Posts

Shriprasad Deshpande

Accelerating advanced cardiac treatments for tiny patients

Shriprasad Deshpande

Shriprasad Deshpande, M.B.B.S., M.S., a pediatric cardiologist, joins Children’s National Health System as the director of the advanced cardiac therapies and heart transplant program.

Shriprasad Deshpande, M.B.B.S., M.S., a pediatric cardiologist, has joined Children’s National Health System as the director of the advanced cardiac therapies and heart transplant program.

Dr. Deshpande, an intensivist and heart failure and transplant cardiologist, will work within the Children’s National Heart Institute (the Division of Cardiology and the Division of Cardiac Intensive Care) to guide the diagnosis and treatment of pediatric heart failure. He will also work with researchers, surgeons and engineers to accelerate the field of biomedical research and make it easy for patients to receive advanced therapies, such as mechanical pumps to support circulation, and, if necessary, heart transplant.

“Subspecializing in personalized care is critical for all patients right now, not just adults,” says Dr. Deshpande. “This is one of the reasons I’m looking forward to working with Children’s National, a leader in the many subdivisions of pediatric medicine and research.

“Our priority is to recognize the special needs of infants and children as they relate to heart failure,” he adds. “We want to provide the best care and advance science at the same time.”

As an example, a grant from the National Institutes of Health enabled Dr. Deshpande to test ventricular assist devices for infants. Through another NIH grant, he analyzed the safety of organ transplants by testing a donor’s DNA, instead of conducting invasive biopsies in children.

“The field of cardiology is in a unique position now to take advantage of discoveries happening in science, technology and engineering,” says Dr. Deshpande. “In addition to thinking about the logistics of heart transplants, we’re thinking about how we can delay the need for a heart transplant, understand how to grow tissue better and utilize technology to improve these outcomes. We’re investing in a child’s quality of life.”

As the medical director of Mechanical Circulatory Support Program at Children’s Healthcare of Atlanta, Dr. Deshpande led the mechanical circulatory support program and created a subspecialty clinic to provide treatment for pediatric heart failure patients. He started the Muscular Dystrophy Cardiomyopathy clinic, which analyzes and treats cardiovascular comorbidities associated with muscular dystrophy. While he was an assistant professor of pediatrics at Emory University School of Medicine, he created a curriculum for pediatric cardiologists and for nurses training in the cardiac intensive critical care unit.

Dr. Deshpande has published more than 70 studies and abstracts and will oversee clinical practice models, subspecialty clinics and academic research efforts at Children’s. His current research portfolio, inclusive of grants from the NIH and other funding agencies, is robust and varied: He’s studying how to improve mechanical support for complex heart disease patients, how to improve the performance of current pumps and how to develop new algorithms for these devices. Improving the diagnosis of transplant rejection, using technology to improve compliance and using new technologies to diagnose rejection, without invasive biopsies, are his other research interests.

Dr. Deshpande serves as the chair of the scientific committee at the nonprofit Enduring Hearts and is on the American Heart Association’s Strategically Focused Research Network committee.

Craig Sable

Can a vaccine prevent the earliest forms of rheumatic heart disease?

Craig Sable

Craig Sable, M.D., associate chief of the division of cardiology and director of echocardiography at Children’s National Health System, earned a lifetime achievement award, formally known as the 2018 Cardiovascular Disease in the Young (CVDY) Meritorious Achievement Award, on Nov. 10 at the American Heart Association’s Scientific Sessions 2018.

The CVDY Council bestows the prestigious award to individuals making a significant impact in the field of cardiovascular disease in the young. The CVDY Council supports the mission to improve the health of children and adults with congenital heart disease and acquired heart disease during childhood through research, education, prevention and advocacy.

Dr. Sable is recognized for his entire body of research, education and advocacy focused on congenital and acquired heart disease, but especially for his rheumatic heart disease (RHD) research in Uganda.

Over the past 15 years, Dr. Sable has brought more than 100 doctors and medical staff to Kampala, the capital and largest city in Uganda, partnering with more than 100 local doctors and clinicians to develop a template for a sustainable infrastructure to diagnose, treat and prevent both RHD and congenital heart disease.

