CellBuilder: A ready-made solution for cell & gene therapy manufacturing

A clean room at CNRI.

With CellBuilder and our global partnerships, Children’s National hopes to expand access to groundbreaking cell and gene therapy treatments as they take off in the next five years.

With cell and gene therapies poised to reshape cancer and rare disease treatments, researchers at Children’s National Hospital are pioneering ready-to-use solutions that will bring these cutting-edge therapies directly to hospitals and other treatment centers, shrinking the distance between doctors and patients.

“The next five years are going to be a period of tremendous growth for cell and gene therapy,” said Patrick Hanley, Ph.D., chief and director of the Cellular Therapy Program at Children’s National. “Currently, there’s no shortage of interest from the medical community, but there’s a shortage of people who can manufacture and administer this care. We’re looking for ways to get these treatments to the patients by providing other institutions the tools they need to launch these programs cost-effectively, safely and efficiently.”

Called CellBuilder, the starter kits for cell and gene therapy programs could transform the landscape for pediatric patients.

The big picture

Dr. Hanley and many members of the Children’s National team have been working in cell and gene therapy for more than a decade, gaining extensive experience in the technical and regulatory hurdles inherent in creating treatments that target diseases at their source.

In cell therapy, a specific cell type is modified and transferred to a patient with a payload that can target a disease or disorder. For example, T cells may be modified and delivered to patients to teach their immune systems to fight cancer.  In gene therapy, a patient’s genetic code is modified to treat or prevent diseases, such as sickle cell disease, cancers and other genetic disorders. This can be done by introducing a healthy copy of a gene, repairing a faulty gene or altering a gene’s function.

Children’s National has become a leader in manufacturing virus-specific T cells, one method of delivering cell therapies, and the Cellular Therapy Program has conducted consortium-led, multi-center trials. Many other healthcare sites across the country want to start programs offering this care at their facilities.

The holdup in the field

Starting a cell and gene therapy program from scratch can take years of effort, training and money. That’s why Jay Tanna, M.S., R.A.C., quality assurance manager of the Cellular Therapy Program at Children’s National, said the team is creating CellBuilder starter kits, which include the manufacturing protocol and the resources necessary to launch a cell therapy program almost instantly.

“With a suitable knowledge base, institutions can start their own cellular therapy program at the point of care, using our manufacturing protocols, vetted reagents and other key elements of the process,” Tanna said. “Of course, interested institutions would have to meet regulatory requirements and establish a clean room to manufacture these therapies. If they want to use CellBuilder to run a clinical trial, they can do that. If they want to take it to become a licensed product, they can do that, too.”

Children’s National has worked with more than five institutions to build their virus-specific T-cell program and is now using the kits to accelerate and commercialize the process to increase patient access. The lab has also entered into a memorandum of understanding with the Tokyo-based Hitachi Global Life Solutions, Inc., an innovative modular clean room manufacturer, with the goal of offering a bundled solution.

Why we’re excited

Dr. Hanley and his colleagues say that the partnerships Children’s National is forging as they consult with other experts in this field will expand access to cell and gene therapy across the country—and hopefully around the world.

“It used to be that, to get a CAR T cell, you would collect the cells at Children’s National, ship them to a company like Novartis, have the therapy manufactured there and then shipped back,” said Michael Keller, M.D., who co-led a first-of-its kind immunotherapy trial as the Translational Research Laboratory director at the Children’s National Cell Enhancement and Technologies for Immunotherapy Program. “It was expensive, time-consuming and limited patient access. Now, there’s growing interest in manufacturing at each site, just like you would with a bone marrow transplant.”

With CellBuilder and our global partnerships, Children’s National hopes to expand access to groundbreaking cell and gene therapy treatments as they take off in the next five years, extending lifetimes and improving the quality of life for children suffering from rare disorders.

“We’re trying to capture the momentum underway in the field by providing this kit so that institutions don’t have to know how to do everything,” Dr. Hanley said. “We provide all the knowledge, a reagent list and everything else they need—and they provide the care.”

Access4Kids: A new model to pay for pediatric cell and gene therapies

Science is pioneering cures for pediatric rare diseases in a coming wave of new cell and gene therapies. However, the biopharmaceutical industry’s insistence on large patient populations and high profit margins may prevent these life-saving treatments from reaching the children who desperately need them. When successful therapeutics fail to see commercialization, experts say they have fallen into the “Valley of Death.”

To address this, leaders from pediatric healthcare, federal organizations, academia, industry and patient advocacy groups gathered at the Children’s National Research & Innovation Campus. Their objective: build a new framework to deliver these transformative drugs to clinics worldwide.

Meet the team forming Access4Kids, a nonprofit whose mission is to build new pathways to pay for cures and provide hope to children with life-limiting diseases. This group is working to change medicine and how we pay for it, under the leadership of Catherine Bollard, M.D., M.B.Ch.B., director of the Children’s National Center for Cancer and Immunology Research, Crystal Mackall, M.D., director of the Stanford Center for Cancer Cell Therapy, Julie Park, M.D., Oncology Department chair at St. Jude Children’s Research Hospital, and Alan Wayne, M.D., pediatrician-in-chief at Children’s Hospital Los Angeles.

Assessing psychosocial risk, patient readiness for sickle cell gene therapy

The CureSCi Patient Readiness and Resilience Working Group brought together behavioral health clinicians and scientists from across the U.S. with expertise in sickle cell disease to develop recommendations for assessing and promoting patient readiness for gene therapy.

Two gene therapies for sickle cell disease were recently approved by the U.S. Food and Drug Administration (FDA) and are now commercially available in the U.S. This marks a historic shift in the treatment of sickle cell disease (SCD) and represents a leap forward more broadly for the medical community, opening a range of exciting possibilities for the development of novel therapeutics for other diseases. However, these new therapies are not without medical and psychological risks; therefore, the Cure Sickle Cell Initiative (CureSCi) of the National Heart, Lung and Blood Institute (NHLBI) convened a Patient Readiness and Resilience Working Group to develop recommendations for the assessment of psychosocial readiness for gene therapy.

What’s been the hold-up in the field?

Clinicians have long recognized that psychological and social issues have the potential to affect treatment outcomes following disease-modifying or transformative treatments, such as hematopoietic stem cell transplants. The same concerns exist for gene therapies, but there has not been clear guidance about the best ways to evaluate patient readiness and psychosocial risk and resilience factors in these contexts.

How does this work move the field forward?

The CureSCi Patient Readiness and Resilience Working Group brought together behavioral health clinicians and scientists from across the U.S. with expertise in SCD, as well as caregivers and patients with the lived experience of having SCD, to develop recommendations for assessing and promoting patient readiness for gene therapy. The resulting consensus statement outlines clear and practical guidance for conducting pre-gene therapy patient readiness assessments.

“This is an exciting time for the sickle cell and medical communities,” says Steven Hardy, Ph.D., director of Behavioral Health Services in the Divisions of Hematology, Oncology and Blood and Marrow Transplantation at Children’s National Hospital and lead author on the consensus statement. “But it is also a time to exercise caution to ensure that, in the cloud of such enthusiasm, we do not lose sight of the complex ways that human psychology, relationships and biology interact to influence health.”

