Cardiology & Heart Surgery

Bone Marrow–Derived MSC Treatment Mitigates Structural Abnormalities Resulting From CPB

Cell therapy mitigates neurological impacts of cardiac surgery in pre-clinical model

Differences of cortical fractional anisotropy between cardiopulmonary bypass and control (left), cardiopulmonary bypass + mesenchymal stromal cells and cardiopulmonary bypass (center), and 3 groups (right).

A pre-clinical study in the journal JACC: Basic to Translational Science shows that infusing bone marrow-derived mesenchymal stromal cells (BM-MSCs) during cardiac surgery provides both cellular-level neuroprotection for the developing brain and improvements in behavior alterations after (or resulting from) surgery.

What this means

According to lead author Nobuyuki Ishibashi, M.D., Oxidative and inflammatory stresses that are thought to be related to cardiopulmonary bypass cause prolonged microglia activation and cortical dysmaturation in the neonatal and infant brain. These issues are a known contributor to neurodevelopmental impairments in children with congenital heart disease.

This study found that, in a pre-clinical model, the innovative use of cardiopulmonary bypass to deliver these mesenchymal stromal cells minimizes microglial activation and neuronal apoptosis (cell death), with subsequent improvement of cortical dysmaturation and behavioral alteration after neonatal cardiac surgery.

Additionally, the authors note that further transcriptomic analyses provided a possible mechanism for the success: Exosome-derived miRNAs such as miR-21-5p, which may be key drivers of the suppressed apoptosis and STAT3-mediated microglial activation observed following BM-MSC infusion.

Why it matters

Significant neurological delay is emerging as one of the most important current challenges for children with congenital heart disease, yet few treatment options are currently available.

Applications of BM-MSC treatment will provide a new therapeutic paradigm for potential MSC-based therapies as a form of neuroprotection in children with congenital heart disease.

Children’s National Hospital leads the way

The Ishibashi lab is the first research team to demonstrate the safety, efficacy and utility of using cardiopulmonary bypass to deliver BM-MSCs with the goal of improving neurological impairments in children undergoing surgery for congenital heart disease. In addition to this pre-clinical research, a phase 1 clinical trial, MeDCaP, is underway at Children’s National.

Recent additional funding from the NIH will allow the team to identify molecular signatures of BM-MSC treatment and mine specific BM-MSC exosomes for unique cardiopulmonary bypass pathology to further increase understanding of precisely how and why this cell-based treatment shows success.

x-ray of child with congenital heart disease

Cell therapy research for neuroprotection in congenital heart disease receives another $3.3 million from NIH

x-ray of child with congenital heart disease

Significant neurological delay is emerging as one of the most important current challenges for children with congenital heart disease, yet few treatment options are currently available.

The research lab of Nobuyuki Ishibashi, M.D., at Children’s National Hospital, recently received $3.3 million in additional funding for research into cell therapy for neuroprotection in children with congenital heart disease. The new support comes from the National Heart, Lung and Blood Institute (NHLBI) of the National Institutes of Health.

The research goal

The overarching goal of the award is to establish detailed molecular signatures from critical cell populations for tissue repair and regeneration at single cell resolution after bone marrow-derived mesenchymal stromal cell (BM-MSC) delivery. The team has shown cellular, structural and behavioral improvements in pre-clinical models after delivery of BM-MSCs through cardiopulmonary bypass for children with congenital heart disease. However, the mechanisms underlying the therapeutic action of BM-MSCs still remain largely unknown. This R01 renewal will address the key knowledge gap.

Why it matters

Significant neurological delay is emerging as one of the most important current challenges for children with congenital heart disease, yet few treatment options are currently available.

The Ishibashi lab has demonstrated the efficacy and utility of using cardiopulmonary bypass to deliver BM-MSCs  to improve neurological impairments in children undergoing surgery for congenital heart disease. Most notably, this included development of a phase 1 clinical trial, MeDCaP, at Children’s National.

The big picture

Together with the ongoing clinical trial established from the previous award, identifying molecular signatures of BM-MSC treatment and mining specific BM-MSC exosomes for unique cardiopulmonary bypass pathology will significantly improve understanding of this cell-based treatment. This work will also provide a new therapeutic paradigm for potential cell-free MSC-based therapies for neuroprotection in children with congenital heart disease.

U.S. News Badges

Children’s National Hospital ranked #5 in the nation on U.S. News & World Report’s Best Children’s Hospitals Honor Roll

U.S. News BadgesChildren’s National Hospital in Washington, D.C., was ranked #5 in the nation on the U.S. News & World Report 2023-24 Best Children’s Hospitals annual rankings. This marks the seventh straight year Children’s National has made the Honor Roll list. The Honor Roll is a distinction awarded to only 10 children’s hospitals nationwide.

For the thirteenth straight year, Children’s National also ranked in all 10 specialty services, with eight specialties ranked in the top 10 nationally. In addition, the hospital was ranked best in the Mid-Atlantic for neonatology, cancer, neurology and neurosurgery.

“Even from a team that is now a fixture on the list of the very best children’s hospitals in the nation, these results are phenomenal,” said Kurt Newman, M.D., president and chief executive officer of Children’s National. “It takes a ton of dedication and sacrifice to provide the best care anywhere and I could not be prouder of the team. Their commitment to excellence is in their DNA and will continue long after I retire as CEO later this month.”

“Congratulations to the entire Children’s National team on these truly incredible results. They leave me further humbled by the opportunity to lead this exceptional organization and contribute to its continued success,” said Michelle Riley-Brown, MHA, FACHE, who becomes the new president and CEO of Children’s National on July 1. “I am deeply committed to fostering a culture of collaboration, empowering our talented teams and charting a bold path forward to provide best in class pediatric care. Our focus will always remain on the kids.”

“I am incredibly proud of Kurt and the entire team. These rankings help families know that when they come to Children’s National, they’re receiving the best care available in the country,” said Horacio Rozanski, chair of the board of directors of Children’s National. “I’m confident that the organization’s next leader, Michelle Riley-Brown, will continue to ensure Children’s National is always a destination for excellent care.”

The annual rankings are the most comprehensive source of quality-related information on U.S. pediatric hospitals and recognizes the nation’s top 50 pediatric hospitals based on a scoring system developed by U.S. News.

“For 17 years, U.S. News has provided information to help parents of sick children and their doctors find the best children’s hospital to treat their illness or condition,” said Ben Harder, chief of health analysis and managing editor at U.S. News. “Children’s hospitals that are on the Honor Roll transcend in providing exceptional specialized care.”