RHD is a result of damage to the heart valves after acute rheumatic fever (ARF). The process starts with a sore throat from streptococcal infection, which many children in the United States treat with antibiotics.

“For patients who develop strep throat, their body’s reaction to the strep throat, in addition to resolving its primary symptoms, can result in attacking the heart,” says Dr. Sable. “The initial damage is called acute rheumatic fever. In many cases this disease is self-limited, but if undetected, over years, it can lead to long-term heart valve damage called rheumatic heart disease. Unfortunately, once severe RHD develops the only treatment is open-heart surgery.”

In 2017, Sable and the researchers published a study in the New England Journal of Medicine about the global burden of RHD, which is often referred to as a disease of poverty.

RHD is observed more frequently in low- and middle-income countries as well as in marginalized communities in high-income countries. RHD has declined on a global scale, but it remains the most significant cause of morbidity and mortality from heart disease in children and young adults throughout the world.

In 2017 there were 39.4 million causes of RHD, which resulted in 285,000 deaths and 9.4 million disability-adjusted life-years.

In 2018 the World Health Organization issued a referendum recognizing rheumatic heart disease as an important disease that member states and ministries of health need to prioritize in their public health efforts.

The common denominator that drives Dr. Sable and the global researchers, many of whom have received grants from the American Heart Association to study RHD, is the impact that creating a scalable solution, such as widespread adoption of vaccines, can have on entire communities.

“The cost of an open-heart surgery in Uganda is $5,000 to $10,000, while treatment for a child with penicillin for one year costs less than $1,” says Dr. Sable. “Investment in prevention strategies holds the best promise on a large scale to eradicate rheumatic heart disease.”

Sable and the team have screened more than 100,000 children and are conducting the first randomized controlled RHD trial, enrolling nearly 1,000 children, to examine the effectiveness of using penicillin to prevent progression of latent or subclinical heart disease, the earliest form of RHD.

During the Thanksgiving holiday weekend, Dr. Sable and a team of surgeons will fly back to Uganda to operate on children affected by RHD, while also advancing their research efforts to produce a scalable solution, exported on a global scale, to prevent RHD in its earliest stages.

Dr. Sable and colleagues from around the world partner on several grant-funded research projects. Over the next few years, the team hopes to answer several important questions, including: Does penicillin prevent the earliest form of RHD and can we develop a vaccine to prevent RHD?

To view the team’s previously-published research, visit Sable’s PubMed profile.

To learn about global health initiatives led by researchers at Children’s National, visit www.GHICN.org.

Charles Berul and Rohan Kumthekar demonstrate tiny pacemaker

A new prototype for tiny pacemakers, faster surgery

Charles Berul and Rohan Kumthekar demonstrate tiny pacemaker

Charles Berul, M.D., chief of cardiology at Children’s National, and Rohan Kumthekar, M.D., a cardiology fellow working in Dr. Berul’s bioengineering lab at the Sheikh Zayed Institute for Pediatric Surgical Innovation, explore ways to make surgical procedures for infants and children less invasive.

Rohan Kumthekar, M.D., a cardiology fellow working in Dr. Charles Berul’s bioengineering lab at the Sheikh Zayed Institute for Pediatric Surgical Innovation, part of Children’s National Health System, presented a prototype for a miniature pacemaker at the American Heart Association’s Scientific Sessions 2018  on Sunday, Nov. 11. The prototype, approximately 1 cc, the size of an almond, is designed to make pacemaker procedures for infants less invasive, less painful and more efficient, measured by shorter surgeries, faster recovery times and reduced medical costs.

Kumthekar, a Cardiovascular Disease in the Young Travel Award recipient, delivered his oral abstract, entitled “Minimally Invasive Percutaneous Epicardial Placement of a Custom Miniature Pacemaker with Leadlet under Direct Visualization,” as part of the Top Translational Science Abstracts in Pediatric Cardiology session.

“As cardiologists and pediatric surgeons, our goal is to put a child’s health and comfort first,” says Kumthekar. “Advancements in surgical fields are tending toward procedures that are less and less invasive. There are many laparoscopic surgeries in adults and children that used to be open surgeries, such as appendix and gall bladder removals. However, placing pacemaker leads on infants’ hearts has always been an open surgery. We are trying to bring those surgical advances into our field of pediatric cardiology to benefit our patients.”