How will this work benefit patients?

This new guidance for evaluating psychosocial readiness will ensure that important issues — such as the degree to which patients have been informed of and understand key treatment details, are interested in and motivated to pursue treatment, and have considered how undergoing gene therapy will affect their activities, relationships and mental health — are considered and patients are provided the necessary supports.

“These recommendations offer a blueprint and a charge to institutions, payors and policymakers around the world to prioritize the psychosocial well-being of patients with SCD undergoing gene therapy,” says Dr. Hardy.

How is Children’s National leading in this space?

Children’s National has participated in gene therapy clinical trials and is the first institution globally to treat a patient with SCD with one of the new commercially available gene therapies. Dr. Hardy chaired the CureSCi Patient Readiness and Resilience Working Group that developed the consensus recommendations. Psychologists in the Divisions of Hematology, Oncology and Blood and Marrow Transplantation have adopted a standard protocol, informed by the consensus recommendations, for conducting pre-gene therapy assessments of patient readiness.

You can read the full consensus statement, Assessing Psychosocial Risk and Resilience to Support Readiness for Gene Therapy in Sickle Cell Disease: A Consensus Statement, in JAMA Network Open.

Around the world

Our Global Health Initiative launched in 2016 with the goal of eliminating pediatric health disparities around the world. We aim to address the most pressing pediatric health issues through better care for medically underserved populations. This leadership helps us achieve our mission of caring for all children. A broad range of education and research projects improves health outcomes. They also offer enriching opportunities for experienced faculty and emerging leaders to advance clinical excellence.

Healing hearts in Uganda

Dr. Craig Sable in Uganda

Dr. Craig Sable and team train partners in Uganda.

Craig Sable, M.D., interim chief of Cardiology, improves care for young people with rheumatic heart disease (RHD) in Uganda. Donors, including the Karp Family Foundation, Huron Philanthropies, Zachary Blumenfeld Fund and the Wood family, make this possible. RHD affects 50 million people, mostly children, worldwide. It claims 400,000 lives each year.

Dr. Sable and Ugandan partners completed important research showing that early RHD detection, coupled with monthly penicillin treatment, can protect the heart. They are working on practical solutions, such as a new portable device with artificial intelligence (AI) that can easily screen for RHD.

In 2023, Dr. Sable led two missions in Uganda where he and his team did surgeries and special tests for 18 children with RHD. They also taught local doctors new skills to help more kids on their own.

Plastic surgery and reconstructive care in Kenya and Nepal

Each year our Craniofacial & Pediatric Plastic Surgery team, under the leadership of Johnston Family Professor of Pediatric Plastic Surgery and Chief of Pediatric Plastic Surgery Gary Rogers, M.D., J.D., LL.M., M.B.A., M.P.H., provides opportunities for fellows to participate in surgical missions.

In 2024, Perry Bradford, M.D., traveled to the Moi Teaching Hospital in Eldoret, Kenya where she provided patients with burn, pressure wound and cleft reconstruction. She built community connections with the local plastic surgeons and educated registrars and medical students. “This gave me firsthand experience working in a community with limited resources and forced me to be more creative,” Dr. Bradford says. “The experience inspired me to examine what it means to have consistent access to advanced tools and equipment.”

In 2022, a group traveled to Nepal to provide care. Some patients arrived after days of travel by yak or buffalo. One child with a burn injury recovered use of her hand. The team educated local providers to deliver life-changing treatments unavailable in Nepal.

Dr. Tesfaye Zelleke in Ethiopia

Dr. Tesfaye Zelleke, left, and team in Ethopia.

Elevating epilepsy care in Ethiopia

Neurologist Tesfaye Zelleke, M.D., and partners in Ethiopia are seeking to improve the lives of children with epilepsy. The BAND Foundation provides support. Ethiopia has a population of about 120 million yet only a handful of pediatric neurologists.

Dr. Zelleke’s team trained nonspecialist providers to diagnose and treat children in the primary care setting. They also launched a mobile epilepsy clinic to provide community care and build the capacity of local clinicians. In collaboration with advocacy groups, the team educates the public about epilepsy with a goal of reducing stigma.

New hope in Norway

In 2023, our Division of Colorectal & Pelvic Reconstruction shared its expertise with clinicians at Oslo University Hospital, Rikshospitalet, in Norway. This effort was a key first step in Oslo becoming the first dedicated colorectal center in Scandinavia.

Marc Levitt, M.D., and team members performed complex surgeries otherwise unavailable for waiting patients. They led an academic conference. They held clinics to educate nurses, reviewed patient records and made care recommendations. Specialized care enabled a young patient with significant bowel difficulties to recover function and lead a normal life.

The team will travel to South Africa, the Czech Republic and Spain in 2024. Donors, including The Dune Road Foundation and Deanna and Howard Bayless, make this work possible.

Improving outcomes for babies in the Congo

AI can be a valuable tool for diagnosing genetic conditions. It detects unique facial patterns that clinicians without genetics training can miss. However, existing facial analysis software struggles in nonwhite populations.

A team led by Marius George Linguraru, D.Phil., M.A., M.Sc., the Connor Family Professor of Research and Innovation and principal investigator in the Sheikh Zayed Institute for Pediatric Surgical Innovation, is working to improve the newborn diagnosis rate worldwide. They are testing smartphone software in the Democratic Republic of Congo. Diverse newborn data improves AI’s ability to detect a variety of genetic conditions in more children. Early detection, diagnosis and informed care lead to better health outcomes.

Nephrology care for kids in Jamaica

Dr. Moxey-Mims and team in Jamaica

Jennifer Carver and Dr. Marva Moxey-Mims, center, with staff at Bustamante Children’s Hospital.

Marva Moxey-Mims, M.D., chief of Nephrology, is bringing care to children with kidney disease in Jamaica, with a goal of improving health equity. An International Pediatric Nephrology Association grant helped make it possible.

On a recent trip, Dr. Moxey-Mims and a small team — including Jennifer Carver, RN, CNN, lead peritoneal dialysis nurse at Children’s National, and three pediatric nephrologists from Jamaica — trained nearly 30 nurses from Jamaican hospitals. Nurses received hands-on dialysis education to improve their clinical skills. The team also worked to educate the community in disease awareness and prevention.

Read more stories like this one in the latest issue of Believe magazine.

Promising results after precision medicine trial for growth hormone resistance

model of human growth hormone

A patient with short stature and growth hormone (GH) resistance experienced a growth rate increase of 3.4 cm/year after 12 months of high-dose GH therapy.

In a first-of-its-kind single-patient clinical trial, a patient with short stature and growth hormone (GH) resistance experienced a growth rate increase of 3.4 cm/year after 12 months of high-dose GH therapy as part of a precision medicine approach. The study, led by Andrew Dauber, M.D., M.M.Sc., chief of Endocrinology at Children’s National Hospital, was published in The Journal of Clinical Endocrinology & Metabolism.

What this means

“Many patients with short stature do not get a definitive genetic diagnosis, and even if they do, it takes substantial effort to design a targeted therapeutic trial,” says Dr. Dauber.

