Schistosoma haematobium egg

For hemorrhagic cystitis, harnessing the power of a parasite

Schistosoma haematobium egg

“Urogenital Schistosoma infestation, which is caused by S. haematobium, also causes hemorrhagic cystitis, likely by triggering inflammation when the parasite’s eggs are deposited in the bladder wall or as eggs pass from the bladder into the urinary stream. S. haematobium eggs secrete proteins, including IPSE, that ensure human hosts are not so sickened that they succumb to hemorrhagic cystitis,” says Michael H. Hsieh, M.D., Ph.D.

Every year, hundreds of thousands of U.S. patients – and even more throughout the world – are prescribed cyclophosphamide or ifosfamide. These two chemotherapy drugs can be life-saving for a wide range of pediatric cancers, including leukemias and cancers of the eyes and nerves. However, these therapies come with a serious side effect: Both cause hemorrhagic cystitis in up to 40 percent of patients. This debilitating condition is characterized by severe inflammation in the bladder that can cause tremendous pain, life-threatening bleeding, and frequent and urgent urination.

Infection with a parasitic worm called Schistosoma haematobium also causes hemorrhagic cystitis, but this organism has a fail-safe: To keep its host alive, the parasite secretes a protein that suppresses inflammation and the associated pain and bleeding.

In a new study, a Children’s-led research team harnessed this protein to serve as a new therapy for chemotherapy-induced hemorrhagic cystitis.

“Urogenital Schistosoma infestation, which is caused by S. haematobium, also causes hemorrhagic cystitis, likely by triggering inflammation when the parasite’s eggs are deposited in the bladder wall or as eggs pass from the bladder into the urinary stream. S. haematobium eggs secrete proteins, including IPSE, that ensure human hosts are not so sickened that they succumb to hemorrhagic cystitis,” says Michael H. Hsieh, M.D., Ph.D., senior author of the study published April 3, 2018, by The FASEB Journal. “This work in an experimental model is the first published report of exploiting an uropathogen-derived host modulatory molecule in a clinically relevant model of bladder disease, and it points to the potential utility of this as an alternate treatment approach.”

S. mansoni IPSE binds to Immunoglobulin E (IgE), an antibody produced by the immune system that is expressed on the surface of basophils, a type of immune cell; and mast cells, another immune cell that mediates inflammation; and sequesters chemokines, signaling proteins that alert white cells to infection sites. The team produced an ortholog of the uropathogen-derived protein. A single IV dose proved superior to multiple doses of 2-Mercaptoethane sulfonate sodium (MESNA), the current standard of care, in suppressing chemotherapy-induced bladder hemorrhaging in an experimental model. It was equally potent as MESNA in dampening chemotherapy-induced pain, the research team finds.

“The current array of medicines we use to treat hemorrhagic cystitis all have shortcomings, so there is a definite need for novel therapeutic options,” says Dr. Hsieh, a Children’s National Health System urologist. “And other ongoing research projects have the potential to further expand patients’ treatment options by leveraging other urogenital parasite-derived, immune-modulating molecules to treat inflammatory bowel diseases and autoimmune disorders.”

Future research will aim to describe the precise molecular mechanisms of action, as well as to generate other orthologs that boost efficacy while reducing side effects.

In addition to Dr. Hsieh, Children’s study co-authors include Lead Author, Evaristus C. Mbanefo; Loc Le and Luke F. Pennington; Justin I. Odegaard and Theodore S. Jardetzky, Stanford University; Abdulaziz Alouffi, King Abdulaziz City for Science and Technology; and Franco H. Falcone, University of Nottingham.

Financial support for this research was provided by National Institutes of Health under award number RO1-DK113504.

newborn in incubator

How EPO saves babies’ brains

newborn in incubator

Researchers have discovered that treating premature infants with erythropoietin can help protect and repair their vulnerable brains.

The drug erythropoietin (EPO) has a long history. First used more than three decades ago to treat anemia, it’s now a mainstay for treating several types of this blood-depleting disorder, including anemia caused by chronic kidney disease, myelodysplasia and cancer chemotherapy.

More recently, researchers discovered a new use for this old drug: Treating premature infants to protect and repair their vulnerable brains. However, how EPO accomplishes this feat has remained unknown. New genetic analyses presented at the Pediatric Academic Societies 2018 annual meeting that was conducted by a multi-institutional team that includes researchers from Children’s National show that this drug may work its neuroprotective magic by modifying genes essential for regulating growth and development of nervous tissue as well as genes that respond to inflammation and hypoxia.

“During the last trimester of pregnancy, the fetal brain undergoes tremendous growth. When infants are born weeks before their due dates, these newborns’ developing brains are vulnerable to many potential insults as they are supported in the neonatal intensive care unit during this critical time,” says An Massaro, M.D., an attending neonatologist at Children’s National Health System and lead author of the research. “EPO, a cytokine that protects and repairs neurons, is a very promising therapeutic approach to support the developing brains of extremely low gestational age neonates.”

The research team investigated whether micro-preemies treated with EPO had distinct DNA methylation profiles and related changes in expression of genes that regulate how the body responds to such environmental stressors as inflammation, hypoxia and oxidative stress.  They also investigated changes in genes involved in glial differentiation and myelination, production of an insulating layer essential for a properly functioning nervous system. The genetic analyses are an offshoot of a large, randomized clinical trial of EPO to treat preterm infants born between 24 and 27 gestational weeks.

The DNA of 18 newborns enrolled in the clinical trial was isolated from specimens drawn within 24 hours of birth and at day 14 of life. Eleven newborns were treated with EPO; a seven-infant control group received placebo.

DNA methylation and whole transcriptome analyses identified 240 candidate differentially methylated regions and more than 50 associated genes that were expressed differentially in infants treated with EPO compared with the control group. Gene ontology testing further narrowed the list to five candidate genes that are essential for normal neurodevelopment and for repairing brain injury:

“These findings suggest that EPO’s neuroprotective effect may be mediated by epigenetic regulation of genes involved in the development of the nervous system and that play pivotal roles in how the body responds to inflammation and hypoxia,” Dr. Massaro says.

In addition to Dr. Massaro, study co-authors include Theo K. Bammler, James W. MacDonald, biostatistician, Bryan Comstock, senior research scientist, and Sandra “Sunny” Juul, M.D., Ph.D., study principal investigator, all of University of Washington.

inhaler

Keeping kids with asthma out of the hospital

inhaler

Pediatric asthma takes a heavy toll on patients and families alike. Affecting more than 7 million children in the U.S., it’s the most common nonsurgical diagnosis for pediatric hospital admission, with costs of more than $570 million annually. Understanding how to care for these young patients has significantly improved in the last several decades, leading the National Institutes of Health (NIH) to issue evidence-based guidelines on pediatric asthma in 1990. Despite knowing more about this respiratory ailment, overall morbidity – measured by attack rates, pediatric emergency department visits or hospitalizations – has not decreased over the last decade.

“We know how to effectively treat pediatric asthma,” says Kavita Parikh, M.D., M.S.H.S., a pediatric hospitalist at Children’s National Health System. “There’s been a huge investment in terms of quality improvements that’s reflected in how many papers there are about this topic in the literature.”

However, Dr. Parikh notes, most of those quality-improvement papers do not focus on inpatient discharge, a particularly vulnerable time for patients. Up to 40 percent of children who are hospitalized for asthma-related concerns come back through the emergency department within one year. One-quarter of those kids are readmitted.

“It’s clear that we need to do better at keeping kids with asthma out of the hospital. The point at which they’re being discharged might be an effective time to intervene,” Dr. Parikh adds.

To determine which interventions hold promise, Dr. Parikh and colleagues recently performed a systematic review of studies involving quality improvements after inpatient discharge. They published their findings in the May 2018 edition of the journal, Pediatrics. Because May is National Asthma and Allergy Awareness month, she adds, it’s a timely fit.

The researchers combed the literature, looking for research that tested various interventions at the point of discharge for their effect on hospital readmission anywhere from fewer than 30 days after discharge to up to one year later. They specifically searched for papers published from 1991, the year after the NIH issued its original asthma care guidelines, until November 2016.

Their search netted 30 articles that met these criteria. A more thorough review of each of these studies revealed common themes to interventions implemented at discharge:

  • Nine studies focused on standardization of care, such as introducing or revising a specific clinical pathway
  • Nine studies focused on education, such as teaching patients and their families better self-management strategies
  • Five studies focused on tools for discharge planning, such as ensuring kids had medications in-hand at the time of discharge or assigning a case manager to navigate barriers to care and
  • Seven studies looked at the effect of multimodal interventions that combined any of these themes.

