little girl with cancer

A destination for pediatric oncology care: Children’s National Hospital’s T-cell therapy trials

When children are diagnosed with pediatric cancer, most doctors are forced to reach for the same standard therapies that were available decades ago. Research oncologists at Children’s National Hospital are changing that with clinical trials that will hopefully train the body’s immune system – specifically its T cells – to fight the tumors.

Holly Meany, M.D., and her colleague Amy Hont, M.D., oncologists and research scientists at the Center for Cancer and Immunology Research, have put together a pair of clinical trials that are investigating two pathways for using T cells to go after solid tumors.

“At Children’s National, we have a novel immunotherapy to offer to patients with relapsed or refractory solid tumors,” said Meany, director of the Solid Tumor Program. “This is a patient population who has failed standard therapy, so new technologies and treatments are always needed in this group.”

Where we started

Meany’s trial laid the foundation. She began the center’s research using a patient’s own blood sample to develop a targeted therapy and evaluate the safety and efficacy of this approach. In her study, scientists isolated the T cells, grew millions in a lab and reinfused them into the patient. The cells were replicated in an environment that was rich in three proteins that are commonly found on the surface of solid tumor cancer cells.

“Our hope and hypothesis are that when we give the T cells back to the patient, those T cells circulate and hunt down the cancer cells that have the tumor proteins,” Meany said. “We are hoping to use the patient’s own immune system to attack the cancer in an enduring way.”

Where we are headed

Hont’s phase 1 trial, which is currently recruiting participants, builds on Meany’s work using a healthy donor whose T cells have not been impacted by chemotherapy or other treatments. The cells can be prepared, stored and readily available for patients who need them. They are also matched through specific proteins on the patient’s own cells to bolster their effectiveness. The participants in this trial have Wilms tumors, rhabdomyosarcoma, neurosarcoma, soft tissue sarcoma or neuroblastoma, but conventional therapies including chemotherapy, radiation or surgery were unable to fully treat the disease.

In both studies, Hont said that the T cells have been given in an outpatient setting with fewer side effects compared to other cancer treatments aimed at high-risk malignancies.

“This allows patients to really maintain a good quality of life during a particularly hard time,” Hont said. “Also, these T cells are designed to act in the body the way that our immune system acts in a physiologic way. This means patients typically don’t have the severe side effects that we think of with chemotherapy or other therapies.”

Children’s National leads the way

The team at Children’s National is one of the few in the country to offer this kind of T-cell therapy for solid tumors. “Immunotherapy has been challenging for this patient population because the tumors are adept at finding out ways to evade treatment,” Hont said. “Giving patients a chance to receive a targeted T-cell therapy, while also maintaining a high quality of life, is something that’s special here.”

illustration of a nuclesome

Researchers publish first-ever atlas of cancerous mutations in histones

Leading genetic researchers at Children’s National Hospital have published the first pan-cancer atlas of key mutations that can drive molecular changes leading to tumors, creating a roadmap that could lead to new treatments for brain tumors and other cancers.

The research – published in npj Genomic Medicine – presents the first-of-its-kind atlas of histone mutations across pediatric, adolescent/young adult and adult cancers. The novel genetic work offers a framework allowing specific cancers to be redefined in the context of changes in histones, which are essential proteins that provide the structural support for chromosomes.

The big picture

“One of the major challenges that we face every day with pediatric, aggressive tumors, including pediatric high-grade gliomas, is that these tumors grow fast. Doctors often have to give patients 9 to 12 months from diagnosis,” said Javed Nazarian, Ph.D., scientific director of the Brain Tumor Institute at Children’s National and principal investigator at the Center for Genetic Medicine Research. “Children’s National has put together a team of clinicians that are truly devoted to finding a therapy for pediatric high-grade gliomas and aggressive pediatric brain tumors. Our dedicated team empowers translational research, from bench to bedside and reverse translation.”

In 2023, the American Cancer Society estimates that 9,910 children under age 15 will be diagnosed with cancer, making it the second leading cause of death among children. Because of treatment advances, 85% will survive, but many will be left with lifelong disabilities from their treatment. Nazarian and his team believe that identifying the underlying molecular alterations leading to cancers will be essential to finding new therapies that extend life expectancies and preserve quality of life.

The fine print

Histones are essential cellular structures, which prevent DNA from getting tangled. Nazarian and other researchers are investigating whether errors in histones could lead to cancers, including high-grade gliomas and other particularly sinister tumors that can strike young children. By mapping the mutations of the histone-encoding genes, Nazarian and his team believe they can find the drivers of tumors in many pediatric and adult cancers. In studying more than 12,000 tumors for the pan-cancer atlas, they cataloged patient ages, survival outcomes and tumor locations to reveal important trends among different cancers.

Overall, the team found that 11% of tumors had somatic histone mutations, with the highest rates observed among chondrosarcoma, a type of bone cancer (67%); pediatric high-grade glioma, a type of cancer that attacks glial cells in the brain and spinal cord (>60%); and lymphoma, a category of cancers in the lymph system (>30%).

“I think one implication of our study is that we are looking at the epigenomic changes of these mutations in a new light,” Nazarian said. “These mutations are not just specific to a particular tumor type, but they are indeed across a large spectrum of cancer types, and they come in different flavors that could potentially show a new avenue for treatments.”

newborn baby with bandaid on heel

JAMA Pediatrics editorial: A better approach for newborn screening

The medical community has an opportunity to update its approach to newborn screening (NBS) to be prepared for emerging technological advancements that will help diagnose children with rare diseases from their first weeks of life, according to an editorial from a leading Children’s National Hospital researcher published in JAMA Pediatrics.

“In health care, we are seeing ways in which we can identify more children who have rare diseases even earlier, in the newborn period, rather than waiting for children to develop symptoms or experience irreversible changes,” said Beth Tarini, M.D., M.S., M.B.A., associate director of the Center for Translational Research. “We have continued innovations in screening technology – with more on the way – that can be added to the screening programs overseen by all 50 states. Updating how we approach newborn screening presents an incredible opportunity for doctors and their patient-families.”

Why it matters

Newborn screening happens before the baby leaves the hospital, generally with a prick of the heel to take a small sample of blood to look for several dozen rare, debilitating disorders such as sickle cell disease, congenital hypothyroidism and cystic fibrosis. The current screening system has grown successfully for roughly 60 years and creates a network of state programs. Along the way, researchers have had extensive debates about which disorders to include, based on whether there are treatments and options for patients.

