Public Health

Fewer than 60% of young women diagnosed with STIs in emergency departments fill scripts

Fewer than 60% of young women diagnosed with sexually transmitted infections (STIs) in the emergency department fill prescriptions for antimicrobial therapy to treat these conditions, according to a research letter published online May 28, 2019, by JAMA Pediatrics.

Adolescents make up nearly half of the people diagnosed with sexually transmitted infections each year. According to the Centers for Disease Control and Prevention, untreated sexually transmitted diseases in women can cause pelvic inflammatory disease (PID), an infection of the reproductive organs that can complicate getting pregnant in the future.

“We were astonished to find that teenagers’ rates of filling STI prescriptions were so low,” says Monika K. Goyal, M.D., MSCE, assistant chief of Children’s Division of Emergency Medicine and Trauma Services and the study’s senior author. “Our findings demonstrate the imperative need to identify innovative methods to improve treatment adherence for this high-risk population.”

The retrospective cohort study, conducted at two emergency departments affiliated with a large, urban, tertiary care children’s hospital, enrolled adolescents aged 13 to 19 who were prescribed antimicrobial treatment from Jan. 1, 2016, to Dec. 31, 2017, after being diagnosed with PID or testing positive for chlamydia.

Of 696 emergency department visits for diagnosed STIs, 208 teenagers received outpatient prescriptions for antimicrobial treatments. Only 54.1% of those prescriptions were filled.

“Teenagers may face a number of hurdles when it comes to STI treatment, including out-of-pocket cost, access to transportation and confidentiality concerns,” Dr. Goyal adds.

Future studies will attempt to identify barriers to filling prescriptions in order to inform development of targeted interventions based in the emergency department that promote adherence to STI treatment.

In addition to Dr. Goyal, study co-authors include Lead Author, Alexandra Lieberman, BA, The George Washington University School of Medicine & Health Sciences; and co-authors Gia M. Badolato, MPH, and Jennifer Tran, PA-C, MPH, both of Children’s National.

germ cells in testicular tissues

Experimental fertility preservation provides hope for young men

germ cells in testicular tissues

Confirming the presence of germ cells in testicular tissues obtained from patients. Undifferentiated embryonic cell transcription factor 1 (UTF1) is an established marker of undifferentiated spermatogonia as well as the pan-germ cell marker DEAD-box helicase 4 (DDX4). UTF1 (green) and/or DDX4 (red) immunostaining was confirmed in 132 out of 137 patient tissues available for research, including patients who had received previous non-alkylating (B, E, H, K) or alkylating (C, F, I, L) chemotherapy treatment. © The Author(s) 2019. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology.

Testicular tissue samples obtained from 189 males who were facing procedures that could imperil fertility were cryopreserved at one university, proving the feasibility of centralized processing and freezing of testicular tissue obtained from academic medical centers, including Children’s National, scattered around the world.

“It’s not surprising that the University of Pittsburgh would record the highest number of samples over the eight-year period (51 patients), given its role as the central processing facility for our recruiting network of academic medical centers,” says Michael Hsieh, M.D., Ph.D., director of transitional urology at Children’s National. “Children’s National recruited the third-highest number of patients, which really speaks to the level of collaboration I have with Jeff Dome’s team and their commitment to thinking about the whole patient and longer-term issues like fertility.”

An estimated 2,000 U.S. boys and young men each year receive treatments or have cancers or blood disorders that place them at risk for infertility. While older youths who have undergone puberty can bank their sperm prior to undergoing sterilizing doses of chemotherapy or radiation, there have been scant fertility preservation options for younger boys. However, some older adolescents and young men are too sick or stressed to bank sperm. For patients with no sperm to bank or who are too sick or stressed to bank sperm, the experimental procedure of freezing testicular tissue in anticipation that future cell- or tissue-based therapies can generate sperm is the only option.

Recent research in experimental models indicates that such testicular tissue biopsies contain stem cells, blank slate cells, hinting at the potential of generating sperm from biopsied tissue.

“This study demonstrates that undifferentiated stem and progenitor spermatogonia may be recovered from the testicular tissues of patients who are in the early stages of their treatment and have not yet received an ablative dose of therapy. The function of these spermatogonia was not tested,” writes lead author Hanna Valli-Pulaski, Ph.D., research assistant professor at the University of Pittsburgh, and colleagues in a study published online May 21, 2019, in Human Reproduction.

Right now, hematologists and oncologists discuss future treatment options with patients and families, as well as possible long-term side effects, including infertility. At Children’s National, they also mention the ongoing fertility preservation study and encourage families to speak with Dr. Hsieh. He meets with families, explains the study goals – which include determining better ways to freeze and thaw tissue and separating malignant cells from normal cells – what’s known about experimental fertility preservation and what remains unknown. Roughly half of patients decide to enroll.

“This study is unique in that there is definitely a potential direct patient benefit,” Dr. Hsieh adds. “One of the reasons the study is compelling is that it presents a message of hope to the families. It’s a message of survivorship: We’re optimistic we can help your child get through this and think about long-term issues, like having their own families.”

In this phase of the study, testicular tissue was collected from centers in the U.S. and Israel from January 2011 to November 2018 and cryopreserved. Patients designated 25% of the tissue sample to be used for the research study; 75 percent remains stored in liquid nitrogen at temperatures close to absolute zero for the patient’s future use. The fertility preservation patients ranged from 5 months old to 34 years old, with an average age of 7.9 years.

Thirty-nine percent of patients had started medical treatment prior requesting fertility preservation. Sixteen percent received non-alkylating chemotherapy while 23% received alkylating chemotherapy, which directly damages the DNA of cancer cells.

The research team found that the number of undifferentiated spermatogonia per seminiferous tubule increase steadily with age until about age 11, then rise sharply.

“We recommend that all patients be counseled and referred for fertility preservation before beginning medical treatments known to cause infertility. Because the decision to participate may be delayed, it is encouraging that we were able to recover undifferentiated spermatogonia from the testes of patients already in the early stages of chemotherapy treatments,” Dr. Hsieh says.

In addition to Dr. Hsieh, study co-authors include lead author, H. Valli-Pulaski, K.A. Peters, K. Gassei, S.R. Steimer, M. Sukhwani, B.P. Hermann, L. Dwomor, S. David, A.P. Fayomi, S.K. Munyoki, T. Chu, R. Chaudhry, G.M. Cannon, P.J. Fox, T.M. Jaffe, J.S. Sanfilippo, M.N. Menke and senior author, K.E. Orwig, all of University of Pittsburgh; E. Lunenfeld, M. Abofoul-Azab and M. Huleihel, Ben-Gurion University of the Negev; L.S. Sender, J. Messina and L.M. Klimpel, CHOC Children’s Hospital;  Y. Gosiengfiao, and E.E. Rowell, Ann & Robert H. Lurie Children’s Hospital of Chicago; C.F. Granberg, Mayo Clinic; P.P. Reddy, Cincinnati Children’s Hospital Medical Center; and J.I. Sandlow, Medical College of Wisconsin.

Financial support for the research covered in this post was provided by Eunice Kennedy Shriver National Institute for Child Health and Human Development under awards HD061289 and HD092084; Scaife Foundation; Richard King Mellon Foundation; University of Pittsburgh Medical Center; United States-Israel Binational Science Foundation and Kahn Foundation.

Jana and Stephen Monaco

Prenatal screening: the story of two siblings

Alex and Stephen Monaco

Stephen Monaco with his brother before a life-changing incident in 2001.

Jana and Tom Monaco have four children and two, Stephen and Caroline, were born with isovaleric acidemia (IVA) and secondary carnitine deficiency, a rare metabolic disorder. This genetic condition prevents the body from producing enzymes to break down the amino acid leucine, found in many proteins – from nuts and beans to chicken and fish. If undetected, the condition, which affects about one in 250,000 children, can be fatal. IVA can also lead to autism or severe brain damage. Fortunately, newborn screenings in every state now detect most IVA cases.

Eighteen years ago, a series of events happened with Stephen, age 3.5 at the time, which led to his diagnosis of having IVA and secondary carnitine deficiency. He celebrated his grandmother’s birthday with a family dinner on Memorial Day. The next day he woke up with symptoms of a stomach virus, which the family treated as such. The following morning he didn’t wake up at all. Jana went to his room to check on him and realized something was wrong. She called an ambulance and within 24 hours Stephen fell into a coma in her arms. He was immediately put on life support at a Virginia hospital.

Amy Lewanda, M.D., a geneticist, and Craig Futterman, M.D., an intensivist, both of whom now work at Children’s National Health System, delivered news about the condition: IVA is an inability for the IVD gene to create enzymes to break down protein. Within a 24- to 48-hour period, Stephen’s body flooded with isovaleric acid it couldn’t break down. Once the acid reached his brain he was paralyzed. Jana mentions you could find him in the emergency department of the hospital by following the odor: He reeked of ketones and isovaleric acid, which accumulated in his blood and body tissue. His blood glucose level was so low that he was practically in a diabetic coma.

