field is expanding into other areas, such as regulatory T-cells for autoimmune disease and virus T-cells for HIV. Given what the immune system can do, the applications are almost limitless.”

Dr. Bollard was featured for her role as president of the International Society for Cellular Therapy.

cord blood

T-cell therapy success for relapsing blood cancer

cord blood

A unique immunotherapeutic approach that expands the pool of donor-derived lymphocytes (T-cells) that react and target three key tumor-associated antigens (TAA) is demonstrating success at reducing or eliminating acute leukemias and lymphomas when these cancers have relapsed following hematopoietic stem cell transplant (HSCT).

“There’s currently a less than 10 percent chance of survival for a child who relapses leukemia or lymphoma after a bone marrow transplant—in part because these patients are in a fragile medical condition and can’t tolerate additional intense therapy,” says Kirsten Williams, M.D., a blood and marrow transplant specialist in the Division of Hematology at Children’s National Health System, and principal investigator of the Research of Expanded multi-antigen Specifically Oriented Lymphocytes for the treatment of VEry High Risk Hematopoietic Malignancies (RESOLVE) clinical trial.

The unique manufactured donor-derived lymphocytes used in this multi-institutional Phase 1 dose-ranging study are receptive to multiple tumor-associated antigens within the cell, including WT1, PRAME, and Survivin, which have been found to be over-expressed in myelodysplastic syndromes (MDS), acute myeloid leukemia (AML), B-cell AML/MDS, B-cell acute lymphoblastic leukemia (ALL), and Hodgkins lymphoma. Modifying the lymphocytes for several antigens, rather than a single target, broadens the ability of the T-cells to accurately target and eradicate cancerous cells.

Preliminary results demonstrate a 78 percent response rate to treatment, and a 44 percent rate of total remission for participating patients. To date, nine evaluable patients with refractory and relapsed AML/MDS, B-cell ALL, or Hodgkins lymphoma have received 1-3 infusions of the expanded T-cells, and of those, seven have responded to the treatment, showing reduction in cancer cells after infusion with little or no toxicity. All of these patients had relapse of their cancer after hematopoietic cell transplantation. The study continues to recruit eligible patients, with the goal of publishing the full study results within the next 12 months.

“Our preliminary data also shows that this new approach has few if any side effects for the patient, in part because the infused T-cells target antigens that are found only in cancer cells and not found in healthy tissues,” Dr. Williams notes.

The approach used to expand existing donor-derived TAA-lymphocytes, rather than using unselected T cells or genetically modified T-cells as in other trials, also seems to reduce the incidence of post infusion graft versus host disease and other severe inflammatory side effects. Those side effects typically occur when the infused lymphocytes recognize healthy tissues as foreign and reject them or when the immune system reacts to the modified elements of the lymphocytes, she adds.

“These results are exciting because they may present a truly viable option for the 30 to 40 percent of children who will relapse post-transplant,” Dr. Williams concludes. “Many of the patients who participated were given two options: palliative care or this trial. To see significant success and fewer side effects gives us, and families with children facing relapsing leukemia, some hope for this new treatment.”

Dr. Williams discussed the early outcomes of the RESOLVE trial during an oral presentation at the American Society for Blood and Marrow Transplantation meeting on February 22, 2017.

“The early indicators are very promising for this patient population,” says Catherine Bollard, M.D., M.B.Ch.B., Chief of the Division of Allergy and Immunology, Director of the Program for Cell Enhancement and Technologies for Immunotherapy (CETI) at Children’s National, and senior author of the study. “If we can achieve this, and continue to see good responses with few side effects, it’s possible these methods could become a viable alternative to HSCT for patients with no donor match or who aren’t likely to tolerate transplant.”

This is one of the first immunotherapeutic approaches to successfully capitalize on the natural ability of human T-cells to kill cancer, though previous research has shown significant success for this approach in reducing the deadly impact of several viruses, including Epstein-Barr virus, adenovirus, and cytomegalovirus, post HSCT. These new findings have led to the development of additional clinical trials to investigate applications of this method of TAA-lymphocyte manufacture and infusion for pre-HSCT MDS/AML, B-cell ALL, Hodgkins Lymphoma, and even some solid tumors.