This is the first trial of extremely high-dose growth hormone in a single patient with a unique form of growth hormone resistance.

Children’s National leads the way

During an endocrine evaluation for short stature, which included GH stimulation testing demonstrating growth hormone resistance, a next-generation sequencing panel revealed that the patient had an inherited heterozygous frameshift variant in the growth hormone receptor gene (GHR).

The researchers found that the patient’s growth hormone binding protein (GHBP) levels were elevated because of this variant, limiting circulating GH’s ability to bind to the GH receptor. The researchers believed that, with extremely high doses of GH, the mechanism of resistance would be overcome and normal GH signaling would be restored.

“We found that we were able to overcome the patient’s growth hormone resistance, which resulted in substantially improved growth,” says Dr. Dauber. “Our understanding of the underlying pathophysiology of his growth disorder led to our ability to design a precision medicine trial just for this single patient.”

Genetic testing and translational biology can provide insights into the specific underlying mechanism of rare growth disorders, allowing for precision medicine approaches.

Drs. Goyal and Tarini to lead Center for Translational Research

Monika K. Goyal, M.D., M.S.C.E., and Beth A. Tarini, M.D., M.S., M.B.A.

As CTR co-directors, Drs. Goyal and Tarini will lead the hospital’s mission to advance translational science, clinical research and community health.

Children’s National Hospital has appointed two nationally regarded leaders in pediatric research – Monika K. Goyal, M.D., M.S.C.E., and Beth A. Tarini, M.D., M.S., M.B.A. – to head its Center for Translational Research (CTR), a hub of high-impact scientific investigation that touches nearly every pediatric specialty.

As CTR co-directors, Drs. Goyal and Tarini will lead the hospital’s mission to advance translational science, clinical research and community health. They will begin their new roles on July 1.

Moving the field forward

“It is truly an honor to lead the CTR at such a pivotal moment in pediatric health,” said Dr. Goyal, an emergency medicine specialist and health services researcher. “I look forward to helping Children’s National lead the science on advancing health equity for the patients, families and communities we serve, both locally and nationally.”

As the largest of the six centers within the Children’s National Research Institute, CTR is pivotal in finding groundbreaking ways to improve health across pediatric medicine. Using a “bench to bedside” approach, the CTR faculty strives to seamlessly translate science from the laboratory bench to the patient’s bedside, moving pediatric medicine forward as expeditiously as possible to bring advances into the community.

“CTR is uniquely positioned to solve the biggest healthcare issues facing our pediatric patients,” said Dr. Tarini, a pediatrician and national leader in newborn screening research and policy. “I look forward to leading our diverse faculty of physicians and researchers as they leverage their front-line experience and innovative research to improve child health.”

Why we’re excited

Dr. Tarini joined Children’s National in 2018 and is currently the associate director for CTR. She was recently promoted to tenured professor of Pediatrics at George Washington University and has extensively studied policies to optimize the delivery of genetic services to families of newborns. In January, Dr. Tarini was appointed to a National Academies of Sciences, Engineering and Medicine Committee to examine the current landscape of newborn screening systems, processes and research in the United States. Dr. Tarini has obtained $10 million in federal and foundation funding, and she has served as president of the Society for Pediatric Research.

Dr. Goyal joined Children’s National in 2012. She is the inaugural endowed chair for Women in Science and Health and has served as the associate division chief for Academic Affairs and Research within the Emergency Department since 2018. She was recently promoted to tenured professor of Pediatrics and Emergency Medicine at George Washington University. Dr. Goyal is a nationally renowned equity science scholar and has published over 130 peer-reviewed manuscripts. She has secured more than $25 million in federal and foundation funding to address disparities in adolescent sexual health, pain management and firearm violence.

Children’s National leads the way

Catherine Bollard, M.D., M.B.Ch.B., interim chief academic officer, said she looks forward to seeing the advances in pediatric health guided by these two outstanding researchers. “By harnessing the immense talent within Children’s National for our search, we found two exceptional leaders in Drs. Goyal and Tarini,” Dr. Bollard said. “Their work promoting research that accelerates discovery across the continuum of bench, bedside and community has already made a significant impact.”

Adjusting key protein could improve brain function in children with fetal alcohol syndrome

illustration of a neural network

Researchers at Children’s National are testing whether controlling the level of apolipoprotein E could serve as an effective treatment for the poor neurobehavioral outcomes tied to fetal alcohol spectrum disorders.

Reduced levels of a protein – called apolipoprotein E – are responsible for the lifelong cognitive and neurological symptoms in fetal alcohol spectrum disorders (FASD), according to a new study published in the journal Molecular Psychiatry. For the first time, researchers at Children’s National Hospital are testing whether controlling the level of this protein could serve as an effective treatment for the poor neurobehavioral outcomes tied to FASD, which is believed to affect roughly 5% of school-aged children.

Apolipoprotein E is controlled by a gene called APOE, a well-known risk gene for Alzheimer’s disease. It contains the instructions that guide how the connections between neurons in the brain strengthen or weaken over time. This process, known as synaptic plasticity, is crucial for learning and memory formation. In this study, plasma was collected from participants at two sites in Western Ukraine, along with information about drinking behavior reported by their mothers.

What this means 

“In addition to Alzheimer’s risk, we found this gene is also a crucial contributor to cognitive problems in children with FASD,” said Kazue Hashimoto-Torii, Ph.D., a principal investigator at the Center for Neuroscience Research at Children’s National. “The new data shows that we understand the mechanism by which prenatal alcohol exposure causes a decrease of the APOE level in the brain. We will continue this work to help improve our understanding of FASD, hoping to replenish this important protein and improve outcomes for children with these disorders.”

FASD is an umbrella diagnosis for the physical and developmental challenges that face children who are exposed to alcohol in utero, including intellectual disability, delay in motor and language development and other neurological diagnoses. While alcohol alone is problematic to many aspects of development, evidence also suggests that genetic factors play a role. Only 4.3% of children with heavy alcohol exposure develop FASD, and twin studies have revealed that fraternal twins have different FASD outcomes compared to identical twins.

What’s next 

The research team at Children’s National wanted to pinpoint places where genes could play a role and consider therapies. For the first time, researchers found that plasma levels of APOE were reduced in children with FASD, which strongly supports a potential target for therapy. In addition, their genomics study found a variant of APOE increases the risk of cognitive problems in subjects who were prenatally exposed to alcohol, especially those of African ancestry.

“We found that providing a drug that activates the APOE receptor rescued learning deficits and anxiety in pre-clinical models,” said Masaaki Torii, Ph.D., principal investigator at the Center for Neuroscience Research. “The implications offer an exciting glimpse into possible therapies for some of the neurological harms associated with prenatal alcohol exposure and FASD.”

Read the full manuscript – Reduction of APOE accounts for neurobehavioral deficits in fetal alcohol spectrum disorders – in Molecular Psychiatry.

Pioneering gene therapy as a treatment for sickle cell disease

Gene therapy is a new and exciting treatment option available for patients with sickle cell disease (SCD). Children’s National Hospital is one of the few pediatric hospitals in the country that offers both FDA-approved sickle cell disease gene therapies: CASGEVY™ (exagamglogene autotemcel) and LYFGENIA™ (lovotibeglogene autotemcel).