Instead of using open-chest surgery, the current standard for implanting pacemakers in children, doctors could implant the tiny pacemakers by making a relatively tiny 1-cm incision just below the ribcage.

“The advantage is that the entire surgery is contained within a tiny 1-cm incision, which is what we find groundbreaking,” says Kumthekar.

With the help of a patented two-channel, self-anchoring access port previously developed by Berul’ s research group, the operator can insert a camera into the chest to directly visualize the entire procedure. They can then insert a sheath (narrow tube) through the second channel to access the pericardial sac, the plastic-like cover around the heart. The leadlet, the short extension of the miniature pacemaker, can be affixed onto the surface of the heart under direct visualization. The final step is to insert the pacemaker into the incision and close the skin, leaving a tiny scar instead of two large suture lines.

The median time from incision to implantation in this thoracoscopic surgery study was 21 minutes, and the entire procedure took less than an hour on average. In contrast, pediatric open-heart surgery could take up to several hours, depending on the child’s medical complexities.

“Placing a pacemaker in a small child is different than operating on an adult, due to their small chest cavity and narrow blood vessels,” says Kumthekar. “By eliminating the need to cut through the sternum or the ribs and fully open the chest to implant a pacemaker, the current model, we can cut down on surgical time and help alleviate pain.”

The miniature pacemakers and surgical approach may also work well for adult patients with limited vascular access, such as those born with congenital heart disease, or for patients who have had open-heart surgery or multiple previous cardiovascular procedures.

The miniature pacemakers passed a proof-of-concept simulation and the experimental model is now ready for a second phase of testing, which will analyze how the tailored devices hold up over time, prior to clinical testing and availability for infants.

“The concept of inserting a pacemaker with a 1-cm incision in less than an hour demonstrates the power of working with multidisciplinary research teams to quickly solve complex clinical challenges,” says Charles Berul, M.D., a guiding study author, electrophysiologist and the chief of cardiology at Children’s National.

Berul’s team from Children’s National collaborated with Medtronic PLC, developers of the first implantable pacemakers, to develop the prototype and provide resources and technical support to test the minimally-invasive surgery.

The National Institutes of Health provided a grant to Berul’s research team to develop the PeriPath, the all-in-one 1-cm access port, which cut down on the number of incisions by enabling the camera, needle, leadlet and pacemaker to be inserted into one port, through one tiny incision.

Other study authors listed on the abstract presented at Scientific Sessions 2018 include Justin Opfermann, M.S., Paige Mass, B.S., Jeffrey P. Moak, M.D., and Elizabeth Sherwin, M.D., from Children’s National, and Mark Marshall, M.S., and Teri Whitman, Ph.D., from Medtronic PLC.

Nikki Gillum Posnack

Do plastic chemicals contribute to the sudden death of patients on dialysis?

Nikki Gillum Posnack

Nikki Posnack, Ph.D., assistant professor with the Children’s National Heart Institute, continues to explore how repeat chemical exposure from medical devices influences cardiovascular function.

In a review published in HeartRhythmNikki Posnack, Ph.D., an assistant professor at the Children’s National Heart Institute, and Larisa Tereshchenko, M.D., Ph.D., FHRS, a researcher with the Knight Cardiovascular Institute at Oregon Health and Science University, establish a strong foundation for a running hypothesis: Replacing BPA- and DEHP- leaching plastics for alternative materials used to create medical devices may help patients on dialysis, and others with impaired immune function, live longer.

While Drs. Tereshchenko and Posnack note clinical studies and randomized controlled trials are needed to test this theory, they gather a compelling argument by examining the impact exposure to chemicals from plastics used in dialysis have on a patient’s short- and long-term health outcomes, including sudden cardiac death (SCD).

“As our society modifies our exposure to plastics to mitigate health risks, we should think about overexposure to plastics in a medical setting,” says Posnack. “The purpose of the review in HeartRhythm is to gather data about the impact chemical compounds, leached from plastic devices, have on cardiovascular outcomes for patients spending prolonged periods of time in the hospital.”