The bulk of the score for each specialty service is based on quality and outcomes data. The process includes a survey of relevant specialists across the country, who are asked to list hospitals they believe provide the best care for patients with the most complex conditions.

The eight Children’s National specialty services that U.S. News ranked in the top 10 nationally are:

The other two specialties ranked among the top 50 were cardiology and heart surgery, and urology.

chest x-ray showing placement of tiny pacemaker

First infants in the U.S. with specially modified pacemakers show excellent early outcomes

chest x-ray showing placement of tiny pacemaker

Chest/abdominal x-ray of neonate receiving a modified pediatric-sized implantable pulse generator, demonstrating epicardial suture-on bipolar lead and pulse generator in the upper abdominal pocket.

In 2022, five tiny, fragile newborns with life-threatening congenital heart disease affecting their heart rhythms were the first in the United States to receive a novel modified pacemaker generator to stabilize their heart rhythms within days of birth.

An article in the journal Heart Rhythm assesses the outcomes to date for the infants who received pacemakers that were modified to work better in the smallest children who need them. The authors, including first author Charles Berul, M.D., chief of Cardiology at Children’s National Hospital, share that after following for between 6 and 9 months, “early post-operative performance of this device has been excellent.”

The big picture

Even the tiniest pacemakers and defibrillators on the market today aren’t small enough for infants and young children with heart rhythm abnormalities. So, for several years, Dr. Berul and colleagues at several other institutions have collaborated to adapt existing pacemakers, including the Medtronic Micra leadless pacing system, for use in tiny, critically ill newborns.

The specially modified pediatric-sized implantable pulse generator, called the Pediatric IPG, includes a Medtronic Micra sub-assembly that connects to an epicardial lead. While this makes the leadless pacemaker into one that uses leads, the resulting IPG is significantly smaller than any commercially available pacemaker previously on the market in the U.S.

The five infants in this case profile each received the modified Pediatric IPG at four separate institutions, and each surgery to implant the device was performed by a different cardiac surgeon. Two of the five cases were cared for at Children’s National. Cardiac surgeons Can Yerebakan, M.D., Ph.D., and Manan Desai, M.D. each performed one procedure.

The Pediatric IPG was authorized for use by emergency use exemptions from the federal Food and Drug Administration and with review and approval by each hospital’s Institutional Review Board, based on successful laboratory and pre-clinical models with favorable, though limited, results.

The patient benefit

All five infants were diagnosed with congenital complete heart block and required urgent pacing immediately after birth. The authors write:

“Permanent pacing in adults and older children is a routine, relatively simple implantation procedure. In the smallest of children, however, the generator is typically placed in the abdomen and can still present challenges in tiny babies under 2.5kg due to its bulk and dimensions, with risks of wound dehiscence, generator erosion and other complications.”

The authors note that the smaller profile of the Pediatric IPG reduces and has the potential to eliminate some of these challenges.

What’s next: Better delivery

Innovating smaller devices, including adapting current technology like the Medtronic Micra for pediatric use, is a good start but won’t be enough to eliminate some of the challenges for these patients. When a newborn or young child needs any pacemaker or defibrillator, they face open chest surgery. Their arteries and veins are just too small for even the smallest size transvenous pacemaker catheter.

That’s why Dr. Berul and engineers in the Sheikh Zayed Institute for Pediatric Surgical Innovation are working on a first-of-its-kind minimally invasive pericardial access tool. The team hypothesizes that this tool will allow for pacing and defibrillation therapy to be delivered through a single small port inserted through the skin that is about the size of a drinking straw.

You can read the full article Creative Concepts: Tiny Pacemakers for Tiny Babies in the journal Heart Rhythm.

infographic explaining tiny pacemaker

baby with with bronchopulmonary dysplasia

A team approach to complex bronchopulmonary dysplasia

“By the time a baby is diagnosed with bronchopulmonary dysplasia, families have already had a long journey with prematurity in the neonatal intensive care unit (NICU),” says Hallie Morris, M.D., neonatologist and lead of the Complex Bronchopulmonary Dysplasia (BPD) Program at Children’s National Hospital. “To be able to have a team that is focused on the holistic health of their child in the context of this diagnosis makes a world of difference to these families.”

The big picture

Some premature infants with BPD experience more severe respiratory disease with comorbidities associated with their underlying disease processes, but also factors related to their lengthened intensive care unit (ICU) stay. This includes delayed development with neurodevelopmental impairment, ICU delirium, pulmonary hypertension, airway disease, gastroesophageal reflux disease, feeding difficulties, retinopathy of prematurity and more.

The Complex BPD Program at Children’s National encompasses a group of specialists dedicated to improving the care of infants with BPD and other chronic lung disease of infancy. BPD places extreme demands on families. Education is a critical component for families and our team works to make sure they are well informed, have realistic expectations and understand their care plan.

What they’re saying

  • “Our program is unique in that it has the ability to follow the patient for several months in the NICU as well as after discharge,” says Maria Arroyo, M.D., pulmonologist and co-lead of the Complex BPD Program at Children’s National. “This includes a subacute facility where some of our NICU patients transfer to for continued respiratory weaning and rehabilitation with parent education and outpatient visits once families are home.”
  • “Since this program was created, we have improved patient care and outcomes with this interdisciplinary approach,” says John Berger, M., medical director for the Pulmonary Hypertension Program at Children’s National. “We expect that with our consistent and personalized care, patients will continue have better overall outcomes, less readmissions and improved neurodevelopmental outcomes.

Learn more about the Complex BPD Program.

imaging of blood flow in the heart

4D flow explained: Advanced imaging measures critical blood flow characteristics of single ventricle hearts

Yue-Hin “Tom” Loke, M.D., pediatric cardiologist and director of the 3D Cardiac Visualization Laboratory at Children’s National Hospital, uses magnetic resonance imaging and software rendering to create novel 4D flow images of children with single ventricle congenital heart disease.

“My research measures the degree of vortex formation (and) the degree of energy loss in the atrium as potential measurements of heart health and uses these measurements as a potential gauge of the heart health of children born with single ventricle conditions including hypoplastic left heart syndrome,” he says. “This information can be used to guide the management of the care for children with congenital heart disease. This technology provides valuable insight into how well the heart is working, especially before the Fontan procedure.”

Learn more about the approach and how it impacts clinical care decisions in the Children’s National Heart Institute.

blood flow in the heart

High-risk newborns with hypoplastic left heart syndrome benefit from hybrid approaches

“Hybrid treatment enables even patients who are extremely high risk for surgery to have a survival advantage.” — Dr. Yerebakan.