Jana and Stephen Monaco

Jana and Stephen Monaco, at a charity golf tournament established in Stephen’s honor to raise awareness about and support for isovaleric acidemia (IVA).

If the Monaco family was able to get his blood checked locally at the hospital – which the clinicians did not yet have the ability to do because this condition is so rare – they may have been able to receive an early diagnosis, enabling them to intervene in infancy, as they did with their youngest daughter, Caroline.

After the diagnosis, in hindsight, Jana and Tom recognized Stephen’s symptoms as a toddler: picky eating, anemia, rejection of protein-rich foods, such as favoring jelly over peanut butter on a PB&J sandwich, opting for easy carbs, since they are easier for those with IVA to process, and breastfeeding longer, since breast milk is lower in protein. He had a peculiar odor trailing from his diaper, a common symptom of this condition. They also remembered he had a harder time recovering from a stomach virus, which left him weak and floppy, compared to one of his brothers, who had the same flu but bounced back faster. As parents, they did everything they could to promote healthy growth and development for their children – from properly installing  car seats to staying up-to-date on vaccines and enrolling everyone in activities, like Little League. They only wished they could have detected this condition earlier.

A second chance arrived six months after Stephen was diagnosed with IVA: Jana and Tom learned they were pregnant with Caroline. From studying Stephen’s condition, they knew Caroline had a 25 percent chance of having IVA and secondary carnitine deficiency. (Jana and Tom are recessive carriers for a mutated IVD gene, but remain asymptomatic.) They scheduled an amniocentesis, a prenatal test that provides information about a baby’s health from sample amniotic fluid, which can diagnose genetic defects and fetal infections. Caroline was just 16 weeks in utero, but abnormal metabolites from the amniotic fluid sample confirmed she had IVA and secondary carnitine deficiency.

Caroline Monaco

Caroline, a healthy teenager with IVA, is an example of the benefits of newborn screenings and early-life medical interventions.

Having advance knowledge about the condition enabled doctors and geneticists to create a plan for her delivery, which made a difference between her long-term prognosis and Stephen’s. After birth, she was transferred to the neonatal intensive care unit at Children’s National. She was fed a formula that prevented excess isovaleric acid build-up, part of an hour-by-hour protocol to ensure she stayed healthy. Caroline is now 16. She plays the viola in her school orchestra, rides horses and excels in school.

When Stephen was born, the state of Virginia, where the Monaco family lives, screened for eight prenatal conditions, such as PKU, a rare but more common condition. The state now screens for 31 conditions, thanks in part to Jana, Stephen and Caroline. The list grows as research evolves. Jana started advocating for these efforts in Richmond and on Capitol Hill when Caroline was 2. Her approach: Take Stephen and Caroline to her state capitol and to the U.S. Capitol to push for statewide newborn screenings – visually showing the same condition, but with two very different outcomes. How could anyone say no?

She worked with the Virginia Genetics Advisory Council and with the Health and Human Services Secretary Advisory Committee to pass the legislation, which helped detect other organic acidemias – inherited conditions that prevent babies from breaking down amino acids found in protein, creating potentially toxic situations, similar to Stephen’s. They advocated for adding other conditions to the panel, like severe combined immunodeficiency, commonly referred to as “bubble boy” syndrome. Stephan was the only newborn screening advocate in attendance with a disability. Now all 50 states have implemented these screenings.

Attendees of the charity golf event

The Monaco family raised $100,000 for the genetics division and ongoing IVA research at Children’s National Health System.

The family isn’t done yet. On Oct. 26, Stephen will celebrate his 22nd birthday and a fifth-annual golf tournament, created in his honor, to raise awareness about and support for IVA and similar conditions. The Monaco family started this tradition in 2015 on Stephen’s 18th birthday and have raised $100,000 for the genetics division at Children’s National. They hope Stephen’s legacy will leave others with a message they keep framed in their Virginia home: Learn from yesterday, live for today and hope for tomorrow.

They educate Caroline along the way, noting the annual golf tournament and their advocacy supports ongoing IVA research and care – ensuring that she and others with these rare metabolic conditions continue to live a long, healthy life, echoing their longstanding partnership with Children’s National to help children grow up stronger.

asthma inhailer

Picture imperfect: Eliminating asthma triggers through smartphones

asthma inhailer

Children’s National is among five awardees sharing $10 million in funding under Fannie Mae’s Sustainable Communities Innovation Challenge: Healthy Affordable Housing, a national competition to identify innovative ideas to help children and families enjoy safer homes. Fannie Mae made the funding announcement on May 21, 2019.

Children’s funding will underwrite a pilot program to use smartphones to enable virtual home visits, leveraging the skills of Children’s pediatric asthma specialists, health educators and community housing remediation specialists who will video conference with families in the home to identify potential housing asthma triggers.

According to the Centers for Disease Control and Prevention, 1 in 12 children and adolescents (6 million) have asthma, and one in six children with asthma visit the emergency department each year. In Washington, D.C., substandard housing can play an outsized role in triggering asthma exacerbations. Asthma-related hospital visits are 12 times higher in the city’s poorest neighborhoods, compared with affluent ZIP codes.

Working with community partners, Children’s faculty aim to eliminate asthma triggers right at the source, improving children’s well-being and creating healthier homes.

Right now during in-home visits, staff look for holes under kitchen sinks and gaps in the walls or flooring where pests and vermin might enter as well as leaks where mold and mildew can bloom. These systematic visits yield detailed notes to best direct resources to remediate those housing woes. The in-person visits however, are labor intensive and require delicate diplomacy to first open doors then to point out potential asthma triggers without coming off as judgmental.

“The beauty of our innovation is that residents can show us these same problematic locations using their smartphones, facilitating our efforts to target resources for that household. It’s a win for Children’s families because eliminating asthma triggers in the home means our kids will miss fewer school days, improving their lives and overall health,” says Ankoor Y. Shah, M.D., MBA, MPH, medical director for Children’s IMPACT DC Asthma Clinic.

Children’s collaborative project includes a number of partners, including:

Dr. Shah says the project will start in July 2019 with the pilot of virtual home visits starting in early 2020. This proof-of-concept model will hopefully be able to be replicated in other cities across the country.

Alexandra M. Sim

Alexandra M. Sims, M.D., FAAP, counsels grads to know their who, how and why

Alexandra M. Sim

Alexandra M. Sims, M.D., FAAP, general academic pediatrics fellow at Children’s National, tells newly minted George Mason social sciences graduates the concrete and abstract skills they learned during their collegiate experience are exceedingly valuable.

As a 10-year-old growing up in the suburbs of Richmond, Virginia, lip syncing with friends as they pretended to be Destiny’s Child, Alexandra M. Sims, M.D., FAAP, predicted her future: She would become a doctor.

“Ten is a really funny age,” Dr. Sims told members of the 2019 graduating class from George Mason University College of Humanities and Social Sciences, the school and department from which she received her undergraduate degree in Anthropology. “I was old enough to feel compelled to contribute to the world meaningfully, but too young to know the weight of this undertaking. I was old enough to be intrigued by the science of the human body, but too young to be intimidated by the fact that there were no doctors in my family.”

Dr. Sims’ youngest sister, Bria, was born four weeks premature and died a few weeks after birth. The sting of that tragedy instilled in her a commitment to serve others and informed a lifelong passion to help society’s most marginalized.

Ten years after graduating George Mason herself, she invited this year’s newly minted graduates to distill their college experience into three terms: who, how and why:

  • Who means the family members and mentors who helped them enter college and persevere toward graduation.
  • How is their plan to change the world. The general academics pediatrics fellow at Children’s National asks kids about their unique superpower during visits to the primary care clinic at Children’s Health Center Anacostia. “I get a range of responses, and some of them are quite funny,” she told 800 social sciences graduates gathered for their degree celebration. “Some really surprise me in other ways. ‘I want to be kind.’ ‘I want to help people.’ ‘I want to take care of my parents.’ ”
  • Why is the reason they continue to do what they’re doing. For Dr. Sims, that’s service and mitigating health disparities, a mission that has led her to travel around the globe conducting HIV/AIDS outreach and building coalitions near and far. Her current work is domestic, as she seeks advocates for at-risk communities through health services research.

“So, come back to these when you’re feeling unsure or uneasy: your WHO, your HOW and your WHY. Know that your time here at Mason is time well spent, and that the skills that you’ve gained, both the concrete and the abstract, are exceedingly valuable,” she advised the group.

Kaushalendra Amatya

Measuring quality of life after pediatric kidney transplant

Kaushalendra Amatya

“Overall, children who receive kidney transplants had minimal concerns about quality of life after their operation. While it’s comforting that most pediatric patients had no significant problems, the range of quality of life scores indicate that some patients had remarkable difficulties,” says Kaushalendra Amatya, Ph.D., a pediatric psychologist in Nephrology and Cardiology at Children’s National and the study’s lead author.

After receiving a kidney transplant, children may experience quality-of-life difficulties that underscore the importance of screening transplant recipients for psychosocial function, according to Children’s research presented May 4, 2019, during the 10th Congress of the International Pediatric Transplant Association.