Dr. Tarini, a pediatrician who has done extensive research on NBS and related policies, said that the existing screening programs across all 50 states should be modernized, with federal research support and funding, to create a unified “learning newborn screening system” that derives information from the 4 million babies born each year and provides feedback to the medical community about best practices for babies who are diagnosed with a rare disease or at risk for developing one.

“A new approach will require resources and infrastructure, but as the technology advances, we should change our system to leverage the experience of doctors, patients, and NBS programs across the country,” Dr. Tarini said. “We have the will, the experience and the ability to transform the care for children with rare disease.”

Read the full editorial in JAMA Pediatrics.

photo of muscle collagen

New Becker muscular dystrophy drug on the horizon

photo of muscle collagen

Muscular dystrophies are a collection of genetic disorders that affect boys and cause progressive loss of muscle strength and disability throughout childhood. They impact the protein dystrophin, and other proteins associated with it, which helps strengthen muscles and protect them from injury.

A new corticosteroid – vamorolone – improves symptoms of Becker muscular dystrophy (BMD) with fewer side effects than the off-label treatments currently offered to patients, according to new research from Children’s National Hospital published in iScience.

Currently, there are no drugs approved to treat BMD, an inherited disorder that causes progressive muscle weakness. In preclinical models, daily treatment with vamorolone improved muscle strength and structure with results comparable to prednisolone, which is sometimes prescribed to patients with BMD. Unlike prednisolone, vamorolone is not known to stunt growth, weaken bone and cause negative behaviors.

“Patients with muscular dystrophy can fall anywhere on the spectrum from asymptomatic to facing life-threatening cardiac complications,” said Christopher Heier, Ph.D., principal investigator at the Center for Genetic Medicine Research at Children’s National. “We are excited to have our eye on a drug that may help manage the disease progression, without all the harmful side effects of the steroids currently being offered.”

The big picture

Muscular dystrophies are a collection of genetic disorders that affect boys and cause progressive loss of muscle strength and disability throughout childhood. They impact the protein dystrophin, and other proteins associated with it, which helps strengthen muscles and protect them from injury.

The FDA has approved four drugs to help mitigate the impact of Duchenne muscular dystrophy (DMD), the most severe and most common form of the disease, with dozens more drugs in the research pipeline for that disease subtype. In some cases, these drugs convert DMD into BMD, which is less severe but still greatly affects the quality of life. As a result, the number of patients living with BMD is growing, yet only two drugs are being studied to treat the Becker form of the disease.

Why we’re excited

The Food and Drug Administration is nearing approval for vamorolone to treat DMD. Researchers including Nikki McCormack, Ph.D., a postdoctoral fellow at Children’s National, found it has an added characteristic that makes it particularly helpful to BMD. “Excitingly, by reducing inflammatory signaling in the muscle, we find vamorolone can actually help to correct the underlying dystrophin protein deficiency in BMD through a newly discovered RNA-targeting mechanism.”

Investigators at Children’s National have been interested in expanding vamorolone’s possible use to BMD. Their work builds upon research finished late last year, when they created the first preclinical model to study drugs that could treat BMD. The model provides tremendous hope for those suffering from BMD around the world.

“By creating a pre-clinical model to test possible treatments, we are creating hope for boys living with this life-changing disorder,” said Alyson Fiorillo, Ph.D., principal investigator at the Center for Genetic Medicine Research at Children’s National. “This model, and the drugs it will lead to, will revolutionize how we treat those children living with this disorder.”

two balls -- one with a sad face and one with a happy face

Understanding quality of life for children with hypochondroplasia

two balls -- one with a sad face and one with a happy face

Children with hypochondroplasia have low parent-reported quality of life (QOL) scores, according to findings from researchers at Children’s National Hospital.

Children with hypochondroplasia have low parent-reported quality of life (QOL) scores, according to findings from researchers at Children’s National Hospital. The data, presented as part of a poster presentation at the Pediatric Endocrine Society (PES) annual meeting, also found older age and shorter height may further exacerbate effects on QOL.

Hypochondroplasia is a skeletal dysplasia that has an estimated prevalence of 1 in 15,000-40,000 births and is characterized by short stature and disproportionately short arms, legs, hands and feet.

Participants of the study were 13 prepubertal boys ages 3-11 and 13 prepubertal girls ages 3-10, all with height z-scores < -2.25 SD and genetically proven hypochondroplasia.

Moving the field forward

Effective medications for growth in patients with hypochondroplasia are limited. Children’s National is participating in an ongoing study of a new drug, vosoritide, used to treat children in this population and will compare pre- and post-intervention QOL scores.

How will this work benefit patients?

Understanding QOL of children with hypochondroplasia will help clinicians provide better care and support.

“Knowing how a medication affects QOL will help guide counseling about use of this medication,” says Nicole Rangos, M.D., pediatric resident at Children’s National and lead author of the study.

Dr. Rangos received the Human Growth Foundation Award for best growth-related abstract at the PES annual meeting in May 2023. The award was established in 2007 to encourage fellows training in pediatric endocrinology to pursue clinical and bench investigations that may lead to a better understanding of human growth.

 

Attendees at the inaugural symposium on AI in Pediatric Health and Rare Diseases

AI: The “single greatest tool” for improving access to pediatric healthcare

Attendees at the inaugural symposium on AI in Pediatric Health and Rare Diseases

The daylong event drew experts from the Food and Drug Administration, Pfizer, Oracle Health, NVIDIA, AWS Health and elsewhere to start building a community aimed at using data for the advancement of pediatric medicine.

The future of pediatric medicine holds the promise of artificial intelligence (AI) that can help diagnose rare diseases, provide roadmaps for safer surgeries, tap into predictive technologies to guide individual treatment plans and shrink the distance between patients in rural areas and specialty care providers.

These and dozens of other innovations were contemplated as scientists came together at the inaugural symposium on AI in Pediatric Health and Rare Diseases, hosted by Children’s National Hospital and the Fralin Biomedical Research Institute at Virginia Tech. The daylong event drew experts from the Food and Drug Administration, Pfizer, Oracle Health, NVIDIA, AWS Health and elsewhere to start building a community aimed at using data for the advancement of pediatric medicine.