Can Yerebakan, M.D., Ph.D., associate chief of Cardiac Surgery, and Joshua Kanter, M.D., director of Interventional Cardiology, created a multi-disciplinary team at Children’s National Hospital to perform the staged surgical approach known as the “hybrid strategy” to support the smallest, most fragile babies born with hypoplastic left heart syndrome (HLHS).

Today, the team performs more of these procedures than almost any other heart center in the United States, and they’ve successful completed it for neonates as small as 1 kg.

The approach gives high-risk babies time to recover from birth trauma and continue developing crucial organs before undergoing more traditional, more-invasive HLHS procedures that require open-heart surgery with cardiopulmonary bypass. Surgeons also have more time to make complete individualized risk assessments for next steps on each case, replacing the historical “one size fits all” operative pathway for HLHS.

Read more about the hybrid surgical strategy for HLHS.

Dr. Donofrio performs an ultrasound

Tracking neurodevelopmental outcomes for kids with congenital heart disease

Extensive research has shown that children with congenital heart disease (CHD) who are born blue or who need cardiac surgery in their first year of life are at risk for developmental challenges and/or learning difficulties.

Mary Donofrio, M.D., co-director of the Cardiac Neurodevelopment Outcome (CANDO) program at Children’s National Hospital, says that we started the program — the only one of its kind in the Washington, D.C. region — to identify and manage delays in development and difficulties with learning, no matter when they arise.

“We start paying attention even before birth and then continue to evaluate neurodevelopment at key stages in a kid’s life to assure the best outcome. Our goal is for every kid born with CHD to be able to achieve their full potential, be active, make friends and succeed in school. Most important, we want each of our patients to grow up to be a happy and successful adult,” says Dr. Donofrio.

Learn more about CANDO at Children’s National Hospital and our role in developing best practices for neurodevelopmental and psychosocial services as part of the international multi-specialty Cardiac Neurodevelopmental Outcome Collaborative.

red and grey kidney illustration

Cardiovascular and bone diseases in chronic kidney disease

red and grey kidney illustration

A new study reviews cardiovascular and bone diseases in chronic kidney disease and end-stage kidney disease patients with a focus on pediatric issues and concerns.

In a study published by Advances in Chronic Kidney Disease and co-authored by Aadil Kakajiwala, M.D., MSCI, critical care specialist and nephrologist at Children’s National Hospital, a team reviewed cardiovascular and bone diseases in chronic kidney disease and end-stage kidney disease patients with a focus on pediatric issues and concerns.

Chronic kidney disease is common and causes significant morbidity including shortened lifespans and decrease in quality of life for patients. The major cause of mortality in chronic kidney disease is cardiovascular disease. Cardiovascular disease within the chronic kidney disease population is closely tied to disordered calcium and phosphorus metabolism. The metabolic bone disease of chronic kidney disease encompasses vascular calcification and the development of long-term cardiovascular disease.

Recent data suggest that aggressive management of metabolic bone disease can augment and improve cardiovascular disease status. Pediatric nephrologists need to manage the metabolic bone disease while keeping the ongoing linear growth and skeletal maturation in mind, which may be delayed in chronic kidney disease.

Read the full study in Advances in Chronic Kidney Disease.

Bear Institute PACK logo

Bear Institute Pediatric Accelerator Challenge for Kids winners announced

Bear Institute PACK logoIn December 2022, the Bear Institute, along with Children’s National Hospital and Oracle Health, hosted the second annual Bear Institute PACK (Pediatric Accelerator Challenge for Kids), a start-up competition aimed to foster pediatric digital health innovation.

Bear Institute PACK is inclusive of the entire pediatric health care community and addresses the large disparity in digital health innovation funding dedicated to children versus the rest of the population. “We have to do more for children, a population that can’t advocate for itself,” says Matt Macvey, M.B.A., MS, executive vice president and chief information officer at Children’s National Hospital. “Bear Institute PACK is an all-hands effort to provide increased support to those start-ups trying to bring new solutions to market for kids.”

Start-ups share their innovations and receive valuable feedback from expert judges while competing for a chance to win an on-site pilot and software development support. The competition features three rounds of judging: an initial review of applications from the Bear Institute PACK team, judging from participating pediatric healthcare providers and administrators and review from an expert panel of judges during finalist start-ups’ live pitches. This year’s start-up participants competed across four innovation tracks in the following areas of development: Early-Stage Innovation, Concept Validation, Early Commercialization and Growth Trajectory.

This 2022 winners, in four innovation tracks, are:

  • Early-Stage Innovation (“Even the biggest ideas start small”) Winner: PigPug Health
    Its solution uses neurofeedback, a non-invasive approach to treating brain-related conditions, and artificial intelligence to help children with ADHD and autism become more socialized.
  • Concept Validation (“Now it’s time to test it”) Winner: Global Continence, Inc.
    Its Soluu™, Bedwetting Mitigation Device, helps rapidly and permanently mitigate bedwetting with a neuromodulation process.
  • Early Commercialization (“Countdown to launch”) Winner: PyrAmes Inc.
    Its solution Boppli™ provides continuous, non-invasive blood pressure monitoring and streams data via Bluetooth to a mobile device.
  • Growth Trajectory (“The investment is growing”) Winner: maro
    Its full stack child development kit equips a child’s caretakers (at home, school and clinic) with easy access to tools and data needed to help them navigate tough conversations including mental health, diversity, empathy, and puberty and helps identify mental health at-risk students in schools.

“I was very impressed with this year’s start-up participants and their caliber of talent and passion for what they do. The finalist judges were tasked with selecting one winner in each innovation track, but the work each participant is doing for kids makes them all winners,” says Rebecca Laborde, Ph.D., chief scientist, vice president of Health Innovation and Scientific Advisory, Oracle Health. “Thank you to the entire pediatric healthcare community that comes together to help make this event a success. We believe that by bringing together like-minded individuals with the same goals, we can make a real difference in pediatric healthcare.”

President Joe Biden and First Lady Jill Biden tour the telehealth command center at Children's National Hospital

President Biden, First Lady tour cardiac telehealth command center

President Joe Biden and First Lady Jill Biden paid a recent visit to the Cardiac Intensive Care Unit (CICU) at Children’s National Hospital, where leaders of our cardiology services toured them through the state-of-the-art telehealth command center embedded on the unit.