About 2,000 children and adolescents younger than 18 are on the national waiting list for an organ transplant, according to the Department of Health and Human Services, with most infants and school-aged children waiting for a heart, liver or kidney and most children older than 11 waiting for a kidney or liver. In 2018, 1,895 U.S. children received transplants.

The research team at Children’s National wanted to hear directly from kids about their quality of life after kidney transplant in order to tailor timely interventions to children. Generally, recipients of kidney transplants have reported impaired quality of life compared with healthy peers, with higher mental health difficulties, disrupted sleep patterns and lingering pain.

The Children’s team measured general health-related quality of life using a 23-item PedsQL Generic Core module and measured transplant-related quality of life using the PedsQL- Transplant Module. The forms, which can be used for patients as young as 2, take about five to 10 minutes to complete and were provided to the child, the parent or the primary care giver – as appropriate – during a follow-up visit after the transplant.

Thirty-three patient-parent dyads completed the measures, with an additional 25 reports obtained from either the patient or the parent. The patients’ mean age was 14.2; 41.4% were female.

“Overall, children who receive kidney transplants had minimal concerns about quality of life after their operation. While it’s comforting that most pediatric patients had no significant problems, the range of quality of life scores indicate that some patients had remarkable difficulties,” says Kaushalendra Amatya, Ph.D., a pediatric psychologist in Nephrology and Cardiology at Children’s National and the study’s lead author.

When the study team reviewed reports given by parents, they found their descriptions sometimes differed in striking ways from the children’s answers.

“Parents report lower values on emotional functioning, social functioning and total core quality of life, indicating that parents perceive their children as having more difficulties across these specific domains than the patients’ own self reports do,” Amatya adds.

10th Congress of the International Pediatric Transplant Association presentation

  • “An exploration of health-related quality of life in pediatric renal transplant recipients.”

Kaushalendra Amatya, Ph.D., pediatric psychologist and lead author; Christy Petyak, CPNP-PC, nurse practitioner and co-author; and Asha Moudgil, M.D., medical director, transplant and senior author.

3d illustration of a constricted and narrowed artery

dnDSA and African American ethnicity linked with thickening of blood vessels after kidney transplant

3d illustration of a constricted and narrowed artery

Emerging evidence links dnDSA with increased risk of accelerated systemic hardening of the arteries (arteriosclerosis) and major cardiac events in adult organ transplant recipients. However, this phenomenon has not been studied extensively in children who receive kidney transplants.

Children who developed anti-human leukocyte antibodies against their donor kidney, known as de novo donor-specific antibodies (dnDSA), after kidney transplant were more likely to experience carotid intima-media thickening (CIMT) than those without these antibodies, according to preliminary research presented May 7, 2019, during the 10th Congress of the International Pediatric Transplant Association.

dnDSA play a key role in the survival of a transplanted organ. While human leukocyte antibodies protect the body from infection, dnDSA are a major cause of allograft loss. CIMT measures the thickness of the intima and media layers of the carotid artery and can serve as an early marker of cardiac disease.

Emerging evidence links dnDSA with increased risk of accelerated systemic hardening of the arteries (arteriosclerosis) and major cardiac events in adult organ transplant recipients. However, this phenomenon has not been studied extensively in children who receive kidney transplants.

To investigate the issue, Children’s researchers enrolled 38 children who had received kidney transplants and matched them by race with 20 healthy children. They measured their CIMT, blood pressure and lipids 18 months and 30 months after their kidney transplants. They monitored dnDSA at 18 months and 30 months after kidney transplant. The transplant recipients’ median age was 11.3 years, 50 percent were African American, and 21% developed dnDSA.

“In this prospective controlled cohort study, we compared outcomes among patients who developed dnDSA with transplant recipients who did not develop dnDSA and with race-matched healthy kids,” says Kristen Sgambat, Ph.D., a pediatric renal dietitian at Children’s National who was the study’s lead author.  “Children with dnDSA after transplant had 5.5% thicker CIMT than those who did not have dnDSA. Being African American was also independently associated with a 9.2% increase in CIMT among transplant recipients.”

Additional studies will need to be conducted in larger numbers of pediatric kidney transplant recipients to verify this preliminary association, Sgambat adds.

10th Congress of the International Pediatric Transplant Association presentation:

  • “Circulating de novo donor-specific antibodies and carotid intima-media thickness in pediatric kidney transplant recipients.”

Kristen Sgambat, Ph.D., pediatric renal dietitian and study lead author; Sarah Clauss, M.D., cardiologist and study co-author; and Asha Moudgil, M.D., Medical Director, Transplant and senior study author, all of Children’s National.

preterm brain scans

Early lipids in micropreemies’ diets can boost brain growth

preterm brain scans

Segmentation of a preterm brain T2-weighted MRI image at 30 gestational weeks [green=cortical grey matter; blue=white matter; grey=deep grey matter; cyan=lateral ventricle; purple=cerebellum; orange=brainstem; red=hippocampus; yellow=cerebrospinal fluid].

Dietary lipids, already an important source of energy for tiny preemies, also provide a much-needed brain boost by significantly increasing global brain volume as well as increasing volume in regions involved in motor activities and memory, according to research presented during the Pediatric Academic Societies 2019 Annual Meeting.

“Compared with macronutrients like carbohydrates and proteins, lipid intake during the first month of life is associated with increased overall and regional brain volume for micro-preemies,” says Catherine Limperopoulos, Ph.D., director of MRI Research of the Developing Brain at Children’s National and senior author. “Using non-invasive magnetic resonance imaging, we see increased volume in the cerebellum by 2 weeks of age. And at four weeks of life, lipids increase total brain volume and boost regional brain volume in the cerebellum, amygdala-hippocampus and brainstem.”

The cerebellum is involved in virtually all physical movement and enables coordination and balance. The amygdala processes and stores short-term memories. The hippocampus manages emotion and mood. And the brainstem acts like a router, passing messages from the brain to the rest of the body, as well as enabling essential functions like breathing, a steady heart rate and swallowing.

According to the Centers for Disease Control and Prevention, about 1 in 10 U.S. babies is born preterm, or before 37 weeks gestation. Regions of the brain that play vital roles in complex cognitive and motor activities experience exponential growth late in pregnancy, making the developing brains of preterm infants particularly vulnerable to injury and impaired growth.

Children’s research faculty examined the impact of lipid intake in the first month of life on brain volumes for very low birth weight infants, who weighed 1,500 grams or less at birth. These micro-preemies are especially vulnerable to growth failure and neurocognitive impairment after birth.

The team enrolled 68 micro-preemies who were 32 weeks gestational age and younger when they were admitted to Children’s neonatal intensive care unit during their first week of life. They measured cumulative macronutrients – carbohydrates, proteins, lipids and calories – consumed by these newborns at 2 and 4 weeks of life. Over years, Limperopoulos’ lab has amassed a large database of babies who were born full-term; this data provides unprecedented insights into normal brain development and will help to advance understanding of brain development in high-risk preterm infants.

“Even after controlling for average weight gain and other health conditions, lipid intake was positively associated with cerebellar and brainstem volumes in very low birthweight preterm infants,” adds Katherine M. Ottolini, the study’s lead author.

According to Limperopoulos, Children’s future research will examine the optimal timing and volume of lipids to boost neurodevelopment for micro-preemies.

Pediatric Academic Societies 2019 Annual Meeting presentation

  • “Early lipid intake improves brain growth in premature infants.”
    • Saturday, April 27, 2019, 1:15-2:30 p.m. (EST)

Katherine M. Ottolini, lead author; Nickie Andescavage, M.D., Attending, Neonatal-Perinatal Medicine and co-author; Kushal Kapse, research and development staff engineer and co-author; and Catherine Limperopoulos, Ph.D., director of MRI Research of the Developing Brain and senior author, all of Children’s National.

newborn in incubator

In HIE lower heart rate variability signals stressed newborns

newborn in incubator

In newborns with hypoxic-ischemic encephalopathy (HIE), lower heart rate variability correlates with autonomic manifestations of stress shortly after birth, underscoring the value of this biomarker, according to Children’s research presented during the Pediatric Academic Societies 2019 Annual Meeting.

Tethered to an array of machines that keep their bodies nourished, warm and alive, newborns with health issues can’t speak. But Children’s research teams are tapping into what the machinery itself says, looking for insights into which vulnerable infants are most in need of earlier intervention.

Heart rate variability – or the variation between heartbeats – is a sign of health. Our autonomic nervous system constantly sends signals to adjust our heart rate under normal conditions. We can measure heart rate variability non-invasively, providing a way to detect potential problems with the autonomic nervous system as a sensitive marker of health in critically ill newborns,” says An N. Massaro, M.D., co-Director of Research for the Division of Neonatology at Children’s National, and the study’s senior author. “We’re looking for validated markers of brain injury in babies with HIE, and our study helps to support heart rate variability as one such valuable physiological biomarker.”