What this means

Gene therapy involves an autologous transplant, taking the patient’s own stem cells, genetically changing those stem cells and then, after chemotherapy, infusing those stem cells back into the patient to make healthy blood.

“I’m excited about gene therapy for sickle cell disease. I think it has the potential to be a curative option for every single child with sickle cell disease,” said Robert Nickel, M.D., hematologist at Children’s National.

Currently both treatments are only approved for patients 12 years and older with severe disease. Children’s National was the first hospital in the world to collect stem cells for the LYFGENIA™ treatment.

Moving the field forward

Clinical trials hold incredible promise to advance the care of SCD. Children’s National continues to pioneer transplant therapies to cure SCD and is one of the leading centers participating in clinical trials of new treatments for this condition.

Experts at Children’s National are leading a multi-site clinical trial of a chemotherapy-free transplant approach for SCD using a matched sibling donor. This chemotherapy-free approach has less toxicity and side effects for children undergoing transplant.

In addition, Children’s National has been leading the way with innovative approaches to support sickle cell patients. “We’re providing alternative approaches to pain such as healing touch, acupuncture, massage VR technology, physical therapy and exploring other ways of treating pain in an integrated manner,” said Andrew Campbell, M.D., director of the Comprehensive Sickle Cell Disease Program at Children’s National.

The team is also exploring non-opioid treatments, such as intravenous citrulline, a naturally occurring amino acid that has been proven to enhance blood flow and potentially alleviate pain in treated patients in preliminary studies under the direction of Suvankar Majumdar, M.D., chief of Hematology at Children’s National.

Pilot program improves well-being of families during advanced care planning


Children with life-limiting rare diseases and their caregivers face tremendous stress and anxiety about the heart-breaking decisions before them. A new intervention – designed at Children’s National Hospital to support the palliative needs of these families – improved their spiritual and emotional well-being, according to new research published in the journal, Pediatrics.

Called FACE Rare (FAmily CEntered Pediatric Advance Care Planning Intervention for Rare Diseases), the counseling tools were found to be safe, effective and increased feelings of peace among families in this underserved population.

“Seventy-four percent of the families in that intervention group reported feelings of sadness, yet 100% reported our pilot intervention was a worthwhile experience,” said Maureen Lyon, Ph.D., a clinical psychologist and principal investigator at the Center for Translational Research at Children’s National. “If you’re talking about the possibility that the worst thing in the world would happen to you – that your child might die, and what you would want for them – the families found that our intervention helped. They had a place to process their feelings and consider what would be important to their child.”

The big picture

A rare disease is defined as any condition affecting fewer than 200,000 people in the United States. In pediatrics, these diseases often require constant caregiving and require families to face the cruel reality that the diagnosis may be life-limiting. In such cases, clinical teams often decide that conversations about advanced care planning (ACP) are needed.

The pilot-phase, randomized trial enrolled patients from Children’s National between 2021 and 2023. Research nurses underwent two days of training to be certified in the new intervention. Families assigned to the new approach received three, weekly 60-minute sessions and were evaluated using evidence-based assessment tools, including the Carer Support Needs Assessment Tool/Action Plan and the Next Steps: Respecting Choices Pediatric ACP Conversation. Measures of anxiety and spiritualization were tracked, and families returned after three months for follow-up.

Patients had a range of diagnoses that put tremendous strain on the caregivers, including complex digestive disorders, white-matter diseases and rare forms of epilepsy. Yet the caregivers expressed similar challenges: having time for themselves during the day, knowing what to expect in the future for their child’s care, and managing financial, legal and work issues.

What we found

Reinforcing the need to improve engagement and support for these families, the investigative team found that those who received the FACE Rare intervention reported higher levels of spiritual meaning and peace than those who received “treatment as usual.” All families living below the poverty line reported greater anxiety, and noteworthy to the team, black caregivers were less likely to report caregiver distress than non-black caregivers.

Dr. Lyon said future research needs to understand better how families respond to the challenges of rare diseases and unique social determinants of health that can change the approach to care.

“In some cultures, and families, having strong feelings is discouraged,” Dr. Lyon said. “We want to give families and caregivers space to have these emotions and think about what would be important for their child, if the worst were to happen. They appreciated that they participated in the program and had the space to consider these difficult questions.”

Read the full study, “Advance Care Planning for Children with Rare Diseases: A Pilot RCT,” in Pediatrics.

Artificial – and accelerated – intelligence: endless applications to expand health equity

In the complex world of pediatric diseases, researchers need access to data to develop clinical trials and the participation of vulnerable patients to develop new devices and therapies. Both are in short supply, given that most children are born healthy, and most severe pediatric diseases are rare.

That creates a dilemma: how do researchers build a foundation to advance new treatments? Enter artificial intelligence (AI).

“AI is the equalizer: accelerated intelligence for sick kids. No other advance on the horizon holds more promise for improving equity and access to pediatric healthcare when diseases are rare and resources are limited,” says Marius George Linguraru, D.Phil., M.A., M.Sc., the Connor Family Professor in Research and Innovation and principal investigator in the Sheikh Zayed Institute for Pediatric Surgical Innovation (SZI). “AI will shrink the distance between patient and provider, allowing our physicians and scientists to provide targeted healthcare for children more efficiently. The possibilities are endless.”

Why we’re excited

By pioneering AI innovation programs at Children’s National Hospital, Dr. Linguraru and the AI experts he leads are ensuring patients and families benefit from a coming wave of technological advances. The team is teaching AI to interpret complex data that could otherwise overwhelm clinicians. Their work will create systems to identify at-risk patients, forecast disease and treatment patterns, and support complex clinical decisions to optimize patient care and hospital resources. Already, the AI team at SZI has developed data-driven tools touching nearly every corner of the hospital:

  • AI for rheumatic heart disease (RHD): In partnership with Children’s National cardiology leaders, including Craig Sable, M.D., the Uganda Heart Institute and Cincinnati Children’s Hospital, the AI team has developed an algorithm that can use low-cost, portable ultrasound imaging to detect RHD in children and young adults, a disease that takes nearly 400,000 lives annually in limited-resource countries. Early testing shows the AI platform has the same accuracy as a cardiologist in detecting RHD, paving the way for earlier treatment with life-saving antibiotics. This year, Children’s National physicians will be in Uganda, screening 200,000 children with local cardiology experts and AI technology.
  • Newborn screening for genetic conditions with mGene: Working with Rare Disease Institute clinicians and Chief of Genetics and Metabolism Debra Regier, M.D., the AI team has built technology to detect rare genetic disorders, using an algorithm and a smartphone camera to identify subtle changes in facial features. Tested on patients from over 30 countries and published in The Lancet Digital Health, the application helps screen children for advanced care when a geneticist may not be within reach. With funding from the National Institutes of Health, Children’s National and its research partners are piloting a newborn screening program in the Democratic Republic of the Congo.
  • Pediatric brain tumors: To improve and personalize the treatment decisions for children with brain tumors, Dr. Linguraru’s team is working with Brain Tumor Institute Director Roger Packer, M.D., the Gilbert Family Distinguished Professor of Neurofibromatosis, on algorithms that can characterize and measure brain tumors with unprecedented precision. The team recently won the International Pediatric Brain Tumor Segmentation Challenge, distinguishing the Children’s National algorithm as among the best in the world.
  • Ultra-low field magnetic resonance imaging (MRI): With a grant from the Bill & Melinda Gates Foundation, the AI team is working alongside Children’s Hospital Los Angeles, King’s College London and the UNITY Consortium to expand global brain imaging capacity. The consortium is helping clinicians in limited-resource countries improve the treatment of neonatal neurological conditions, using AI to boost the quality of ultra-low field MRI and expand access to this portable and more affordable imaging option.
  • Federated learning: Children’s National has collaborated with NVIDIA and other industry leaders to accelerate AI advances through federated learning. Under this approach, institutions share AI models rather than data, allowing them to collaborate without exposing patient information or being constrained by essential data-sharing restrictions. The SZI team was the only pediatric partner invited to join the largest federated learning project of its kind, studying the lungs of COVID-19 patients. Details were published in Nature Medicine.