The big picture

Children’s National is pioneering the integration of telemedicine into CICU care. It’s one of the few pediatric hospitals in the world to do this.

Experts liken the telehealth command center to an ‘air traffic control tower’ for the most vulnerable patients with critical heart disease. The President and First Lady saw how complex the environment is, with real-time monitoring of all 26 high-risk patients in the CICU. The system combines traditional remote monitoring, video surveillance and artificial intelligence tools.

What this means

“With this technology, we’re helping to predict and prevent major adverse events,” said Ricardo Munoz, M.D., executive director of the Telemedicine Program and chief of the Division of Critical Care Medicine at Children’s National. “For example, our neuromonitoring system can help signal an impending brain injury before it happens.”

Dr. Munoz says President Biden expressed interest in the prevention strategy of adverse events and this new approach to caring for children with critical cardiac illness.

What they’re saying

  • “It was important to share with the Biden’s that caring for these kids is a long-term endeavor, not simply a single surgery or procedure to fix their heart abnormality,” said Yves d’Udekem, M.D., Ph.D., chief of Cardiac Surgery at Children’s National. “That means making sure they have the earliest diagnoses, the best treatments from surgeons and others who truly understand their condition, and a technologically advanced, attentive place to recover and heal as safely as possible.”
  • “Many people don’t believe that ‘pediatrics’ and ‘innovation’ can co-exist,” said Annette Ansong, M.D., medical director of Outpatient Cardiology at Children’s National. “During the Biden’s visit, they were at the crux of a novel way to closely monitor some of our sickest children with the added ability to predict bad events before they happen.”

Dr. Ansong hopes bringing awareness of these cardiac capabilities to the President and First Lady is the first of many steps in seeking support for children with congenital and acquired heart disease.

pregnant woman on couch

The role of pediatric cardiologists in addressing maternal health disparities

pregnant woman on couch

Black women are two to three times more likely to die from pregnancy-related complications. Most of the risk factors for these complications are cardiac in origin and preventable.

Pediatric cardiologists can and should work alongside other specialties to address the epidemic of maternal mortality that disproportionately affects Black women in the United States, says Annette Ansong, M.D., medical director of outpatient cardiology at Children’s National Hospital.

As co-chair of the Women and Children Committee of the Association of Black Cardiologists Inc., (ABC) Ansong says that cardiologists, especially pediatric cardiologists, have a role to play because “before they are Black women, they are Black girls.”

She talked about the impact of these health disparities and how cardiologists can play a role in addressing them at the American Heart Association Scientific Sessions in November 2022.

Why it matters

Dr. Ansong says that Black women are two to three times more likely to die from pregnancy-related complications. Most of the risk factors for these complications are cardiac in origin and preventable. Furthermore, many of these cardiovascular risk factors, such as obesity, start in youth and some even before birth. For example, children of pre-eclamptic moms have a higher risk of cardiovascular disease in the future, too.

How cardiologists can help

Pediatric cardiologists can be more proactive at helping Black girls grow up into strong, healthy Black women by making sure they are heart-healthy from a young age. That includes advocating for exercise, eating well and exploring innovative ways to encourage those habits.

Dr. Ansong says she makes a point to closely follow children based on the heart health history of their mothers—for example, “if mom had pre-eclampsia, I need to be keeping a closer eye on that child’s blood pressure” —to allow for early intervention and potentially prevent some devastating negative outcomes later in life.

Pediatricians and other specialists can also work with maternal-fetal medicine and other specialties to advocate for better tools to monitor women with pre-existing heart-related risk factors. This might include supporting efforts to enhance technology that makes self-monitoring easier, so women can keep closer eyes on their own blood pressure and share it with doctors in between appointments.

Most important, clinicians of all stripes should try to connect with patients to understand who they are, where they come from and how their stories impact their risk factors for health conditions.

The Women and Children’s Committee of the ABC launched the “We Are the Faces of Black Maternal Health” campaign in February 2022. The first-of-its-kind effort featured the stories of ABC members who had direct or indirect experiences with the impacts of maternal health on themselves, their children or someone they knew.

What’s next

The ABC “We Are the Faces of Black Maternal Health” re-launches this February to continue raising awareness but will also emphasize the need for investments in research about the causes of these disparities and possible prevention strategies to protect Black women.

Abstract Happy 2022 New Year greeting card with light bulb

The best of 2022 from Innovation District

Abstract Happy 2022 New Year greeting card with light bulbA clinical trial testing a new drug to increase growth in children with short stature. The first ever high-intensity focused ultrasound procedure on a pediatric patient with neurofibromatosis. A low dose gene therapy vector that restores the ability of injured muscle fibers to repair. These were among the most popular articles we published on Innovation District in 2022. Read on for our full top 10 list.

1. Vosoritide shows promise for children with certain genetic growth disorders

Preliminary results from a phase II clinical trial at Children’s National Hospital showed that a new drug, vosoritide, can increase growth in children with certain growth disorders. This was the first clinical trial in the world testing vosoritide in children with certain genetic causes of short stature.
(2 min. read)

2. Children’s National uses HIFU to perform first ever non-invasive brain tumor procedure

Children’s National Hospital successfully performed the first ever high-intensity focused ultrasound (HIFU) non-invasive procedure on a pediatric patient with neurofibromatosis. This was the youngest patient to undergo HIFU treatment in the world.
(3 min. read)

3. Gene therapy offers potential long-term treatment for limb-girdle muscular dystrophy 2B

Using a single injection of a low dose gene therapy vector, researchers at Children’s National restored the ability of injured muscle fibers to repair in a way that reduced muscle degeneration and enhanced the functioning of the diseased muscle.
(3 min. read)

4. Catherine Bollard, M.D., M.B.Ch.B., selected to lead global Cancer Grand Challenges team

A world-class team of researchers co-led by Catherine Bollard, M.D., M.B.Ch.B., director of the Center for Cancer and Immunology Research at Children’s National, was selected to receive a $25m Cancer Grand Challenges award to tackle solid tumors in children.
(4 min. read)

5. New telehealth command center redefines hospital care

Children’s National opened a new telehealth command center that uses cutting-edge technology to keep continuous watch over children with critical heart disease. The center offers improved collaborative communication to better help predict and prevent major events, like cardiac arrest.
(2 min. read)

6. Monika Goyal, M.D., recognized as the first endowed chair of Women in Science and Health

Children’s National named Monika Goyal, M.D., M.S.C.E., associate chief of Emergency Medicine, as the first endowed chair of Women in Science and Health (WISH) for her outstanding contributions in biomedical research.
(2 min. read)