When Dr. Parikh and colleagues examined the effects of each type of intervention on hospital readmission, they came to a stunning conclusion: No single category of intervention seemed to have any effect. Only multimodal interventions that combined multiple categories were effective at reducing the risk of readmission between 30 days and one year after initial discharge.

“It’s indicative of what we have personally seen in quality-improvement efforts here at Children’s National,” Dr. Parikh says. “With a complex condition like asthma, it’s difficult for a single change in how this disease is managed to make a big difference. We need complex and multimodal programs to improve pediatric asthma outcomes, particularly when there’s a transfer of care like when patients are discharged and return home.”

One intervention that showed promise in their qualitative analysis of these studies, Dr. Parikh adds, is ensuring patients are discharged with medications in hand—a strategy that also has been examined at Children’s National. In Children’s focus groups, patients and their families have spoken about how having medications with them when they leave the hospital can boost compliance in taking them and avoid difficulties is getting to an outside pharmacy after discharge. Sometimes, they have said, the chaos of returning home can stymie efforts to stay on track with care, despite their best efforts. Anything that can ease that burden may help improve outcomes, Dr. Parikh says.

“We’re going to need to try many different strategies to reduce readmission rates, engaging different stakeholders in the inpatient and outpatient side,” she adds. “There’s a lot of room for improvement.”

In addition to Dr. Parikh, study co-authors include Susan Keller, MLS, MS-HIT, Children’s National; and Shawn Ralston, M.D., M.Sc., Children’s Hospital of Dartmouth-Hitchcock.

Funding for this work was provided by the Agency for Healthcare Research and Quality (AHRQ) under grant K08HS024554. The content is solely the responsibility of the authors and does not necessarily represent the official views of AHRQ.

Research and Education Week awardees embody the diverse power of innovation

cnmc-research-education-week

“Diversity powers innovation” was brought to life at Children’s National April 16 to 20, 2018, during the eighth annual Research and Education Week. Children’s faculty were honored as President’s Award winners and for exhibiting outstanding mentorship, while more than 360 scientific poster presentations were displayed throughout the Main Atrium.

Two clinical researchers received Mentorship Awards for excellence in fostering the development of junior faculty. Lauren Kenworthy, Ph.D received the award for Translational Science and Murray M. Pollack, M.D., M.B.A., was recognized in the Clinical Science category as part of Children’s National Health System’s Research and Education Week 2018.

Dr. Kenworthy has devoted her career to improving the lives of people on the autism spectrum and was cited by former mentees as an inspirational and tireless counselor. Her mentorship led to promising new lines of research investigating methods for engaging culturally diverse families in autism studies, as well as the impact of dual language exposure on cognition in autism.

Meanwhile, Dr. Pollack was honored for his enduring focus on motivating early-career professionals to investigate outcomes in pediatric critical care, emergency medicine and neonatology. Dr. Pollack is one of the founders of the Collaborative Pediatric Critical Care Research Network. He developed PRISM 1 and 2, which has revolutionized pediatric intensive care by providing a methodology to predict mortality and outcome using standardly collected clinical data. Mentees credit Dr. Pollack with helping them develop critical thinking skills and encouraging them to address creativity and focus in their research agenda.

In addition to the Mentorship and President’s Awards, 34 other Children’s National faculty, residents, interns and research staff were among the winners of Poster Presentation awards. The event is a celebration of the commitment to improving pediatric health in the form of education, research, scholarship and innovation that occurs every day at Children’s National.

Children’s Research Institute (CRI) served as host for the week’s events to showcase the breadth of research and education programs occurring within the entire health system, along with the rich demographic and cultural origins of the teams that make up Children’s National. The lineup of events included scientific poster presentations, as well as a full slate of guest lectures, educational workshops and panel discussions.

“It’s critical that we provide pathways for young people of all backgrounds to pursue careers in science and medicine,” says Vittorio Gallo, Ph.D., Children’s chief research officer and CRI’s scientific director. “In an accelerated global research and health care environment, internationalization of innovation requires an understanding of cultural diversity and inclusion of different mindsets and broader spectrums of perspectives and expertise from a wide range of networks,” Gallo adds.

“Here at Children’s National we want our current and future clinician-researchers to reflect the patients we serve, which is why our emphasis this year was on harnessing diversity and inclusion as tools to power innovation,” says Mark L. Batshaw, M.D., physician-in-chief and chief academic officer of Children’s National.

“Research and Education Week 2018 presented a perfect opportunity to celebrate the work of our diverse research, education and care teams, who have come together to find innovative solutions by working with local, national and international partners. This event highlights the ingenuity and inspiration that our researchers contribute to our mission of healing children,” Dr. Batshaw concludes.

Awards for the best posters were distributed according to the following categories:

  • Basic and translational science
  • Quality and performance improvement
  • Clinical research
  • Community-based research and
  • Education, training and program development.

Each winner illustrated promising advances in the development of new therapies, diagnostics and medical devices.

Diversity powers innovation: Denice Cora-Bramble, M.D., MBA
Diversity powers innovation: Vittorio Gallo, Ph.D.
Diversity powers innovation: Mark L. Batshaw, M.D.

2nd-annual-hackathon

Genetic testing reigns triumphant at health app hackathon

2nd-annual-hackathon

The growing popularity of genetic testing has one large hurdle: There are fewer than 4,000 genetic counselors in the United States, and people who use commercial genetic testing kits may receive confusing or inaccurate information.

To combat this problem, a team of doctors from the Rare Disease Institute at Children’s National Health System created the framework for a smartphone application that would house educational videos and tools that provide reputable information about genetic disorders and genetic testing.

On April 13, 2018, Debra Regier, M.D., Natasha Shur, M.D., and their teammates presented the app “Bear Genes” at the 2nd Annual Medical & Health App Development Workshop, a competition sponsored by the Clinical and Translational Science Institute at Children’s National (CTSI-CN) and the Milken Institute School of Public Health (Milken Institute SPH) at the George Washington University. Bear Genes won first place, and the team received $10,000 to develop a working prototype of the app.

The Bear Genes team was one of 10 who presented their ideas for smartphone apps to a panel of judges at the competition. Ideas covered a variety of topics, including emergency room visits and seizures related to menstrual cycles. Sean Cleary, Ph.D., M.P.H., an associate professor of epidemiology and biostatistics at the Milken Institute SPH, and his teammates proposed an app called “MyCommunicationPal” that would assist autistic individuals in reporting their symptoms to healthcare providers.

Sean Cleary and Kevin Cleary, Ph.D., technical director of the Bioengineering Initiative at Children’s National Health System, created the hackathon to bring together professionals from various fields to create technology-based solutions for public health and medical challenges. Interested participants submit applications and app proposals in the fall, and 10 ideas are selected to be fleshed out at the half-day hackathon. Participants join teams to develop the selected ideas, and on the day of the event, create a five-minute presentation to compete for the top prize. About 90 people attended this year’s hackathon.

“The workshop provides us with the opportunity to collaborate with healthcare providers, public health professionals and community members to develop an appropriate user-friendly app for those in need,” said Sean Cleary. “The event also fosters future collaborations between important stakeholders.”

This article originally appeared in the Milken Institute SPH pressroom.

Gustavo Nino

New method may facilitate childhood respiratory research

Gustavo Nino

“The use of CRC is a potentially powerful translational approach to shed light on the molecular mechanisms that control airway epithelial immune responses in infants and young children. This novel approach enables us to study the origins of respiratory disease and its chronic progression through childhood and beyond,” observes Gustavo Nino, M.D., a Children’s pulmonologist and study senior author.

A new method perfected by a team at Children’s National Health System may help expand research into pulmonary conditions experienced by infants and children, an understudied but clinically important age group. The study describing the new technique was published in the December 2017 print edition of Pediatric Allergy and Immunology.

Using conditionally reprogrammed cells (CRCs), a technique that enables indefinite proliferation of cells in the lab, the team was able to produce cell cultures that have a number of advantages over standard cultures and that may make it easier and more efficient to conduct research into pediatric respiratory immune responses.

The epithelial cells that line human airways are crucial in controlling immune responses to viruses, allergens and other environmental factors. The function and dysfunction of these airway epithelial cells (AECs) play a key role in asthma, cystic fibrosis and other pulmonary conditions, many of which begin in early life.

