Cardiology & Heart Surgery

screenshot from Congenital Heart Initiative (CHI) Registry Participant Timeline

Congenital Heart Initiative beat recruitment goals, kicked off patient-engaged studies in year three

The Congenital Heart Initiative (CHI) is celebrating its third year as the first global patient-powered registry for adults with congenital heart disease (CHD). In 2023, the registry surpassed recruitment targets and launched a data intake process to allow researchers from around the world to submit proposals for patient-centered research and programs around the critical questions for adults with CHD who had their hearts repaired in childhood.

What it means

By recruiting over 4,600 participants in all 50 states and 37 countries, the CHI is now the largest patient-powered registry for adults with congenital heart disease. This is the first time researchers and clinicians have been able to access this type of robust data set to help them better understand and address the needs of people with CHD as they continue to age. Even better, the registry’s mechanisms allow for routine feedback and input about priorities directly from the growing patient population.

“Patient-centered research organizations, not providers or universities, have the greatest ability to lead this charge and lay the foundation for future breakthroughs. The inspiring efforts of all participants to date gives me hope that the next generation of advances is within reach,” says Matthew Lewis, M.D., an adult congenital heart specialist and CHI-RON site PI from Columbia University Medical Center.

An ongoing sub-study of CHI uses PCORnet®, the National Patient-Centered Clinical Research Network, to better understand how gaps in care impact the adult patient experience with CHD. The CHI-RON study (PCORI RD-2020C2-20347) fills in these gaps by exploring three distinct data types: patient-reported outcomes, health insurance claims and electronic health records. The effort is led by Children’s National Hospital and Louisiana Public Health Institute.

This year, CHI also launched some of its first studies, focused on pregnancy, health disparities and long-term health care follow-ups. The first academic manuscripts about these studies are expected to publish in the next year.

Why it matters

Although nearly 2 million adults in the United States are living with a congenital heart defect — more adults than children in fact — it’s been historically difficult to gather data on these conditions and to identify patient needs.

As children born with CHD become adults, they have a lot of worry and uncertainty about their limitations and abilities to achieve what might be considered common adult milestones. The research made possible by this registry and the mechanisms to communicate findings to both the participants and the larger clinical community will make a big difference in quality of life and hope to provide more answers to these important questions.

The CHI related meetings have allowed a space where patients and researchers can come together to discuss research priorities.

“Once you go and look at things from the patient’s point of view, there is no going back. It is going to be something that will redefine you as a researcher and a provider,” says Rohan D’Souza, M.D., a maternal-fetal medicine specialist who is an active participant in a PCORI-funded maternal health consortium focused on reducing maternal morbidity and mortality in CHD patients (PCORI EACB-23293).

The patient benefit

Additionally, because people with CHD live all over the United States and the world, it can be hard for them to connect with each other to share common questions and experiences with clinicians and each other. The patient-driven registry engages participants and hopes to help make greater connections between people who live with CHD. A key registry partner, the Adult Congenital Heart Association (ACHA), helps create opportunities, such as virtual Coffee Hours, for people in the registry to weigh in on research priorities and share feedback about CHI’s work.

“The ACHA Cafe was born out of a need for connection,” says Aliza Marlin, who founded and organized the café project on behalf of the ACHA. “A virtual social hour, coffee optional, gave the ACHD community a safe space to come together. Using it as a conduit to the Congenital Heart Initiative gave us an empowered voice in our own futures. It’s the perfect example of social connection leading to transformative possibilities.”

What’s next

Anitha John, M.D., medical director of the Washington Adult Congenital Heart Program and an adult congenital cardiologist at Children’s National Hospital who leads CHI, says that the future looks bright for the registry and the vital information it can provide.

The new data intake process launched this year, she adds, gives anyone with an interest the ability to submit ideas for new grants, projects and studies. The team will also continue to engage with registry participants, researchers and the centers who provide care for people with CHD, all with the goal of finding more answers to the key questions about how to accomplish specific goals, such as improving mental health, the health care transition and overall quality of life for adults with CHD. For more information on how to get involved, please email ACHDresearch@childrensnational.org.

sonogram showing tetralogy of Fallot

Tetralogy of Fallot repair technique demonstrates low reoperation rates

Cardiac surgeons at Children’s National Hospital have used a uniform transventricular strategy for tetralogy of Fallot repair for more than 15 years. A large, retrospective study published in the Journal of Thoracic and Cardiovascular Surgery demonstrates that few patients who received a repair using this method required a reoperation to implant a pulmonary valve in the first 10 years after their primary repair surgery.

What it is

The study is one of the first to report statistically significant outcomes of the transventricular approach applied uniformly in a single institution. It provides tangible evidence of the short- and mid-term postoperative outcomes from 244 consecutive patients who underwent tetralogy of Fallot repair at Children’s National between 2004 and 2019. Infants received the repair between 42 and 106 days after birth.

Tetralogy of Fallot is a condition of several related congenital heart defects that occur due to abnormal development of the prenatal heart during the first eight weeks of pregnancy.

Why it matters

The data show that, at Children’s National, 96.7% of children who underwent tetralogy of Fallot repair within the first year of life using this transventricular approach were able to avoid having an additional surgery to receive a replacement pulmonary valve for up to a decade after their initial repair.

It also shows a benefit of this approach soon after birth. The authors believe that having the repair earlier (on average, 71 days after birth in this study) provides long-term benefits to the growth and development of both the brain and heart. The repair also protects the heart’s function over time by preventing the development of dangerous ventricular arrhythmias.

The big picture

Short- and mid-term post-surgical outcome data like the information presented in this study are an important indicator of the expertise, care quality and overall safety associated with the cardiac surgery team performing the procedure.

These findings provide critical insight into the effectiveness of specific treatment approaches for infants with tetralogy of Fallot and can help both clinicians and families better understand the benefits and risks of these procedures.

Read the full study in the Journal of Thoracic and Cardiovascular Surgery.