In most newborns, the autonomic nervous system reliably and automatically receives information about the body and the outside world and, in response, controls essential functions like blood pressure, body temperature, how quickly the baby breathes and how rapidly the newborn’s heart beats. The sympathetic part stimulates body processes, while the parasympathetic part inhibits body processes. When the nervous system’s internal auto-pilot falters, babies can suffer.

The Children’s team enrolled infants with HIE in the prospective, observational study. (HIE is brain damage that occurs with full-term babies who experience insufficient blood and oxygen flow to the brain around the time they are born.) Fifteen percent had severe encephalopathy. Mean age of babies in the observational study was 38.9 weeks gestation. Their median Apgar score at five minutes was 3; the 0-9 Apgar range indicates how ready newborns are for the rigors of life outside the womb.

The team analyzed heart rate variability metrics for three time periods:

  • The first 24 to 27 hours of life
  • The first three hours after babies undergoing therapeutic cooling were rewarmed and
  • The first three hours after babies’ body temperature had returned to normal.

They correlated the relationship between heart rate variability for 68 infants during at least one of these time periods with the stress z-score from the NICU Network Neurobehavioral Scale. The scale is a standardized assessment of newborn’s neurobehavioral integrity. The stress summary score indicates a newborn’s overall stress response, and six test items specifically relate to autonomic function.

“Alpha exponent and root mean square in short timescales, root mean square in long timescales, as well as low and high frequency powers positively correlated with stress scores and, even after adjusting for covariates, remained independently associated at 24 hours,” says Allie Townsend, the study’s lead author.

Pediatric Academic Societies 2019 Annual Meeting presentation

  • “Heart rate variability (HRV) measures of autonomic nervous system (ANS) function relates to neonatal neurobehavioral manifestations of stress in newborn with hypoxic-ischemic encephalopathy (HIE).”
    • Monday, April 29, 2019, 5:45 p.m. (EST)

Allie Townsend, lead author; Rathinaswamy B. Govindan, Ph.D., staff scientist, Advanced Physiological Signals Processing Lab and co-author; Penny Glass, Ph.D., director, Child Development Program and co-author; Judy Brown, co-author; Tareq Al-Shargabi, M.S., co-author; Taeun Chang, M.D., director, Neonatal Neurology and Neonatal Neurocritical Care Program and co-author; Adré J. du Plessis, M.B.Ch.B., MPH, chief of the Division of Fetal and Transitional Medicine and co-author; An N. Massaro, M.D., co-Director of Research for the Division of Neonatology and senior author, all of Children’s National.

Claire Marie Vacher

Placental function linked to brain injuries associated with autism

Claire Marie Vacher

“We saw long-term cerebellar white matter alterations in male experimental models, and behavioral testing revealed social impairments and increased repetitive behaviors, two hallmark features of ASD,” says Claire-Marie Vacher, Ph.D., lead study author.

Allopregnanolone (ALLO), a hormone made by the placenta late in pregnancy, is such a potent neurosteroid that disrupting its steady supply to the developing fetus can leave it vulnerable to brain injuries associated with autism spectrum disorder (ASD), according to Children’s research presented during the Pediatric Academic Societies 2019 Annual Meeting.

In order to more effectively treat vulnerable babies, the Children’s research team first had to tease out what goes wrong in the careful choreography that is pregnancy. According to the Centers for Disease Control and Prevention, about 1 in 10 babies is born preterm, before 37 weeks of gestation. Premature birth is a major risk factor for ASD.

The placenta is an essential and understudied organ that is shared by the developing fetus and the pregnant mother, delivering oxygen, glucose and nutrients and ferrying out waste products. The placenta also delivers ALLO, a progesterone derivative, needed to ready the developing fetal brain for life outside the womb.

ALLO ramps up late in gestation. When babies are born prematurely, their supply of ALLO stops abruptly. That occurs at the same time the cerebellum – a brain region essential for motor coordination, posture, balance and social cognition– typically undergoes a dramatic growth spurt.

“Our experimental model demonstrates that losing placental ALLO alters cerebellar development, including white matter development,” says Anna Penn, M.D., Ph.D., a neonatologist in the divisions of Neonatology and Fetal Medicine, and a developmental neuroscientist at Children’s National. “Cerebellar white matter development occurs primarily after babies are born, so connecting a change in placental function during pregnancy with lingering impacts on later brain development is a particularly striking result.”

The research team created a novel experimental model in which the gene encoding the enzyme responsible for producing ALLO is deleted in the placenta. They compared these preclinical models with a control group and performed whole brain imaging and RNAseq gene expression analyses for both groups.

“We saw long-term cerebellar white matter alterations in male experimental models, and behavioral testing revealed social impairments and increased repetitive behaviors, two hallmark features of ASD,” says Claire-Marie Vacher, Ph.D., lead study author. “These male-specific outcomes parallel the increased risk of brain injury and ASD we see in human babies born prematurely.”

ALLO binds to specific GABA receptors, which control most inhibitory signaling in the nervous system.

“Our findings provide a new way to frame poor placental function: Subtle but significant changes in utero may set in motion neurodevelopmental disorders that children experience later in life,” adds Dr. Penn, the study’s senior author. “Future directions for our research could include identifying new targets in the placenta or brain that could be amenable to hormone supplementation, opening the potential for earlier treatment for high-risk fetuses.”

Pediatric Academic Societies 2019 Annual Meeting presentation

  • “Placental allopregnanolone loss alters postnatal cerebellar development and function.”
    • Sunday, April 28, 2019, 5:15 p.m. to 5:30 p.m. (EST)

Claire-Marie Vacher, Ph.D., lead author; Jackie Salzbank, co-author; Helene Lacaille, co-author; Dana Bakalar, co-author; Jiaqi O’Reilly, co-author; and Anna Penn, M.D., Ph.D., a neonatologist in the divisions of Neonatology and Fetal Medicine, developmental neuroscientist and senior study author.

Katie Donnelly

Firearm injuries disproportionately affect African American kids in DC Wards 7 and 8

Katie Donnelly

“Because the majority of patients in our analyses were injured through accidental shootings, this particular risk factor can help to inform policy makers about possible interventions to prevent future firearm injury, disability and death,” says Katie Donnelly, M.D.

Firearm injuries disproportionately impact African American young men living in Washington’s Wards 7 and 8 compared with other city wards, with nearly one-quarter of injuries suffered in the injured child’s home or at a friend’s home, according to a hot spot analysis presented during the Pediatric Academic Societies 2019 Annual Meeting.

“We analyzed the addresses where youths were injured by firearms over a nearly 12-year period and found that about 60 percent of these shootings occurred in Ward 7 or Ward 8, lower socioeconomic neighborhoods when compared with Washington’s six other Wards,” says Monika K. Goyal, M.D., MSCE, assistant chief of Children’s Division of Emergency Medicine and Trauma Services and the study’s senior author. “This granular detail will help to target resources and interventions to more effectively reduce firearm-related injury and death.”

In the retrospective, cross-sectional study, the Children’s research team looked at all children aged 18 and younger who were treated at Children’s National for firearm-related injuries from Jan. 1, 2006, to May 31, 2017. During that time, 122 children injured by firearms in Washington were treated at Children’s National, the only Level 1 pediatric trauma center in the nation’s Capitol:

  • Nearly 64 percent of these firearm-related injuries were accidental
  • The patients’ mean age was 12.9 years old
  • More than 94 percent of patients were African American and
  • Nearly 74 percent were male.

Of all injuries suffered by children, injuries due to firearms carry the highest mortality rates, the study authors write. About 3 percent of patients in Children’s study died from their firearm-related injuries. Among surviving youth:

  • Patients had a mean Injury Severity Score of 5.8. (The score for a “major trauma” is greater than 15.)
  • 54 percent required hospitalization, with a mean hospitalization of three days
  • Nearly 28 percent required surgery, with 14.8 percent transferred directly from the emergency department to the operating room and
  • Nearly 16 percent were admitted to the intensive care unit.

“Regrettably, firearm injuries remain a major public health hazard for our nation’s children and young adults,” adds Katie Donnelly, M.D., emergency medicine specialist and the study’s lead author. “Because the majority of patients in our analyses were injured through accidental shootings, this particular risk factor can help to inform policy makers about possible interventions to prevent future firearm injury, disability and death.”

Pediatric Academic Societies 2019 Annual Meeting poster presentatio

  • “Pediatric firearm-related injuries and outcomes in the District of Columbia.”
    • Monday, April 29, 2019, 5:45 p.m. to 7:30 p.m. (EST)

Katie Donnelly, M.D., emergency medicine specialist and lead author; Shilpa J. Patel, M.D., MPH, emergency medicine specialist and co-author; Gia M. Badolato, co-author; James Jackson, co-author; and Monika K. Goyal, M.D., MSCE, assistant chief of Children’s Division of Emergency Medicine and Trauma Services and senior author.