To generate enough of these cells for research, scientists culture AECs from primary nasal and bronchial cell samples. Cells derived from adults have fueled research leading to new therapies and the discovery of key biomarkers. But little comparable research has been conducted in infants. Airway sampling in premature infants has not been reported, likely to due to airway size limitations and underlying comorbidities. Similarly, sampling in infants is limited by the need for bronchoscopy and sedation.

“A major barrier has been the lack of a good system to culture epithelial cells, since airway sampling in infants and children is a challenge,” says co-lead author, Geovanny F. Perez, M.D., co-director of Children’s Severe Bronchopulmonary Dysplasia Program. “We needed a better way to culture cells in this age group.”

While primary AECs do not survive long in the lab, that hurdle was recently overcome by a process that generates CRCs from the primary AECs of adults, making it possible to quickly generate cell cultures from specimens.

In this study, the Children’s team adapted that approach, producing CRCs from primary AECs of neonates and infants. The CRC induction successfully enabled AEC cultures from infants born prematurely and from bronchial specimens of young children.

Geovanny Perez

“A major barrier has been the lack of a good system to culture epithelial cells, since airway sampling in infants and children is a challenge,” says co-lead author, Geovanny F. Perez, M.D., co-director of Children’s Severe Bronchopulmonary Dysplasia Program. “We needed a better way to culture cells in this age group.”

“We found that the CRCs have longer cell life and greater proliferation ability than standard cultures of epithelial cells. They preserved their original characteristics even after multiple experiments. And, they presented an innate immune response similar to that seen in primary human epithelial cells during viral respiratory responses in children,” says Dr. Perez.

“The use of CRC is a potentially powerful translational approach to shed light on the molecular mechanisms that control airway epithelial immune responses in infants and young children. This novel approach enables us to study the origins of respiratory disease and its chronic progression through childhood and beyond,” observes Gustavo Nino, M.D., a Children’s pulmonologist and study senior author.

The authors note that further studies are needed to define more precisely the differences and similarities in the immune responses of CRC and non-CRC derived from primary AEC. However, they conclude that CRC represents a new, effective method to study AEC innate immune responses in infants.

In addition to Drs. Perez and Nino, Children’s Center for Genetic Medicine Research co-authors include Co-Lead Author S. Wolf; Lana Mukharesh; Natalia Isaza Brando, M.D.; Diego Preciado, M.D., Ph.D.; Robert J. Freishtat, M.D., M.P.H.; Dinesh Pillai, M.D.; and M. C. Rose.

Financial support for this research was provided by the National Institute of Allergy and Infectious Diseases under grant number R21AI130502; Eunice Kennedy Shriver National Institute of Child Health and Human Development under grant number HD001399; National Heart, Lung and Blood Institute under grant number HL090020; and National Center for Advancing Translational Sciences under grant number UL1TR000075.

STAT Madness

Voters select Children’s National innovation as runner-up in national competition

STAT Madness

Facial recognition technology developed and tested by researchers with the Sheikh Zayed Institute for Pediatric Surgical Innovation and Rare Disease Institute at Children’s National was the runner-up in this year’s STAT Madness 2018 competition.

Facial recognition technology developed and tested by researchers with the Sheikh Zayed Institute for Pediatric Surgical Innovation and Rare Disease Institute at Children’s National was the runner up in this year’s STAT Madness 2018 competition. Garnering more than 33,000 overall votes in the bracket-style battle that highlights the best biomedical advances, the Children’s National entry survived five rounds and made it to the championship before falling short of East Carolina University’s overall vote count.

Children’s entry demonstrates the potential widespread utility of digital dysmorphology technology to diverse populations with genetic conditions. The tool enables doctors and clinicians to identify children with genetic conditions earlier by simply taking the child’s photo with a smartphone and having it entered into a global database for computer analyses.

The researchers partnered with the National Institutes of Health National Human Genome Research Institute and clinicians from 20 different countries to acquire pictures from local doctors for the study. Using the facial analysis technology, they compared groups of Caucasians, Africans, Asians and Latin Americans with Down syndrome, 22q11.2 deletion syndrome (also called DiGeorge syndrome) and Noonan syndrome to those without it. Based on more than 125 individual facial features, they were able to correctly identify patients with the condition from each ethnic group with more than a 93 percent accuracy rate. Missed diagnoses of genetic conditions can negatively impact quality of life and lead to premature death.

Children’s National also was among four “Editor’s Pick” finalists, entries that span a diverse range of scientific disciplines. Journalists at the digital publication STAT pored through published journal articles for 64 submissions in the single-elimination contest to honor a select group of entries that were the most creative, novel, and most likely to benefit the biomedical field and the general public.

Each year, 1 million children are born worldwide with a genetic condition that requires immediate attention. Because many of these children experience serious medical complications and go on to suffer from intellectual disability, it is critical that doctors accurately diagnose genetic syndromes as early as possible.

“For years, research groups have viewed facial recognition technology as a potent tool to aid genetic diagnosis. Our project is unique because it offers the expertise of a virtual geneticist to general health care providers located anywhere in the world,” says Marius George Linguraru, D.Phil., M.A., M.S., a Sheikh Zayed Institute for Pediatric Surgical Innovation principal investigator who invented the technology. “Right now, children born in under-resourced regions of the U.S. or the world can wait years to receive an accurate diagnosis due to the lack of specialized genetic expertise in that region.”

In addition to providing patient-specific benefits, Marshall Summar, M.D., director of Children’s Rare Disease Institute that partners in the facial recognition technology research, says the project offers a wider societal benefit.

“Right now, parents can endure a seemingly endless odyssey as they struggle to understand why their child is different from peers,” says Dr. Summar. “A timely genetic diagnosis can dispel that uncertainty and replace it with knowledge that can speed patient triage and deliver timely medical interventions.”

Javad Nazarian

Private foundation and researchers partner to cure childhood cancers

Javad Nazarian

Researchers nationally and internally stand the best chance of fulfilling Gabriella Miller’s dream of curing childhood cancers by effectively working together, says Javad Nazarian, Ph.D.

“Thank you for helping me reach my goal.” The handwritten note was penned by Gabriella Miller, a patient treated at Children’s National Health System who ultimately succumbed to an aggressive form of pediatric brain cancer.

Gabriella, then 9 years old, dreamed of curing childhood cancer, including diffuse intrinsic pontine glioma (DIPG), the aggressive pediatric brain tumor that took her life.

Attendees will gather April 14, 2018, for an annual gala held by the Smashing Walnuts Foundation – a group Gabriella started – to celebrate their progress on achieving her goal and to chart future strategic approaches.

“While this foundation was the brainchild of a single person, researchers nationally and internally stand the best chance of fulfilling her dream by working together more effectively,” says Javad Nazarian, Ph.D., M.S.C., the gala’s main speaker. Nazarian is scientific director of Children’s Brain Tumor Institute and is scientific co-chair of the Children’s Brain Tumor Tissue Consortium.

To that end, Children’s National was named a member of a public-private research collective awarded up to $14.8 million by the National Institutes of Health (NIH) to launch a data resource center that cancer sleuths around the world can tap into to accelerate discovery of novel treatments for childhood tumors.

This April, the NIH announced that researchers it funded had completed PanCancer Atlas, a detailed genomic analysis on a data set of molecular and clinical information from more than 10,000 tumors representing 33 types of cancer, including DIPG.

And this January, the NIH announced that it would accept applications from researchers performing whole-genome sequencing studies at one of its Gabriella Miller Kids First research program sequencing facilities. The centers will produce genome, exome and transcriptome sequencing.

Expanding access to these growing troves of data requires a close eye on nuts-and-bolts issues, such as securing sufficient physical data storage space to house the data, Nazarian adds. It’s essential for research teams around the world to have streamlined access to data sets they can analyze as well as contribute to.

“In addition to facilitating researchers’ access to this compiled data, we want to ensure that patients and families feel they are partners in this enterprise by also offering opportunities for them to share meaningful clinical data,” Nazarian says.

Nazarian has been instrumental in expanding the comprehensive biorepository at Children’s National, growing it from just a dozen samples six years ago to thousands of specimens donated by patients with all types of pediatric brain tumors, including DIPG.