In this review, the authors explore chemical risk exposures in a medical setting, starting with factors that influence sudden cardiac death (SCD) among dialysis patients.

Why study dialysis patients?

SCD in dialysis patients accounts for one-third of deaths in this population. This prompts a need to develop prevention strategies, especially among patients with end-stage renal disease (ESRD).

The highest mortality rate observed among dialysis patients is during the first year of hemodialysis, a dialysis process that requires a machine to take the place of the kidneys and remove waste from the bloodstream and replenish it with minerals, such as potassium, sodium and calcium. During this year, mortality during hemodialysis is observed more frequently during the first three months of treatment, especially among older patients.

Possible reasons for an increased risk of an earlier death include chemical exposure, which is casually associated with altered cardiac function, as well as genetic risks for irregular heart rhythms and heart failure. In the HeartRhythm review, Drs. Tereshchenko and Posnack analyze factors that influence mortality:

Hemodialysis treatment, dialysis, is associated with plastic chemical exposure

Drs. Tereshchenko and Posnack note that dialysis tubing and catheters are commonly manufactured using polyvinyl chloride (PVC) polymers. The phthalate plastics used to soften PVC can easily leech if exposed to lipid-like substances, like blood. Research shows phthalate chemical concentrations increase during a four-hour dialysis.

Di(2-ethylhexyl) phthalate (DEHP) is a common plastic used to manufacture dialysis tubes, thanks to its structure and economy.

Bisphenol-A (BPA) is another common material used in medical device manufacturing. From the membranes of medical tools to resins, or external coatings and adhesives, BPA leaves behind a chemical residue on PVC medical devices.

In reviewing the research, the authors find dialysis patients are often exposed to high levels of DEHP and BPA. The amount of exposure to these chemicals varies in regards to room temperature, time of contact, other circuit coatings and the flow rate of dialysis. A faster flow rate correlates with reductions in chemical leaching and lower mortality rates.

Plastic chemical exposure is casually associated with altered cardiac function

Drs. Tereshchenko and Posnack note a causal relationship already exists between chemicals absorbed from plastics and cardiovascular outcomes.

Dr. Posnack’s previous research found BPA concentrations impaired electrical conduction in neonatal cardiomyocytes – young, developing heart cells – potentially altering the heart’s normal rhythm and function.

To the best of their knowledge, no clinical research has been conducted on DEHP exposure and SCD. However, proof-of-concept models find in vivo phthalate exposure alters autonomic regulation, which can slow down natural heart-rate rhythm and create a lag in recovery time to stressful stimuli. For humans, this type of stressful stimulation would be equivalent to recovering from a bike ride, car accident, or in this case, ongoing dialysis treatment with impaired immune function.

In other models, BPA exposure has been shown to cause bradycardia, or a delayed heart rate. In excised whole heart models, BPA has also been shown to alter cardiac electrical activity.

Abnormal electrophysiological substrate in end-stage renal disease

Since the heart and kidneys work in tandem to transport blood throughout the body, and manage vital functions, such as our heart rate, blood flow and breathing, the authors cite additional factors that lead to ongoing heart and kidney problems, with a look at end-stage renal disease (ESRD).

General heart-function kidney risks include abnormal electrophysiological (EP) substrate, the underlying electrical activity of the cardiac tissue, and genetic risk factors, including the TBX3 gene, a gene associated with a unique positioning of the heart and SCD.

“We don’t want to cite alarm about having a medical procedure or about relying on external help, such as dialysis, for proper kidney function,” says Posnack. “Especially since dialysis is a life-saving medical intervention for patients with inadequate kidney function.”

Pre-existing abnormal EP substrate interacts with plastic chemical exposure in incident dialysis, which increases risk of SCD in genetically predisposed ESRD patients

To summarize their findings, Drs. Tereshchenko and Posnack list a handful of support areas, starting with observations about reductions in cardiovascular mortality and SCD following kidney transplants. They note hemodialysis catheters are associated with larger DEHP exposure and a higher risk of SCD, compared to arteriovenous fistulas, highways surgically created to connect blood from the artery to the vein.