7. Brain tumor team performs first ever LIFU procedure on pediatric DIPG patient

A team at Children’s National performed the first treatment with sonodynamic therapy utilizing low intensity focused ultrasound (LIFU) and 5-aminolevulinic acid (5-ALA) medication on a pediatric patient. The treatment was done noninvasively through an intact skull.
(3 min. read)

8. COVID-19’s impact on pregnant women and their babies

In an editorial, Roberta L. DeBiasi, M.D., M.S., provided a comprehensive review of what is known about the harmful effects of SARS-CoV-2 infection in pregnant women themselves, the effects on their newborns, the negative impact on the placenta and what still is unknown amid the rapidly evolving field.
(2 min. read)

9. Staged surgical hybrid strategy changes outcome for baby born with HLHS

Doctors at Children’s National used a staged, hybrid cardiac surgical strategy to care for a patient who was born with hypoplastic left heart syndrome (HLHS) at 28-weeks-old. Hybrid heart procedures blend traditional surgery and a minimally invasive interventional, or catheter-based, procedure.
(4 min. read)

10. 2022: Pediatric colorectal and pelvic reconstructive surgery today

In a review article in Seminars in Pediatric Surgery, Marc Levitt, M.D., chief of the Division of Colorectal and Pelvic Reconstruction at Children’s National, discussed the history of pediatric colorectal and pelvic reconstructive surgery and described the key advances that have improved patients’ lives.
(11 min. read)

animation showing MRI cardiac imaging

Advanced MRI hopes to improve outcomes for Fontan cardiac patients

animation showing MRI cardiac imaging

Chief of Cardiac Surgery Yves d’Udekem, M.D., calls this “fourth-dimensional imaging” that identifies if blood flows swiftly, smoothly, or is subjected to swirls or turbulences that impede the effectiveness of the flow.

Cardiac imaging specialists and cardiac surgeons at Children’s National Hospital are applying advanced magnetic resonance imaging visualization techniques to understand the intricacies of blood flow within the heart chambers of children with single ventricle heart defects like hypoplastic left heart syndrome (HLHS).

The data allows surgeons to make critical corrections to the atrioventricular valve — the valve between the atrium and ventricle of the heart — before a child undergoes the single ventricle procedure known as the Fontan.

Yves d’Udekem, M.D., chief of Cardiac Surgery at Children’s National, says that eliminating leakage of the atrioventricular valve before a child undergoes the Fontan may improve a child’s quality of life after Fontan and reduce the likelihood of heart failure, transplant or death long term.

The big picture

Patients with only one functioning pumping chamber, or ventricle, have been on the same treatment trajectory for decades. However, critical international efforts to collect and analyze long-term outcomes for patients with Fontan circulations have led surgeons like d’Udekem to rethink what quality of life and a positive outcome means for these patients. This includes patients in the Australia and New Zealand Fontan Registry founded by d’Udekem while at Royal Children’s Hospital in Australia.

Research based on data in the patient registries shows that atrioventricular valve leakage plays a critical role in the outcomes for patients with single ventricle defects. For children with Fontan circulation, significant leakage of this valve leads to worse outcomes.

Moving the field forward

Treatment decisions for children with single ventricle heart defects are often made based on commonly used heart imaging to determine the effect of valve leakage based on two limited, key variables: the size and the squeeze of the heart. However, this is a late effect and may not reflect the true impact on children with single ventricle hearts.

The team at Children’s National — including d’Udekem and Yue-Hin Loke, M.D., cardiac MRI specialist and director of the 3D Cardiac Visualization Laboratory — use cardiac MRI to measure the flow between heart chambers. Special software can measure abnormal flow and energy losses inside the heart, drawing on principles of physics and engineering.

“Dr. Loke not only gathers three-dimensional imaging of the heart through every heartbeat, he also gathers brand new types of colored imaging of blood flow itself, showing how effectively it is propelled by the heart,” says d’Udekem. “This ‘fourth-dimensional imaging’ identifies whether the blood flows swiftly, smoothly or whether it is subjected to swirls or turbulences that impede the effectiveness of the flow.”

Children’s National leads the way

Harnessing the visualization technology and analysis for clinical care of patients with single ventricle defects is relatively new in the United States, but it has become a vital part of the routine, clinical pre-Fontan evaluations at Children’s National.

Few locations in the United States have the mechanisms and expertise to study abnormal flow patterns in children with single ventricle defects. Children’s National collaborates with engineers to help parse the information into clear-cut takeaways for the clinical teams to use in their treatment planning.

Also, while other centers have access to this technology, not many centers have cardiac surgeons like d’Udekem who have an active interest in applying the key learnings from this data as quickly as possible to improve outcomes for patients.

Loke describes the collaboration at Children’s National as a “unique crossroads of clinical need and clinical interest to help these kids in very bold ways.”

What’s next

d’Udekem and Loke are engaged in a comprehensive project that analyzes the impact of atrioventricular valve leakage to ensure that the flow inside the heart is optimized before a Fontan procedure.

The research will map the efficiency of blood flow between the atrium and ventricle before surgery and after a surgical correction is made. The goal is to test the hypothesis that better atrioventricular circulation before Fontan can make a big difference for patients’ long-term quality of life and overall health.

RFP collage of logos

Healthcare leaders join to advance pediatric innovation

RFP collage of logosChildren’s National Hospital and the National Capital Consortium for Pediatric Device Innovation (NCC-PDI) have opened a request for proposal to solicit companies interested in obtaining pediatric labeling for medical devices that may address an unmet need in the pediatric population and that already have clearance or approval for adult use by the U.S. Food & Drug Administration (FDA). The objective of this program is to generate the real-world evidence (RWE) needed to facilitate the pediatric regulatory pathway for U.S. market clearance. The deadline to apply is 5 p.m. EST on Feb. 9. To learn more and apply, visit http://www.innovate4kids.org.

Instead of assessing medical devices based on data derived from clinical trials, this pioneering initiative is focused on leveraging real-world data (RWD) that can be translated into RWE to gain FDA clearance or approval for use with children.

Convening a coalition of healthcare leaders

The new partnership aims to address the significant gap that exists between devices labeled for adults and children. Additional coalition partners include:

  • CobiCure
  • MedStar Health Research Institute
  • Center for Technology Innovation in Pediatrics (CTIP)
  • UCSF-Stanford Pediatric Device Consortium
  • Pennsylvania Pediatric Device Consortium
  • Southwest National Pediatric Device Consortium

Funded by the FDA and facilitated through NCC-PDI and the Office of Innovation Ventures at Children’s National, this program will provide winning companies with technical expertise, including but not limited to regulatory, study design and data science services.