“We are so grateful to our patients and families. They share our passion for finding cures and validating innovative treatments for pediatric cancers that defy current treatment. They provide funding through their foundations. Families touched by tragedy offer samples to help the next family avoid reliving their experience,” Nazarian says. “It is in their names – and in Gabriella’s name – that we continue to push ourselves to ‘crack the cure’ for childhood brain cancer.”

Sean Donahue

Pediatric ophthalmology celebrates 75th anniversary in Washington, D.C.

Sean Donahue

Angeline M. Parks Visiting Professor Sean P. Donahue, M.D., Ph.D., (front left) enjoys a light moment during the celebration of the 75th anniversary while Anthony Sandler, M.D., Children’s surgeon in chief, senior vice president of the Joseph E. Robert Jr. Center for Surgical Care and director of the Sheikh Zayed Institute, speaks to the group.

After 75 years dedicated to the eyes of children, the world’s pediatric ophthalmologists gathered in Washington, D.C., the specialty’s birthplace, to share the latest research and innovation in the field. The group gathered for a joint meeting of the International Strabismological Association (ISA) and the American Association for Pediatric Ophthalmology and Strabismus (AAPOS), which was held March 18-22, 2018.

“This year marks the 75th anniversary of our specialty, which was founded right here, at Children’s National, in Washington, D.C., when Dr. Frank Costenbader restricted his practice exclusively to children and began to train residents in the nuance of treating children’s eyes,” says Mohamad S. Jaafar, M.D., chief of the Division of Ophthalmology at Children’s National Health Center. “It is a tremendous honor to welcome my colleagues back to the birthplace of pediatric ophthalmology on this grand occasion.”

In advance of the larger meeting, Children’s Division of Ophthalmology welcomed some of the international attendees to Children’s National for a special gathering on Saturday, March 17, 2018.

The event at Children’s featured a special lecture by this year’s Angeline M. Parks Visiting Professor, Sean P. Donahue, M.D., Ph.D. Dr. Donahue is the Sam and Darthea Coleman Chair in Pediatric Ophthalmology and Chief of Pediatric Ophthalmology at the Children’s Hospital at Vanderbilt. This Annual Visiting Professorship was established by the members of the Costenbader Society (The Children’s National Pediatric Ophthalmology Alumni Society) in memory of Angeline M. Parks, the wife of pediatric ophthalmologist Marshall M. Parks, M.D., to carry on her legacy of establishing a warm and supportive environment between physician and spouse, which benefits the physicians and their young patients.

Three former division chiefs of Ophthalmology at Children’s National, Drs. Costenbader, Parks and Friendly, have national lectureships established in their names to reflect their contributions to the field. Dr. Frank Costenbader, the society’s namesake, established the sub-specialty of pediatric ophthalmology. Dr. Parks founded the Children’s Eye Foundation and the AAPOS, and David S. Friendly, M.D., codified pediatric ophthalmology fellowship training across the United States.

Honor Awards for Children’s pediatric ophthalmologists at ISA-AAPOS

During the ISA-AAPOS meeting, two current Children’s National pediatric ophthalmologists were recognized with Honor Awards for their long-term dedication to pediatric ophthalmology, their patients, and their engagement in the AAPOS to advance the field.

William Madigan, M.D., vice chief of Ophthalmology at Children’s, a professor of surgery at the Uniformed Services University of the Health Sciences, and a clinical professor of Ophthalmology and Pediatrics at the George Washington University School of Medicine and Health Sciences. He was recognized by AAPOS for his long-time service, including:

  • Chair of the organization’s audit committee and the Costenbader Lecture selection committee.
  • Membership on the fellowship directors’ committee that developed nationwide requirements for pediatric ophthalmology fellowships and established the certification process to insure high quality and uniform education in the specialty.
  • Invited lectures in Shanghai, China; Geneva, Switzerland; and Sao Paolo, Brazil, among others.
  • Many posters and presentations about clinical and research topics of importance for members of the AAPOS and other distinguished professional societies.

Marijean Miller, M.D., director of Neonatal Ophthalmology, division research director at Children’s National and clinical professor of Ophthalmology and Pediatrics at the George Washington University School of Medicine and Health Sciences, was recognized by AAPOS for her cumulative contributions to the society, including:

  • Multiple memberships on vital committees, including AAPOS’s training and accreditation committee and audit committee.
  • Presentation of original research via posters and oral presentations on topics including best practices in neonatal clinical care, innovative tools and applications and advocacy for patients and their families.

“We are so grateful to have a team that continues the tradition of excellence in pediatric ophthalmology here at Children’s National,” Dr. Jaafar says. “Drs. Madigan and Miller exemplify the dedication of our division to caring for the children we serve, and to advancing our field. Congratulations to both!”

banner year

2017: A banner year for innovation at Children’s National

banner year

In 2017, clinicians and research faculty working at Children’s National Health System published more than 850 research articles about a wide array of topics. A multidisciplinary Children’s Research Institute review group selected the top 10 articles for the calendar year considering, among other factors, work published in high-impact academic journals.

“This year’s honorees showcase how our multidisciplinary institutes serve as vehicles to bring together Children’s specialists in cross-cutting research and clinical collaborations,” says Mark L. Batshaw, M.D., Physician-in-Chief and Chief Academic Officer at Children’s National. “We’re honored that the National Institutes of Health and other funders have provided millions in awards that help to ensure that these important research projects continue.”

The published papers explain research that includes using imaging to describe the topography of the developing brains of infants with congenital heart disease, how high levels of iron may contribute to neural tube defects and using an incisionless surgery method to successfully treat osteoid osteoma. The top 10 Children’s papers:

Read the complete list.

Dr. Batshaw’s announcement comes on the eve of Research and Education Week 2018 at Children’s National, a weeklong event that begins April 16, 2018. This year’s theme, “Diversity powers innovation,” underscores the cross-cutting nature of Children’s research that aims to transform pediatric care.

foods rich in folate

An ironclad way to prevent neural tube defects? Not yet

foods rich in folate

Researchers have known for decades that folate, a vitamin enriched in dark, leafy vegetables; fruit; nuts; and other food sources, plays a key role in preventing neural tube defects.

Every year, about 3,000 pregnancies in the U.S. are affected by neural tube defects (NTDs) –  birth defects of the brain, spine and spinal cord. These include anencephaly, in which a major part of the brain, skull and scalp is missing; and spina bifida, in which the backbone and membranes around the spinal cord don’t close properly during fetal development. These structural birth defects can have devastating effects: In the best cases, they might lead to mild but lifelong disability; in the worst cases, babies don’t survive.

Researchers have known for decades that folate, a vitamin enriched in dark, leafy vegetables; fruit; nuts; and other food sources, plays a key role in preventing NTDs. To help get more folate into pregnant women’s diets, wheat flour in the U.S. and many other countries is often fortified with folic acid, a synthetic version of this vitamin, as part of an intervention credited with significantly reducing the incidence of NTDs.

But folic acid supplementation isn’t enough, says Irene E. Zohn, Ph.D., a principal investigator at the Center for Neuroscience Research at Children’s National Health System who studies how genes and the environment interact during development. A significant number of NTDs still occur, suggesting that other approaches – potentially, other nutrients in the maternal diet – might provide further protection.

That’s why Zohn and colleagues decided to investigate iron. Iron deficiency is one of the most common micronutrient deficiencies in women of childbearing age, Zohn explains. Additionally, iron and folate deficiencies often overlap and signal overall poor maternal diets.

The idea that iron deficiency might play a role in NTDs came from studies by Zohn and colleagues of the flatiron mutant line of experimental models. This experimental model line has a mutation in a gene that transports iron across cell membranes, including the cells that supply embryos with this critical micronutrient.

To determine if NTDs develop in these mutant experimental models because of reduced iron transport, the researchers devised a simple experiment: They took female adult experimental models with the mutation and separated them into four groups. For several weeks, one group ate a diet that was high in folic acid. Another group ate a diet high in iron. The third group ate a diet high in both folic acid and iron. The fourth group ate standard chow. All of these experimental models then became pregnant with embryos that harbored the flatiron mutation, and the researchers assessed the offspring for the presence of NTDs.

Irene Zohn

“We were hoping that iron supplements would be the next folic acid, but it did not turn out that way,” says Irene E. Zohn, Ph.D. “Even though our results demonstrate that iron is important for proper neural tube development, giving extra iron definitely has its downsides.”

As they reported in Birth Defects Research, the dietary interventions successfully increased iron stores: Experimental model mothers whose diets were supplemented with iron, folic acid or both had increased concentrations of these micronutrients in their blood.