ARPA-H logo

Children’s National selected as member of ARPA-H Investor Catalyst Hub spoke network

ARPA-H logoThe hospital will advocate for the unique needs of children as part of nationwide network working to accelerate transformative health solutions.

Children’s National Hospital was selected as a spoke for the Investor Catalyst Hub, a regional hub of ARPANET-H, a nationwide health innovation network launched by the Advanced Research Projects Agency for Health (ARPA-H).

The Investor Catalyst Hub seeks to accelerate the commercialization of groundbreaking and accessible biomedical solutions. It uses an innovative hub-and-spoke model designed to reach a wide range of nonprofit organizations and Minority-Serving Institutions, with the aim of delivering scalable healthcare outcomes for all Americans.

“The needs of children often differ significantly from those of adults. This partnership reflects our commitment to advancing pediatric healthcare through innovation and making sure we’re addressing those needs effectively,” said Kolaleh Eskandanian, Ph.D., M.B.A., vice president and chief innovation officer at Children’s National. “Leveraging the strength of this hub-and-spoke model, we anticipate delivering transformative solutions to enhance the health and well-being of the patients and families we serve.”

Children’s National joins a dynamic nationwide network of organizations aligned to ARPA-H’s overarching mission to improve health outcomes through the following research focus areas: health science futures, proactive health, scalable solutions and resilient systems. Investor Catalyst Hub spokes represent a broad spectrum of expertise, geographic diversity and community perspectives.

“Our spoke network embodies a rich and representative range of perspectives and expertise,” said Mark Marino, vice president of Growth Strategy and Development for VentureWell and project director for the Investor Catalyst Hub. “Our spokes comprise a richly diverse network that will be instrumental in ensuring that equitable health solutions reach communities across every state and tribal nation.”

As an Investor Catalyst Hub spoke, Children’s National gains access to potential funding and flexible contracting for faster award execution compared to traditional government contracts. Spoke membership also offers opportunities to provide input on ARPA-H challenge areas and priorities, along with access to valuable networking opportunities and a robust resource library.

Alliance for Pediatric Device Innovation consortium members

Children’s National awarded nearly $7.5 million by FDA to lead pediatric device innovation consortium

Alliance for Pediatric Device Innovation consortium membersChildren’s National Hospital was awarded nearly $7.5 million in a five-year grant to continue its leadership of an FDA-funded pediatric device consortium. Building upon a decade of previous consortium leadership, the new consortium is Alliance for Pediatric Device Innovation (APDI) and features a new and expanded roster of partners that reflects its added focus on providing pediatric innovators with expert support on evidence generation, including the use of real-world evidence (RWE), for pediatric device development.

Collaborating for success

With the goal of helping more pediatric medical devices complete the journey to commercialization, APDI is led by Children’s National, with Kolaleh Eskandanian, Ph.D., M.B.A., vice president and chief innovation officer, serving as program director and principal investigator, and Julia Finkel, M.D., pediatric anesthesiologist and director of Pain Medicine Research and Development in the Sheikh Zayed Institute for Pediatric Surgical Innovation, serving as principal investigator.

Consortium members include Johns Hopkins University, CIMIT at Mass General Brigham, Tufts Medical Center, Medstar Health Research Institute and MedTech Color. Publicly traded OrthoPediatrics Corp., which exclusively focuses on advancing pediatric orthopedics, is serving as APDI’s strategic advisor and role model for device innovators whose primary focus is children.

Why we’re excited

Consortium initiatives got underway quickly with the announcement of a special MedTech Color edition of the “Make Your Medical Device Pitch for Kids!”competition that focuses on African American and Hispanic innovators. Interested innovators can find details and apply at MedTech Color Pitch Competition. The competition was announced at the recent MedTech Color networking breakfast on Oct. 10,2023 at The MedTech Conference powered by AdvaMed.

“We all benefit from greater equity and inclusion among pediatric MedTech founders, decision-makers, investigators and developers in more effectively addressing the needs of the entire pediatric population,” said Eskandanian. “We need the expertise and insights of innovators from diverse backgrounds, and we want to provide these talented individuals with more opportunities to present their work and share their perspectives on pediatric device development.”

Additional details

APDI is one of five FDA-funded consortia created to provide a platform of services, expertise and funding to help pediatric innovators bring medical devices to the market that specifically address the needs of children.

 

boy in hospital bed

Local context, health system integrations key to sustainable interventions after RHD diagnosis

boy in hospital bed

Although entirely preventable, RHD, a disease of poverty and social disadvantage resulting in high morbidity and mortality, remains an ever-present burden in low- and middle-income countries, as well as rural, remote, marginalized and disenfranchised populations within high-income countries.

A rheumatic heart disease (RHD) work group convened by the National Heart, Lung, and Blood Institute (NHLBI) concludes that any priority intervention strategies to slow or stop late complications of RHD need to consider local contexts and should be integrated into health systems to meet the affected community’s needs in a sustainable way.

The group outlined priorities based on current available evidence to support the development and implementation of accessible, affordable and sustainable interventions in low-resource settings to manage RHD and its related complications.

Craig Sable, M.D., associate chief of Cardiology at Children’s National Hospital, served as a senior author on the recommendations, based on the work group findings.

Why it matters

Although entirely preventable, RHD, a disease of poverty and social disadvantage resulting in high morbidity and mortality, remains an ever-present burden in low- and middle-income countries, as well as rural, remote, marginalized and disenfranchised populations within high-income countries.

The NHLBI workshop sought to support RHD eradication efforts worldwide by:

  • Analyzing the current state of science
  • Identifying basic science and clinical research priorities

Each work group was assigned to review existing guidelines and research for different stages of the disease’s progression, which is now being published together as a set of five companion articles to raise the prioritization of RHD research and funding.

Moving the field forward

Due to the high prevalence of RHD in low- and middle-income countries, Dr. Sable’s work group focused on gaining a better understanding of the needs in the field from the five perspectives: people living with RHD, the community, healthcare providers, health systems and policymakers.