Other Children’s research related to firearms presented during PAS 2019 includes:

April 27, 8 a.m.: “Protect kids, not guns: What pediatric providers can do to improve firearm safety.” Gabriella Azzarone, Asad Bandealy, M.D.; Priti Bhansali, M.D.; Eric Fleegler; Monika K. Goyal, M.D., MSCE;  Alex Hogan; Sabah Iqbal; Kavita Parikh, M.D.; Shilpa J. Patel, M.D., MPH; Noe Romo; and Alyssa Silver.

April 29, 5:45 p.m.: “Emergency department visits for pediatric firearm-related injury: By intent of injury.” Shilpa J. Patel, M.D., MPH; Gia M. Badolato; Kavita Parikh, M.D.; Sabah Iqbal; and Monika K. Goyal, M.D., MSCE.

April 29, 5:45 p.m.: “Assessing the intentionality of pediatric firearm injuries using ICD codes.” Katie Donnelly, M.D.; Gia M. Badolato; James Chamberlain, M.D.; and Monika K. Goyal, M.D., MSCE.

April 30, 9:45 a.m.: “Defining a research agenda for the field of pediatric firearm injury prevention.” Libby Alpern; Patrick Carter; Rebecca Cunningham, Monika K. Goyal, M.D., MSCE; Fred Rivara; and Eric Sigel.

Catherine Limperopoulos

Breastfeeding boosts metabolites important for brain growth

Catherine Limperopoulos

“Proton magnetic resonance spectroscopy, a non-invasive imaging technique that describes the chemical composition of specific brain structures, enables us to measure metabolites that may play a critical role for growth and explain what makes breastfeeding beneficial for newborns’ developing brains,” says Catherine Limperopoulos, Ph.D.

Micro-preemies who primarily consume breast milk have significantly higher levels of metabolites important for brain growth and development, according to sophisticated imaging conducted by an interdisciplinary research team at Children’s National.

“Our previous research established that vulnerable preterm infants who are fed breast milk early in life have improved brain growth and neurodevelopmental outcomes. It was unclear what makes breastfeeding so beneficial for newborns’ developing brains,” says Catherine Limperopoulos, Ph.D., director of MRI Research of the Developing Brain at Children’s National. “Proton magnetic resonance spectroscopy, a non-invasive imaging technique that describes the chemical composition of specific brain structures, enables us to measure metabolites essential for growth and answer that lingering question.”

According to the Centers for Disease Control and Prevention, about 1 in 10 U.S. infants is born preterm. The Children’s research team presented their findings during the Pediatric Academic Societies 2019 Annual Meeting.

The research-clinicians enrolled babies who were very low birthweight (less than 1,500 grams) and 32 weeks gestational age or younger at birth when they were admitted to Children’s neonatal intensive care unit in the first week of life. The team gathered data from the right frontal white matter and the cerebellum – a brain region that enables people to maintain balance and proper muscle coordination and that supports high-order cognitive functions.

Each chemical has its own a unique spectral fingerprint. The team generated light signatures for key metabolites and calculated the quantity of each metabolite. Of note:

  • Cerebral white matter spectra showed significantly greater levels of inositol (a molecule similar to glucose) for babies fed breast milk, compared with babies fed formula.
  • Cerebellar spectra had significantly greater creatine levels for breastfed babies compared with infants fed formula.
  • And the percentage of days infants were fed breast milk was associated with significantly greater levels of both creatine and choline, a water soluble nutrient.

“Key metabolite levels ramp up during the times babies’ brains experience exponential growth,” says Katherine M. Ottolini, the study’s lead author. “Creatine facilitates recycling of ATP, the cell’s energy currency. Seeing greater quantities of this metabolite denotes more rapid changes and higher cellular maturation. Choline is a marker of cell membrane turnover; when new cells are generated, we see choline levels rise.”

Already, Children’s National leverages an array of imaging options that describe normal brain growth, which makes it easier to spot when fetal or neonatal brain development goes awry, enabling earlier intervention and more effective treatment. “Proton magnetic resonance spectroscopy may serve as an important additional tool to advance our understanding of how breastfeeding boosts neurodevelopment for preterm infants,” Limperopoulos adds.

Pediatric Academic Societies 2019 Annual Meeting presentation

  • “Improved cerebral and cerebellar metabolism in breast milk-fed VLBW infants.”
    • Monday, April 29, 2019, 3:30–3:45 p.m. (EST)

Katherine M. Ottolini, lead author; Nickie Andescavage, M.D., Attending, Neonatal-Perinatal Medicine and co-author; Kushal Kapse, research and development staff engineer and co-author; Sudeepta Basu, M.D., neonatologist and co-author; and Catherine Limperopoulos, Ph.D., director of MRI Research of the Developing Brain and senior author, all of Children’s National.

An-Massaro

Looking for ‘help’ signals in the blood of newborns with HIE

An Massaro

“This data support our hypothesis that a panel of biomarkers – not a one-time test for a single biomarker – is needed to adequately determine the risk and timing of brain injury for babies with HIE,” says An N. Massaro, M.D.

Measuring a number of biomarkers over time that are produced as the body responds to inflammation and injury may help to pinpoint newborns who are more vulnerable to suffering lasting brain injury due to disrupted oxygen delivery and blood flow, according to research presented during the Pediatric Academic Societies 2019 Annual Meeting.

Hypoxic-ischemic encephalopathy (HIE) happens when blood and oxygen flow are disrupted around the time of birth and is a serious birth complication for full-term infants. To lessen the chance of these newborns suffering permanent brain injury, affected infants undergo therapeutic cooling, which temporarily lowers their body temperatures.

“Several candidate blood biomarkers have been investigated in HIE but we still don’t have one in clinical use.  We need to understand how these markers change over time before we can use them to direct care in patients,” says An N. Massaro, M.D., co-director of the Neonatal Neurocritical Care Program at Children’s National and the study’s senior author. “The newborns’ bodies sent out different ‘help’ signals that we detected in their bloodstream, and the markers had strikingly different time courses. A panel of plasma biomarkers has the potential to help us identify infants most in need of additional interventions, and to help us understand the most optimal timing for those interventions.”

Past research has keyed in on inflammatory cytokines and Tau protein as potential biomarkers of brain injury for infants with HIE who are undergoing therapeutic cooling. The research team led by Children’s faculty wanted to gauge which time periods to measure such biomarkers circulating in newborns’ bloodstreams. They enrolled 85 infants with moderate or severe HIE and tapped unused blood specimens that had been collected as cooling began, as well as 12, 24, 72 and 96 hours later. The infants’ mean gestational age was 38.7 weeks, their mean birth weight was about 7 pounds (3.2 kilograms), and 19% had severe brain disease (encephalopathy).

Cytokines – chemicals like Interleukin (IL) 6, 8 and 10 that regulate how the body responds to infection, inflammation and trauma – peaked in the first 24 hours of cooling for most of the newborns. However, the highest measure of Tau protein for the majority of newborns was during or after the baby’s temperature was restored to normal.

“After adjusting for clinical severity of encephalopathy and five-minute Apgar scores, IL-6, IL-8 and IL-10 predicted adverse outcomes, like severe brain injury or death, as therapeutic hypothermia began. By contrast, Tau protein measurements predicted adverse outcomes during and after the infants were rewarmed,” Dr. Massaro says.

IL-6 and IL-8 proteins are pro-inflammatory cytokines while IL-10 is considered anti-inflammatory.  These chemicals are released as a part of the immune response to brain injury. Tau proteins are abundant in nerve cells and stabilize microtubules.

“This data support our hypothesis that a panel of biomarkers – not a one-time test for a single biomarker – is needed to adequately determine the risk and timing of brain injury for babies with HIE,” she adds.

Pediatric Academic Societies 2019 Annual Meeting presentation

  • “Serial plasma biomarkers of brain injury in infants with hypoxic ischemic encephalopathy (HIE) treated with therapeutic hypothermia (TH).”
    • Saturday, April 27, 2019, 6 p.m. (EST)

Meaghan McGowan, lead author; Alexandra C. O’Kane, co-author; Gilbert Vezina, M.D.,  director, Neuroradiology Program and co-author; Tae Chang, M.D., director, Neonatal Neurology Program and co-author; and An N. Massaro, M.D., co-director of the Neonatal Neurocritical Care Program and senior author; all of Children’s National; and co-author Allen Everett, of Johns Hopkins School of Medicine.

Ololade Okito

Parents of older, healthier newborns with less social support less resilient

Ololade Okito

“We know that having a child hospitalized in the NICU can be a high-stress time for families,” says Ololade Okito, M.D., lead author of the cross-sectional study. “The good news is that as parental resiliency scores rise, we see a correlation with fewer symptoms of depression and anxiety.

Parents of older, healthier newborns who had less social support were less resilient during their child’s hospitalization in the neonatal intensive care unit (NICU), a finding that correlates with more symptoms of depression and anxiety, according to Children’s research presented during the Pediatric Academic Societies 2019 Annual Meeting.

Resiliency is the natural born, yet adaptable ability of people to bounce back in the face of significant adversity. Published research indicates that higher resilience is associated with reduced psychological distress, but the phenomenon had not been studied extensively in parents of children hospitalized in a NICU.