The dietary interventions also affected their offspring. While about 80 percent of flatiron mutant embryos fed a standard diet during pregnancy had NTDs, feeding a diet high in iron prevented NTDs in half of the offspring. This lower rate was similar in the offspring of mothers fed a diet high in both folic acid and iron, but not for those whose mothers ate just a diet high in folic acid. Those embryos had NTD rates as high as those who ate just the standard chow, suggesting that low iron was the cause of the high rates, not low folic acid.

Together, Zohn says, these experiments show that iron plays an important role in the development of the neural tube and that deficits in iron might cause some cases of NTDs. However, she notes, reducing NTDs isn’t nearly as simple as supplementing pregnant women’s diets with iron. In the same study, the researchers found that when they gave normal experimental models that didn’t have the flatiron mutation concentrated iron supplements – amounts akin to what doctors might prescribe for human patients with very severe iron-deficiency anemia – folate stores dropped.

That’s because these two micronutrients interact in the body with similar sites for absorption and storage in the intestines and liver, Zohn explains. At either the intestines or liver or at both locations, an iron overload might interfere with the body’s ability to absorb or use folate.

At this point, she says, giving high doses of iron routinely during pregnancy doesn’t look like a feasible way to prevent NTDs.

“We were hoping that iron supplements would be the next folic acid, but it did not turn out that way,” Zohn says. “Even though our results demonstrate that iron is important for proper neural tube development, giving extra iron definitely has its downsides.”

Zohn’s team plans to continue to investigate the role of iron, as well as the role of other micronutrients that might influence neural tube development.

Zohn’s coauthors include Bethany A. Stokes, The George Washington University, and Julia A. Sabatino, Children’s National.

Research reported in this story was supported by a grant from the Board of Visitors, Eunice Kennedy Shriver National Institute of Child Health & Human Development under award number R21-HD076202, the National Center for Research Resources under award number UL1RR031988, Children’s Research Institute and the National Institutes of Health under grant P30HD040677.

Eric Vilain

Exploring differences of sex development

Eric Vilain, M.D., Ph.D.

Eric Vilain, M.D., Ph.D., analyzes the genetic mechanisms of sex development to give families more answers that will help them make better treatment (or non treatment) decisions for a child diagnosed with DSD.

Eric Vilain, M.D., Ph.D., is well versed in the “world of uncertainty” that surrounds differences of sex development. Since joining Children’s National as the director of the Center for Genetic Medicine Research in 2017, he’s shared with our research and clinical faculty and staff his expertise about the ways that genetic analysis might help address some of the complex social, cultural and medical implications of these differences.

Over the summer, he gave a keynote address entitled “Disorders/Differences of Sex Development: A World of Uncertainty” during Children’s National’s Research and Education Week, an annual celebration of research, education, innovation and scholarship at Children’s National and around the world. In January 2018, he shared a more clinically oriented version of the talk at a special Children’s National Grand Rounds session.

The educational objective of these talks is to inform researchers and providers about the mechanisms of differences of sex development (DSD), which are defined as congenital conditions in which the development of chromosomal, gonadal or anatomical sex is atypical.

The primary goal, though, is to really shine light on the complexity of this hot topic, and share how powerful genetic tools can be used to provide vital, concrete information for care providers, patients and families to assist with difficult treatment (and non-treatment) decisions.

“A minority of DSD cases are able to receive a genetic diagnosis today,” he points out. “But geneticists know how important it is to come to a diagnosis and so we seek to increase the number of patients who receive a concrete genetic diagnosis. It impacts genetic counseling and reproductive options, and provides a better ability to predict long term outcomes.”

“These differences impact physiology and medicine. We want to better understand the biology of reproduction, with an emphasis on finding ways to preserve fertility at all costs, and how these variations may lead to additional complications, including cancer risk.”

At conception, he explains, both XX and XY embryos have bipotential gonads capable of differentiating into a testis or an ovary, though embryos are virtually indistinguishable from a gender perspective up until six weeks in utero.

Whether or not a bipotential gonad forms is largely left up to the genetic makeup of the individual. For example, a gene in the Y chromosome (SRY) triggers a cascade of genes that lead to testis development. If there is no Y chromosome, it triggers a series of pro-female genes that lead to ovarian development.

Dr. Vilain notes that a variation of enzymes or transcription factors can occur at any single step of sex development and alter all the subsequent steps. Depending on the genotype, an individual may experience normal gonadal development, but abnormal development of the genitalia, for example.

He also noted that these genes are critical to determining the differences between men and women in non-gonadal tissues, including differences in gene expression within the brain. One study in the lab of investigator Matt Bramble, Ph.D., investigates if gonadal hormones impact sex differences in the brain by modifying the genome.

This work is a prime example of research informing the care provided to patients and families. Dr. Vilain is also a member of the multidisciplinary clinical team of the PROUD Clinic at Children’s National, a program completely devoted to caring for patients with a wide array of genetic and endocrine issues, including urogenital disorders and variations of sex development.

Human Rhinovirus

Finding the root cause of bronchiolitis symptoms

Human Rhinovirus

A new study shows that steroids might work for rhinovirus but not for respiratory syncytial virus.

Every winter, doctors’ offices and hospital emergency rooms fill with children who have bronchiolitis, an inflammation of the small airways in the lung. It’s responsible for about 130,000 admissions each year. Sometimes these young patients have symptoms reminiscent of a bad cold with a fever, cough and runny nose. Other times, bronchiolitis causes breathing troubles so severe that these children end up in the intensive care unit.

“The reality is that we don’t have anything to treat these patients aside from supportive care, such as intravenous fluids or respiratory support,” says Robert J. Freishtat, M.D., M.P.H., chief of emergency medicine at Children’s National Health System. “That’s really unacceptable because some kids get very, very sick.”

Several years ago, Dr. Freishtat says a clinical trial tested using steroids as a potential treatment for bronchiolitis. The thinking was that these drugs might reduce the inflammation that’s a hallmark of this condition. However, he says, the results weren’t a slam-dunk for steroids: The drugs didn’t seem to improve outcomes any better than a placebo.

But the trial had a critical flaw, he explains. Rather than having one homogenous cause, bronchiolitis is an umbrella term for a set of symptoms that can be caused by a number of different viruses. The most common ones are respiratory syncytial virus (RSV) and rhinovirus, the latter itself being an assortment of more than 100 different but related viruses. By treating bronchiolitis as a single disease, Dr. Freishtat says researchers might be ignoring the subtleties of each virus that influence whether a particular medication is useful.

“By treating all bronchiolitis patients with a single agent, we could be comparing apples with oranges,” he says. “The treatment may be completely different depending on the underlying cause.”

To test this idea, Dr. Freishtat and colleagues examined nasal secretions from 32 infants who had been hospitalized with bronchiolitis from 2011 to 2014 at 17 medical centers across the country that participate in a consortium called the 35th Multicenter Airway Research Collaboration. In half of these patients, lab tests confirmed that their bronchiolitis was caused by RSV; in the other half, the cause was rhinovirus.

From these nasal secretions, the researchers extracted nucleic acids called microRNAs. These molecules regulate the effects of different genes through a variety of different mechanisms, usually resulting in the effects of target genes being silenced. A single microRNA typically targets multiple genes by affecting messenger RNA, a molecule that’s key for producing proteins.

Comparing results between patients with RSV or rhinovirus, the researchers found 386 microRNAs that differed in concentration. Using bioinformatic software, they traced these microRNAs to thousands of messenger RNAs, looking for any interesting clues to important mechanisms of illness that might vary between the two viruses.

Their findings eventually turned up important differences between the two viruses in the NF-kB (nuclear factor kappa-light-chain-enhancer of activated B cells) pathway, a protein cascade that’s intimately involved in the inflammatory response and is a target for many types of steroids. Rhinovirus appears to upregulate the expression of many members of this protein family, driving cells to make more of them, and downregulate inhibitors of this cascade. On the other hand, RSV didn’t seem to have much of an effect on this critical pathway.

To see if these effects translated into cells making more inflammatory molecules in this pathway, the researchers searched for various members of this protein cascade in the nasal secretions. They found an increase in two, known as RelA and NFkB2.

Based on these findings, published online Jan. 17, 2018, in Pediatric Research, steroids might work for rhinovirus but not for RSV, notes Dr. Freishtat the study’s senior author.