They identified several priorities and strategies, and they stressed that any interventional strategy, now or in the future, must be culturally safe and community-driven to ensure the creation of a locally and culturally relevant, sustainable continuum of care for people from historically marginalized populations.

What’s next

The authors emphasize that that over 300,000 deaths per year are the result of inadequate, underfunded and poorly integrated care. “Global vision and leadership to enact and implement available policies are needed to close large research gaps in all aspects at patient, health system and policy levels. Robust research and development are urgently needed to improve comprehensive tertiary care and ensure implementation of evidence-based interventions, while developing new innovations, technologies and interventions.”

You can read all the working group manuscripts, including this one: Tertiary Prevention and Treatment of Rheumatic Heart Disease: A National Heart, Lung, and Blood Institute Working Group Summary, in BMJ Global Health.

Learn more about the challenges of rheumatic heart disease in sub-Saharan Africa and other developing parts of the world through the Rheumatic Heart Disease microdocumentary series:

pregnant woman looking at sonogram

Babies with congenital heart disease display disrupted brain function before birth

pregnant woman looking at sonogram

In their study, the team at Children’s National Hospital found that specific brain regions become especially vulnerable to injury around 24 weeks of pregnancy when developing babies begin to have high energy demands and rapid neurovascular changes.

For the first time, researchers have found that babies born with congenital heart disease (CHD) have alterations to the emerging functional connectivity of their brains in utero. The changes are related to the subtype of their CHD and their oxygen status before they have lifesaving surgery to treat their cardiac malformation, according to new findings published in the American Heart Association’s Circulation Research.

In their study, the team at Children’s National Hospital found that specific brain regions become especially vulnerable to injury around 24 weeks of pregnancy when developing babies begin to have high energy demands and rapid neurovascular changes. That leaves certain parts of the brain, including the brainstem, more susceptible to injury from cardiac complications and poor circulation.

“We used a special type of magnetic resonance imaging to safely study the brains of these unborn babies, and we found that they have weakened connectivity in the deep grey structures, which are responsible for sensation, movement, alertness and other core functions,” said Josepheen De Asis-Cruz, M.D., Ph.D., assistant professor at the Developing Brain Institute at Children’s National and an author of the study. “This offers an important clue in utero to the type of care the babies will eventually need when they are born.”

The big picture

In the past decade, the survival rate for fetuses with CHD has greatly improved. About 80% of cases – even some of the most high-risk heart defects – can be successfully treated or palliated with surgery and survive. Yet Dr. Cruz said researchers are finding that the rates of poor neurodevelopmental outcomes are about the same. That’s why she and her colleagues are looking at what precisely may be injuring the brains of these newborns prior to surgery, offering a possible roadmap to interventions.

The fine print

The research team studied 107 healthy, low-risk pregnancies and 75 pregnancies known to be complicated by CHD. They used functional connectivity magnetic resonance imaging (fcMRI) to examine the emerging connections of the brains of unborn babies, given fcMRI’s unique ability to query the brain in a resting state when a patient is unable to respond to tasks. They also studied the oxygen saturation levels of the babies after they were born and then mapped all of this information to the type of CHD that they were diagnosed with.

“Our findings indicate that the compromised connectivity in the brains of CHD patients before delivery is linked to hypoxia after birth,” Cruz said. “There were important differences in the low- and high-risk CHD groups. Babies born with transposition of the great arteries or hypoplastic left heart syndrome – two of the most high-risk diagnoses – have notable changes in their brain function, which could someday be used as biomarkers to guide their care.”

What’s ahead

Researchers at Children’s National are working together, using a variety of modalities, to move toward precision imaging in utero to help predict a child’s neurodevelopmental outcomes. The ultimate goal: better interventions sooner.

“This work is foundational. As we fine-tune more techniques to identify babies at risk, we can understand how environmental, genetic and epigenetic factors impact brain development and guide care decisions,” said Catherine Limperopoulos, Ph.D., director of the Center for Prenatal, Neonatal & Maternal Health Research and a senior author of the paper. “We can imagine a day where we can offer pregnant mothers highly detailed and personalized information about their unborn baby, and individualized interventions that lead to healthier lifetimes.”

doctor listening to child's heartbeat

Earlier detection of cardiometabolic risk factors for kids may be possible through next generation biomarkers

doctor listening to child's heartbeat

The next generation of cardiometabolic biomarkers should pave the way for earlier detection of risk factors for conditions such as obesity, diabetes and heart disease in children.

American Heart Association statement finds potential future measures, reiterates importance of heart-healthy lifestyle from birth through adulthood.

The next generation of cardiometabolic biomarkers should pave the way for earlier detection of risk factors for conditions such as obesity, diabetes and heart disease in children, according to a new scientific statement from the American Heart Association published in the journal Circulation.

“The rising number of children with major risk factors for cardiometabolic conditions represents a potential tsunami of preventable disease for our healthcare system,” says the statement’s lead author Michele Mietus-Snyder, M.D., a preventive cardiologist and clinical research scientist at Children’s National Hospital. “But by the time a child is identified based on today’s clinical biomarkers, it’s often too late to reverse the disease trajectory.”

The big picture

The scientific statement included biomarkers that met three criteria:

  • Early and precise clinical detection of metabolic abnormalities before a child begins to show the current clinical signs such as high body mass index (BMI), blood pressure or cholesterol.
  • Mechanistic intervention targets providing immediate risk measures and giving clinicians new targets to personalize and optimize interventions.
  • Modifiable biomarkers that are capable of tracking progression toward or away from cardiometabolic health.

The statement’s identified biomarkers included measures of:

  • Epigenetic, or environmental, factors
  • Gut microbiome health
  • Small particle metabolites in the body
  • Different types of lipids and their impacts on cell membranes
  • Inflammation and inflammatory mediators

The authors proposed these biomarkers with the goal of “expanding awareness to include a whole new realm of biomarkers that precede the traditional risk factors we currently rely upon, such as BMI, blood pressure, cholesterol and blood sugar,” says Mietus-Snyder. “Ideally, these new biomarkers will be added to the array of measures used in clinical research to better assess their value for earlier identification and prevention of global patterns of cardiometabolic health and risk.”