Children’s National leads the way

Looking ahead, the Children’s National AI team is pursuing a wide range of advances in clinical care. To support patients treated at multiple clinics, they are developing systems to harmonize images from different scanners and protocols, such as MRI machines made by different manufacturers. Similar work is underway to analyze pathology samples from different institutions consistently.

Automation is also making care more efficient. For example, using data from 1 million chest X-rays, the team is collaborating with NVIDIA to develop a conversational digital assistant that will allow physicians to think through 14 possible diagnoses.

Dr. Linguraru says he and his colleagues are galvanized by the jarring statistic that one in three children with a rare disease dies before age 5. While well-implemented AI initiatives can change outcomes, he says the work must be done thoughtfully.

“In the future, patients will be evaluated by human clinicians and machines with extraordinary powers to diagnose illness and determine treatments,” Dr. Linguraru said. “Our team at Children’s National is leading conversations about the future of pediatric healthcare with a focus on safety, resource allocation and basic equity.”

Learn more about our AI initiatives

Innovation leaders at Children’s National Hospital are building a community of AI caregivers through educational and community-building events. At the inaugural Symposium on Artificial Intelligence in 2023 at the Children’s National Research & Innovation Campus, experts from Virginia Tech, JLABS, Food and Drug Administration, Pfizer, Oracle Health, NVIDIA, AWS Health and elsewhere laid out a vision for using data to advance pediatric medicine. The symposium will return on Sept. 6.

Dr. Linguraru is the program chair of MICCAI 2024, the top international meeting on medical image computing and computer-assisted intervention and the preeminent forum for disseminating AI developments in healthcare. The conference is an educational platform for scientists and clinicians dedicated to AI in medical imaging, with a focus on global health equity. It will take place for the first time in Africa on Oct. 6-10.

 

 

Novel cell therapy treatments offer promise to immune-compromised children

teenager receiving an intravenous infusion

In a first-of-its-kind clinical trial, researchers found that intravenous therapies made from virus-specific T-cells (VST) can effectively treat immunocompromised pediatric patients, far surpassing the current standard of care, according to new research published in Nature Communications.

More than 60% of patients in the phase 2 clinical trial led by investigators from Children’s National Hospital and Huntsman Cancer Institute responded to the innovative VST therapy. This new treatment uses blood from healthy donors to manufacture a highly specialized immune therapy that, when given to immune-compromised patients, prompts their immune system to fight off potentially life-threatening viruses, including cytomegalovirus, Epstein-Barr and adenovirus. Without this therapy, estimates suggest that less than 30% of patients would recover, using standard protocols.

“A vast majority of our patients not only responded to the therapy, but they were able to come off their antivirals, which come with extensive side effects,” said Michael Keller, M.D., the paper’s first author and the Translational Research Laboratory director at the Children’s National Cell Enhancement and Technologies for Immunotherapy (CETI) program. “This promising data suggests hope for patients with rare immune-compromising diseases that leave them vulnerable to so much in the world.”

The study brings together experts from the Pediatric Transplantation and Cell Therapy Consortium (PTCTC) and the Primary Immune Deficiency Treatment Consortium (PIDTC) to create the first multi-center, pediatric-consortium trial of adoptive T-cell therapies for viruses. It also represents one of the first to include critically ill patients, who are often excluded from research.

Children’s National leads the way

Working alongside Catherine Bollard, M.D., M.B.Ch.B., director of the Center for Cancer and Immunology Research (CCIR), Dr. Keller and the CCIR team helped build an internationally recognized program, pioneering therapies to prevent complications from viral infections in immunocompromised patients. This includes patients with congenital immune deficiency and others who have undergone bone marrow transplantation for malignancies or non-malignant conditions, such as sickle cell disease.

While doctors can treat some immune-compromised patients for infections with standard antivirals, a small fraction don’t respond. Children’s National is one of a handful of hospitals in the country that has options. Over the last several decades, researchers have found ways to develop VST therapies made from banked T-cells, a more advanced application of how donated red blood cells are used to treat anemia.

In 2017, Drs. Keller and Bollard started collaborating with Michael Pulsipher, M.D.—now with Intermountain Primary Children’s Hospital and the Huntsman Cancer Institute at the University of Utah—to create a multi-institute clinical study. They combined the expertise at Children’s National in producing and banking cell therapy products with the community built around the PTCTC. Ultimately, they launched a clinical trial that was open to 35 centers in the U.S., enrolling 51 patients at 22 hospitals from 2018-2022.

“We wanted to prove that this potentially life-saving therapy could be given safely at regional pediatric centers that had never been able to use this approach before,” said Dr. Pulsipher, who served as the study’s co-principal investigator with Dr. Keller. “We united top experts in this area from the PTCTC and PIDTC and successfully treated some of the most challenging patients ever treated with this approach. Our findings helped define who can benefit the most from this therapy, paving the way for commercial development.”

The Good Manufacturing Practices (GMP) laboratory at Children’s National, led by Patrick Hanley, Ph.D., provided suitable VST therapies for 75 of 77 patients who requested to join the study. Clinical responses were achieved in 62% of patients who underwent stem cell transplants and in 73% of patients who were treated with VST and evaluated one month after their infusion. The paper laid out risks and clinical factors impacting outcomes when third-party donors are used to manufacture the VST therapies.

What’s ahead

Given that researchers are only beginning to develop cell therapies, work remains to understand the many ways they interact with the immune system. In a separate paper also recently published in Nature Communications, members of the multi-institute team documented a case of an infant with severe combined immune deficiency, who faced extremely rare side effects when the VST treatment interfered with her donor bone marrow graft. The case led the team to work with the Food and Drug Administration to identify criteria for VST donors enrolled in this study to mitigate complications.

In the decade ahead, Dr. Bollard sees promise in cell therapies for patients with cancer, immune deficiencies after transplant and dozens of other disorders, including genetic and autoimmune diseases. “Future studies will continue to look at ways to optimize the manufacturing, the administration and the long-term outcomes for these therapies—and to enhance the lifelong impact on our patients,” she said. “When we pair human ingenuity with the power of technology, I see tremendous potential.”