New research shows success training t-cells to recognize and fight life-threatening viruses

Children's is the only U.S. pediatric hospital that manufactures specialized T-cells from native cord blood

Patients with leukemia, lymphoma, other cancers, and genetic disorders who receive stem cell or cord blood transplants face the post-transplant risk of developing a life-threatening infection with adenovirus, cytomegalovirus (CMV), or Epstein-Barr virus (EBV).

The study reports the results of a head-to-head comparison of two powerful immunotherapeutic strategies to thwart such viral infections. Both therapeutic approaches leverage the power of multivirus-specific, donor-derived T-cells (mCTL), which are highly skilled at recognizing foreign invaders and, in the case of the peripheral blood cells, have long memories of past battles.

The award-winning paper, “Multivirus-Specific T Cells From Both Cord Blood and Bone Marrow Transplant Donors” was presented during the International Society for Cellular Therapy (ISCT) 2016 Annual Meeting, held from May 25 through May 28, in Singapore. The abstract’s lead author, Patrick J. Hanley, PhD, Laboratory Facility Director of Children’s Cellular Therapy and Stem Cell Processing facility, was recognized by ISCT with a Young Investigator award during the meeting.

Nine research scientists and clinicians affiliated with Children’s National Health System are co-authors of a paper, including Michael D. Keller, MD, the lead clinical investigator of the peripheral blood T-cell study, and Catherine M. Bollard, MBChB, MD, the study’s sponsor and Director of Children’s National Program for Cell Enhancement and Technologies for Immunotherapy.

After certain treatments, some cancer patients’ bodies are stripped of their natural ability to fight infection. The stem cell or the cord blood transplant restores the body’s ability to produce a full complement of blood cells, including infection-fighting white blood cells. As a further boost to these patients, the T-cells are trained to spot and neutralize all three potentially lethal viruses (CMV, EBV, and adenovirus) simultaneously. The personalized cell therapy can be accomplished in a single infusion and administered in the outpatient setting.

In the phase I perspective study, the personalized T-cells were grown from peripheral blood (PB) of adult donors who were seropositive for CMV, a relative of the virus that causes chickenpox, and were also coaxed to grow from naïve cord blood (CB). These naïve cells need additional training since they have never been to battle.

Since the mid-1990s, PB has been shown to be effective for such use. Hanley says that fewer than one dozen facilities in the United States perform PB antiviral T-cell infusions. Of that selective group, Children’s National is the only U.S. location that also grows the specialized T-cells from naïve CB, a procedure that takes a bit longer to accomplish but can help patients whose blood type is in short supply.

Thirteen patients were infused with PB mCTL, and 12 patients were infused with the T-cells derived from cord blood. Patients received their transfusions from 35 to 384 days after their stem cell or cord blood transplant. Within four weeks, the research team saw up to a 160-fold increase in virus-specific T-cells, a development that coincided with patients’ response to therapy. “The overall … response rate in both groups was 81 percent,” writes Hanley and colleagues.

Eight patients had a complete response. Five had a partial response. Nine remain free of infection/reactivation. What’s more, the patients’ restored immunity was durable with at least one patient remaining free of infection two years after treatment – without the need for pharmaceuticals administered in a hospital setting, which exacts a higher overall cost to the healthcare system.

“This study demonstrates that mCTL derived from the PB of seropositive donors, as well as the CB of virus naïve donors, expand in vivo and are active against multiple viruses. Furthermore, by restoring immunity to multiple viruses simultaneously, the need for continued prophylaxis with pharmacotherapy is eliminated, thus, improving the efficiency and cost-effectiveness of protecting SCT and CBT recipients from these potentially lethal viruses,” Hanley and co-authors conclude.

Related Resources: Research at a Glance