Why it matters

The next generation cardiometabolic biomarkers outlined by the authors are all currently used in research studies and would need to be validated for clinical use. However, Mietus-Snyder notes that the data already collected from these biomarkers in research can make a difference in clinical practice by enhancing our understanding of the deep metabolic roots for children at risk.

Evidence reviewed in the statement shows the risk factors children are exposed to, even before birth, can set the stage for cardiovascular and metabolic health across the lifespan.

Interestingly, all the different factors reviewed have been found to alter the functioning of the mitochondria — the complex organelles responsible for producing the energy for the body that every cell and organ system in turn needs to function. Every class of biomarkers reviewed is also favorably influenced by heart-healthy nutrition, a simple but powerful tool known to improve mitochondrial function.

What’s next

Even as the new so-called ‘omic’ biomarkers reviewed in this statement are developed for clinical applications, there are things clinicians can do to optimize them and improve mitochondrial function, according to Mietus-Snyder.

Most important is to strengthen the collective dedication of care providers to removing the barriers that prevent people, especially expecting mothers and children, from living heart-healthy lifestyles.

We have long known lifestyle factors influence health. Even as complicated metabolic reasons for this are worked out, families can reset their metabolism by decreasing sedentary time and increasing activity, getting better and screen-free sleep, and eating more real foods, especially vegetables, fruits and whole grains, rich in fiber and nutrients, with fewer added sugars, chemicals, preservatives and trans fats. Clinicians can work with their patients to set goals in these areas.

“We know diet and lifestyle are effective to some degree for everyone but terribly underutilized. As clinicians, we have compelling reasons to re-dedicate ourselves to advocating for healthy lifestyle interventions with the families we serve and finding ways to help them implement them as early as possible. The evidence shows the sooner we can intervene for cardiometabolic health, the better.”

Patient and doctor demoing Rare-CAP technology

M.D. in your pocket: New platform allows rare disease patients to carry medical advice everywhere

When someone has a rare disease, a trip to the emergency room can be a daunting experience: Patients and their caregivers must share the particulars of their illness or injury, with the added burden of downloading a non-specialist on the details of a rare diagnosis that may change treatment decisions.

Innovators at Children’s National Hospital and Vanderbilt University Medical Center, supported by Takeda, are trying to simplify that experience using a new web-based platform called the Rare Disease Clinical Activity Protocols, or Rare-CAP. This revolutionary collection of medical information allows patients to carry the latest research-based guidance about their rare disorders in their phones, providing a simple QR code that can open a trove of considerations for any medical provider to evaluate as they work through treatment options for someone with an underlying rare disease.

“No one should worry about what happens when they need medical help, especially patients with rare diseases,” said Debra Regier, M.D., division chief of Genetics and Metabolism at Children’s National and Rare-CAP’s lead medical advisor. “We built this new tool because I have watched as my patient-families have wound up in an emergency room — after all, kids get sprains or fractures — but they don’t have the expertise of a rare disease specialist with them. My hope is that they’re going to pull out their phones and access Rare-CAP, which will explain their rare disease to a new provider who can provide more thoughtful and meaningful care.”

The big picture

A rare disease is defined as any disorder that affects less than 200,000 people in the United States. Some 30 million Americans are believed to be living with one of the 7,000 known rare disorders tracked by the National Organization of Rare Diseases (NORD). Led by Dr. Regier, the Rare Disease Institute at Children’s National is one of 40 NORD centers for excellence in the country that provide care, guidance and leadership for the wide array of disorders that make up the rare disease community.

While a key goal of Rare-CAP is to bolster patient self-advocacy, the platform will also allow medical providers to proactively search for protocols on rare diseases when they know they need specialized advice from experts at Children’s National, a network of tertiary care centers and patient organizations.

As a leading values-based, R&D-driven biopharmaceutical company, Takeda has committed $3.85 million to the project to help activate meaningful change and empower a brighter future for rare disease communities, providing a unique understanding of the struggle that patients and caregivers face when they need care.

“Our team, alongside the medical and rare disease community, saw the need for a single portal to collect standardized care protocols, and we are thrilled to see this innovative tool come to life,” said Tom Koutsavlis, M.D., head of U.S. Medical Affairs at Takeda. “People with rare diseases and their caregivers need faster access to authoritative medical information that providers anywhere can act on, this will lead to improving the standard of care, accelerating time to diagnosis and breaking down barriers to increase equitable access.”

The patient benefit

The creators of Rare-CAP imagined its use in a wide range of settings, including emergency rooms, surgical suites, dental offices, urgent care offices and school clinics. The platform will eventually profile thousands of rare diseases and lay out the implications for care, while also creating a dynamic conversation among users who can offer updates based on real-world experience and changes in medical guidance.

“Our patients are unique, and so is this tool,” Dr. Regier said. “As we roll out Rare-CAP, we believe it is just the beginning of the conversation to expand the platform and see its power for the patient and provider grow, with each entry and each new rare disease that’s added to the conversation.”

Catherine Limperopoulos

Imaging reveals altered brain chemistry of babies with CHD

Researchers at Children’s National Hospital used magnetic resonance spectroscopy to find new biomarkers that reveal how congenital heart disease (CHD) changes an unborn baby’s brain chemistry, providing early clues that could someday guide treatment decisions for babies facing lifelong health challenges.

Published in the Journal of the American College of Cardiology, the findings detail the ways that heart defects disrupt metabolic processes in the developing brain, especially during the third trimester of pregnancy when babies grow exponentially.

“Over the past decade, our team has been at the forefront of developing safe and sophisticated ways to measure and monitor fetal brain health in the womb,” said Catherine Limperopoulos, Ph.D., director of the Center for Prenatal, Neonatal and Maternal Health Research at Children’s National. “By tapping into the power of advanced imaging, we were able to measure certain maturational components of the brain to find early biomarkers for newborns who are going to struggle immediately after birth.”