Acknowledgments: This study was funded with a nearly $5 million grant from the California Institute of Regenerative Medicine and was run through the operations center at the Children’s Hospital of Los Angeles, where Dr. Pulsipher was formerly on faculty.

Inequity complicates care for children with tracheostomies

child with a tracheostomy tube

Study finds healthcare inequities complicate care of children with tracheostomies.

Approximately 4,000 children in the United States annually undergo tracheostomies, a lifesaving procedure for severe respiratory compromise or upper-airway obstruction. While children with tracheostomies are living longer because of technological advances, their caretakers encounter a variety of issues once at-home care begins, as reported in a study published in Qualitative Health Research.

The study identified lingering problems from the lack of equitable access to appropriate support for patient families and caregivers. Jules Sherman, M.F.A., director of the Biodesign Program at Children’s National Innovation Ventures, led the research in collaboration with Kyle L. Bower, Ph.D., a researcher and instructor at The University of Georgia, and Kolaleh Eskandanian, Ph.D., M.B.A., P.M.P., vice president and chief innovation officer at Children’s National.

The big picture

Interview subjects were 11 primary caregivers of children ages 16 months to 11 years who had a tracheostomy and were supported by multiple lifesaving devices at home such as a ventilator, humidifier and other required medical supplies.

Subjects were questioned about influences and relationships they believed impacted the trajectory of care given to children with tracheostomies. Three themes emerged:

  • Insufficient peer support: Caregivers struggled to find groups who shared similar experiences to help them navigate the uncertainty surrounding their child’s medical care, and content on social media peer groups sometimes heightened their sense of worry.
  • Ineffective trach-care training:
    • For families — Caregivers said the trach-care training they received at their respective hospitals did not reflect real-time situations at home, resulting in high levels of anxiety, multiple home emergency situations and routine calls to 911.
    • Home health nurses — Caregivers shared instances of poor decision-making by at-home nurses in emergency situations, lack of communication with primary caregivers and lack of respect for their input.
  • Challenges facing integrated care: The absence of cohesion between medical professionals, durable medical equipment (DME) companies and insurance providers creates many challenges for caregivers. Due to the excessive cost of lifesaving medical devices and negative interactions by caregivers with insurance companies and DMEs, some caregivers reported turning to the black market to purchase needed medical supplies.

Why it matters

In the United States, 60 percent of children with tracheostomies are readmitted to the hospital for tracheostomy-associated respiratory infection within the first six months of the surgery. This study highlights systemic failures and inequities within the healthcare system, beginning at the hospital and following affected families into their homes, indicating that improvements in the support system, training and healthcare coverage are sorely needed.

The need for a better tracheostomy solution was introduced to Children’s National’s Innovation Ventures by two hospital physicians who are otolaryngologists, Habib Zalzal, M.D. and Rahul Shah, M.D., M.B.A. Followed by an initial market study and design by design firm Archimedic, study author, Sherman, continues working with clinicians at Children’s National and engineers at the University of Oregon and University of Maryland to enhance the prototype developed at Children’s National. The device, called as Trach Sense, is designed to detect accidental decannulation and obstruction events, which are leading causes of tracheostomy-related complications.

This study was supported by the Food and Drug Administration grants P50FD006430 and P50FD007965. The contents are those of the authors and do not necessarily represent the official views of, nor an endorsement, by the FDA, Department of Health and Human Services or the U.S. government.

First global clinical trial achieves promising results for hypochondroplasia

Dr. Andrew Dauber measures Mia's height

Trial participant Mia Maric is measured by Dr. Andrew Dauber.

Researchers from Children’s National Hospital presented findings from the first clinical trial of the medication vosoritide for children with hypochondroplasia – a rare genetic growth disorder. The results were presented at the 2024 American College of Medical Genetics and Genomics (ACMG) Annual Clinical Genetics Meeting.

The big picture

Recently approved to increase linear growth and open growth plates in children with achondroplasia, vosoritide is a C-type natriuretic peptide analog that binds its receptor on chondrocytes, leading to increased chondrocyte proliferation and differentiation by inhibiting the ERK1/2-MAPK pathway.

“Vosoritide directly targets the pathway in the growth plate that is affected by the genetic mutation causing hypochondroplasia,” said Andrew Dauber M.D., M.M.Sc., chief of Endocrinology at Children’s National and lead author of the study.

During the phase 2 trial, researchers found vosoritide increased the growth rate in children with hypochondroplasia, allowing them to grow on average an extra 1.8 cm per year.

The patient benefit

Ivan Maric’s 11-year-old daughter, Mia, has been participating in the trial for the last 18 months. In 2022, they moved from Croatia to be part of the study.

“This has been life-changing for Mia,” Maric said. “Soon after receiving the initial doses, we immediately noticed growth. Now, she can independently manage everyday tasks such as washing her hair and reaching the sink to wash her hands.”

What’s next

Vosoritide treatment may work as a precision therapy to improve growth in multiple genetic conditions that interact with the ERK1/2-MAPK pathway.

“This study provides a proof of principle that this medicine will work for these children and supports further research in this area,” said Dr. Dauber. “I was excited to see how well tolerated the medication was and how some patients had excellent responses.”

This clinical trial funded by BioMarin is the first-of-its-kind to treat children with genetic short stature who do not have achondroplasia. Other growth-related conditions included in this phase 2 trial were Noonan syndrome, NPR2 mutations and Aggrecan mutations.

Additional authors from Children’s National: Anqing Zhang, Ph.D., Roopa Kanakatti Shankar, M.D., Kimberly Boucher, R.N., Tara McCarthy, B.A., Niusha Shafaei, B.A., Raheem Seaforth, B.A., Meryll Grace Castro, M.S., and Niti Dham, M.D.

Pioneering research center aims to revolutionize prenatal and neonatal health

Catherine Limperopoulos, Ph.D., was drawn to understanding the developing brain, examining how early adverse environments for a mother can impact the baby at birth and extend throughout its entire lifetime. She has widened her lens – and expanded her team – to create the new Center for Prenatal, Neonatal & Maternal Health Research at Children’s National Hospital.

“Despite the obvious connection between mothers and babies, we know that conventional medicine often addresses the two beings separately. We want to change that,” said Dr. Limperopoulos, who also directs the Developing Brain Institute. “Given the current trajectory of medicine toward precision care and advanced imaging, we thought this was the right moment to channel our talent and resources into understanding this delicate and highly dynamic relationship.”

Moving the field forward

Since its establishment in July 2023, the new research center has gained recognition through high-impact scientific publications, featuring noteworthy studies exploring the early phases of human development.

Dr. Limperopoulos has been at the forefront of groundbreaking research, directing attention to the consequences of maternal stress on the unborn baby and the placenta. In addition, under the guidance of Kevin Cook, Ph.D., investigators published a pivotal study on the correlation between pain experienced by premature infants in the Neonatal Intensive Care Unit and the associated risks of autism and developmental delays.