“We are delighted to partner with this coalition of trusted healthcare leaders that share our vision for advancing pediatric health. We know all too well that pediatric device development presents several unique challenges and that children have medical device needs that are considerably different from adults,” says Kolaleh Eskandanian, Ph.D., M.B.A, P.M.P, vice president and chief innovation officer at Children’s National and principal investigator of NCC-PDI. “There are already a number of medical devices on the market that have been FDA cleared or approved and proven viable, and this partnership will help provide important evidence generation and other wraparound services to guide device creators through the regulatory path for pediatric labeling.”

Using RWE to facilitate the regulatory pathway

While Randomized Clinical Trials (RCT) have traditionally been the gold standard when investigating a medical product’s efficacy and safety, many important populations, including children, are excluded from RCTs for ethical reasons. This means that pediatric researchers must make safety and efficacy decisions in the absence of data from such trials. RWE, including data from electronic health records (EHRs), healthcare claims data, disease registries and data gathered through other health applications, can close this gap in pediatric studies. She said that MedStar Health’s capabilities in applying RWE will be a formidable asset to the chosen applicants.

Proposals for companies seeking pediatric labeling for their medical device will be reviewed by an esteemed panel of judges specializing in data science, medical device development, evidence generation, post-market surveillance and the FDA’s regulatory pathway. Children’s National and members of the coalition will provide selected companies with technical expertise in support of their effort to achieve pediatric labeling. This will include:

  • Access to mentors
  • A design study protocol implementing RWE generation best practices
  • Facilitation of IRB submission and study implementation
  • Data science support
  • Regulatory, reimbursement and supply chain consultation

About NCC-PDI

NCC-PDI is one of five consortia in the FDA’s Pediatric Device Consortia Grant Program created to support the development and commercialization of medical devices for children. NCC-PDI is led by the Sheikh Zayed Institute for Pediatric Surgical Innovation at Children’s National and the A. James Clark School of Engineering at the University of Maryland, with support from partners MedTech Innovator and design firm Archimedic.

Map showing CHI Registry sign-ups through December 2022

Congenital Heart Initiative celebrates global reach in first two years

The first patient-powered registry for adults living with congenital heart disease (CHD) — the Congential Heart Initiative (CHI) — celebrates a major milestone this month. In the two years since it was launched in December 2020, the registry has enrolled more than 3,227 adults with CHD from all 50 states and 28 countries.

Why it matters

Although nearly 2 million adults in the United States are living with a congenital heart defect — more adults than children in fact — it’s been historically difficult to gather data on these conditions and to identify patient needs.

“We developed this registry together with numerous patients and providers so it could become a platform for increasing our knowledge and improving care,” says Anitha John, M.D., medical director of the Washington Adult Congenital Heart Program and an adult congenital cardiologist at Children’s National Hospital, who helped drive the registry’s creation. “We want it to become a resource for patients and researchers, a place where they can learn more about what it means for adults who had their hearts repaired in childhood to live a long, healthy life.”

The patient benefit

As the treatments for children with CHDs have improved, people born with them are living longer and longer. That means that as they become adults, they have a lot of worry and uncertainty about their limitations and abilities to achieve what might be considered common adult milestones.

“Over the past two years, more than 3,000 adult congenital heart disease (ACHD) patients from around the world, including myself, have worked to support ACHD research by participating in the Congenital Heart Initiative (CHI),” says Scott Leezer, a single-ventricle heart defect patient and co-leader of research and advocacy for the Initiative. “This selfless and simple effort has produced an investment in improving our collective understanding of adult patients living with CHD. We hope these investments will pay dividends in helping guide new research strategies for future generations of CHD patients.”

Participants in the registry receive regular newsletters, highlighting findings and providing access to patient specific resources including content from the Adult Congenital Heart Association (ACHA), a key partner. The ACHA collaboration has also given registry participants the opportunity to interact with other people – a key request identified as important based on input from people who have already registered.

What’s unique

“There is no ’one-size-fits-all’ answer for adults with CHD,” Dr. John adds.

“While other CHD registries exist, they are provider-based and not patient-powered,” said John. “The CHI registry is driven by patients, supporting research but also providing information based on what is important according to the people with CHD themselves.”

What’s next

A sub-study of the CHI will use PCORnet®, the National Patient-Centered Clinical Research Network, to better understand how gaps in care impact the adult patient experience with CHD. The CHI-RON study, which stands for Congenital Heart Initiative: Redefining Outcomes and Navigation to Adult-Centered Care, will be the first of its kind to fill in these knowledge gaps by exploring three distinct types of data at once: patient reported outcomes, health insurance claims and electronic health records (EHR). The effort is led by Children’s National and Louisiana Public Health Institute.

“PCORnet is a fantastic resource to help us fully understand the impact of gaps in CHD care,” said Tom Carton, dual-principal investigator of CHI-RON and chief data officer at the Louisiana Public Health Institute. “It is essentially turbo-charging our patient-reported data with two additional layers of insights from claims and EHRs, unlocking answers that would be impossible to achieve in isolation.”

In terms of research, the CHI now has enough participants to allow researchers to complete some important studies about pregnancy, mental health and long-term health care follow ups, all of which will kick off within the next year. The research teams hope to engage centers across the United States to better determine the needs of individual ACHD centers and to understand how the CHI can help with these needs.

PeriPath surgery

NIH awards $1.8 million to trial pacemaker delivery system for children

PeriPath pacemaker

The PeriPath access port makes it possible for pacing and defibrillating leads to be placed in the smallest children through holes the size of a straw.

A $1.8 million Small Business Innovation Research (SBIR) grant from the National Institutes of Health (NIH) is funding the first clinical trial of a novel device called PeriPath. The device makes it possible for pacing and defibrillating leads (or wires) to be placed in the smallest children through holes the size of a straw, eliminating thoracotomy or sternotomy procedures for children who are too small for transvenous implantation.

Even the tiniest pacemakers and defibrillators on the market today aren’t small enough for infants and young children with heart rhythm abnormalities. Innovating smaller devices, including adapting current technology like the Medtronic Micra for pediatric use, is a good start but won’t be enough to eliminate some of the challenges for these patients. When a newborn or young child needs any pacemaker or defibrillator, they face open chest surgery. Their arteries and veins are just too small for even the smallest size transvenous pacemaker catheter.