The fine print

In one of the largest cohorts of CHD patients assembled to date, researchers at Children’s National studied the developing brains of 221 healthy unborn babies and 112 with CHD using magnetic resonance spectroscopy, a noninvasive diagnostic test that can examine chemical changes in the brain. They found:

  • Those with CHD had higher levels of choline and lower levels of N-Acetyl aspartate-to-choline ratios compared to healthy babies, potentially representing disrupted brain development.
  • Babies with more complex CHD also had higher levels of cerebral lactate compared to babies with two ventricle CHD. Lactate, in particular, is a worrying signal of oxygen deprivation.

Specifically, elevated lactate levels were notably increased in babies with two types of heart defects: transposition of the great arteries, a birth defect in which the two main arteries carrying blood from the heart are switched in position, and single ventricle CHD, a birth defect causing one chamber to be smaller, underdeveloped or missing a valve. These critical heart defects generally require babies to undergo heart surgery not long after birth. The elevated lactate levels also were associated with an increased risk of death, highlighting the urgency needed for timely and effective interventions.

The research suggests that this type of imaging can provide a roadmap for further investigation and hope that medicine will someday be able to better plan for the care of these children immediately after their delivery. “With important clues about how a fetus is growing and developing, we can provide better care to help these children not only survive, but thrive, in the newborn period and beyond,” said Nickie Andescavage, M.D., Children’s National neonatologist and first author on the paper.

The big picture

CHD is the most common birth defect in the United States, affecting about 1% of all children born or roughly 40,000 babies each year. While these defects can be fatal, babies who survive are known to be at significantly higher risk of lifelong neurological deficits, including lower cognitive function, poor social interaction, inattention and impulsivity. The impact can also be felt in other organ systems because their hearts did not pump blood efficiently to support development.

Yet researchers are only beginning to pinpoint the biomarkers that can provide information about which babies are going to struggle most and require higher levels of care. The National Institutes of Health (NIH) and the District of Columbia Intellectual and Developmental Disabilities Research Center supported the research at Children’s National to improve this understanding.

“For many years we have known that the brains of children with severe heart problems do not always develop normally, but new research shows that abnormal function occurs already in the fetus,” said Kathleen N. Fenton, M.D., M.S., chief of the Advanced Technologies and Surgery Branch in the Division of Cardiovascular Sciences at the National Heart, Lung, and Blood Institute (NHLBI). “Understanding how the development and function of the brain is already different before a baby with a heart defect is born will help us to intervene with personal treatment as early as possible, perhaps even prenatally, and improve outcomes.”

Note: This research and content are solely the responsibility of the authors and do not necessarily represent the official views of the NIH. The NIH provided support for this research through NHLBI grant R01HL116585 and the Eunice Kennedy Shriver National Institute of Child Health and Human Development grant P50HD105328.

Bone Marrow–Derived MSC Treatment Mitigates Structural Abnormalities Resulting From CPB

Cell therapy mitigates neurological impacts of cardiac surgery in pre-clinical model

Differences of cortical fractional anisotropy between cardiopulmonary bypass and control (left), cardiopulmonary bypass + mesenchymal stromal cells and cardiopulmonary bypass (center), and 3 groups (right).

A pre-clinical study in the journal JACC: Basic to Translational Science shows that infusing bone marrow-derived mesenchymal stromal cells (BM-MSCs) during cardiac surgery provides both cellular-level neuroprotection for the developing brain and improvements in behavior alterations after (or resulting from) surgery.

What this means

According to lead author Nobuyuki Ishibashi, M.D., Oxidative and inflammatory stresses that are thought to be related to cardiopulmonary bypass cause prolonged microglia activation and cortical dysmaturation in the neonatal and infant brain. These issues are a known contributor to neurodevelopmental impairments in children with congenital heart disease.

This study found that, in a pre-clinical model, the innovative use of cardiopulmonary bypass to deliver these mesenchymal stromal cells minimizes microglial activation and neuronal apoptosis (cell death), with subsequent improvement of cortical dysmaturation and behavioral alteration after neonatal cardiac surgery.

Additionally, the authors note that further transcriptomic analyses provided a possible mechanism for the success: Exosome-derived miRNAs such as miR-21-5p, which may be key drivers of the suppressed apoptosis and STAT3-mediated microglial activation observed following BM-MSC infusion.

Why it matters

Significant neurological delay is emerging as one of the most important current challenges for children with congenital heart disease, yet few treatment options are currently available.

Applications of BM-MSC treatment will provide a new therapeutic paradigm for potential MSC-based therapies as a form of neuroprotection in children with congenital heart disease.

Children’s National Hospital leads the way

The Ishibashi lab is the first research team to demonstrate the safety, efficacy and utility of using cardiopulmonary bypass to deliver BM-MSCs with the goal of improving neurological impairments in children undergoing surgery for congenital heart disease. In addition to this pre-clinical research, a phase 1 clinical trial, MeDCaP, is underway at Children’s National.

Recent additional funding from the NIH will allow the team to identify molecular signatures of BM-MSC treatment and mine specific BM-MSC exosomes for unique cardiopulmonary bypass pathology to further increase understanding of precisely how and why this cell-based treatment shows success.

x-ray of child with congenital heart disease

Cell therapy research for neuroprotection in congenital heart disease receives another $3.3 million from NIH

x-ray of child with congenital heart disease

Significant neurological delay is emerging as one of the most important current challenges for children with congenital heart disease, yet few treatment options are currently available.

The research lab of Nobuyuki Ishibashi, M.D., at Children’s National Hospital, recently received $3.3 million in additional funding for research into cell therapy for neuroprotection in children with congenital heart disease. The new support comes from the National Heart, Lung and Blood Institute (NHLBI) of the National Institutes of Health.