Another area of research has focused on understanding the impact of congenital heart disease (CHD) on prenatal brain development, given the altered blood flow to the brain caused by these conditions during this period of rapid development. Led by Josepheen De Asis-Cruz, M.D., Ph.D., a research team uncovered variations in the functional connectivity of the brains of infants with CHD. In parallel, Nickie Andescavage, M.D., and her team employed advanced imaging techniques to identify potential biomarkers in infants with CHD, holding promise for guiding improved diagnostics and postnatal care. Separately, she is investigating the impact of COVID-19 on fetal brain development.

In the months ahead, the team plans to concentrate its efforts on these areas and several others, including the impact of infectious disease, social determinants of health and protecting developing brains from the negative impacts of maternal stress, pre-eclampsia and other conditions prevalent among expectant mothers.

Assembling a team

Given its robust research plan and opportunities for collaboration, the center pulled together expertise from across the hospital’s faculty and has attracted new talent from across the country, including several prominent faculty members:

  • Katherine L. Wisner, M.S., M.D., has accumulated extensive knowledge on the impact of maternal stress on babies throughout her career, and her deep background in psychiatry made her a natural addition to the center. While Dr. Wisner conducts research into the urgent need to prioritize maternal mental health, she will also be treating mothers as part of the DC Mother-Baby Wellness Initiative — a novel program based at Children’s National that allows mothers to more seamlessly get care for themselves and participate in mother-infant play groups timed to align with their clinical appointments.
  • Catherine J. Stoodley, B.S., M.S., D.Phil., brings extensive research into the role of the cerebellum in cognitive development. Dr. Stoodley uses clinical studies, neuroimaging, neuromodulation and behavioral testing to investigate the functional anatomy of the part of the brain responsible for cognition.
  • Katherine M. Ottolini, M.D., attending neonatologist, is developing NICU THRIVE – a research program studying the effects of tailored nutrition on the developing newborn brain, including the impact of fortifying human milk with protein, fat and carbohydrates. With a grant from the Gerber Foundation, Dr. Ottolini is working to understand how personalized fortification for high-risk babies could help them grow.

Early accolades

The new center brings together award-winning talent. This includes Yao Wu, Ph.D., who recently earned the American Heart Association’s Outstanding Research in Pediatric Cardiology award for her groundbreaking work in CHD, particularly for her research on the role of altered placental function and neurodevelopmental outcomes in toddlers with CHD. Dr. Wu became the third Children’s National faculty member to earn the distinction, joining an honor roll that includes Dr. Limperopoulos and David Wessel, M.D., executive vice president and chief medical officer.

Interim Chief Academic Officer Catherine Bollard, M.D., M.B.Ch.B., said the cross-disciplinary collaboration now underway at the new center has the potential to make a dramatic impact on the field of neonatology and early child development. “This group epitomizes the Team Science approach that we work tirelessly to foster at Children’s National,” Dr. Bollard said. “Given their energetic start, we know these scientists and physicians are poised to tackle some of the toughest questions in maternal-fetal medicine and beyond, which will improve outcomes for our most fragile patients.”

Next-generation genomics testing holds key to undiagnosed rare disease

Before and after pictures of the patient's improved gaitSeth Berger, M.D., Ph.D., felt the pull to dig deeper when he started reading the chart. An 11-year-old boy had an abnormal gait and couldn’t even walk in a straight line down the sidewalk to go trick-or-treating. Yet workups with neurology, orthopedics and an exome analysis of the patient’s genetic code did not provide a diagnosis. He had been getting worse for roughly three years.

With one of the largest clinical genetics departments in the country, Children’s National Hospital receives more than 10,000 visits a year from patients like this middle schooler. Often, they are children and caregivers who are searching for answers and follow-up support for diagnoses of genetic disorders, which impact so few people that only highly trained geneticists and genetic counselors can get to the root of the disorder.

“In genetics, we are finding layers of understanding. A negative clinical test is not always the final answer because the significance of variants can often be missed or misunderstood,” said Dr. Berger, a medical geneticist and principal investigator in the Center for Genetics Medicine Research at Children’s National. “It can take extensive research and a deep knowledge of the limits of certain tests to reach a diagnosis.”

The fine print

On page 4 of the patient’s genetics report, Dr. Berger found a reference to a pair of variants with no known clinical impact. Dr. Berger recognized that the genes referenced could affect proteins that drive potentially treatable neurological outcomes.

Dr. Berger ordered further testing, including biochemical testing of the patient’s blood and a phenylalanine loading challenge, a test that measures how the body metabolizes certain amino acids. With the results, he confirmed a recessive GCH1 deficiency in the patient was causing a condition called DOPA-responsive dystonia, a disorder that causes involuntary muscle contractions, tremors and uncontrolled movements. Laura Schiffman Tochen, M.D., director of the Movement Disorders Program at Children’s National, started the patient on levodopa-carbidopa — a drug combination used to treat Parkinson’s disease and other neurological disorders — and within two hours the boy showed improvement. His gait was almost normal.

Why we’re excited

Dr. Berger presents at conferences on this case and several other medical mysteries that he’s recently solved in his clinical practice and his role at the Pediatric Mendelian Genomics Research Center, a Children’s National program immersed in a federally funded research study to better understand how differences in genetic material can affect human health. As part of his work, he’s joined the GREGoR project (Genomic Research to Elucidate the Genetics of Rare Disease), which hopes to increase the number of genetic disorders where a cause can be identified. The elite genetics consortium includes nationally recognized research centers – the University of California at Irvine, Broad Institute, University of Washington, Baylor University, Stanford University, Invitae and Children’s National – which are working together to harness cutting-edge genomics sequencing capabilities. They hope to enroll thousands in their research, funded by the National Institutes of Health.

“It’s truly stunning what genetic sequencing can find. The outcomes can be life-changing,” said Dr. Berger. “These cases with life-altering diagnoses don’t come along every day, but when they do, they make the hunt to find answers all the more worthwhile.”

New hemimegalencephaly procedure is all about teamwork

Children’s National experts pioneered a novel approach of inducing strokes to stop seizures and improve neurodevelopmental outcomes in newborns under three months old with hemimegalencephaly (HME). The procedure, called an endovascular embolic hemispherectomy, can be safely used to provide definitive treatment of HME-related epilepsy in neonates and young infants. Monica Pearl, M.D., neurointerventional radiologist, and Panagiotis Kratimenos, M.D., Ph.D., neonatologist, discuss why having a multidisciplinary team skilled at this procedure is the reason we’re the only center in the world capable of providing this treatment.

The history behind the novel hemimegalencephaly procedure

Traditionally, when a baby is diagnosed with hemimegalencephaly (HME), doctors turn to a hemispherectomy at 3 months of age, which involves surgically removing half of a baby’s brain. At Children’s National Hospital, our doctors pioneered the endovascular embolic hemispherectomy, an approach using induced controlled strokes to eliminate the affected part of the brain, halting seizures. Monica Pearl, M.D., neurointerventional radiologist, and Tammy Tsuchida, M.D., Ph.D., neonatal neurologist, talk about this life-changing procedure.