“We know that having a child hospitalized in the NICU can be a high-stress time for families,” says Ololade Okito, M.D., lead author of the cross-sectional study. “The good news is that as parental resiliency scores rise, we see a correlation with fewer symptoms of depression and anxiety. Parents who feel they have good family support also have higher resilience scores.”

The project is an offshoot of a larger study examining the impact of peer mentoring by other NICU parents who have experienced the same emotional rollercoaster ride as their tiny infants sometimes thrived and other times struggled.

The research team enrolled 35 parents whose newborns were 34 weeks gestation and younger and administered a battery of validated surveys, including:

Forty percent of these parents had high resilience scores; parents whose infants were a mean of 27.3 gestational weeks and who had more severe health challenges reported higher resilience. Another 40% of these parents had elevated depressive symptoms, while 31% screened positive for anxiety. Parental distress impairs the quality of parent-child interactions and long-term child development, the research team writes.

“Higher NICU-related stress correlates with greater symptoms of depression and anxiety in parents,” says Lamia Soghier, M.D., MEd, medical director of Children’s neonatal intensive care unit and the study’s senior author. “Specifically targeting interventions to these parents may help to improve their resilience, decrease the stress of parenting a child in the NICU and give these kids a healthier start to life.”

Pediatric Academic Societies 2019 Annual Meeting presentation

  • “Parental resilience and psychological distress in the neonatal intensive care unit (PARENT) study”
    • Tuesday, April 30, 2019, 7:30 a.m. (EST)

Ololade Okito, M.D., lead author; Yvonne Yui, M.D., co-author; Nicole Herrera, MPH, co-author; Randi Streisand, Ph.D., chief, Division of Psychology and Behavioral Health, and co-author; Carrie Tully, Ph.D., clinical psychologist and co-author; Karen Fratantoni, M.D., MPH, medical director, Complex Care Program, and co-author; and Lamia Soghier, M.D., MEd, medical unit director, neonatal intensive care unit, and senior author; all of Children’s National.

DNA Molecule

Decoding cellular signals linked to hypospadias

DNA Molecule

“By advancing our understanding of the genetic causes and the anatomic differences among patients, the real goal of this research is to generate knowledge that will allow us to take better care of children with hypospadias,” Daniel Casella, M.D. says.

Daniel Casella, M.D., a urologist at Children’s National, was honored with an AUA Mid-Atlantic Section William D. Steers, M.D. Award, which provides two years of dedicated research funding that he will use to better understand the genetic causes for hypospadias.

With over 7,000 new cases a year in the U.S., hypospadias is a common birth defect that occurs when the urethra, the tube that transports urine out of the body, does not form completely in males.

Dr. Casella has identified a unique subset of cells in the developing urethra that have stopped dividing but remain metabolically active and are thought to represent a novel signaling center. He likens them to doing the work of a construction foreman. “If you’re constructing a building, you need to make sure that everyone follows the blueprints.  We believe that these developmentally senescent cells are sending important signals that define how the urethra is formed,” he says.

His project also will help to standardize the characterization of hypospadias. Hypospadias is classically associated with a downward bend to the penis, a urethra that does not extend to the head of the penis and incomplete formation of the foreskin. Still, there is significant variability among patients’ anatomy and to date, no standardized method for documenting hypospadias anatomy.

“Some surgeons take measurements in the operating room, but without a standardized classification system, there is no definitive way to compare measurements among providers or standardize diagnoses from measurements that every surgeon makes,” he adds. “What one surgeon may call ‘distal’ may be called ‘midshaft’ by another.” (With distal hypospadias, the urethra opening is near the penis head; with midshaft hypospadias, the urethra opening occurs along the penis shaft.)

“By advancing our understanding of the genetic causes and the anatomic differences among patients, the real goal of this research is to generate knowledge that will allow us to take better care of children with hypospadias,” he says.

Parents worry about lingering social stigma, since some boys with hypospadias are unable to urinate while standing, and in older children the condition can be associated with difficulties having sex. Surgical correction of hypospadias traditionally is performed when children are between 6 months to 1 year old.

When reviewing treatment options with family, “discussing the surgery and postoperative care is straight forward. The hard part of our discussion is not having good answers to questions about long-term outcomes,” he says.

Dr. Casella’s study hopes to build the framework to enable that basic research to be done.

“Say we wanted to do a study to see how patients are doing 15-20 years after their surgery.  If we go to their charts now, often we can’t accurately describe their anatomy prior to surgery.  By establishing uniform measurement baselines, we can accurately track long-term outcomes since we’ll know what condition that child started with and where they ended up,” he says.

Dr. Casella’s research project will be conducted at Children’s National under the mentorship of Eric Vilain, M.D., Ph.D., an international expert in sex and genitalia development; Dolores J. Lamb, Ph.D., HCLD, an established leader in urology based at Weill Cornell Medicine; and Marius George Linguraru, DPhil, MA, MSc, an expert in image processing and artificial intelligence.

Mark Batshaw

40 years, 8 editions: Writing “Children With Disabilities”

Mark Batshaw

Forty years ago, Mark L. Batshaw, M.D., almost singlehandedly wrote a 23-chapter first edition that ran about 300 pages. Now Dr. Batshaw’s tome, “Children With Disabilities,” is in its eighth edition, and this new volume is almost 1,000 pages, with 42 chapters, two co-editors and over 35 authors from Children’s National.

Back in 1978, Mark L. Batshaw, M.D., was a junior faculty member at John’s Hopkins University School of Medicine. In the evenings he taught a course in the university’s School of Education  titled “The Medical and Physical Aspects of the Handicapped Child,” for Master’s level special education students. Because no textbook at that time focused on that specific topic, Batshaw developed his own slide set.

“At the end of the first year of teaching the course my students said ‘You really ought to consider writing a text book based on your slides to help us move forward,’ ” Dr. Batshaw recalls. The father of three carved out time by writing on weekends and at night, cutting back on sleep.

His first goal was to create a textbook that would serve as a curriculum for a series of courses that would be taught at universities to specialists who work with children with disabilities, including social workers, physical and occupational therapists, speech and language pathologists, special education teachers, nurses, doctors and dentists.

“I wanted to cover the whole range of disabilities and divided the book initially into a series of sections, including embryology, to help students understand what can go wrong in fetal development to lead to a developmental disability; and chapters on each developmental disability, including autism, attention-deficit/hyperactivity disorder (ADHD), cerebral palsy, learning disabilities and traumatic brain injury,” he says. “The third section was devoted to available treatments, including occupational and physical therapy, speech language therapy, nutrition and medications. The final section focused on outcomes.”

His second aim was for the book to serve as a reference text for professionals in the field. The 33-year-old contacted a brand-new new publisher, Paul H. Brookes Publishing Co., that focused on special education. “They took a chance on me, and I took a chance on them,” he says.

Forty years ago, he almost singlehandedly produced a 23-chapter first edition that ran about 300 pages. Now Dr. Batshaw’s tome is in its eighth edition, and this new volume is almost 1,000 pages. And, rather than being its sole author, Dr. Batshaw enlisted two co-editors and at least five dozen authors who contributed specialty expertise in genetic counseling, social work, physical and occupational therapy, medicine and nursing. His daughter, Elissa, a special education teacher and school psychologist, authored a chapter about special education services, and his son, Drew, an executive at a start-up company, contributed autobiographical letters about the effect ADHD has had on his life.

The book, “Children With Disabilities,” also includes:

  • A glossary of medical terms so that as the reader reviews patient reports they can easily look up an unfamiliar term
  • An appendix on commonly used drugs to treat children with disabilities in order to look up the medicine by name and see the range of doses
  • An appendix devoted to different syndromes children might have
  • A reference section with organizations and foundations that help children with disabilities
  • A web site with sections designed for students and other content designed for teachers with thought questions to guide practical use of information in each chapter and more than 450 customizable PowerPoint slides for download
  • Call-out boxes for interdisciplinary team members, such as genetic counselors, explaining the roles they serve and their educational background, and
  • Excerpts of recent research articles.

“The students say they don’t sell the book. Usually when students have a textbook, they try to sell it second hand after the course ends,” explains Dr. Batshaw, now Executive Vice President, Physician-in-Chief and Chief Academic Officer at Children’s National. “Instead, students keep it and use it as a practical reference as they become professionals in their field. It has had the impact I had hoped for both as a textbook and a reference book: They say they refer to it when they have patients with a particular disorder they’re not used to treating to read up on it.”

Now a bestseller, there are more than 200,000 copies in print, including Portuguese and Ukrainian translations. “It didn’t start that way. It grew organically,” he says.