“AI is the single greatest tool for improving equity and access to health care,” said symposium host Marius George Linguraru, D.Phil., M.A., M.Sc., principal investigator at the Sheikh Zayed Institute for Pediatric Surgical Innovation. “As a population, kids are vastly underrepresented in scientific research and resulting treatments, but pediatric specialties can use AI to provide medical care to kids more efficiently, more quickly and more effectively.”

What they’re saying

Scientists shared their progress in building digital twins to predict surgical outcomes, enhancing visualization to increase the precision of delicate interventions, establishing data command centers to anticipate risks for fragile patients and more. Over two dozen speakers shared their vision for the future of medicine, augmented by the power of AI:

  • Keynote speaker Subha Madhavan, Ph.D., vice president and head of AI and machine learning at Pfizer, discussed various use cases and the potential to bring drugs to market faster using real-world evidence and AI. She saw promise for pediatrics. “This is probably the most engaging mission: children’s health and rare diseases,” she said. “It’s hard to find another mission that’s as compelling.”
  • Brandon J. Nelson, Ph.D., staff fellow in the Division of Imaging, Diagnostics and Software Reliability at the Food and Drug Administration, shared ways AI will improve diagnostic imaging and reduce radiation exposure to patients, using more advanced image reconstruction and denoising techniques. “That is really our key take-home message,” he said. “We can get what … appear as higher dose images, but with less dose.”
  • Daniel Donoho, M.D., a neurosurgeon at Children’s National, introduced the audience to the potential of “Smart ORs”: operating rooms where systems can ingest surgery video and provide feedback and skill assessments. “We have to transform the art of surgery into a measurable and improvable scientific practice,” he said.
  • Debra Regier, M.D., chief of Genetics and Metabolism at Children’s National, discussed how AI could be used to diagnose and treat rare diseases by conducting deep dives into genetics and studying dysmorphisms in patients’ faces. Already, Children’s National has designed an app – mGene – that measures facial features and provides a risk score to help anyone in general practice determine if a child has a genetic condition. “The untrained eye can stay the untrained eye, and the family can continue to have faith in their provider,” she said.

What’s next

Linguraru and others stressed the need to design AI for kids, rather than borrow it from adults, to ensure medicine meets their unique needs. He noted that scientists will need to solve challenges, such as the lack of data inherent in rare pediatric disorders and the simple fact that children grow. “Children are not mini-adults,” Linguraru said. “There are big changes in a child’s life.”

The landscape will require thoughtfulness. Naren Ramakrishnan, Ph.D., director of the Sanghani Center for Artificial Intelligence & Analytics at Virginia Tech and symposium co-host, said that scientists are heading into an era with a new incarnation of public-private partnerships, but many questions remain about how data will be shared and organizations will connect. “It is not going to be business as usual, but what is this new business?” he asked.

DNA molecule

New genetic cause of overgrowth syndrome caused by SPIN4 variant

DNA molecule

A researcher at Children’s National Hospital identified a new genetic cause of overgrowth syndrome in Spindlin Family Member 4 (SPIN4), an epigenetic reader, in which a loss-of-function variant in SPIN4 causes a prenatal onset of extreme tall stature in a male individual, inherited in an X-linked semi-dominant fashion.

Overgrowth syndrome is a rare genetic childhood disorder commonly caused by pathogenic genetic variants in epigenetic writers, such as DNA or histone methyltransferases. A researcher at Children’s National Hospital identified a new genetic cause of overgrowth syndrome in Spindlin Family Member 4 (SPIN4), an epigenetic reader, in which a loss-of-function variant in SPIN4 causes a prenatal onset of extreme tall stature in a male individual, inherited in an X-linked semi-dominant fashion.

The study, published in JCI Insight, reported Spin4 knockout pre-clinical models recapitulating human phenotype and found evidence that SPIN4 normally binds specific modified histone peptides, promotes canonical WNT signaling and inhibits cell proliferation in vitro and that the identified frameshift variant lost all of these functions.

How does this work move the field forward?

“These findings prove that SPIN4 negatively regulates mammalian body growth, and loss of SPIN4 causes an overgrowth syndrome in humans and pre-clinical models, expanding our knowledge of the epigenetic regulation of human growth and development,” says Youn Hee Jee, M.D., endocrinologist at Children’s National and co-senior author of the study.

What did you find that excites you?

SPIN4 is the first epigenetic reader gene identified to cause overgrowth syndrome in humans.

“Understanding the full characteristics of the phenotype caused by SPIN4 variants will greatly advance our knowledge in epigenetic regulation of childhood growth and SPIN4-associated disorders,” Dr. Jee says.

How is Children’s National leading in this space?

Dr. Jee is leading a follow-up translational study to dissect the precise underlying pathobiology of overgrowth syndrome due to SPIN4 mutations. Using the knowledge, the ultimate goal of her work is to develop novel interventional approaches to treat childhood growth disorders.

U.S. News Badges

Children’s National Hospital ranked #5 in the nation on U.S. News & World Report’s Best Children’s Hospitals Honor Roll

U.S. News BadgesChildren’s National Hospital in Washington, D.C., was ranked #5 in the nation on the U.S. News & World Report 2023-24 Best Children’s Hospitals annual rankings. This marks the seventh straight year Children’s National has made the Honor Roll list. The Honor Roll is a distinction awarded to only 10 children’s hospitals nationwide.

For the thirteenth straight year, Children’s National also ranked in all 10 specialty services, with eight specialties ranked in the top 10 nationally. In addition, the hospital was ranked best in the Mid-Atlantic for neonatology, cancer, neurology and neurosurgery.

“Even from a team that is now a fixture on the list of the very best children’s hospitals in the nation, these results are phenomenal,” said Kurt Newman, M.D., president and chief executive officer of Children’s National. “It takes a ton of dedication and sacrifice to provide the best care anywhere and I could not be prouder of the team. Their commitment to excellence is in their DNA and will continue long after I retire as CEO later this month.”

“Congratulations to the entire Children’s National team on these truly incredible results. They leave me further humbled by the opportunity to lead this exceptional organization and contribute to its continued success,” said Michelle Riley-Brown, MHA, FACHE, who becomes the new president and CEO of Children’s National on July 1. “I am deeply committed to fostering a culture of collaboration, empowering our talented teams and charting a bold path forward to provide best in class pediatric care. Our focus will always remain on the kids.”