The research goal

The overarching goal of the award is to establish detailed molecular signatures from critical cell populations for tissue repair and regeneration at single cell resolution after bone marrow-derived mesenchymal stromal cell (BM-MSC) delivery. The team has shown cellular, structural and behavioral improvements in pre-clinical models after delivery of BM-MSCs through cardiopulmonary bypass for children with congenital heart disease. However, the mechanisms underlying the therapeutic action of BM-MSCs still remain largely unknown. This R01 renewal will address the key knowledge gap.

Why it matters

Significant neurological delay is emerging as one of the most important current challenges for children with congenital heart disease, yet few treatment options are currently available.

The Ishibashi lab has demonstrated the efficacy and utility of using cardiopulmonary bypass to deliver BM-MSCs  to improve neurological impairments in children undergoing surgery for congenital heart disease. Most notably, this included development of a phase 1 clinical trial, MeDCaP, at Children’s National.

The big picture

Together with the ongoing clinical trial established from the previous award, identifying molecular signatures of BM-MSC treatment and mining specific BM-MSC exosomes for unique cardiopulmonary bypass pathology will significantly improve understanding of this cell-based treatment. This work will also provide a new therapeutic paradigm for potential cell-free MSC-based therapies for neuroprotection in children with congenital heart disease.

U.S. News Badges

Children’s National Hospital ranked #5 in the nation on U.S. News & World Report’s Best Children’s Hospitals Honor Roll

U.S. News BadgesChildren’s National Hospital in Washington, D.C., was ranked #5 in the nation on the U.S. News & World Report 2023-24 Best Children’s Hospitals annual rankings. This marks the seventh straight year Children’s National has made the Honor Roll list. The Honor Roll is a distinction awarded to only 10 children’s hospitals nationwide.

For the thirteenth straight year, Children’s National also ranked in all 10 specialty services, with eight specialties ranked in the top 10 nationally. In addition, the hospital was ranked best in the Mid-Atlantic for neonatology, cancer, neurology and neurosurgery.

“Even from a team that is now a fixture on the list of the very best children’s hospitals in the nation, these results are phenomenal,” said Kurt Newman, M.D., president and chief executive officer of Children’s National. “It takes a ton of dedication and sacrifice to provide the best care anywhere and I could not be prouder of the team. Their commitment to excellence is in their DNA and will continue long after I retire as CEO later this month.”

“Congratulations to the entire Children’s National team on these truly incredible results. They leave me further humbled by the opportunity to lead this exceptional organization and contribute to its continued success,” said Michelle Riley-Brown, MHA, FACHE, who becomes the new president and CEO of Children’s National on July 1. “I am deeply committed to fostering a culture of collaboration, empowering our talented teams and charting a bold path forward to provide best in class pediatric care. Our focus will always remain on the kids.”

“I am incredibly proud of Kurt and the entire team. These rankings help families know that when they come to Children’s National, they’re receiving the best care available in the country,” said Horacio Rozanski, chair of the board of directors of Children’s National. “I’m confident that the organization’s next leader, Michelle Riley-Brown, will continue to ensure Children’s National is always a destination for excellent care.”

The annual rankings are the most comprehensive source of quality-related information on U.S. pediatric hospitals and recognizes the nation’s top 50 pediatric hospitals based on a scoring system developed by U.S. News.

“For 17 years, U.S. News has provided information to help parents of sick children and their doctors find the best children’s hospital to treat their illness or condition,” said Ben Harder, chief of health analysis and managing editor at U.S. News. “Children’s hospitals that are on the Honor Roll transcend in providing exceptional specialized care.”

The bulk of the score for each specialty service is based on quality and outcomes data. The process includes a survey of relevant specialists across the country, who are asked to list hospitals they believe provide the best care for patients with the most complex conditions.

The eight Children’s National specialty services that U.S. News ranked in the top 10 nationally are:

The other two specialties ranked among the top 50 were cardiology and heart surgery, and urology.

chest x-ray showing placement of tiny pacemaker

First infants in the U.S. with specially modified pacemakers show excellent early outcomes

chest x-ray showing placement of tiny pacemaker

Chest/abdominal x-ray of neonate receiving a modified pediatric-sized implantable pulse generator, demonstrating epicardial suture-on bipolar lead and pulse generator in the upper abdominal pocket.

In 2022, five tiny, fragile newborns with life-threatening congenital heart disease affecting their heart rhythms were the first in the United States to receive a novel modified pacemaker generator to stabilize their heart rhythms within days of birth.

An article in the journal Heart Rhythm assesses the outcomes to date for the infants who received pacemakers that were modified to work better in the smallest children who need them. The authors, including first author Charles Berul, M.D., chief of Cardiology at Children’s National Hospital, share that after following for between 6 and 9 months, “early post-operative performance of this device has been excellent.”

The big picture

Even the tiniest pacemakers and defibrillators on the market today aren’t small enough for infants and young children with heart rhythm abnormalities. So, for several years, Dr. Berul and colleagues at several other institutions have collaborated to adapt existing pacemakers, including the Medtronic Micra leadless pacing system, for use in tiny, critically ill newborns.

The specially modified pediatric-sized implantable pulse generator, called the Pediatric IPG, includes a Medtronic Micra sub-assembly that connects to an epicardial lead. While this makes the leadless pacemaker into one that uses leads, the resulting IPG is significantly smaller than any commercially available pacemaker previously on the market in the U.S.

The five infants in this case profile each received the modified Pediatric IPG at four separate institutions, and each surgery to implant the device was performed by a different cardiac surgeon. Two of the five cases were cared for at Children’s National. Cardiac surgeons Can Yerebakan, M.D., Ph.D., and Manan Desai, M.D. each performed one procedure.

The Pediatric IPG was authorized for use by emergency use exemptions from the federal Food and Drug Administration and with review and approval by each hospital’s Institutional Review Board, based on successful laboratory and pre-clinical models with favorable, though limited, results.

The patient benefit

All five infants were diagnosed with congenital complete heart block and required urgent pacing immediately after birth. The authors write:

“Permanent pacing in adults and older children is a routine, relatively simple implantation procedure. In the smallest of children, however, the generator is typically placed in the abdomen and can still present challenges in tiny babies under 2.5kg due to its bulk and dimensions, with risks of wound dehiscence, generator erosion and other complications.”