Drs. Posnack and Tereshchenko also note a correlative observation about higher SCD rates observed six hours after hemodialysis, when peak levels of DEHP and BPA are circulating in the bloodstream.

To compare and control for these factors among dialysis patients, the researchers cite different mortality patterns with hemodialysis and peritoneal dialysis. Patients on hemodialysis experience higher mortality during the first year of treatment, compared to peritoneal dialysis, who have higher mortality rates after the second year of treatment. Hemodialysis relies on a machine to take the place of kidney function, while peritoneal dialysis relies on a catheter, a small tube surgically inserted into the stomach.

“Our goal is to build on our previous research findings by analyzing variables that have yet to be studied before, and to update the field of medicine in the process,” says Dr. Posnack. “This includes investigating the cardiovascular risks of using BPA- and DEHP-materials to construct medical devices. Ultimately, we hope to determine whether plastic materials contribute to cardiovascular risks, and investigate whether patients might benefit from the use of alternative materials for medical devices.

Drs. Tereshchenko and Posnack note that despite the associations between chemical exposure from medical devices and increased cardiovascular risks, there are no restrictions in the United States on the use of phthalates and BPA chemicals used to manufacture medical devices.

Their future research will explore how replacing BPA- and DEHP-leaching plastics influence mortality and morbidity rates of ESRD patients on dialysis, as well as other patients exposed to repeat chemical exposure, such as patients having cardiac surgery.

“We want to make sure we identify and then work to minimize any potential risks of plastic exposure in a medical setting,” adds Dr. Posnack. “Our goal is to put the health and safety of patients first.”

Dr. Posnack’s research is funded by two grants (R01HL139472, R00ES023477) from the National Institutes of Health.

Dr.-Jonas.-WSPCHS

Snapshot: The Sixth Scientific Meeting of the World Society for Pediatric and Congenital Heart Surgery

Dr.-Jonas.-WSPCHS

Dr. Richard Jonas shows surgical advancements using 3D heart models, which participants could bring back to their host institutions.

On July 22, 2018, more than 700 cardiac specialists met in Orlando, Fla. for the Sixth Scientific Meeting of the World Society for Pediatric and Congenital Heart Surgery (WSPCHS 2018).

The five-day conference hosted a mix of specialists, ranging from cardiothoracic surgeons, cardiologists and cardiac intensivists, to anesthesiologists, physician assistants and nurse practitioners, representing 49 countries and six continents.

To advance the vision of WSPCHS – that every child born with a congenital heart defect should have access to appropriate medical and surgical care – the conference was divided into eight tracks: cardiac surgery, cardiology, anesthesia, critical care, nursing, perfusion, administration and training.

Richard Jonas, M.D., outgoing president of WSPCHS and the division chief of cardiac surgery at Children’s National Health System, provided the outgoing presidential address, delivered the keynote lecture on Transposition of the Great Arteries (TGA) and guided a surgical skills lab with printed 3-D heart models.

Other speakers from Children’s National include:

  • Gil Wernovsky, M.D., a cardiac critical care specialist, presented on the complex physiology of TGA, as well as long-term consequences in survivors of neonatal heart surgery, including TGA and single ventricle.
  • Mary Donofrio, M.D., a cardiologist and director of the Fetal Heart Program, presented “Prenatal Diagnosis: Improving Accuracy and Planning Delivery for babies with TGA,” “Systemic Venous Abnormalities in the Fetus,” “Intervention for Fetal Lesions Causing High Output Heart Failure” and “Fetal Cardiac Care – Can We Improve Outcomes by Altering the Natural History of Disease?”
  • Gerard Martin, M.D., a cardiologist and medical director of global services, presented “Is the Arterial Switch as Good as We Thought It Would Be?” and “Impact, MAPIT, NCPQIC – How and Why We Should All Embrace Quality Metrics.”
  • Pranava Sinha, M.D., a cardiac surgeon, presented the abstract “Cryopreserved Valved Femoral Vein Homografts for Right Ventricular Outflow Tract Reconstruction in Infants.”