In addition to Dr. Batshaw, Children’s contributors to “Children With Disabilities” include Nicholas Ah Mew, M.D., pediatric geneticist; Nickie N. Andescavage, M.D., neonatologist; Mackenzie E. Brown, D.O., fellow in Pediatric Rehabilitation Medicine; Justin M. Burton, M.D., chief, Division of Pediatric Rehabilitation Medicine; Gabrielle Sky Cardwell, BA, clinical research assistant; Catherine Larsen Coley, PT, DPT, PCS, physical therapist; Laurie S. Conklin, M.D., pediatric gastroenterologist; Denice Cora-Bramble, M.D., MBA, executive vice president and chief medical officer; Heather de Beaufort, M.D., pediatric ophthalmologist; Dewi Frances T. Depositario-Cabacar, M.D., pediatric neurologist; Lina Diaz-Calderon, M.D., fellow in Pediatric Gastroenterology; Olanrewaju O. Falusi, M.D., associate medical director of municipal and regional affairs, Child Health Advocacy Institute; Melissa Fleming, M.D., pediatric rehabilitation specialist; William Davis Gaillard, M.D., chief Division of Epilepsy, Neurophysiology and Critical Care; Satvika Garg, Ph.D., occupational therapist; Virginia C. Gebus, R.N., MSN, APN, CNSC, nutritionist; Monika K. Goyal, M.D., MSCE, assistant chief, Division of Emergency Medicine; Andrea Gropman, M.D., chief, Division of Neurodevelopmental Pediatrics and Neurogenetics, geneticist and Neurodevelopmental pediatrician; Mary A. Hadley, BS, senior executive assistant; Susan Keller, MLS., MS-HIT, research librarian; Lauren Kenworthy, Ph.D., director, Center for Autism Spectrum Disorders; Monisha S. Kisling, MS, CGC, genetic counselor; Eyby Leon, M.D., pediatric geneticist; Erin MacLeod, Ph.D., RD, LD, director, Metabolic Nutrition; Margaret B. Menzel, MS, CGC, genetic counselor; Shogo John Miyagi, Ph.D., PharmD, BCPPS, Pediatric Clinical Pharmacology fellow; Mitali Y. Patel, DDS, program director, Pediatric Dentistry; Deborah Potvin, Ph.D., neuropsychologist; Cara E. Pugliese, Ph.D., clinical psychologist; Khodayar Rais-Bahrami, M.D., neonatologist and director, Neonatal-Perinatal Medicine Fellowship Program; Allison B. Ratto, Ph.D., clinical psychologist; Adelaide S. Robb, M.D., chief, Division of Psychiatry and Behavioral Sciences; Joseph Scafidi, D.O., neonatal neurologist; Erik Scheifele, D.M.D., chief, Division of Oral Health; Rhonda L. Schonberg, MS, CGC, genetic counselor; Billie Lou Short, M.D., chief, Division of Neonatology; Kara L. Simpson, MS, CGC, genetic counselor; Anupama Rao Tate, D.M.D., MPH, pediatric dentist; Lisa Tuchman, M.D., chief, Division of Adolescent and Young Adult Medicine; Johannes N. van den Anker, M.D., Ph.D., FCP, chief, Division of Clinical Pharmacology, Vice Chair of Experimental Therapeutics; Miriam Weiss, CPNP-PC, nurse practitioner; and Tesfaye Getaneh Zelleke, M.D., pediatric neurologist.

Billie Lou Short and Kurt Newman at Research and Education Week

Research and Education Week honors innovative science

Billie Lou Short and Kurt Newman at Research and Education Week

Billie Lou Short, M.D., received the Ninth Annual Mentorship Award in Clinical Science.

People joke that Billie Lou Short, M.D., chief of Children’s Division of Neonatology, invented extracorporeal membrane oxygenation, known as ECMO for short. While Dr. Short did not invent ECMO, under her leadership Children’s National was the first pediatric hospital to use it. And over decades Children’s staff have perfected its use to save the lives of tiny, vulnerable newborns by temporarily taking over for their struggling hearts and lungs. For two consecutive years, Children’s neonatal intensive care unit has been named the nation’s No. 1 for newborns by U.S. News & World Report. “Despite all of these accomplishments, Dr. Short’s best legacy is what she has done as a mentor to countless trainees, nurses and faculty she’s touched during their careers. She touches every type of clinical staff member who has come through our neonatal intensive care unit,” says An Massaro, M.D., director of residency research.

For these achievements, Dr. Short received the Ninth Annual Mentorship Award in Clinical Science.

Anna Penn, M.D., Ph.D., has provided new insights into the central role that the placental hormone allopregnanolone plays in orderly fetal brain development, and her research team has created novel experimental models that mimic some of the brain injuries often seen in very preterm babies – an essential step that informs future neuroprotective strategies. Dr. Penn, a clinical neonatologist and developmental neuroscientist, “has been a primary adviser for 40 mentees throughout their careers and embodies Children’s core values of Compassion, Commitment and Connection,” says Claire-Marie Vacher, Ph.D.

For these achievements, Dr. Penn was selected to receive the Ninth Annual Mentorship Award in Basic and Translational Science.

The mentorship awards for Drs. Short and Penn were among dozens of honors given in conjunction with “Frontiers in Innovation,” the Ninth Annual Research and Education Week (REW) at Children’s National. In addition to seven keynote lectures, more than 350 posters were submitted from researchers – from high-school students to full-time faculty – about basic and translational science, clinical research, community-based research, education, training and quality improvement; five poster presenters were showcased via Facebook Live events hosted by Children’s Hospital Foundation.

Two faculty members won twice: Vicki Freedenberg, Ph.D., APRN, for research about mindfulness-based stress reduction and Adeline (Wei Li) Koay, MBBS, MSc, for research related to HIV. So many women at every stage of their research careers took to the stage to accept honors that Naomi L.C. Luban, M.D., Vice Chair of Academic Affairs, quipped that “this day is power to women.”

Here are the 2019 REW award winners:

2019 Elda Y. Arce Teaching Scholars Award
Barbara Jantausch, M.D.
Lowell Frank, M.D.

Suzanne Feetham, Ph.D., FAA, Nursing Research Support Award
Vicki Freedenberg, Ph.D., APRN, for “Psychosocial and biological effects of mindfulness-based stress reduction intervention in adolescents with CHD/CIEDs: a randomized control trial”
Renee’ Roberts Turner for “Peak and nadir experiences of mid-level nurse leaders”

2019-2020 Global Health Initiative Exploration in Global Health Awards
Nathalie Quion, M.D., for “Latino youth and families need assessment,” conducted in Washington
Sonia Voleti for “Handheld ultrasound machine task shifting,” conducted in Micronesia
Tania Ahluwalia, M.D., for “Simulation curriculum for emergency medicine,” conducted in India
Yvonne Yui for “Designated resuscitation teams in NICUs,” conducted in Ghana
Xiaoyan Song, Ph.D., MBBS, MSc, “Prevention of hospital-onset infections in PICUs,” conducted in China

Ninth Annual Research and Education Week Poster Session Awards

Basic and Translational Science
Faculty:
Adeline (Wei Li) Koay, MBBS, MSc, for “Differences in the gut microbiome of HIV-infected versus HIV-exposed, uninfected infants”
Faculty: Hayk Barseghyan, Ph.D., for “Composite de novo Armenian human genome assembly and haplotyping via optical mapping and ultra-long read sequencing”
Staff: Damon K. McCullough, BS, for “Brain slicer: 3D-printed tissue processing tool for pediatric neuroscience research”
Staff: Antonio R. Porras, Ph.D., for “Integrated deep-learning method for genetic syndrome screening using facial photographs”
Post docs/fellows/residents: Lung Lau, M.D., for “A novel, sprayable and bio-absorbable sealant for wound dressings”
Post docs/fellows/residents:
Kelsey F. Sugrue, Ph.D., for “HECTD1 is required for growth of the myocardium secondary to placental insufficiency”
Graduate students:
Erin R. Bonner, BA, for “Comprehensive mutation profiling of pediatric diffuse midline gliomas using liquid biopsy”
High school/undergraduate students: Ali Sarhan for “Parental somato-gonadal mosaic genetic variants are a source of recurrent risk for de novo disorders and parental health concerns: a systematic review of the literature and meta-analysis”

Clinical Research
Faculty:
Amy Hont, M.D., for “Ex vivo expanded multi-tumor antigen specific T-cells for the treatment of solid tumors”
Faculty: Lauren McLaughlin, M.D., for “EBV/LMP-specific T-cells maintain remissions of T- and B-cell EBV lymphomas after allogeneic bone marrow transplantation”

Staff: Iman A. Abdikarim, BA, for “Timing of allergenic food introduction among African American and Caucasian children with food allergy in the FORWARD study”
Staff: Gelina M. Sani, BS, for “Quantifying hematopoietic stem cells towards in utero gene therapy for treatment of sickle cell disease in fetal cord blood”
Post docs/fellows/residents: Amy H. Jones, M.D., for “To trach or not trach: exploration of parental conflict, regret and impacts on quality of life in tracheostomy decision-making”
Graduate students: Alyssa Dewyer, BS, for “Telemedicine support of cardiac care in Northern Uganda: leveraging hand-held echocardiography and task-shifting”
Graduate students: Natalie Pudalov, BA, “Cortical thickness asymmetries in MRI-abnormal pediatric epilepsy patients: a potential metric for surgery outcome”
High school/undergraduate students:
Kia Yoshinaga for “Time to rhythm detection during pediatric cardiac arrest in a pediatric emergency department”

