Quality and Safety

Holly Meany

TAA-Ts as therapy for tumors

Holly Meany

“The T cell immunotherapy regimen resulted in prolonged disease stabilization in patients who previously experienced rapid tumor progression,” says Holly Meany, M.D. “The therapy could prove to be an important component of immunotherapy for patients with solid tumor malignancies.”

In a study published in the Journal of Clinical Oncology, researchers from Children’s National Health System uncovered tumor-associated antigen cytotoxic T cells (TAA-Ts) that represent a new and potentially effective nontoxic therapeutic approach for patients with relapsed or refractory solid tumors.

The Phase 1 study led by Children’s National pediatric oncologists Holly Meany, M.D., and Amy B. Hont, M.D., represented the first in-human trial investigating the safety of administering TAA-Ts that target Wilms Tumor gene 1, a preferentially expressed antigen of melanoma and survivin in patients with relapsed/refractory solid tumors.

“These are exciting clinical results using a novel ‘first in-human’ T cell therapy,” said Catherine Bollard, MB.Ch.B., M.D., director of the Center for Cancer and Immunology Research at Children’s Research Institute. “This T cell therapy was safe and appeared to prolong patients’ time to progression which suggests that we can now use this novel treatment as a combination therapy to hopefully achieve long-term remissions in pediatrics and adults with relapsed/refractory solid tumors.”

During the Phase 1 trial, TAA-Ts products were generated from autologous peripheral blood and were infused over three dose levels. Patients were then eligible for up to eight infusions that were administered four to seven weeks apart.

Of the 15 evaluable patients, 11 were with stable disease or better at 45 days post-infusion and were defined as responders. Patients who were treated at the highest dose level showed the best clinical outcomes, with a 6-month progression-free survival rate of 73% after TAA-Ts infusion, an improvement as compared with prior therapy.

Overall, the Phase 1 trial of TAA-Ts resulted in safely induced disease stabilization and was associated with antigen spreading and a reduction in circulating tumor-associated antigen DNA levels in patients with relapsed/refractory solid tumors before infusion.

“The T cell immunotherapy regimen resulted in prolonged disease stabilization in patients who previously experienced rapid tumor progression,” said Dr. Meany. “The therapy could prove to be an important component of immunotherapy for patients with solid tumor malignancies,” she added.

The other researchers that contributed to this work are as follows: Amy B. Hont, M.D.; C. Russell Cruz, M.D., Ph.D.; Robert Ulrey, M.S.; Barbara O’Brien, B.S.; Maja Stanojevic, M.D.; Anushree Datar, M.S.; Shuroug Albihani, M.S.; Devin Saunders, B.A.; Ryo Hanajiri, M.D., Ph.D.; Karuna Panchapakesan, M.S.; Sam Darko, M.S.; Payal Banerjee, M.S.; Maria Fernanda Fortiz, B.S.; Fahmida Hoq, MBBS, M.S.; Haili Lang, M.D.; Yunfei Wang, Dr.PH.; Patrick J. Hanley, Ph.D.; Jeffrey S. Dome, M.D., Ph.D.; Catherine M. Bollard, M.D.; and Holly J. Meany, M.D.

illustration of brain showing cerebellum

Focusing on the “little brain” to rescue cognition

illustration of brain showing cerebellum

Research faculty at Children’s National in Washington, D.C., with colleagues recently published a review article in Nature Reviews Neuroscience that covers the latest research about how abnormal development of the cerebellum leads to a variety of neurodevelopmental disorders.

Cerebellum translates as “little brain” in Latin. This piece of anatomy – that appears almost separate from the rest of the brain, tucked under the two cerebral hemispheres – long has been known to play a pivotal role in voluntary motor functions, such as walking or reaching for objects, as well as involuntary ones, such as maintaining posture.

But more recently, says Aaron Sathyanesan, Ph.D., a postdoctoral research fellow at the Children’s Research Institute, the research arm of Children’s National  in Washington, D.C., researchers have discovered that the cerebellum is also critically important for a variety of non-motor functions, including cognition and emotion.

Sathyanesan, who studies this brain region in the laboratory of Vittorio Gallo, Ph.D., Chief Research Officer at Children’s National and scientific director of the Children’s Research Institute, recently published a review article with colleagues in Nature Reviews Neuroscience covering the latest research about how altered development of the cerebellum contributes to a variety of neurodevelopmental disorders.

These disorders, he explains, are marked by problems in the nervous system that arise while it’s maturing, leading to effects on emotion, learning ability, self-control, or memory, or any combination of these. They include diagnoses as diverse as intellectual disability, autism spectrum disorder (ASD), attention-deficit/hyperactivity disorder and Down syndrome.

“One reason why the cerebellum might be critically involved in each of these disorders,” Sathyanesan says, “is because its developmental trajectory takes so long.”

Unlike other brain structures, which have relatively short windows of development spanning weeks or months, the principal cells of the cerebellum – known as Purkinje cells – start to differentiate from stem cell precursors at the beginning of the seventh gestational week, with new cells continuing to appear until babies are nearly one year old.  In contrast, cells in the neocortex, a part of the brain involved in higher-order brain functions such as cognition, sensory perception and language is mostly finished forming while fetuses are still gestating in the womb.