“I am incredibly proud of Kurt and the entire team. These rankings help families know that when they come to Children’s National, they’re receiving the best care available in the country,” said Horacio Rozanski, chair of the board of directors of Children’s National. “I’m confident that the organization’s next leader, Michelle Riley-Brown, will continue to ensure Children’s National is always a destination for excellent care.”

The annual rankings are the most comprehensive source of quality-related information on U.S. pediatric hospitals and recognizes the nation’s top 50 pediatric hospitals based on a scoring system developed by U.S. News.

“For 17 years, U.S. News has provided information to help parents of sick children and their doctors find the best children’s hospital to treat their illness or condition,” said Ben Harder, chief of health analysis and managing editor at U.S. News. “Children’s hospitals that are on the Honor Roll transcend in providing exceptional specialized care.”

The bulk of the score for each specialty service is based on quality and outcomes data. The process includes a survey of relevant specialists across the country, who are asked to list hospitals they believe provide the best care for patients with the most complex conditions.

The eight Children’s National specialty services that U.S. News ranked in the top 10 nationally are:

The other two specialties ranked among the top 50 were cardiology and heart surgery, and urology.

Germ cell tumor of testicle under microscopy

New research: Genes that drive testicular cancer identified

In the largest sequencing study to date on testicular cancer, researchers at Children’s National Hospital have identified genes that contribute to testicular germ cell tumors (TGCT), the most common cancer among young, white men.

The findings, published in European Urology, provide direction for future screening and treatment of this disease, which can strike during the teen years and often runs in families. While treatable when identified early, testicular cancer leads to infertility, mental health issues and sometimes death, making its identification crucial for young adults.

“Testicular cancer is really a young person’s disease,” said Louisa Pyle, M.D., Ph.D. , a pediatrician, medical geneticist and research geneticist at the Children’s National Rare Disease Institute. “Most folks who have testicular cancer are between the ages of 15 and 45. Even though testicular cancer is relatively rare in the cancer world, it results in the greatest number of years lost among all adult cancers.”

What we hope to discover

Dr. Pyle led a research team that included experts at the National Cancer Institute and the University of Pennsylvania to study families with multiple members diagnosed with testicular cancer. They used whole exome sequencing to identify variants in many genes that predisposed patients to TGCT. Their work suggests that multiple variants – inherited together – increased the risk for the disease and provides potential routes for drugs that could be used for prevention and treatment.

“We found many genes that help us understand how testicular cancer happens,” Dr. Pyle said. “Our hope is that we can use that to try to come up with better treatments or better ways to preserve fertility for people with testicular cancer or gonadal differences.”

The patient benefit

Testicular cancer most often strikes men of European ancestry. It is also more common among intersex patients and those with differences in sex development, which is a clinical and research focus for Dr. Pyle. Medically, these are children who have a change in the biological characteristics of sex, including their chromosomes, hormones, gonads or physical body parts.

By studying a more common version of testicular cancer, the team learned about the underlying genetics in a way that will benefit intersex patients.

“One of the things we do in medicine is study a common version of the rare thing,” Dr. Pyle said.  “Through this research, we learned that the same genes that cause intersex traits in some patients are also changed in subtle ways for people with testicular cancer. This is a way to study something that could improve care for those kids, by studying a group that has greater numbers.”

Children’s National Research & Innovation Campus

Research campus joins Global Network of Innovation Districts

Children’s National Research & Innovation Campus

At the RIC’s 12-acre campus in Northwest Washington, D.C., experts from Children’s National work alongside public and private partners in industry, universities, federal agencies, start-up companies and academic medical centers to find solutions to some of science’s most vexing challenges.

The Children’s National Research & Innovation Campus (RIC) has become the first science ecosystem dedicated to pediatric health to join a network of over three dozen innovation districts worldwide that integrate research space with sustainable communities to create models for urban work and living.

Known as the Global Network of Innovation Districts (GNID), the community was conceived to unlock the design of campuses like the RIC to create collaborations among highly trained professionals. At the RIC’s 12-acre campus in Northwest Washington, D.C., experts from Children’s National work alongside public and private partners in industry, universities, federal agencies, start-up companies and academic medical centers to find solutions to some of science’s most vexing challenges. The campus is surrounded by mass transit, open spaces, retail and housing, and it’s built on deep historic roots in the city as the former home of the Walter Reed Army Medical Center.

Kerstin Hildebrandt, vice president of research administration at the Children’s National Research Institute, said the team at the Research & Innovation Campus is excited to maximize its potential by joining this global network of economic drivers that are enhancing their communities and cities.

“We look forward to sharing our best practices, and we want to learn about how our national and international colleagues are tackling complex issues,” she said. “For example, we can learn how others are leveraging their assets to improve their communities and their response to health crises, climate change and other significant challenges.”

The GNID was launched in March of last year by The Global Institute on Innovation Districts (GIID), an international nonprofit focused on the advancement of innovation districts. With an initial group of 23 districts. GIID is now expanding the network to include approximately 20 additional districts that extend across Europe, North America, Latin America, Australia and Asia.

GIID’s Founder Julie Wagner said innovation districts have become a worldwide phenomenon. She said their leaders are recognizing that working and collaborating with their peers — from Melbourne to Medellin — is a powerful strategy to help these complex geographies leverage their assets in new ways.

“We are finding that innovation districts are willing to execute impactful strategies after holding highly curated exchanges with their peers,” Wagner said. “These are the places armed to solve some of the world’s most vexing challenges. From where I sit, we all need to give them as many tools as possible to help them get there.”

illustration of cancer cell with target on it

Cancer Genetics Program growth: Q&A with Joyce Turner, M.S., C.G.C.

illustration of cancer cell with target on it

The Children’s National Cancer Genetics Program has witnessed a 57% increase in total number of patients seen in the past 4 years.

The Children’s National Cancer Genetics Program, established to identify individuals with a greater likelihood for certain types of cancer and provide early detection and treatment, has seen immense growth in the past few years. Joyce Turner, M.S., C.G.C., director of the Cancer Genetics Program, shares insights on the program and her vision for what’s next.

Q: How would you describe the recent growth of the program?