Participants left with knowledge about how to diagnose and treat complex congenital heart disease, and an understanding of the long-term consequences of surgical management into adulthood. In addition, they received training regarding standardized practice models, new strategies in telemedicine and collaborative, multi-institutional research.

“It was an amazing experience for me to bring my expertise to a conference which historically concentrated on surgical and interventional care and long-term follow-up,” says Dr. Donofrio. “The collaboration between the fetal and postnatal care teams including surgeons, interventionalists and intensive care doctors enables new strategies to be developed to care for babies with CHD before birth. Our hope is that by intervening when possible in utero and by planning for specialized care in the delivery room, we can improve outcomes for our most complex patients”.

The Johns Hopkins University School of Medicine, Florida Board of Nursing, American Academy of Nurse Practitioners National Certification Program, American Nurses Credentialing Center and the American Board of Cardiovascular Perfusion provided continuing medical credits for eligible providers.

“I was so proud to be a member of the Children’s National team at this international conference,” notes Dr. Wernovsky. “We had to the opportunity to share our experience in fetal cardiology, outpatient cardiology, cardiac critical care, cardiac nursing and cardiac surgery with a worldwide audience, including surgical trainees, senior cardiovascular surgeons and the rest of the team members necessary to optimally care for babies and children with complex CHD. In addition, members of the nursing staff shared their research about advancements in the field. It was quite a success – both for our team and for all of the participants.”

Graph showing magnesium reduces arrhythmia risk

Magnesium helps prevent postsurgical arrhythmias in pediatric patients

Graph showing magnesium reduces arrhythmia risk

Magnesium (Mg) helps reduce arrhythmias, irregular heart rhythms, in adults. It also helps alleviate the symptoms of postoperative atrial fibrillation, or AFib, which can lead to blood clots, stroke and heart failure. Can it help prevent postsurgical arrhythmias in pediatric patients with congenital heart disease?

New research from Children’s National Health System finds a 25- or 50-mg dose of Mg used during congenital heart surgery (CHS) helps prevent arrhythmias, especially junctional ectopic tachycardia (JET) and atrial tachycardia (AT), common arrhythmias following CHS, according to a study published in the August 2018 edition of The Journal of Thoracic and Cardiovascular Surgery.

To reach this conclusion, the researchers separated 1,871 CHS patients from Children’s National into three groups: a control group of 750 patients who had surgery without Mg, a group of 338 patients receiving a 25-mg /kg dose of Mg during surgery and a group of 783 patients receiving a 50-mg/kg dose of Mg during surgery. The data looked at CHS cases over eight years, from 2005 to 2013, to determine if Mg administration during surgery alleviates postoperative arrhythmias and if the amount, measured by a 25- or 50-mg/kg dose, makes a difference.

“This study, the first conducted in pediatric patients, finds administering magnesium during congenital heart surgery reduces the likelihood of postsurgical arrhythmias,” says Charles Berul, M.D., a study author and the chief of cardiology at Children’s National. “We don’t detect a dose-dependent relationship, which means a small or larger amount of magnesium is equally effective at preventing arrhythmias following surgery.”

The researchers found that up to one-third of CHS patients experience postoperative arrhythmias, with JET and AT accounting for more than two-thirds of arrhythmias following CHS. They note that despite the administration of Mg during surgery, there continues to be a high incidence of postoperative arrhythmias – affecting 18 percent or about one in five CHS patients.

“We hope this study guides future research to see if adding new or additional agents to magnesium eliminates, or further reduces, postoperative arrhythmias,” notes Dr. Berul. “For now, we’re happy to find an algorithm to put into practice and to share with other medical centers, as a way to help pediatric patients recover from congenital heart surgery—stronger, faster and with a reduced risk of complications.”

The researchers note that postoperative arrhythmias impact the recovery period of CHS, increase the duration of intubation and CICU stay and prolong hospital stay.

Ricardo Munoz

Ricardo Muñoz, M.D., joins Children’s National as Chief of Cardiac Critical Care Medicine, Executive Director of Telemedicine and Co-Director of Heart Institute

Ricardo Munoz

Children’s National Health System is pleased to announce Ricardo Muñoz, M.D., as chief of the Division of Cardiac Critical Care Medicine and co-director of the Children’s National Heart Institute. Dr. Muñoz also will serve as the executive director of Telemedicine Services at Children’s National, working to leverage advances in technology to improve access to health care for underserved communities and developing nations.