“We’re pretty close to saying that you’d need to conduct a clinical trial with respect to the virus, rather than the symptoms, to measure any effect from a given drug,” he says.

Future clinical trials might test the arsenal of currently available medicines to see if any has an effect on bronchiolitis caused by either of these two viruses. Further research into the mechanisms of each type of illness also might turn up new targets that researchers could develop new medicines to hit.

“Instead of determining the disease based on symptoms,” he says, “we can eventually treat the root cause.”

Study co-authors include Kohei Hasegawa, study lead author, and Carlos A. Camargo Jr., Massachusetts General Hospital; Marcos Pérez-Losada, The George Washington University School of Medicine and Health Sciences; Claire E. Hoptay, Samuel Epstein and Stephen J. Teach, M.D., M.P.H., Children’s National; Jonathan M. Mansbach, Boston Children’s Hospital; and Pedro A. Piedra, Baylor College of Medicine.

Ashley Hill and Joyce Turner

New clues to detect rare pediatric cancers

Ashley Hill and Joyce Turner

Using germline and tumor testing and centralized pathology review, a research team that included D. Ashley Hill, M.D, and Joyce Turner found that Sertoli-Leydig cell tumor and gynandroblastoma are nearly always DICER1-related tumors.

Children’s National Health System researchers played a key role in a new study exploring the clinical and genetic qualities of a group of rare, potentially deadly cancers that affect infants, children and adolescents. The research team’s findings suggest that genetic testing for people at risk may aid in earlier, more accurate diagnoses of these cancers, leading to early-stage treatment that could greatly improve survival.

Ovarian sex cord-stromal tumors (OSCST) include juvenile granulosa cell tumors (JGCT), Sertoli-Leydig cell tumor (SLCT) and gynandroblastoma (GAB). Mutations in the DICER1 gene often have been noted in children with these cancers, as well as in those with a particularly lethal pediatric lung cancer called pleuropulmonary blastoma (PPB). All of these cancers are highly curable if caught early but, at later stages, can be aggressive and often fatal.

Using germline and tumor testing and centralized pathology review, the research team found that SLCT and GAB are nearly always DICER1-related tumors. There also may be a much stronger association between SLCT and DICER1 than was previously appreciated. The new findings have implications for earlier detection and diagnoses of these cancers, as well as for screening other family members. The study was published in the December 2017 edition of Gynecologic Oncology.

“These types of tumors are diverse, relatively rare and understudied,” says D. Ashley Hill, M.D., the study’s senior author and a professor in the Division of Pathology and Laboratory Medicine at Children’s National. “Sertoli-Leydig cell tumor, for instance, is a unique genetic and pathologic entity and this rare cancer of the ovaries can be hard to detect. Using the testing process from this study, we now may be able to classify these tumors more accurately.”

The study authors assessed the first 107 individuals enrolled in the International Ovarian and Testicular Stromal Tumor Registry. They obtained medical and family history, and they conducted central pathology review plus DICER1 gene sequencing on blood and tumor tissue. Thirty-six of 37 patients with SLCTs and all four patients with GABs they tested showed DICER1 mutations, and half of those with SLCT had germline or mosaic mutations. The team noted that individuals with predisposing DICER1 mutations had significantly better overall and recurrence-free survival.

Based on their findings, the study authors recommend:

  • Careful and ideally centralized pathologic review for all individuals with OSCST tumors
  • DICER1 testing for all those with SLCT and GAB and
  • Consideration of DICER1 testing for patients with other OSCSTs.

“Genetic testing may be useful for screening and diagnosing entire families if one family member tests positive for a DICER1 mutation, especially to determine if they are at risk for PPB. When we know who is at risk, we can protect all children in a family,” Dr. Hill says. “Ultimately we may be able to cure this deadly lung cancer, PPB, by identifying and performing computed tomography scans on people who are at risk, so we can catch these cancers early.”

Dr. Hill thinks future research may study children whose cancer was not detected early or has become resistant to chemotherapy. They also may explore ways to restore normal controls in cancer cells, so they follow normal paths of development, for the purpose of developing targeted treatments with fewer side effects than current therapies.

In addition to Dr. Hill, other Children’s National study co-authors include Amanda Field, M.P.H., Department of Pathology; Weiying Yu, Ph.D., Department of Pathology; and Joyce Turner, director of the Cancer Genetic Counseling Program in Children’s Rare Disease Institute.

Other members of the study team are experts from the International Ovarian and Testicular Stromal Tumor Registry, Children’s Minnesota, Washington University Medical Center, Carolinas Health Care System, University of Texas MD Anderson Cancer Center, Harvard Medical School, University of Colorado School of Medicine, Clinic of Pediatrics (Dortmund, Germany), National Cancer Institute and Dana-Farber Cancer Institute.

Research reported in this story was supported by the National Institutes of Health under award number NCI R01CA143167, The Parson’s Foundation, St. Baldrick’s Foundation, Pine Tree Apple Tennis Classic Foundation, Hyundai Hope on Wheels, the Randy Shaver Cancer Research and Community Fund, the German Childhood Cancer Foundation and the Intramural Research Program of the Divisions of Cancer Epidemiology and Genetics, National Cancer Institute.

Carlos Ferreira Lopez

Researchers discover new gene variant for inherited amino acid-elevating disease

Carlos Ferreira Lopez

What’s known

Hypermethioninemia is a rare condition that causes elevated levels of methionine, an essential amino acid in humans. This condition stems from genetic variations inherited from one or both parents. Some forms of hypermethioninemia are recessive, meaning that two copies of defective genes are necessary to cause this disease. Other forms are dominant, meaning that only one copy can cause hypermethioninemia. Recessive forms of the disease tend to have more serious consequences, causing elevated methionine levels throughout life and leading to changes in the brain’s white matter visible on magnetic resonance imaging that can cause neurological problems. The dominant forms are generally thought to be largely benign and require minimal follow-up.

What’s new

A research team led by Carlos Ferreira Lopez, M.D., a medical geneticist at Children’s National Health System, discovered a new gene variant that had not been associated with hypermethioinemia previously when an infant who had tested positive for elevated methionine on newborn blood-spot screening came in for a follow-up evaluation. While the majority of dominant hypermethioninemia are caused by a genetic mutation known as MAT1A p.Arg264His, the child didn’t have this or any of the common recessive hypermethioninemia mutations. Genetic testing showed that she carried a different mutation to the MAT1A gene known as p.Ala259Val, of which she carried only a single copy. The child fit the typical profile of having the dominant form of the disease, with methionine levels gradually declining over time. Testing of her mother showed that she carried the same gene variant, with few consequences other than a hepatitis-like illness as a child. Because liver disease can accompany dominant hypermethioninemia, the infant’s doctors will continue periodic follow-up to ensure she remains healthy.

Questions for future research

Q: Besides the potential for harmful liver effects, does dominant hypermethioninemia have other negative consequences?

Q: How common is this gene variant, and are certain people at more risk for carrying it?

Source: Confirmation that MAT1A p.Ala259Val mutation causes autosomal dominant hypermethioninemia. Muriello, M.J., S. Viall, T. Bottiglieri, K. Cusmano-Ozog and C. R. Ferreira. Published by Molecular Genetics and Metabolism Reports December 2017.

Debra Regier

U.S. leads the pack in medical genetics and genomic medicine

Debra Regier

Debra S. Regier, M.D., Ph.D., a pediatric geneticist who is the director of education in the Rare Disease Institute at Children’s National Health System.

It long has been recognized that traits can be passed down from parents to offspring in humans, just as occurs with other species. But medical genetics – the scientific field that covers the diagnoses and management of heritable diseases – didn’t get its start until recently. Only in the past century or so have researchers devoted significant resources to better understanding the patterns of inheritance or syndromes that have a genetic cause.

Although this research has taken place around the world, the United States is well established as a leader in this field, say authors of an article published in the July 2017 issue of Molecular Genetics & Genomic Medicine.

This article covers the history of the field, demographics of genetic conditions, legislation that relates to genetic disease and its burdens and highlights a long list of American researchers who have genetic diseases named after them. The list, comprising 86 scientists in a diverse array of fields including pediatrics, pathology, dermatology and oncology, is a testament to the devotion of these researchers to understanding a specific condition or, sometimes, group of related conditions.

Their dedication, often spanning the entirety of their career, contributed to the wealth of knowledge now available that’s improved the outcomes of many individuals with these diseases, says article co-author Debra S. Regier, M.D., Ph.D., a pediatric geneticist who is the director of education in the Rare Disease Institute at Children’s National Health System.