A: We’re extremely proud of the growth in the Cancer Genetics Program! Our program has witnessed a 57% increase in terms of the total number of patients seen (both new patients and patients seen for follow-up) in the past 4 years. A portion of this growth may be related to the COVID-19 pandemic as we were able to continue seeing patients in the comfort of their home. Our team has also expanded with the addition of a nurse coordinator in 2022.

Q: How does the work in this program benefit patients?

A: If we’re able to find a change, also known as a mutation, in a gene that explains a patient’s cancer diagnosis, we can support the care team with a better plan for how to screen the child moving forward. Since different genes can put patients at risk for specific types of cancers, knowing which gene mutation is present allows us to put a certain set of screening guidelines in place for long-term medical management.

Our goal with regular surveillance is to identify a tumor prior to becoming symptomatic when treatment is optimal for the patient and suffering is minimized. If we can identify a gene mutation in a patient, we can also test family members for the known gene change, so that they can benefit from screening as well if need be. After all, gene mutations can run in families. This also allows our team to share information with the patient’s family about the chance of recurrence in another child.

Q: What are you looking forward to in the future regarding advancements in the field of cancer genetics?

A: I am most looking forward to the newer technologies that will become the standard of care in the future.

Right now, we predominantly look at the ‘coding’ portions of our DNA, which are known as the exons. We are just beginning to learn about what lies within the introns, the genetic information between our exons, and we are finding that these regions are more important than we originally thought. RNA sequencing allows us to take a closer look at the effects of genetic changes within the introns. Right now, this technology is available on a limited basis from certain labs and for only a fraction of genes, but I see this becoming part of standard genetic testing in the near future.

Additionally, paired germline/somatic tumor testing (which looks for changes in cancer genes with which one is born and alterations in cancer genes within a tumor) has primarily been available in recent years on a research basis. However, the benefit of this technology is becoming more appreciated as it begins to move into mainstream practice. We have had to prove its feasibility and show that this type of testing can be performed in a timely manner. In doing so, this technology allows us to potentially determine the cause of a cancer, how to personalize one’s chemotherapeutic treatment based on molecular changes in the tumor and what we need to consider for screening purposes long-term. This type of genetic testing allows us to optimize overall patient treatment from the start. It’s an exciting time to be working in this field!

woman getting blood draw

Recommendations for management of positive monosomy X on cell-free DNA screening

woman getting blood draw

In a study published in the American Journal of Obstetrics and Gynecology, researchers provide context and expert recommendations for maternal and fetal evaluation and management when cfDNA screening is positive for monosomy X or Turner Syndrome (TS).

Non-invasive prenatal testing (NIPT) using cell-free DNA (cfDNA) is currently offered to all pregnant women regardless of the fetal risk. While this test has excellent value to screen for chromosomal abnormalities such as Down syndrome, the test has a much lower positive predictive value for sex-chromosome abnormalities such as Turner syndrome. In a study published in the American Journal of Obstetrics and Gynecology, researchers provide context and expert recommendations for maternal and fetal evaluation and management when cfDNA screening is positive for monosomy X or Turner Syndrome (TS).

The manuscript was put together by the Turner Syndrome Special Interest Group (TS SIG) of the Pediatric Endocrine Society, chaired by Roopa Kanakatti Shankar, M.D., endocrinologist at Children’s National Hospital, along with other specialists including a gynecologist, maternal fetal medicine expert, cardiologists and pediatric endocrinologists.

The big picture

The field of NIPT using cfDNA testing has advanced considerably making it routine in the care of pregnant women and more couples are opting for it. This will lead to an increased detection of monosomy X overall — some of which may be true positives, but others may be false positives, or even an indicator of maternal TS rather than an affected fetus. This article discusses the changing landscape and provides an expert opinion on how to manage these scenarios.

How does this work move the field forward?

We hope that this will increase provider knowledge and recognition of the pitfalls of NIPT as a screening test for sex-chromosome disorders such as monosomy X,” says Dr. Kanakatti Shankar. “It will also provide a framework for the next diagnostic steps, management and referrals that a provider may take to optimize care for both mother and child.”

How is Children’s National leading in this space?

Current guidelines for the care of individuals with TS throughout the lifespan do not specifically address management of individuals with a cell-free DNA screen positive for monosomy X.

“As chair of the TS Special Interest Group, I was able to lead this unique collaborative effort which we hope will lead to better understanding of NIPT results in the context of TS and for multispecialty providers to improve prenatal detection and timely care,” says Dr. Kanakatti Shankar.

Read more about the study, Cell-free DNA screening positive for monosomy X: clinical evaluation and management of suspected maternal or fetal Turner syndrome.

illustration of a brain

Inducing strokes in newborns to treat hemimegalencephaly

“The number one thing people are perplexed by is how well these babies recover and how they can only live with half a brain,” said Tayyba Anwar, M.D., neonatal neurologist and co-director of the Hemimegalencephaly Program at Children’s National Hospital. “People think if a child has half a brain that’s damaged or dysplastic, how are they functioning? But babies are so resilient. It still amazes me.”

The big picture

Children’s National experts have pioneered a novel approach of inducing strokes to stop seizures and improve neurodevelopmental outcomes in newborns under three months old with hemimegalencephaly (HME).

The procedure, called an endovascular embolic hemispherectomy, can be safely used to provide definitive treatment of HME-related epilepsy in neonates and young infants, according to a study in the Journal of NeuroInterventional Surgery.

Prior to this approach, the standard treatment was an anatomic hemispherectomy — surgical removal of the affected half of the brain. But infants had to be at least three months old to undergo such a complex surgery. Delaying surgery meant the persistent seizures compromised the development of the healthy half of the brain.

What they’re saying

In this video, Dr. Anwar and Panagiotis Kratimenos, M.D., Ph.D., neonatologist and co-director of Research in Neonatology at Children’s National, discuss the critically important neonatal care provided to babies who undergo endovascular embolic hemispherectomy and how protocols have evolved with each case to make this less invasive approach a feasible early alternative to surgical hemispherectomy.

Drs. Anwar and Kratimenos are part of the multidisciplinary team of neonatal neurologists, neurointerventional radiologistsneonatologists and neurosurgeons performing endovascular hemispherectomies.

photo of muscle collagen

New model to treat Becker Muscular Dystrophy

Researchers at Children’s National Hospital have developed a pre-clinical model to test drugs and therapies for Becker Muscular Dystrophy (BMD), a debilitating neuromuscular disease that is growing in numbers and lacks treatment options.