Within the new division of Cardiac Critical Care Medicine, Dr. Muñoz will oversee the work of a multidisciplinary team, including critical care nurse practitioners and nurses, respiratory and physical therapists, nutritionists, social workers and pharmacists, in addition to a medical staff with one of the highest rates of double-boarded specialists in cardiology and critical care.

“We are honored to welcome Dr. Ricardo Muñoz to Children’s National,” says David Wessel, M.D., executive vice president and chief medical officer of Hospital and Specialty Services. “He is a pioneer and innovator in the fields of cardiac critical care and telemedicine and will undoubtedly provide a huge benefit to our patients and their families along with our cardiac critical care and telemedicine teams.”

Dr. Muñoz comes to Children’s National from Children’s Hospital of Pittsburgh of UPMC. During his 15-year tenure there, he established the cardiac intensive care unit and co-led the Heart Center in a multidisciplinary effort to achieve some of the best outcomes in the nation. He also is credited with pioneering telemedicine for pediatric critical care, providing nearly 4,000 consultations globally.

“Children’s National has a longstanding reputation of excellence in cardiac critical care, and I am pleased to be able to join the team in our nation’s capital to not only deliver top-quality care to patients regionally, but also around the world,” says Dr. Muñoz. “The early identification and treatment of pediatric congenital heart disease patients has made rapid improvements in recent decades, but there is a shortage of intensivists to care for these children during what is often a complex recovery course.”

Dr. Muñoz attended medical school at the Universidad del Norte, Barranquilla, Colombia, and completed his residency in pediatrics at the Hospital Militar Central, Bógota, Colombia. He continued his training as a general pediatrics and pediatric critical care fellow at Massachusetts General Hospital, and as a pediatric cardiology fellow at Boston Children’s Hospital. He then joined the faculty at Harvard Medical School and served as an attending physician in the Cardiac Intensive Care Unit at Boston Children’s.

Dr. Muñoz is board certified in pediatrics, pediatric critical care and in pediatric cardiology. He is a fellow of the American Academy of Pediatrics, the American College of Critical Care Medicine and the American College of Cardiology. Additionally, he is the primary editor and co-author of multiple textbooks and award-winning handbooks in pediatric cardiac intensive care, including Spanish language editions.

Andrea Beaton and Craig Sable

Assessing the global burden of rheumatic heart disease

Andrea Beaton and Craig Sable

A research team that included Children’s National Heart Institute experts Andrea Beaton, M.D., and Craig Sable, M.D., examined data on fatal and nonfatal Rheumatic Heart Disease for a 25 year period from 1990 through 2015 to determine the current global burden of RHD.

Rheumatic Heart Disease (RHD) is the most commonly acquired heart disease in young people under the age of 25. It’s caused by untreated streptococcal throat infections that progress into acute rheumatic fever and eventually weaken the valves of the heart. Fortunately, the devastating condition, which was endemic in the United States before 1950, is now relatively rare in the developed world due to social and economic development and the introduction of penicillin. But, as shown in a recent study published in the New England Journal of Medicine, in the developing world, RHD remains nearly as common as HIV.

As part of the 2015 Global Burden of Disease Study, a research team that included Children’s National Heart Institute experts Andrea Beaton, M.D., and Craig Sable, M.D., examined data on fatal and nonfatal RHD for a 25 year period from 1990 through 2015 to determine the current global burden of RHD. The group employed epidemiologic modeling techniques to estimate the global, regional and national prevalence of RHD, as well as death rates and disability-adjusted life years attributable to the disease.

“This study provides more detail than ever before about the global impact of RHD,” explains Dr. Sable. “It utilizes global burden of disease tools that are updated on an annual basis. These tools are considered highly reputable and allow for ongoing tracking and comparison to other diseases.”

The researchers found that overall, death rates from RHD have declined: there were 347,500 deaths from RHD in 1990 and 319,400 deaths in 2015, a decrease of 8 percent. From 1990 to 2015, the global age-standardized death rate from RHD also decreased from 9.2 to 4.8 per 100,000 — a change of 48 percent.