The authors note that the smaller profile of the Pediatric IPG reduces and has the potential to eliminate some of these challenges.

What’s next: Better delivery

Innovating smaller devices, including adapting current technology like the Medtronic Micra for pediatric use, is a good start but won’t be enough to eliminate some of the challenges for these patients. When a newborn or young child needs any pacemaker or defibrillator, they face open chest surgery. Their arteries and veins are just too small for even the smallest size transvenous pacemaker catheter.

That’s why Dr. Berul and engineers in the Sheikh Zayed Institute for Pediatric Surgical Innovation are working on a first-of-its-kind minimally invasive pericardial access tool. The team hypothesizes that this tool will allow for pacing and defibrillation therapy to be delivered through a single small port inserted through the skin that is about the size of a drinking straw.

You can read the full article Creative Concepts: Tiny Pacemakers for Tiny Babies in the journal Heart Rhythm.

infographic explaining tiny pacemaker

baby with with bronchopulmonary dysplasia

A team approach to complex bronchopulmonary dysplasia

“By the time a baby is diagnosed with bronchopulmonary dysplasia, families have already had a long journey with prematurity in the neonatal intensive care unit (NICU),” says Hallie Morris, M.D., neonatologist and lead of the Complex Bronchopulmonary Dysplasia (BPD) Program at Children’s National Hospital. “To be able to have a team that is focused on the holistic health of their child in the context of this diagnosis makes a world of difference to these families.”

The big picture

Some premature infants with BPD experience more severe respiratory disease with comorbidities associated with their underlying disease processes, but also factors related to their lengthened intensive care unit (ICU) stay. This includes delayed development with neurodevelopmental impairment, ICU delirium, pulmonary hypertension, airway disease, gastroesophageal reflux disease, feeding difficulties, retinopathy of prematurity and more.

The Complex BPD Program at Children’s National encompasses a group of specialists dedicated to improving the care of infants with BPD and other chronic lung disease of infancy. BPD places extreme demands on families. Education is a critical component for families and our team works to make sure they are well informed, have realistic expectations and understand their care plan.

What they’re saying

  • “Our program is unique in that it has the ability to follow the patient for several months in the NICU as well as after discharge,” says Maria Arroyo, M.D., pulmonologist and co-lead of the Complex BPD Program at Children’s National. “This includes a subacute facility where some of our NICU patients transfer to for continued respiratory weaning and rehabilitation with parent education and outpatient visits once families are home.”
  • “Since this program was created, we have improved patient care and outcomes with this interdisciplinary approach,” says John Berger, M., medical director for the Pulmonary Hypertension Program at Children’s National. “We expect that with our consistent and personalized care, patients will continue have better overall outcomes, less readmissions and improved neurodevelopmental outcomes.

Learn more about the Complex BPD Program.

imaging of blood flow in the heart

4D flow explained: Advanced imaging measures critical blood flow characteristics of single ventricle hearts

Yue-Hin “Tom” Loke, M.D., pediatric cardiologist and director of the 3D Cardiac Visualization Laboratory at Children’s National Hospital, uses magnetic resonance imaging and software rendering to create novel 4D flow images of children with single ventricle congenital heart disease.

“My research measures the degree of vortex formation (and) the degree of energy loss in the atrium as potential measurements of heart health and uses these measurements as a potential gauge of the heart health of children born with single ventricle conditions including hypoplastic left heart syndrome,” he says. “This information can be used to guide the management of the care for children with congenital heart disease. This technology provides valuable insight into how well the heart is working, especially before the Fontan procedure.”

Learn more about the approach and how it impacts clinical care decisions in the Children’s National Heart Institute.

blood flow in the heart

High-risk newborns with hypoplastic left heart syndrome benefit from hybrid approaches

“Hybrid treatment enables even patients who are extremely high risk for surgery to have a survival advantage.” — Dr. Yerebakan.

Can Yerebakan, M.D., Ph.D., associate chief of Cardiac Surgery, and Joshua Kanter, M.D., director of Interventional Cardiology, created a multi-disciplinary team at Children’s National Hospital to perform the staged surgical approach known as the “hybrid strategy” to support the smallest, most fragile babies born with hypoplastic left heart syndrome (HLHS).

Today, the team performs more of these procedures than almost any other heart center in the United States, and they’ve successful completed it for neonates as small as 1 kg.

The approach gives high-risk babies time to recover from birth trauma and continue developing crucial organs before undergoing more traditional, more-invasive HLHS procedures that require open-heart surgery with cardiopulmonary bypass. Surgeons also have more time to make complete individualized risk assessments for next steps on each case, replacing the historical “one size fits all” operative pathway for HLHS.

Read more about the hybrid surgical strategy for HLHS.

Dr. Donofrio performs an ultrasound

Tracking neurodevelopmental outcomes for kids with congenital heart disease

Extensive research has shown that children with congenital heart disease (CHD) who are born blue or who need cardiac surgery in their first year of life are at risk for developmental challenges and/or learning difficulties.

Mary Donofrio, M.D., co-director of the Cardiac Neurodevelopment Outcome (CANDO) program at Children’s National Hospital, says that we started the program — the only one of its kind in the Washington, D.C. region — to identify and manage delays in development and difficulties with learning, no matter when they arise.

“We start paying attention even before birth and then continue to evaluate neurodevelopment at key stages in a kid’s life to assure the best outcome. Our goal is for every kid born with CHD to be able to achieve their full potential, be active, make friends and succeed in school. Most important, we want each of our patients to grow up to be a happy and successful adult,” says Dr. Donofrio.

Learn more about CANDO at Children’s National Hospital and our role in developing best practices for neurodevelopmental and psychosocial services as part of the international multi-specialty Cardiac Neurodevelopmental Outcome Collaborative.

red and grey kidney illustration

Cardiovascular and bone diseases in chronic kidney disease

red and grey kidney illustration

A new study reviews cardiovascular and bone diseases in chronic kidney disease and end-stage kidney disease patients with a focus on pediatric issues and concerns.