Their work – recently published in the Journal of Cachexia, Sarcopenia and Muscle – provides scientists with a much-needed method to identify, develop and de-risk drugs for patients with BMD.

“The impact of having a model to test pharmaceutical options cannot be overstated,” said Alyson Fiorillo, Ph.D., principal investigator at the Center for Genetic Medicine Research at Children’s National. “We have patients coming up to us at conferences offering muscle biopsies – on the spot – because they are so excited and relieved that treatments can be investigated.”

Caused by mutations in a gene that produces a protein called dystrophin, Becker is part of a collection of disorders known as muscular dystrophies that cause a progressive loss of muscle strength and increasing disability, starting in childhood. The FDA has approved four drugs to help mitigate the impact of the most common and severe subtype, Duchenne Muscular Dystrophy (DMD). In some cases, these drugs convert the Duchenne form of the disease into Becker, which is less severe but still greatly affects quality of life.

As a result, the population of BMD patients is growing, but patients lack treatments for this incredibly impactful disorder. Currently, the FDA has not approved any drugs for BMD. Only two drugs are in clinical trials, compared to 30 trials underway for DMD.

To address this, Children’s National researchers used CRISPR gene editing to create the first preclinical model of X-linked BMD, called the bmx model. This novel advancement will help researchers better understand BMD and eventually create the first drugs for BMD patients.

“Patients with Becker need therapeutic treatments, and we are excited to start working with the model to someday provide options,” said Christopher Heier, Ph.D., principal investigator at the Center for Genetic Medicine Research and co-author of the study. “Most patients with Becker eventually develop cardiomyopathy, and roughly half die from it. This model is the first step on a path to change that and other heartbreaking outcomes from this genetic disorder.”


blood cells

Half-matched cells – not identical – can help patients live longer, study finds

blood cells

Severe aplastic anemia (SAA) is a rare but serious blood disorder. Children and adults with SAA get very sick with low blood counts, infections or bleeding.

A new study, published in The Lancet Haematology, finds that patients of all races and ethnicities can get successful transplants for severe aplastic anemia (SAA) through haploidentical, or half-matched, bone marrow transplantation (BMT).

The big picture

SAA is a rare but serious blood disorder. Children and adults with SAA get very sick with low blood counts, infections or bleeding.

Relapsed SAA is a marrow failure disorder with high morbidity and mortality. Although this is often treated with BMT at relapse post-immunosuppressive therapy, historically under-represented minorities often struggle finding a suitably matched donor.

“If SAA does not respond to the first choice of therapy or comes back after a period of health, then we call this relapsed and refractory SAA,” says Blachy J. Dávila Saldaña, M.D., Blood and Marrow Transplant Specialist at Children’s National Hospital and corresponding author of the study. “BMT is the only cure for relapsed and refractory SAA.”

Moving the field forward

Many diagnosed patients do not have a fully matched donor to have a successful BMT. However, the study’s findings show that a haploidentical BMT from a family member can help people live longer.

“This especially helps people who are American Indian or Alaska native, Asian, Black or African American, Native Hawaiian, other Pacific Islander, more than one race or Hispanic,” Dr. Dávila adds. “It’s easier for people in these communities to find a related half-matched than a fully matched unrelated BMT donor.”

The patient benefit

Haploidentical BMT will greatly expand the ability of experts to safely treat patients of non-Caucasian ancestry that suffer from this condition.

“The half-matched transplant is becoming more standard and as safe as those with a fully matched donor,” Dr. Dávila says.

Children’s National was one of a handful of pediatric hospitals in the United States to participate in this open trial. Our experts will now provide the framework to expand these services to pediatric patients across the world.

Abstract Happy 2022 New Year greeting card with light bulb

The best of 2022 from Innovation District

Abstract Happy 2022 New Year greeting card with light bulbA clinical trial testing a new drug to increase growth in children with short stature. The first ever high-intensity focused ultrasound procedure on a pediatric patient with neurofibromatosis. A low dose gene therapy vector that restores the ability of injured muscle fibers to repair. These were among the most popular articles we published on Innovation District in 2022. Read on for our full top 10 list.

1. Vosoritide shows promise for children with certain genetic growth disorders

Preliminary results from a phase II clinical trial at Children’s National Hospital showed that a new drug, vosoritide, can increase growth in children with certain growth disorders. This was the first clinical trial in the world testing vosoritide in children with certain genetic causes of short stature.
(2 min. read)

2. Children’s National uses HIFU to perform first ever non-invasive brain tumor procedure

Children’s National Hospital successfully performed the first ever high-intensity focused ultrasound (HIFU) non-invasive procedure on a pediatric patient with neurofibromatosis. This was the youngest patient to undergo HIFU treatment in the world.
(3 min. read)

3. Gene therapy offers potential long-term treatment for limb-girdle muscular dystrophy 2B

Using a single injection of a low dose gene therapy vector, researchers at Children’s National restored the ability of injured muscle fibers to repair in a way that reduced muscle degeneration and enhanced the functioning of the diseased muscle.
(3 min. read)

4. Catherine Bollard, M.D., M.B.Ch.B., selected to lead global Cancer Grand Challenges team

A world-class team of researchers co-led by Catherine Bollard, M.D., M.B.Ch.B., director of the Center for Cancer and Immunology Research at Children’s National, was selected to receive a $25m Cancer Grand Challenges award to tackle solid tumors in children.
(4 min. read)

5. New telehealth command center redefines hospital care

Children’s National opened a new telehealth command center that uses cutting-edge technology to keep continuous watch over children with critical heart disease. The center offers improved collaborative communication to better help predict and prevent major events, like cardiac arrest.
(2 min. read)

6. Monika Goyal, M.D., recognized as the first endowed chair of Women in Science and Health

Children’s National named Monika Goyal, M.D., M.S.C.E., associate chief of Emergency Medicine, as the first endowed chair of Women in Science and Health (WISH) for her outstanding contributions in biomedical research.
(2 min. read)

7. Brain tumor team performs first ever LIFU procedure on pediatric DIPG patient

A team at Children’s National performed the first treatment with sonodynamic therapy utilizing low intensity focused ultrasound (LIFU) and 5-aminolevulinic acid (5-ALA) medication on a pediatric patient. The treatment was done noninvasively through an intact skull.
(3 min. read)