However, a closer look at the data shows that progress on RHD remains uneven. Although the health-related burden of RHD has declined in most countries over the 25-year period, the condition persists in some of the poorest regions in the world, with the highest estimated death rates in Central African Republic, Federated States of Micronesia, Fiji, India, Kiribati, Lesotho, Marshall Islands, Pakistan, Papua New Guinea, the Solomon Islands and Vanuatu. In several regions, mortality from RHD and the number of individuals living with RHD did not appreciably decline between 1990 and 2015. The researchers estimate that 10 out of every 1,000 people living in South Asia and central sub-Saharan Africa and 15 out of 1,000 people in Oceania were living with RHD in 2015.

“These data are critically important for increasing awareness and funding to reduce the global burden of rheumatic heart disease,” says Dr. Sable. “Dr. Beaton and I are proud to be part of a small team of global investigators leading this effort.”

Children’s National Health System was recently awarded a grant from the American Heart Association to launch a Rheumatic Heart Disease Center, with the goal of developing innovative strategies and economic incentives to improve the prevention and diagnosis of RHD in high-risk, financially disadvantaged countries and low-income communities across the United States. The program will use Children’s robust telemedicine infrastructure to connect co-collaborators around the world, as well as train the next generation of globally minded cardiovascular researchers.

Cardiology and heart surgery update: fetal magnetic resonance imaging, chest pain

July 20, 2016Utility of fetal magnetic resonance imaging in assessing the fetus with cardiac malposition
Abnormal cardiac axis and/or malposition can trigger an evaluation of fetuses for congenital heart disease. A research team led by Mary T. Donofrio, MD, director of the Fetal Heart Program at Children’s National Health System, sought to examine how fetal magnetic resonance imaging (fMRI) – might complement obstetrical ultrasound or fetal echocardiography (echo) – in defining etiology. The team reviewed 42 fetuses identified as having abnormal cardiac axis and/or malposition by fetal ultrasound and echo. While 55 percent of cases (23) had extracardiac anomalies, 29 percent (12) were reassigned by fMRI. fMRI findings were confirmed in 8 of these 12 cases postnatally.

June 13, 2016 – Targeted echocardiographic screening for latent rheumatic heart disease in Northern Uganda
Echocardiographic screening to detect latent rheumatic heart disease (RHD) has the potential to reduce the burden of disease, however additional research is needed to develop sustainable public health strategies. Some 33 million people, many living in low-resource environments, have RHD. What’s more, relatives of children with latent RHD may be at risk for developing the chronic heart condition. The research team found that siblings of children who were RHD-positive were more likely to have RHD, underscoring the importance of screening brothers and sisters of a child with confirmed RHD.

April 3, 2016 – Chest pain in children – the charge implications of unnecessary referral
While pediatricians are responsible for triaging chest pain complaints, questions linger about the best approach to reassure patients whose conditions are benign as well as how to best identify patients whose chest pain warrants further evaluation and testing. The study sought to assess how many patients with chest pain were inappropriately referred and found that chest pain due to cardiac disease is very rare in children. Thus, children whose chest pain is not accompanied by cardiac red flags can be managed safely by their pediatrician.

April 2, 2016Hemodynamic consequences of a restrictive ductus arteriosus and foramen ovale in fetal transposition of TGA
Dextro-transposition of the great arteries (d-TGA) occurs when the position of the main pulmonary artery and the aorta – the two main arteries that carry blood out of the heart – are switched. Newborns with d-TGA are at risk for compromise due to foramen ovale (FO) closure and pulmonary vascular abnormalities. One such fetus seen at 22 weeks of gestational age had a hypermobile, unrestrictive FO and small ductus arteriosus (DA) with bidirectional flow. By the 32 week, however, the DA was small with restrictive bidirectional flow. Doppler imaging showed reversed flow in the left pulmonary artery. By the 38th gestational week, the FO was closed, the left atrium/ventricle were dilated, and the DA was tiny. Within 30 minutes after birth, a balloon atrial septostomy was performed, and the infant later underwent surgical repair.