The research goal

Charles Berul, M.D., division chief of Cardiology and co-director of the Children’s National Heart Institute, partnered with engineers in the Sheikh Zayed Institute for Pediatric Surgical Innovation at Children’s National Hospital to develop and test a first-of-its-kind minimally invasive pericardial access tool. The tool allows doctors to place pacing and defibrillation leads to the epicardial surface of the heart under direct visualization from an endoscope.

The team hypothesizes that this tool will allow for pacing and defibrillation therapy to be delivered through a single small port inserted through the skin that is about the size of a drinking straw.

Why it matters: Less pain, shorter and fewer surgeries

If successful, the device will eliminate the need for open chest surgery in patients who aren’t candidates for transvenous placement. The ability to place these leads percutaneously should:

  • Reduce pain and infection risk.
  • Decrease procedure times.
  • Minimize surgery complications that arise from open surgery.
  • Improve better visualization for pericardial punctures.
  • Allow other novel therapies such as epicardial ablation or, in the future, even drug/gene delivery into the pericardial space.

Any implanted pacemaker or defibrillator must be replaced every 5-10 years. A young child in critical need of such devices could face surgeries 10 or more times to replace the device and/or leads.

Pre-clinical testing shows early data that this percutaneous approach is as safe and effective as an open surgical technique, although it remains in early-stage evaluation.

What’s next

The NIH SBIR funding will allow the research team to assess long-term safety and efficacy and commercialize the PeriPath tool. Next steps are to:

  • Refine the design of PeriPath for production manufacturing, integrate testing protocols into a Quality Management System and conduct a pilot verification build. Success is defined as manufacturing production devices that pass 510(k) verification and validation testing.
  • Demonstrate substantial equivalence to predicate trocars through performance and handling validation testing using PeriPath to implant an epicardial lead in a pediatric simulator. If successful, the team will demonstrate equivalence and obtain investigational device exception (IDE).
  • In the latter part of the plan, to perform a first in human feasibility clinical study using PeriPath to implant a commercial pacemaker lead with institutional review board (IRB) approval in infants at Children’s National.

Bottom line

Dr. Berul says, “This research could have a transformative impact on current clinical practice by converting an open surgical approach to a minimally invasive percutaneous procedure.”

He also notes that while the study design focuses on the unique needs of infants and children with congenital heart disease – who are the primary focus of the device – the results of the trial may benefit thousands of adult patients who need pacemakers or defibrillators but who are not candidates for the transvenous placement.

NCC PDI 2022 pitch competition winners

Five winners selected in prestigious pediatric device competition

The National Capital Consortium for Pediatric Device Innovation (NCC-PDI) announced five awardees chosen in its prestigious “Make Your Medical Device Pitch for Kids!” competition. Each received a share of $150,000 in grant funding from the U.S. Food and Drug Administration (FDA), with awards ranging from $20,000 to $50,000 to support the advancement of pediatric medical devices.

Consistent with its mission of addressing the most pressing pediatric device needs, this year’s competition, moderated by MedTech Innovator, welcomed medical device technologies that address the broad unmet needs of children. The pediatric pitch event was part of the 10th Annual Symposium on Pediatric Device Innovation, co-located with the MedTech Conference, powered by AdvaMed.

This year’s pediatric device innovation awardees are:

  • CorInnova – Houston, TX – Minimally invasive biventricular non-blood contacting cardiac assist device to treat heart failure.
  • Innovation Lab – La Palma, CA – Mechanical elbow brace stabilizes tremors for pediatric ataxic cerebral palsy to improve the performance of Activities of Daily Living (ADLs).
  • Prapela – Biddeford, ME – Prapela’s incubator pad is the first innovation to improve the treatment of apnea of prematurity in over twenty years.
  • Tympanogen – Richmond, VA – Perf-Fix replaces surgical eardrum repair with a nonsurgical clinic procedure
  • Xpan – Concord, Ont. – Xpan’s universal trocar enables safest and most dynamic access and effortless upsizing in conventional/mini/robotic procedures.

“We are delighted to recognize these five innovations with critical NCC-PDI funding that will support their journey to commercialization. Improving pediatric healthcare is not possible without forward-thinking companies that seek to address the most dire unmet needs in children’s health,” says Kolaleh Eskandanian, Ph.D., M.B.A, P.M.P, vice president and chief innovation officer at Children’s National Hospital and principal investigator of NCC-PDI. “We know all too well how challenging it is to bring pediatric medical devices to market, which is why we have created this rich ecosystem to identify promising medical device technologies and incentivize investment. We congratulate this year’s winning innovators and applaud their efforts to help bridge these important care gaps that are impacting children.”

Empowering Innovators

NCC-PDI is one of five consortia in the FDA’s Pediatric Device Consortia Grant Program created to support the development and commercialization of medical devices for children, which lags significantly behind the progress of adult medical devices. NCC-PDI is led by the Sheikh Zayed Institute for Pediatric Surgical Innovation at Children’s National and the A. James Clark School of Engineering at the University of Maryland, with support from partners MedTech Innovator and design firm Archimedic.

A pediatric accelerator program, powered by MedTech Innovator, the largest medical device accelerator in the world, is a key part of the network of resources and experts that NCC-PDI provides in support of pediatric innovators. All five of this year’s competition finalists had an opportunity to participate in the year-long accelerator program.

To date, NCC-PDI has mentored 250 medical device projects to help advance their pediatric innovations throughout all stages of the total product life cycle (TPLC).

Eskandanian adds that supporting the progress of pediatric innovators is a key focus of the new Children’s National Research & Innovation Campus, a one-of-its-kind ecosystem that drives discoveries that save and improve the lives of children. On a nearly 12-acre portion of the former, historic Walter Reed Army Medical Center in Northwest Washington, D.C., Children’s National has combined its strengths with those of public and private partners, including industry, universities, federal agencies, start-up companies and academic medical centers. The campus provides a rich environment of public and private partners which, like the NCC-PDI network, will help bolster pediatric innovation and commercialization.