8. COVID-19’s impact on pregnant women and their babies

In an editorial, Roberta L. DeBiasi, M.D., M.S., provided a comprehensive review of what is known about the harmful effects of SARS-CoV-2 infection in pregnant women themselves, the effects on their newborns, the negative impact on the placenta and what still is unknown amid the rapidly evolving field.
(2 min. read)

9. Staged surgical hybrid strategy changes outcome for baby born with HLHS

Doctors at Children’s National used a staged, hybrid cardiac surgical strategy to care for a patient who was born with hypoplastic left heart syndrome (HLHS) at 28-weeks-old. Hybrid heart procedures blend traditional surgery and a minimally invasive interventional, or catheter-based, procedure.
(4 min. read)

10. 2022: Pediatric colorectal and pelvic reconstructive surgery today

In a review article in Seminars in Pediatric Surgery, Marc Levitt, M.D., chief of the Division of Colorectal and Pelvic Reconstruction at Children’s National, discussed the history of pediatric colorectal and pelvic reconstructive surgery and described the key advances that have improved patients’ lives.
(11 min. read)

RFP collage of logos

Healthcare leaders join to advance pediatric innovation

RFP collage of logosChildren’s National Hospital and the National Capital Consortium for Pediatric Device Innovation (NCC-PDI) have opened a request for proposal to solicit companies interested in obtaining pediatric labeling for medical devices that may address an unmet need in the pediatric population and that already have clearance or approval for adult use by the U.S. Food & Drug Administration (FDA). The objective of this program is to generate the real-world evidence (RWE) needed to facilitate the pediatric regulatory pathway for U.S. market clearance. The deadline to apply is 5 p.m. EST on Feb. 9. To learn more and apply, visit http://www.innovate4kids.org.

Instead of assessing medical devices based on data derived from clinical trials, this pioneering initiative is focused on leveraging real-world data (RWD) that can be translated into RWE to gain FDA clearance or approval for use with children.

Convening a coalition of healthcare leaders

The new partnership aims to address the significant gap that exists between devices labeled for adults and children. Additional coalition partners include:

  • CobiCure
  • MedStar Health Research Institute
  • Center for Technology Innovation in Pediatrics (CTIP)
  • UCSF-Stanford Pediatric Device Consortium
  • Pennsylvania Pediatric Device Consortium
  • Southwest National Pediatric Device Consortium

Funded by the FDA and facilitated through NCC-PDI and the Office of Innovation Ventures at Children’s National, this program will provide winning companies with technical expertise, including but not limited to regulatory, study design and data science services.

“We are delighted to partner with this coalition of trusted healthcare leaders that share our vision for advancing pediatric health. We know all too well that pediatric device development presents several unique challenges and that children have medical device needs that are considerably different from adults,” says Kolaleh Eskandanian, Ph.D., M.B.A, P.M.P, vice president and chief innovation officer at Children’s National and principal investigator of NCC-PDI. “There are already a number of medical devices on the market that have been FDA cleared or approved and proven viable, and this partnership will help provide important evidence generation and other wraparound services to guide device creators through the regulatory path for pediatric labeling.”

Using RWE to facilitate the regulatory pathway

While Randomized Clinical Trials (RCT) have traditionally been the gold standard when investigating a medical product’s efficacy and safety, many important populations, including children, are excluded from RCTs for ethical reasons. This means that pediatric researchers must make safety and efficacy decisions in the absence of data from such trials. RWE, including data from electronic health records (EHRs), healthcare claims data, disease registries and data gathered through other health applications, can close this gap in pediatric studies. She said that MedStar Health’s capabilities in applying RWE will be a formidable asset to the chosen applicants.

Proposals for companies seeking pediatric labeling for their medical device will be reviewed by an esteemed panel of judges specializing in data science, medical device development, evidence generation, post-market surveillance and the FDA’s regulatory pathway. Children’s National and members of the coalition will provide selected companies with technical expertise in support of their effort to achieve pediatric labeling. This will include:

  • Access to mentors
  • A design study protocol implementing RWE generation best practices
  • Facilitation of IRB submission and study implementation
  • Data science support
  • Regulatory, reimbursement and supply chain consultation

About NCC-PDI

NCC-PDI is one of five consortia in the FDA’s Pediatric Device Consortia Grant Program created to support the development and commercialization of medical devices for children. NCC-PDI is led by the Sheikh Zayed Institute for Pediatric Surgical Innovation at Children’s National and the A. James Clark School of Engineering at the University of Maryland, with support from partners MedTech Innovator and design firm Archimedic.

DNA strands

Whole genome sequencing solves precocious puberty case

DNA strands

By conducting whole-genome sequencing, doctors were able to discover the cause of a patient’s severe precocious puberty.

A true medical anomaly — a patient with severe precocious puberty starting in infancy later developed bilateral testicular tumors. Despite extensive testing at multiple other hospitals, no one had been able to understand the underlying cause of his precocious puberty. That is until now, through a study led by Andrew Dauber, M.D., M.M.Sc., chief of Endocrinology at Children’s National Hospital.

The hold-up in the field

Before receiving care at Children’s National, the patient’s diagnostic workup was limited by genetic testing modalities and the ability to enroll him in an innovative research protocol.

Moving the field forward

“We were able to enroll the patient in a research protocol that allowed them to sequence his whole genome,” says Dr. Dauber. “Both in a DNA sample from his blood as well as in a sample from one of his testicular tumors, which was being removed surgically.”

Dr. Dauber then performed an analysis of the genome data and found that the patient had a mutation in the luteinizing hormone receptor (LHR), which was present in the testicle but not in his blood. This is called a somatic mutation. The LHR receives the signal from the pituitary gland, which tells the testicle to make testosterone. In this case, the LHR is always turned on, which makes him develop Leydig cell tumors in his testes, overproducing testosterone, causing him to have very early puberty.

By conducting whole-genome sequencing of the tumor and blood samples, the patient was confirmed to have bilateral, diffuse Leydig cell tumors harboring the somatic gain-of-function p.Asp578His variant in the LHCGR gene.

This mutation had been identified before in patients with isolated tumors but never in someone with diffuse bilateral tumors.

The patient benefit

By using cutting-edge genomic approaches, medical providers can identify unknown causes of endocrine disorders. It also stresses the importance of the clinical team working with translational researchers to determine answers for patients.