Inducing strokes to better treat babies with hemimegalencephaly

When a family from Texas received a shocking diagnosis for their newborn daughter, they knew there was one place they needed to go – Children’s National Hospital in Washington, D.C. At birth, Angelique was diagnosed with a rare and devastating condition known as hemimegalencephaly (HME) which causes uncontrollable and frequent seizures. Monica Pearl, M.D., neurointerventional radiologist, and the team at Children’s National have pioneered an approach to treat HME, where they induce controlled strokes to eliminate the affected part of the brain, halting seizures in their tracks. They’re the only team in the world doing this work. Angelique’s parents knew the clock was ticking — every day they waited meant irreversible damage to their daughter’s developing brain.

Driving pediatric breakthroughs through 2023

desktop computer showing the CNRI Annual ReportThe Children’s National Research Institute released its 2022-2023 Academic Annual Report. In the report, a summary of the past academic year highlights the accomplishments of each of the institute’s research centers, provides research funding figures and exalts some of the institute’s biggest milestones.

The stories in the report are a testament to the hard work and dedication of everyone at the Children’s National Research Institute.

We celebrated five decades of leadership and mentorship of Naomi Luban, M.D., and her incredible accomplishments in the W@TCH program, which have been instrumental in shaping the future of pediatric research.

We also celebrated innovation, highlighting our recent FDA award to lead a pediatric device consortium, which recognizes our commitment to developing innovative medical devices that improve the lives of children.

Breakthroughs at the Research & Innovation Campus continued as our researchers worked tirelessly to develop new treatments and therapies that will transform the lives of children and families around the world.

Taking a look at the breakthroughs happening in our now six research centers, we spotlighted the following stories:

  • Reflecting on decades of progress in the blood, marrow and cell therapy programs at Children’s National. Our researchers have made significant strides in this field, and we are proud to be at the forefront of these life-saving treatments.
  • In genetic medicine, we continue to be a beacon of hope for families facing rare and complex conditions. Our researchers are making incredible breakthroughs that are changing the landscape of pediatric medicine.
  • We are also proud to share the $90 million award received from an anonymous donor to support pediatric brain tumor research. The predominant focus of this award is to develop new treatments that will improve outcomes for children with this devastating disease.
  • This year, we opened a new Center that enhances our research capabilities in the field of Prenatal, Neonatal & Maternal Health Research. We are excited about the possibilities this new center will bring and look forward to the discoveries that will emerge from it.
  • In addition, we are driving future pandemic readiness with the NIH funded Pediatric Pandemic Network. Our researchers are using cutting-edge technology and innovative approaches to prepare for the next pandemic and protect children.
  • We are also exploring the potential of artificial intelligence (AI) in pediatric breakthroughs. Our researchers are using machine learning and other AI techniques to develop new treatments and therapies that will transform the lives of children.

Children’s National in the News: 2023

collage of news outlet logos
Explore some of the notable medical advancements and stories of bravery that defined 2023, showcasing the steadfast commitment of healthcare professionals at Children’s National Hospital and the resilient spirit of the children they support. Delve into our 2023 news highlights for more.

1. COVID during pregnancy dramatically increases the risk of complications and maternal death, large new study finds

According to a study published in British Medical Journal Global Health, women who get COVID during pregnancy are nearly eight times more likely to die and face a significantly elevated risk of ICU admission and pneumonia. Sarah Mulkey, M.D., prenatal-neonatologist neurologist, discussed findings based on her work with pregnant women and their babies.
(Fortune)

2. Rest isn’t necessarily best for concussion recovery in children, study says

A study led by Christopher Vaughan, Psy.D., pediatric neuropsychologist, suggests that — despite what many people may presume — getting kids back to school quickly is the best way to boost their chance for a rapid recovery after a concussion.
(CNN)

3. Pediatric hospital beds are in high demand for ailing children. Here’s why

David Wessel, M.D., executive vice president, chief medical officer and physician-in-chief, explained that one reason parents were still having trouble getting their children beds in a pediatric hospital or a pediatric unit after the fall 2022 respiratory surge is that pediatric hospitals are paid less by insurance.
(CNN)

4. Anisha Abraham details impact of social media use on children: ‘True mental health crisis’

Anisha Abraham, M.D., M.P.H., chief of the Division of Adolescent and Young Adult Medicine, joined America’s Newsroom to discuss the impact social media access has had on children’s mental health.
(FOX News)

5. Saving Antonio: Can a renowned hospital keep a boy from being shot again?

After 13-year-old Antonio was nearly killed outside his mom’s apartment, Children’s National Hospital went beyond treating his bullet wounds. Read how our Youth Violence Intervention Program team supported him and his family during his recovery.
(The Washington Post)

6. Formerly conjoined twins reunite with doctors who separated them

Erin and Jade Buckles underwent a successful separation at Children’s National Hospital. Nearly 20 years later they returned to meet with some of the medical staff who helped make it happen.
(Good Morning America)

7. Asthma mortality rates differ by location, race/ethnicity, age

Shilpa Patel, M.D., M.P.H., medical director of the Children’s National IMPACT DC Asthma Clinic, weighed in on a letter published in Annals of Allergy, Asthma & Immunology, asserting that the disparities in mortality due to asthma in the United States vary based on whether they occurred in a hospital, ethnicity or race and age of the patient.
(Healio)

8. How one Afghan family made the perilous journey across the U.S.-Mexico border

After one family embarked on a perilous journey from Afghanistan through Mexico to the U.S.-Mexico border, they eventually secured entry to the U.S. where Karen Smith, M.D., medical director of Global Services, aided the family’s transition and provided their daughter with necessary immediate medical treatment.
(NPR)

9. When a child is shot, doctors must heal more than just bullet holes

With the number of young people shot by guns on the rise in the U.S., providers and staff at Children’s National Hospital are trying to break the cycle of violence. But it’s not just the physical wounds though that need treating: young victims may also need help getting back on the right track — whether that means enrolling in school, finding a new group of friends or getting a job.
(BBC News)

10. This 6-year-old is a pioneer in the quest to treat a deadly brain tumor

Callie, a 6-year-old diagnosed with diffuse intrinsic pontine glioma, was treated with low-intensity focused ultrasound (LIFU) at Children’s National Hospital and is the second child in the world to receive this treatment for a brain tumor. LIFU is an emerging technology that experts like Hasan Syed, M.D., and Adrianna Fonseca, M.D., are trialing to treat this fatal childhood brain tumor.
(The Washington Post)

11. F.D.A. approves sickle cell treatments, including one that uses CRISPR

The FDA approved a new genetic therapy, giving people with sickle cell disease new opportunities to eliminate their symptoms. David Jacobsohn, M.B.A., M.D., confirmed that Children’s National Hospital is one of the authorized treatment centers and talked about giving priority to the sickest patients if they are on Vertex’s list.
(The New York Times)

12. 6-year-old fulfils wish to dance in the Nutcracker

After the potential need for open-heart surgery threatened Caroline’s Nutcracker performance, Manan Desai, M.D., a cardiac surgeon, figured out a less invasive procedure to help reduce her recovery time so she could perform in time for the holidays.
(Good Morning America)