NCC PDI 2022 pitch competition winners

A total of $150K was awarded to five pediatric innovations during the medical device pitch competition at the 10th Annual Symposium on Pediatric Device Innovation, hosted by the National Capital Consortium for Pediatric Device Innovation (NCC-PDI). Award winners include (from left to right): Zaid Atto, founder and CEO at Xpan; John Konsin, CEO and co-founder of Prapela; Elaine Horn-Ranney, co-founder and CEO at Tympanogen; William Altman, CEO at CorInnova; and Sharief Taraman, pediatric neurologist at CHOC and University of California-Irvine partnering with Innovation Lab. (Photo credit: Children’s National Hospital)

echocardiogram

AI may revolutionize rheumatic heart disease early diagnosis

echocardiogram

Researchers at Children’s National Hospital have created a new artificial intelligence (AI) algorithm that promises to be as successful at detecting early signs of rheumatic heart disease (RHD) in color Doppler echocardiography clips as expert clinicians.

Researchers at Children’s National Hospital have created a new artificial intelligence (AI) algorithm that promises to be as successful at detecting early signs of rheumatic heart disease (RHD) in color Doppler echocardiography clips as expert clinicians. Even better, this novel model diagnoses this deadly heart condition from echocardiography images of varying quality — including from low-resource settings — a huge challenge that has delayed efforts to automate RHD diagnosis for children in these areas.

Why it matters

Current estimates are that 40.5 million people worldwide live with rheumatic heart disease, and that it kills 306,000 people every year. Most of those affected are children, adolescents and young adults under age 25.

Though widely eradicated in nations such as the United States, rheumatic fever remains prevalent in developing countries, including those in sub-Saharan Africa. Recent studies have shown that, if detected soon enough, a regular dose of penicillin may slow the development and damage caused by RHD. But it has to be detected.

The hold-up in the field

Diagnosing RHD requires an ultrasound image of the heart, known as an echocardiogram. However, ultrasound in general is very variable as an imaging modality. It is full of texture and noise, making it one of the most challenging to interpret visually. Specialists undergo significant training to read them correctly. However, in areas where RHD is rampant, people who can successfully read these images are few and far between. Making matters worse, the devices used in these low resource settings have their own levels of varying quality, especially when compared to what is available in a well-resourced hospital elsewhere.

The research team hypothesized that a novel, automated deep learning-based method might detect successfully diagnose RHD, which would allow for more diagnoses in areas where specialists are limited. However, to date, machine learning has struggled the same way the human eye does with noisy ultrasound images.

Children’s National leads the way

Using approaches that led to successful objective digital biometric analysis software for non-invasive screening of genetic disease, researchers at the Sheikh Zayed Institute for Pediatric Surgical Innovation, including medical imaging scientist Pooneh Roshanitabrizi, Ph.D., and Marius Linguraru, D.Phil., M.A., M.Sc., principal investigator, partnered with clinicians from Children’s National Hospital, including Craig Sable, M.D., associate chief of Cardiology and director of Echocardiography, and cardiology fellow Kelsey Brown, M.D., who are heavily involved in efforts to research, improve treatments and ultimately eliminate the deadly impacts of RHD in children. The collaborators also included cardiac surgeons from the Uganda Heart Institute and cardiologists from Cincinnati Children’s Hospital Medical Center.

Dr. Linguraru’s team of AI and imaging scientists spent hours working with cardiologists, including Dr. Sable, to truly understand how they approach and assess RHD from echocardiograms. Building the tool based on that knowledge is why this tool stands apart from other efforts to use machine-learning for this purpose. Orienting the approach to the clinical steps of diagnosis is what led to the very first deep learning algorithm that diagnoses mild RHD with similar success to the specialists themselves. After the platform was built, 2,136 echocardiograms from 591 children treated at the Uganda Heart Institute fed the learning algorithm.

What’s next

The team will continue to collect data points based on clinical imaging data to refine and validate the tool. Ultimately, researchers will look for a way that the algorithm can work directly with ultrasound/echocardiogram machines. For example, the program might be run through an app that sits on top of an ultrasound device and works on the same platform to communicate directly with it, right in the clinic. By putting the two technologies together, care providers on the ground will be able to diagnose mild cases and prescribe prophylactic treatments like penicillin in one visit.

The first outcomes from the program were showcased in a presentation by Dr. Roshanitabrizi at one of the biggest and most prestigious medical imaging and AI computing meetings — the 25th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI).

Paper cutout of head with brainwaves

Lifesaving ICDs can cause anxiety, stress, PTSD for parents and kids

Paper cutout of head with brainwaves

Research shows that children with implantable cardioverter-defibrillators, and their parents, are at risk for anxiety, post-traumatic stress disorder and other psychological distress.

Recent advances in design and efficiency of implantable cardioverter-defibrillators (ICDs) have led to their increased use in younger patients, protecting more children with congenital heart disease from sudden cardiac arrest and sudden cardiac death, says a commentary in the journal Heart Rhythm. However, living longer with these devices and the day-to-day worry that they may have to deliver a lifesaving shock in the blink of an eye, may cause unusually high rates of anxiety, stress and other psychosocial distress for children with ICDs and their families.

Commentary authors Vicki Freedenberg, Ph.D., RN, electrophysiology nurse scientist, and Charles Berul, M.D., chief of cardiology, both from Children’s National Hospital, note that current available research shows both children with these ICDs and their parents are at risk for anxiety, post-traumatic stress disorder (PTSD) and other psychological distress. They highlight a new study published in the same journal that reports data related to prevalence and factors associated with PTSD in children with ICDs and their parents as a good start to better understanding these impacts.

Why it matters

Freedenberg and Berul say that the new study adds important information to an area without a lot of previous research. They also point out that understanding the long-term impacts of life with these devices is critical to ensuring the overall long-term health and wellbeing of both the children with these devices and their families.

What’s been the hold-up in the field?

The development of devices that work for younger children with congenital heart disease, including advances in ICDs and pacemakers, has increased in the last decade. In this time, studies of how these devices work for children have focused predominantly on clinical outcomes and questions related to clinical care.

As survival rates for children have increased, research needs to shift from the study of mortality and clinical outcomes toward understanding the full spectrum of how these devices impact daily life for these children and their families.

Moving the field forward

According to Freedenberg and Berul, the new study importantly includes both patient and parent perspectives, which is a first in this research area. They also offer recommendations for future studies, including the use of comparison groups to allow for generalization of findings. Researchers might also ask research questions to determine whether the device itself or the medical and non-medical factors that often occur simultaneously are more important to predicting mental health and wellbeing.

However, the commentary concludes with the most important takeaway: More research, with specific parameters focused on the impact of clinical interventions, is desperately needed to truly understand all the ways that children and their families are affected throughout life by the clinical care and support they receive.

Read the full commentary, Potential for shock leads to potential for stress, in the journal Heart Rhythm.