Community-Based Research
Faculty:
Adeline (Wei Li) Koay, MBBS, MSc, for “Recent trends in the prevention of mother-to-child transmission (PMTCT) of HIV in the Washington, D.C., metropolitan area”
Staff: Gia M. Badolato, MPH, for “STI screening in an urban ED based on chief complaint”
Post docs/fellows/residents:
Christina P. Ho, M.D., for “Pediatric urinary tract infection resistance patterns in the Washington, D.C., metropolitan area”
Graduate students:
Noushine Sadeghi, BS, “Racial/ethnic disparities in receipt of sexual health services among adolescent females”

Education, Training and Program Development
Faculty:
Cara Lichtenstein, M.D., MPH, for “Using a community bus trip to increase knowledge of health disparities”
Staff:
Iana Y. Clarence, MPH, for “TEACHing residents to address child poverty: an innovative multimodal curriculum”
Post docs/fellows/residents:
Johanna Kaufman, M.D., for “Inpatient consultation in pediatrics: a learning tool to improve communication”
High school/undergraduate students:
Brett E. Pearson for “Analysis of unanticipated problems in CNMC human subjects research studies and implications for process improvement”

Quality and Performance Improvement
Faculty:
Vicki Freedenberg, Ph.D., APRN, for “Implementing a mindfulness-based stress reduction curriculum in a congenital heart disease program”
Staff:
Caleb Griffith, MPH, for “Assessing the sustainability of point-of-care HIV screening of adolescents in pediatric emergency departments”
Post docs/fellows/residents:
Rebecca S. Zee, M.D., Ph.D., for “Implementation of the Accelerated Care of Torsion (ACT) pathway: a quality improvement initiative for testicular torsion”
Graduate students:
Alysia Wiener, BS, for “Latency period in image-guided needle bone biopsy in children: a single center experience”

View images from the REW2019 award ceremony.

Beth Tarini

Getting to know SPR’s future President, Beth Tarini, M.D., MS

Beth Tarini

Quick. Name four pillar pediatric organizations on the vanguard of advancing pediatric research.

Most researchers and clinicians can rattle off the names of the Academic Pediatric Association, the American Academy of Pediatrics and the American Pediatric Society. But that fourth one, the Society for Pediatric Research (SPR), is a little trickier. While many know SPR, a lot of research-clinicians simply do not.

Over the next few years, Beth A. Tarini, M.D., MS, will make it her personal mission to ensure that more pediatric researchers get to know SPR and are so excited about the organization that they become active members. In May 2019 Dr. Tarini becomes Vice President of the society that aims to stitch together an international network of interdisciplinary researchers to improve kids’ health. Four-year SPR leadership terms begin with Vice President before transitioning to President-Elect, President and Past-President, each for one year.

Dr. Tarini says she looks forward to working with other SPR leaders to find ways to build more productive, collaborative professional networks among faculty, especially emerging junior faculty. “Facilitating ways to network for research and professional reasons across pediatric research is vital – albeit easier said than done. I have been told I’m a connector, so I hope to leverage that skill in this new role,” says Dr. Tarini, associate director for Children’s Center for Translational Research.

“I’m delighted that Dr. Tarini was elected to this leadership position, and I am impressed by her vision of improving SPR’s outreach efforts,” says Mark Batshaw, M.D., Executive Vice President, Chief Academic Officer and Physician-in-Chief at Children’s National. “Her goal of engaging potential members in networking through a variety of ways – face-to-face as well as leveraging digital platforms like Twitter, Facebook and LinkedIn – and her focus on engaging junior faculty will help strengthen SPR membership in the near term and long term.”

Dr. Tarini adds: “Success to me would be leaving after four years with more faculty – especially junior faculty – approaching membership in SPR with the knowledge and enthusiasm that they bring to membership in other pediatric societies.”

SPR requires that its members not simply conduct research, but move the needle in their chosen discipline. In her research, Dr. Tarini has focused on ensuring that population-based newborn screening programs function efficiently and effectively with fewer hiccups at any place along the process.

Thanks to a heel stick to draw blood, an oxygen measurement, and a hearing test, U.S. babies are screened for select inherited health conditions, expediting treatment for infants and reducing the chances they’ll experience long-term health consequences.

“The complexity of this program that is able to test nearly all 4 million babies in the U.S. each year is nothing short of astounding. You have to know the child is born – anywhere in the state – and then between 24 and 48 hours of birth you have to do testing onsite, obtain a specific type of blood sample, send the blood sample to an off-site lab quickly, test the sample, find the child if the test is out of range, get the child evaluated and tested for the condition, then send them for treatment. Given the time pressures as well as the coordination of numerous people and organizations, the fact that this happens routinely is amazing. And like any complex process, there is always room for improvement,” she says.

Dr. Tarini’s research efforts have focused on those process improvements.

As just one example, the Advisory Committee on Heritable Disorders in Newborns and Children, a federal advisory committee on which she serves, was discussing how to eliminate delays in specimen processing to provide speedier results to families. One possible solution floated was to open labs all seven days, rather than just five days a week. Dr. Tarini advocated for partnering with health care engineers who could help model ways to make the specimen transport process more efficient, just like airlines and mail delivery services. A more efficient and effective solution was to match the specimen pick-up and delivery times more closely with the lab’s operational times – which maximizes lab resources and shortens wait times for parents.

Conceptual modeling comes so easily for her that she often leaps out of her seat mid-sentence, underscoring a point by jotting thoughts on a white board, doing it so often that her pens have run dry.

“It’s like a bus schedule: You want to find a bus that not only takes you to your destination but gets you there on time,” she says.

Dr. Tarini’s current observational study looks for opportunities to improve how parents in Minnesota and Iowa are given out-of-range newborn screening test results – especially false positives – and how that experience might shake their confidence in their child’s health as well as heighten their own stress level.

“After a false positive test result, are there parents who walk away from newborn screening with lingering stress about their child’s health? Can we predict who those parents might be and help them?” she asks.

Among the challenges is the newborn screening occurs so quickly after delivery that some emotionally and physically exhausted parents may not remember it was done. Then they get a call from the state with ominous results. Another challenge is standardizing communication approaches across dozens of birthing centers and hospitals.

“We know parents are concerned after receiving a false positive result, and some worry their infant remains vulnerable,” she says. “Can we change how we communicate – not just what we say, but how we say it – to alleviate those concerns?”

Nickie Andescavage

To understand the preterm brain, start with the fetal brain

Nickie Andescavage

“My best advice to future clinician-scientists is to stay curious and open-minded; I doubt I could have predicted my current research interest or described the path between the study of early oligodendrocyte maturation to in vivo placental development, but each experience along the way – both academic and clinical – has led me to where I am today,” Nickie Andescavage, M.D., writes.

Too often, medical institutions erect an artificial boundary between caring for the developing fetus inside the womb and caring for the newborn whose critical brain development continues outside the womb.

“To improve neonatal outcomes, we must transform our current clinical paradigms to begin treatment in the intrauterine period and continue care through the perinatal transition through strong collaborations with obstetricians and fetal-medicine specialists,” writes Nickie Andescavage, M.D., an attending in Neonatal-Perinatal Medicine at Children’s National.

Dr. Andescavage’s commentary was published online March 25, 2019, in Pediatrics Research and accompanies recently published Children’s research about differences in placental development in the setting of placental insufficiency. Her commentary is part of a new effort by Nature Publishing Group to spotlight research contributions from early career investigators.

The placenta, an organ shared by a pregnant woman and the developing fetus, plays a critical but underappreciated role in the infant’s overall health. Under the mentorship of Catherine Limperopoulos, Ph.D., director of MRI Research of the Developing Brain, and Adré J. du Plessis, M.B.Ch.B., MPH, chief of the Division of Fetal and Transitional Medicine, Dr. Andescavage works with interdisciplinary research teams at Children’s National to help expand that evidence base. She has contributed to myriad published works, including:

While attending Cornell University as an undergraduate, Dr. Andescavage had an early interest in neuroscience and neurobehavior. As she continued her education by attending medical school at Columbia University, she corroborated an early instinct to work in pediatrics.

It wasn’t until the New Jersey native began pediatric residency at Children’s National that those complementary interests coalesced into a focus on brain autoregulation and autonomic function in full-term and preterm infants and imaging the brains of both groups. In normal, healthy babies the autonomic nervous system regulates heart rate, blood pressure, digestion, breathing and other involuntary activities. When these essential controls go awry, babies can struggle to survive and thrive.

“My best advice to future clinician-scientists is to stay curious and open-minded; I doubt I could have predicted my current research interest or described the path between the study of early oligodendrocyte maturation to in vivo placental development, but each experience along the way – both academic and clinical – has led me to where I am today,” Dr. Andescavage writes in the commentary.

Assorted foods

Tamp down food allergy anxieties with this quiz