Neonatology

Unlocking the ‘black box’ of NICU monitors to protect vulnerable preemies

MiningdatafromNICUmonitors

What’s Known
Around the world, some 15 million infants are born prematurely each year. Babies born prematurely can spend their first weeks to months of life in the neonatal intensive care unit (NICU) tethered to machines that closely monitor vital signs, such as breathing and heart rate.

After discharge, preemies have a very high risk of returning to the NICU, often due to breathing difficulties, such as experiencing excessively long pauses between breaths. Such acute life-threatening events are a major cause of preemies’ hospital readmission and may result in death.

What’s New
During infants’ NICU stays, cardiorespiratory monitors amass a mountain of data about each child. Through the unprecedented collaboration of researchers working in various divisions of Children’s National Health System, the team was able to unlock that black box of information by creating algorithms to extract data and by using retrospective analyses to tease out new insights. This multidisciplinary team has been able to predict with a greater degree of precision which babies are at higher risk of returning to the NICU after discharge. What these most vulnerable preemies have in common is the degree of maturation of their autonomic nervous system, which controls such involuntary actions as heart rate and breathing. The sympathetic nervous system, which the body leverages as it copes with the stress of life-threatening events (ALTE), also plays a role in these infants’ heightened vulnerability. Being able to identify these newborns earlier has the potential to lower readmissions and save lives.

Questions for Future Research
Q: How can further computer-based analyses of NICU monitor data be used to determine how preemies respond to routine activities, such as feeding to predict which infants have compromised cardiorespiratory systems?
Q: How can we develop a test to assess all premature infants for physiologic readiness for safe NICU discharge and, thus, prevent ALTE and sudden death in this vulnerable population?

Source: Vagal Hypersensitivity in Premature Infants and Risk of Hospital Readmission Due to Acute Life-Threatening Events (ALTE).” G. Nino, R. Govindan, T. AlShargabi, M. Metzler, R. Joshi, G. Perez, A.N. Massaro, R. McCarter, and A. du Plessis. Presented during the 2016 Pediatric Academic Societies Annual Meeting, Baltimore, MD. May 2, 2016.

The search for precise blood biomarkers of neonatal brain injury

Bloodbiomarkers

PDF Version

What’s Known:
Hypoxic-ischemic encephalopathy (HIE) is characterized by reduced blood and oxygen flow to a baby’s brain around birth and may cause neurologic disability or death. It occurs most commonly after intrauterine asphyxia brought on by such difficulties as circulatory problems, placental abruption, or inflammatory processes. Newborns with HIE may suffer seizures, difficulty feeding, and disturbed control of heart rate and breathing. Cooling therapy, which is the standard of care, offers some protection to the developing brain, but up to 50 percent of HIE-affected infants still have poor outcomes.

What’s New:
Research scientists at Children’s National Health System are involved in a multi-center clinical trial to determine if erythropoietin (EPO), a hormone naturally secreted by the kidneys and commonly used to treat anemia, helps to prevent brain injury in these infants. The trial, called the HEAL Study (High Dose Erythropoietin for Asphyxia and Encephalopathy), is exploring whether EPO, given in addition to hypothermia, further lowers the risk of brain injury in HIE-affected babies. As a part of this study, researchers at Children’s National are leading the investigation to identify biomarkers of brain injury. Biomarkers are telltale chemicals in the blood and are used in tests that evaluate whether patients have suffered a heart attack. While available biomarkers warn when the heart, kidney, or liver is in trouble, there is no blood biomarker that signals ongoing brain injury. Such blood biomarkers could help to determine which infants are responding to treatment as well as to precisely identify which HIE-affected infants are still struggling and require additional treatments, such as EPO, to protect the brain and improve outcomes.

Questions for Future Research: 

  • Does EPO, in tandem with hypothermia, improve long- term neurodevelopmental outcomes in newborns with HIE?
  • Which biomarkers, or panel of biomarkers, best reflect the timing and severity of neonatal brain injury?
  • Can biomarkers direct which types of treatments are best for specific patients and when they should be used?

Source: Plasma Biomarkers of Brain Injury in Neonatal HIE (Hypoxic-Ischemic Encephalopathy).” A.N. Massaro, Y. Wu, T.K. Bammler, A. Mathur, R.C. McKinstry, T. Chang, D.E. Mayock, S. Mulkey, K. Van Meurs, L. Dong, R. Ballard, and S. Juul. Presented during the 2016 Pediatric Academic Societies Annual Meeting, Baltimore, MD. May 3, 2016.