“Because these researchers spent their lives characterizing these disorders,” Dr. Regier says, “we can use that information when we find a child who fits the scheme of a particular disorder to tell families what they can expect – and in many instances – explain how best to treat them.”

Beyond tracking heritable disease traits through families, modern genomics also has led to the ability to recognize specific genes that cause various disorders, speeding the process of diagnosis and intervention.

“There are about 7,000 rare diseases, and sometimes it’s hard to know where to start with patients because it’s unclear which one they have,” Dr. Regier says. “By doing genetic testing, we can give families information, offer a prognosis and start treatments that have helped children who came before them with the same genetic mutation.”

Dr. Regier speculates that U.S. leadership in this field is largely due to the presence of large academic centers that are devoted to the study of genetic disorders, like Children’s National. Such centers give researchers dedicated time and space to better understand genetic diseases, both on a basic and an applied level. Despite the country’s stature as a frontrunner in this research arena, the United States has a relatively small medical genetics community, which researchers can use to their advantage.

“If I find a child with a rare genetic disorder, I can call up the world expert on this condition to share and receive information,” Dr. Regier adds. “That’s relatively rare in science, but it happens all the time in our field because we’re so small.”

Although the United States has contributed to many medical genetics and genomic medicine advances that have helped patients worldwide, the history of the field in this country wasn’t always laudable, Dr. Regier says. The article also addresses the eugenics movement during the early 20th century. For example, in 1907, Indiana became the first state to enact involuntary sterilization legislation, an effort to remove “flawed” individuals from the gene pool that was followed by similar laws in several other states. In 1924, Virginia enacted a law that allowed eugenic sterilization of people with intellectual disabilities that was upheld by the U.S. Supreme Court in 1927.

After atrocities committed by the Nazis during World War II, when the repercussions of these policies became more clear, these laws were gradually abolished.

More recent legislation, the article’s authors write, aims to protect individuals from discrimination for genetic disorders. Thus far, 35 states have laws on the books protecting against employment discrimination, and 48 states passed legislation against health insurance discrimination based on genetic information. Twenty-four states endorsed statutes that limit the use of genetic information for other types of insurance, including life, long-term care and disability.

The article is the first of a two-part series and was followed Nov. 26, 2017 by a second article addressing the current status of prenatal testing, reproductive options and reproductive law in the United States, as well as newborn screening, genetic services, rare disease registries, and education and training in genetics.

“We can take pride in our progress, while still acknowledging that we have a long way to go in this field,” Dr. Regier says.

boy sitting in wheelchair

Long-term glucocorticoids help patients with DMD

boy sitting in wheelchair

Glucocorticoids, a class of steroid hormone medications, have definite long-term benefits for patients with Duchenne muscular dystrophy, including extending muscle strength and function over years and decreasing the risk of death.

There is currently no cure for the devastating, progressive neuromuscular disease known as Duchenne muscular dystrophy (DMD). But clinics that treat patients with this disease have long relied on a class of steroid hormone medications, known as glucocorticoids, to ease its symptoms. Over weeks and months, these drugs help preserve muscle strength and function. Though these short-term benefits have been clear, some physicians have balked at using these medications over the long term – their benefits over years was unknown, making their potential side effects not worth the risk.

Now, a study published online Nov. 22, 2017 in The Lancet suggests that these medicines have definite long-term benefits, including extending muscle strength and function over years and even decreasing the risk of death. These findings support what has become the standard prescribing practice at many clinics and could help sway parents who are on the fence about their children receiving these therapies.

DMD is characterized by loss of muscle function and progressive muscle weakness that begins in the lower limbs and typically affects males due to the location of its causative genetic mutation. Patients with this devastating neuromuscular disease often receive glucocorticoids at some point as the disease progresses. Studies since the late 1980s have confirmed short-term benefits of treating with these drugs, including delaying the loss of muscle strength and function.

However, no prospective study had followed long-term glucocorticoid use in these patients, explains Heather Gordish-Dressman, Ph.D., a statistician at the Center for Genetic Medicine Research at Children’s National Health System and study senior author. The lack of long-term data led some physicians to delay treatment with these drugs since their use can lead to significant side effects, including weight gain, delayed growth and immunosuppression.

“Everyone had the idea that long-term use could be beneficial, but nobody had really rigorously tested that,” Gordish-Dressman says.

Craig McDonald, M.D., a University of California, Davis, professor and lead author of the study adds: “This long-term, follow-up study provides the most definitive evidence that the benefits of glucocorticoid steroid therapy in DMD extend over the entire lifespan. Most importantly, patients with Duchenne using glucocorticoids experienced an overall reduction in risk of death by more than 50 percent.”

To determine whether the short-term benefits of these drugs extend in the long term, Gordish-Dressman and researchers scattered across the country tapped data from the Cooperative International Neuromuscular Research Group’s Duchenne Natural History Study, the largest study to follow patients with DMD over time. They gathered data for 440 males with DMD aged 2 to 8 years old. About 22 percent had never taken glucocorticoids or had taken these medications for less than one year. The remainder had taken them for at least one year or longer.

By analyzing data for up to 10 years for these patients, the long-term benefits became clear, Gordish-Dressman adds. Glucocorticoid treatment for patients who received it for more than one year delayed loss of mobility milestones that affected the lower limbs by 2.1 to 4.4 years, such as going from supine to standing, climbing four stairs, and walking or running 10 meters, compared with boys who received the medications for less than one year. Long-term glucocorticoid therapy also delayed the loss of mobility milestones in upper limbs, such as hand function, performing a full overhead reach and raising the hands to the mouth.

Long-term use of these drugs also was associated with a decreased risk of death over the length of the study. Furthermore, deflazacort – a glucocorticoid recently approved by the Food and Drug Administration specifically for DMD – delayed loss of the ability to move from supine position to standing, walking and hand-to-mouth function significantly better than prednisone, the most popular glucocorticoid prescribed for DMD in the United States.

Gordish-Dressman says that glucocorticoids are currently a standard part of care for most patients with DMD, with some clinics prescribing these medications as soon as patients are diagnosed. However, because long-term data supporting their use was lacking, some physicians hesitate to prescribe glucocorticoids until the disease had progressed, when patients already had lost significant function.

Future studies will examine which medicines in this class of drugs and which regimens might offer the most benefits as well as how benefits differ with longer-term medication use.

Research reported in this news release was supported by the U.S. Department of Education/NIDRR, H133B031118 and H133B090001; the U.S. Department of Defense, W81XWH-12-1-0417; National Institute of Arthritis and Musculoskeletal and Skin Diseases of the National Institutes of Health under award number R01AR061875; and Parent Project Muscular Dystrophy.

Javad Nazarian

Liquid biopsy spots aggressive brainstem cancer earlier

Javad Nazarian

A Children’s National research team led by Javad Nazarian, Ph.D., M.S.C., tested whether circulating tumor DNA in patients’ blood and cerebrospinal fluid would provide an earlier warning that pediatric brainstem tumors were growing.

A highly aggressive pediatric brain cancer can be spotted earlier and reliably by the genetic fragments it leaves in biofluids, according to a study presented by Children’s National Health System researchers at the Society for Neuro-Oncology (SNO) 2017 Annual Meeting. The findings may open the door to non-surgical biopsies and a new way to tell if these tumors are responding to treatment.

Children diagnosed with diffuse midline histone 3 K27M mutant (H3K27M) glioma face a poor prognosis with a median survival time of only nine months after the pediatric brainstem cancer is diagnosed. Right now, clinicians rely on magnetic resonance imaging (MRI) to gauge how tumors are growing, but MRI can miss very small changes in tumor size. The Children’s research team led by Javad Nazarian, Ph.D., M.S.C., scientific director of Children’s Brain Tumor Institute, tested whether circulating tumor DNA in patients’ blood and cerebrospinal fluid would provide an earlier warning that tumors were growing. Just as a detective looks for fingerprints left at a scene, the new genetic analysis technique can detect telltale signs that tumors leave behind in body fluids.

“We continue to push the envelope to find ways to provide hope for children and families who right now face a very dismal future. By identifying these tumors when they are small and, potentially more responsive to treatment, our ultimate aim is to help children live longer,” says Eshini Panditharatna, B.A., study lead author. “In addition, we are hopeful that the comprehensive panel of tests we are constructing could identify which treatments are most effective in shrinking these deadly tumors.”