“With a more definitive diagnosis and understanding of what these tumors are, researchers can better counsel the family about the treatment options,” says Dr. Dauber. Other members of the Children’s National team that contributed to this work include Seth Berger, M.D., Ph.D.; Daniel Casella, M.D.; and Emmanuèle C Délot, Ph.D.

You can read the full study, Precocious Puberty in a Boy With Bilateral Leydig Cell Tumors due to a Somatic Gain-of-Function LHCGR Variant, in the Journal of the Endocrine Society.

MRI

Building “digital twins” to test complicated surgeries

 

MRI

Syed Anwar, Ph.D., is developing self-supervised algorithms for medical imaging.

Syed Anwar, Ph.D., joins the growing AI initiative in the Sheikh Zayed Institute for Pediatric Surgical Innovation (SZI) at Children’s National Hospital with extensive research experience in machine learning and medical imaging from the University of Engineering and Technology in Taxila, Pakistan, the University of Sheffield, U.K., and the University of Central Florida through the Fulbright Scholars Program. At Children’s National, he’s grateful for the proximity between researchers and clinicians as he studies federated learning and works to build “digital twins” that allow medical teams to test complicated surgical and treatment plans on infants with disorders including Pierre Robin Sequence. This rare congenital birth defect is characterized by an underdeveloped jaw, backward displacement of the tongue and upper airway obstruction. Anwar works alongside Marius George Linguraru, D.Phil., M.A., M.Sc., principal investigator at SZI, and the Precision Medical Imaging Lab to increase AI capacity in all areas of pediatric care at the hospital.

Q: What is the focus of your research work?

A: The main theme is a digital twin. It’s an engineering innovation that people have been using for some time, especially in manufacturing and aviation. For example, you can create a digital simulation of an airplane with a flight simulator. Now, people are starting to use the power of data-driven digital twins for medical applications.

I’m working to create a digital twin for infants born with Pierre Robin Sequence, where they need to have surgical interventions for improving the structure of the bones in the jaws. It includes a lot of clinical approaches, including surgery and ways to address apnea and food intake.

There are multiple areas of clinical expertise involved. With a digital twin, we will have a digital representation of the patient, and the surgeon, the radiologist and other clinicians can experiment with a proposed intervention before actually touching the patient.

Syed Anwar

Syed Anwar, Ph.D., joins the growing AI initiative in the Sheikh Zayed Institute for Pediatric Surgical Innovation (SZI) at Children’s National Hospital.

Q: How else are you using your engineering background in your research?

A: Another part of my work is federated learning, which is a type of machine learning. In artificial intelligence, we want big data as the starting point to train our deep learning models. When studying children, this is not always possible because we have smaller data sets.

Federated learning is a tool that helps in these situations. Data is kept at a local site. We train a model to learn from all that data at the different sites. One benefit is that we don’t need to share the data, which is very useful for preserving patient privacy. But you can still apply deep learning models and develop AI solutions using the distributed data for improved clinical outcomes.

Q: What do you see as the main hurdles you have to overcome?

A: For all medical data, and particularly for kids, the amount of data we see in a children’s hospital is small, particularly for rare diseases.

The second hurdle is good, quality labels. For example, if you are doing tumor segmentation, you still need to have some ground rules from a radiologist showing which part of the image is the tumor.

These challenges come together in another focus of my research – self-supervised learning, meaning we can train a machine to learn from the data itself, without the labels or ground rules. From a machine learning point of view, I am in the process of developing self-supervised algorithms for medical imaging and in general for medical data. It’s an amazing time to be in this research area and to enable the translation of AI driven solutions for clinical workflows.

Q: What excites you about being at Children’s National and working at SZI?

A: I come from an engineering background, and my research area has been medical imaging for some time, mainly magnetic resonance imaging. Before coming here, I was working at a university in Pakistan, teaching machine learning and conducting research related to medical imaging and biomedical signal processing. But I was missing strong connections with people caring for patients at the hospital.

HIV virus

CRISPR gene editing identifies possible drug targets for HIV

HIV virus

Working with researchers at Johns Hopkins University, the Children’s National team used CRISPR gene technology to test drug targets that find and attack latent HIV, paving the way for drug treatments that may someday completely cure the virus.

Researchers at Children’s National Hospital have identified several new drug targets that may enhance the elimination of latent HIV in patients, a major bottleneck to the full treatment of the virus, according to new findings published in Science Translational Medicine.

Working with researchers at Johns Hopkins University, the Children’s National team used CRISPR gene technology to test drug targets that find and attack latent HIV, paving the way for drug treatments that may someday completely cure the virus. Currently, anti-retroviral therapies (ARTs) can only slow its progress.

Why we’re excited

“In less than one month, we were able to use CRISPR to test 20,000 gene candidates in one single experiment. It was an amazing application of the technology,” said Wei Li, Ph.D., a co-author of the study and assistant professor at the Center for Genetic Medicine Research at Children’s National. “The CRISPR technology provides a global, unbiased approach to understanding molecular aspects of HIV-1 infection, including the ways that HIV-1 enters cells and replicates. This research could someday revolutionize how we treat the virus pharmaceutically.”

The big picture

More than 30 million people worldwide live with HIV-1, the most common form of the virus that can eventually lead to AIDS. But no single agent can entirely eliminate HIV-1 in these patients.

Researchers have sought ways to attack this elusiveness and turned to the CRISPR gene-editing tool, which can locate specific bits of DNA inside a cell. They trained CRISPR screens on the HIV-1 genome to identify critical factors that allow or prevent the virus from lying latent. In the latter case, these pieces of DNA will be the ideal targets of a drug that will push the virus out of the latent stage so it can be targeted by therapies.

What’s ahead

The findings of the Children’s National and Johns Hopkins scientists point to novel drug therapies and validation systems that could someday eradicate HIV.

Bicna Song, a postdoctoral researcher in Li’s laboratory at the Center for Genetic Medicine, said that reversing HIV-1 latency will allow for the killing of infected cells and give researchers opportunities to actually cure patients with HIV.

“So far, no single latency-reversing agent – alone or in combination with another drug – has been shown to effectively reduce the latent reservoir size in persons living with HIV-1,” said Song, who contributed to the study. “With this work, we are meeting the urgent need to identify factors that can lead to new drug targets.”