In a study published by Advances in Chronic Kidney Disease and co-authored by Aadil Kakajiwala, M.D., MSCI, critical care specialist and nephrologist at Children’s National Hospital, a team reviewed cardiovascular and bone diseases in chronic kidney disease and end-stage kidney disease patients with a focus on pediatric issues and concerns.

Chronic kidney disease is common and causes significant morbidity including shortened lifespans and decrease in quality of life for patients. The major cause of mortality in chronic kidney disease is cardiovascular disease. Cardiovascular disease within the chronic kidney disease population is closely tied to disordered calcium and phosphorus metabolism. The metabolic bone disease of chronic kidney disease encompasses vascular calcification and the development of long-term cardiovascular disease.

Recent data suggest that aggressive management of metabolic bone disease can augment and improve cardiovascular disease status. Pediatric nephrologists need to manage the metabolic bone disease while keeping the ongoing linear growth and skeletal maturation in mind, which may be delayed in chronic kidney disease.

Read the full study in Advances in Chronic Kidney Disease.

Bear Institute PACK logo

Bear Institute Pediatric Accelerator Challenge for Kids winners announced

Bear Institute PACK logoIn December 2022, the Bear Institute, along with Children’s National Hospital and Oracle Health, hosted the second annual Bear Institute PACK (Pediatric Accelerator Challenge for Kids), a start-up competition aimed to foster pediatric digital health innovation.

Bear Institute PACK is inclusive of the entire pediatric health care community and addresses the large disparity in digital health innovation funding dedicated to children versus the rest of the population. “We have to do more for children, a population that can’t advocate for itself,” says Matt Macvey, M.B.A., MS, executive vice president and chief information officer at Children’s National Hospital. “Bear Institute PACK is an all-hands effort to provide increased support to those start-ups trying to bring new solutions to market for kids.”

Start-ups share their innovations and receive valuable feedback from expert judges while competing for a chance to win an on-site pilot and software development support. The competition features three rounds of judging: an initial review of applications from the Bear Institute PACK team, judging from participating pediatric healthcare providers and administrators and review from an expert panel of judges during finalist start-ups’ live pitches. This year’s start-up participants competed across four innovation tracks in the following areas of development: Early-Stage Innovation, Concept Validation, Early Commercialization and Growth Trajectory.

This 2022 winners, in four innovation tracks, are:

  • Early-Stage Innovation (“Even the biggest ideas start small”) Winner: PigPug Health
    Its solution uses neurofeedback, a non-invasive approach to treating brain-related conditions, and artificial intelligence to help children with ADHD and autism become more socialized.
  • Concept Validation (“Now it’s time to test it”) Winner: Global Continence, Inc.
    Its Soluu™, Bedwetting Mitigation Device, helps rapidly and permanently mitigate bedwetting with a neuromodulation process.
  • Early Commercialization (“Countdown to launch”) Winner: PyrAmes Inc.
    Its solution Boppli™ provides continuous, non-invasive blood pressure monitoring and streams data via Bluetooth to a mobile device.
  • Growth Trajectory (“The investment is growing”) Winner: maro
    Its full stack child development kit equips a child’s caretakers (at home, school and clinic) with easy access to tools and data needed to help them navigate tough conversations including mental health, diversity, empathy, and puberty and helps identify mental health at-risk students in schools.

“I was very impressed with this year’s start-up participants and their caliber of talent and passion for what they do. The finalist judges were tasked with selecting one winner in each innovation track, but the work each participant is doing for kids makes them all winners,” says Rebecca Laborde, Ph.D., chief scientist, vice president of Health Innovation and Scientific Advisory, Oracle Health. “Thank you to the entire pediatric healthcare community that comes together to help make this event a success. We believe that by bringing together like-minded individuals with the same goals, we can make a real difference in pediatric healthcare.”

President Joe Biden and First Lady Jill Biden tour the telehealth command center at Children's National Hospital

President Biden, First Lady tour cardiac telehealth command center

President Joe Biden and First Lady Jill Biden paid a recent visit to the Cardiac Intensive Care Unit (CICU) at Children’s National Hospital, where leaders of our cardiology services toured them through the state-of-the-art telehealth command center embedded on the unit.

The big picture

Children’s National is pioneering the integration of telemedicine into CICU care. It’s one of the few pediatric hospitals in the world to do this.

Experts liken the telehealth command center to an ‘air traffic control tower’ for the most vulnerable patients with critical heart disease. The President and First Lady saw how complex the environment is, with real-time monitoring of all 26 high-risk patients in the CICU. The system combines traditional remote monitoring, video surveillance and artificial intelligence tools.

What this means

“With this technology, we’re helping to predict and prevent major adverse events,” said Ricardo Munoz, M.D., executive director of the Telemedicine Program and chief of the Division of Critical Care Medicine at Children’s National. “For example, our neuromonitoring system can help signal an impending brain injury before it happens.”

Dr. Munoz says President Biden expressed interest in the prevention strategy of adverse events and this new approach to caring for children with critical cardiac illness.

What they’re saying

  • “It was important to share with the Biden’s that caring for these kids is a long-term endeavor, not simply a single surgery or procedure to fix their heart abnormality,” said Yves d’Udekem, M.D., Ph.D., chief of Cardiac Surgery at Children’s National. “That means making sure they have the earliest diagnoses, the best treatments from surgeons and others who truly understand their condition, and a technologically advanced, attentive place to recover and heal as safely as possible.”
  • “Many people don’t believe that ‘pediatrics’ and ‘innovation’ can co-exist,” said Annette Ansong, M.D., medical director of Outpatient Cardiology at Children’s National. “During the Biden’s visit, they were at the crux of a novel way to closely monitor some of our sickest children with the added ability to predict bad events before they happen.”

Dr. Ansong hopes bringing awareness of these cardiac capabilities to the President and First Lady is the first of many steps in seeking support for children with congenital and acquired heart disease.