The researchers collected biofluid samples from 22 patients with diffuse intrinsic pontine glioma (DIPG) who were enrolled in a Phase I, Pacific Pediatric Neuro-Oncology Consortium clinical trial. Upfront and longitudinal plasma samples were collected with each MRI at various stages of disease progression. The team developed a liquid biopsy assay using a sensitive digital droplet polymerase chain reaction system that precisely counts individual DNA molecules.

“We detected H3K27M, a major driver mutation in DIPG, in about 80 percent of cerebrospinal fluid and plasma samples,” Panditharatna says. “Similar to adults with central nervous system (CNS) cancers, cerebrospinal fluid of children diagnosed with CNS cancers has high concentrations of circulating tumor DNA. However, after the children underwent radiotherapy, there was a dramatic decrease in circulating tumor DNA for 12 of the 15 patients (80 percent) whose temporal plasma was analyzed.”

Nazarian, the study senior author adds: “Biofluids, like plasma and cerebrospinal fluid, are suitable media to detect and measure concentrations of circulating tumor DNA for this type of pediatric glioma. Liquid biopsy has the potential to complement tissue biopsies and MRI evaluation to provide earlier clues to how tumors are responding to treatment or recurring.”

Support for this liquid biopsy study was provided by the V Foundation, Goldwin Foundation, Pediatric Brain Tumor Foundation, Smashing Walnuts Foundation, the Zickler Family Foundation, the Piedmont Community Foundation, the Musella Foundation, the Mathew Larson Foundation and Brain Tumor Foundation for Children.

macrophage

Improving treatment success for Duchenne muscular dystrophy

macrophage

Macrophages, white blood cells involved in inflammation, readily take up a new medicine for Duchenne muscular dystrophy and promote its sustained delivery to regenerating muscle fibers long after the drug has disappeared from circulation.

Chronic inflammation plays a crucial role in the sustained delivery of a new type of muscular dystrophy drug, according to an experimental model study led by Children’s National Health System.

The study, published online Oct. 16, 2017 in Nature Communications, details the cellular mechanisms of morpholino antisense drug delivery to muscles. Macrophages, white blood cells involved in inflammation, readily take up a new medicine for Duchenne muscular dystrophy (DMD) and promote its sustained delivery to regenerating muscle fibers long after the drug has disappeared from circulation.

Until recently, the only approved medicines for DMD targeted its symptoms, rather than the root genetic cause. However, in 2016 the Food and Drug Administration approved the first exon-skipping medicine to restore dystrophin protein expression in muscle: Eteplirsen, an antisense phosphorodiamidate morpholino oligomer (PMO). The drug had shown promise in preclinical studies but had variable and sporadic results in clinical trials.

The Children’s National study adds to the understanding of how this type of medicine targets muscle tissue and suggests a path to improve treatments for DMD, which is the most common and severe form of muscular dystrophy and currently has no cure, explains study co-leader James S. Novak, Ph.D., a principal investigator in Children’s Center for Genetic Medicine Research.

Because the medication vanishes from the blood circulation within hours after administration, Children’s research efforts have focused on the mechanism of delivery to muscle and on ways to increase its cellular uptake – and, by extension, its effectiveness. However, researchers understand little about how this medication actually gets delivered to muscle fibers or how the disease pathology impacts this process, knowledge that could offer new ways of boosting both its delivery and effectiveness, says Terence Partridge, Ph.D., study co-leader and principal investigator in Children’s Center for Genetic Medicine Research.

To investigate this question, Novak, Partridge and colleagues used an experimental model of DMD that carries a version of the faulty DMD gene that, like its human counterparts, destroys dystrophin expression. To track the route of the PMO into muscle fibers, they labeled it with a fluorescent tag. The medicine traveled to the muscle but only localized to patches of regenerating muscle where it accumulated within the infiltrating macrophages, immune cells involved in the inflammatory response that accompanies this process. While PMO is rapidly cleared from the blood, the medication remained in these immune cells for up to one week and later entered muscle stem cells, allowing direct transport into regenerating muscle fibers. By co-administering the PMO with a traceable DNA nucleotide analog, the research team was able to define the stage during the regeneration process that promotes heightened uptake by muscle stem cells and efficient dystrophin expression in muscle fibers.

“These macrophages appear to extend the period of availability of this medication to the satellite cells and muscle fibers at these sites,” Partridge explains. “Since the macrophages are acting as long-term storage reservoirs for prolonged delivery to muscle fibers, they could possibly represent new therapeutic targets for improving the uptake and delivery of this medicine to muscle.”

Future research for this group will focus on testing whether macrophages might be used as efficient delivery vectors to transport eteplirsen to the muscle, which would avert the rapid clearance currently associated with intravenous delivery.

“Understanding exactly how different classes of exon-skipping drugs are delivered to muscle could open entirely new possibilities for improving future therapeutics and enhancing the clinical benefit for patients,” Novak adds.

What Children’s has learned about congenital Zika infection

Roberta DeBiasi

Roberta DeBiasi, M.D., M.S., outlined lessons learned during a pediatric virology workshop at IDWeek2017, one of three such Zika presentations led by Children’s National research-clinicians during this year’s meeting of pediatric infectious disease specialists.

The Congenital Zika Virus Program at Children’s National Health System provides a range of advanced testing and services for exposed and infected fetuses and newborns. Data that the program has gathered in evaluating and managing Zika-affected pregnancies and births may offer instructive insights to other centers developing similar programs.

The program evaluated 36 pregnant women and their fetuses from January 2016 through May 2017. Another 14 women and their infants were referred to the Zika program for postnatal consultations during that time.

“As the days grow shorter and temperatures drop, we continue to receive referrals to our Zika program, and this is a testament to the critical need it fulfills in the greater metropolitan D.C. region,” says Roberta L. DeBiasi, M.D., M.S., chief of the Division of Pediatric Infectious Diseases and co-leader of the program. “Our multidisciplinary team now has consulted on 90 dyads (mothers and their Zika-affected fetuses/infants). The lessons we learned about when and how these women were infected and how their offspring were affected by Zika may be instructive to institutions considering launching their own programs.”

Dr. DeBiasi outlined lessons learned during a pediatric virology workshop at IDWeek2017, one of three such Zika presentations led by Children’s National research-clinicians during this year’s meeting of pediatric infectious disease specialists.

“The Zika virus continues to circulate in dozens of nations, from Angola to the U.S. Virgin Islands. Clinicians considering a strategic approach to managing pregnancies complicated by Zika may consider enlisting an array of specialists to attend to infants’ complex care needs, including experts in fetal imaging, pediatric infectious disease, physical therapists, audiologists, ophthalmologists and radiologists skilled at reading serial magnetic resonance images as well as ultrasounds,” Dr. DeBiasi says. “At Children’s we have a devoted Zika hotline to triage patient and family concerns. We provide detailed instructions for referring institutions explaining protocols before and after childbirth, and we provide continuing education for health care professionals.”

Of the 36 pregnant women possibly exposed to Zika during pregnancy seen in the program’s first year, 32 lived in the United States and traveled to countries where Zika virus was circulating. Two women had partners who traveled to Zika hot zones. And two moved to the Washington region from places where Zika is endemic. Including the postnatal cases, 89 percent of patients had been bitten by Zika-tainted mosquitoes, while 48 percent of women could have been exposed to Zika via sex with an infected partner.

Twenty percent of the women were exposed before conception; 46 percent were exposed to Zika in the first trimester of pregnancy; 26 percent were exposed in the second trimester; and 8 percent were exposed in the final trimester. In only six of 50 cases (12 percent) did the Zika-infected individual experience symptoms.

Zika infection can be confirmed by detecting viral fragments but only if the test occurs shortly after infection. Twenty-four of the 50 women (nearly 50 percent) arrived for a Zika consultation outside that 12-week testing window. Eleven women (22 percent) had confirmed Zika infection and another 28 percent tested positive for the broader family of flavivirus infections that includes Zika. Another detection method picks up antibodies that the body produces to neutralize Zika virus. For seven women (14 percent), Zika infection was ruled out by either testing method.

“Tragically, four fetuses had severe Zika-related birth defects,” Dr. DeBiasi says. “Due to the gravity of those abnormalities, two pregnancies were not carried to term. The third pregnancy was carried to term, but the infant died immediately after birth. The fourth pregnancy was carried to term, but that infant survived less than one year.”