This long window for maturation allows the cerebellum to make connections with other regions throughout the brain, such as extensive connections with the cerebral cortex, the outer layer of the cerebrum that plays a key role in perception, attention, awareness, thought, memory, language and consciousness. It also allows ample time for things to go wrong.

“Together,” Sathyanesan says, “these two characteristics are at the root of the cerebellum’s involvement in a host of neurodevelopmental disorders.”

For example, the review article notes, researchers have discovered both structural and functional abnormalities in the cerebellums of patients with ASD. Functional magnetic resonance imaging (MRI), an imaging technique that measures activity in different parts of the brain, suggests that significant differences exist between connectivity between the cerebellum and cortex in people with ASD compared with neurotypical individuals. Differences in cerebellar connectivity are also evident in resting-state functional connectivity MRI, an imaging technique that measures brain activity in subjects when they are not performing a specific task. Some of these differences appear to involve patterns of overconnectivity to different brain regions, explains Sathyanesan; other differences suggest that the cerebellums of patients with ASD don’t have enough connections to other brain regions.

These findings could clarify research from Children’s National and elsewhere that has shown that babies born prematurely often sustain cerebellar injuries due to multiple hits, including a lack of oxygen supplied by infants’ immature lungs, he adds. Besides having a sibling with ASD, premature birth is the most prevalent risk factor for an ASD diagnosis.

The review also notes that researchers have discovered structural changes in the cerebellums of patients with Down syndrome, who tend to have smaller cerebellar volumes than neurotypical individuals. Experimental models of this trisomy recapitulate this difference, along with abnormal connectivity to the cerebral cortex and other brain regions.

Although the cerebellum is a pivotal contributor toward these conditions, Sathyanesan says, learning more about this brain region helps make it an important target for treating these neurodevelopmental disorders. For example, he says, researchers are investigating whether problems with the cerebellum and abnormal connectivity could be lessened through a non-invasive form of brain stimulation called transcranial direct current stimulation or an invasive one known as deep brain stimulation. Similarly, a variety of existing pharmaceuticals or new ones in development could modify the cerebellum’s biochemistry and, consequently, its function.

“If we can rescue the cerebellum’s normal activity in these disorders, we may be able to alleviate the problems with cognition that pervade them all,” he says.

In addition to Sathyanesan and Senior Author Gallo, Children’s National study co-authors include Joseph Scafidi, D.O., neonatal neurologist; Joy Zhou and Roy V. Sillitoe, Baylor College of Medicine; and Detlef H. Heck, of University of Tennessee Health Science Center.

Financial support for research described in this post was provided by the National Institute of Neurological Disorders and Stroke under grant numbers 5R01NS099461, R01NS089664, R01NS100874, R01NS105138 and R37NS109478; the Hamill Foundation; the Baylor College of Medicine Intellectual and Developmental Disabilities Research Center under grant number U54HD083092; the University of Tennessee Health Science Center (UTHSC) Neuroscience Institute; the UTHSC Cornet Award; the National Institute of Mental Health under grant number R01MH112143; and the District of Columbia Intellectual and Developmental Disabilities Research Center under grant number U54 HD090257.

spectrometer output

Understanding low cardiac output after surgery

spectrometer output

Rafael Jaimes, Ph.D., created an algorithm that is being tested in a pre-clinical model to characterize the light absorbance spectrum from different heart regions using a spectrometer.

After intense cardiac surgery, sometimes a patient’s heart is unable to effectively deliver oxygenated blood and nutrients throughout the recovering body. Known as inadequate or low cardiac output, the condition occurs in about a quarter of patients following surgery with cardiopulmonary bypass, including young children who require complex procedures to correct congenital heart defects at Children’s National Health System.

Researchers at the Sheikh Zayed Institute for Pediatric Surgical Innovation are exploring several facets of this challenge, with the goal of better understanding post-operative recovery trajectories in pediatric patients. Rafael Jaimes, Ph.D., a staff scientist at the institute, leads this work to identify when and how low cardiac output occurs, pinpoint the physical hallmarks of this condition and use that information to prevent long term damage and complications after surgery, including cardiac arrest.

“More research needs to be done to understand the cause of this overarching and multi-faceted syndrome,” says Dr. Jaimes. “I’m interested in understanding how metabolic insufficiency contributes to this condition, and also exploring how we can use current imaging and diagnostic tools to measure, track and treat the insufficiencies that contribute to low cardiac output.”

Tracking inadequate oxygen and nutrient delivery to the parts of the heart that have been repaired is one avenue under exploration. Currently, a cardiac-specific real-time device to measure the oxygen state of the heart, while a patient is in post-operative critical care, is under development.

The heart’s complexity has made using current oxygen measurement devices, such as spectrometers, very difficult. To date no tool exists that effectively screens out artifacts and noise to allow clear visualization. However, during his post-doctoral work, Dr. Jaimes has created a new algorithm that may be the first of its kind to accomplish this feat.

This work on low cardiac output recently received a Congenital Heart Defect Research Award, which is a collaborative program of the Children’s Heart Foundation and the American Heart Association that supports innovative research, seeking to understand and treat congenital heart defects.

A new research study will build on his previous studies by using the algorithm to characterize the absorbance spectrum from different heart regions in a pre-clinical model. The data collected will serve as the baseline for development of a prototype spectrometer software, capable of tracking changes in heart oxygenation before, during and after surgery.

The end goal is to more effectively identify when parts of the heart are deprived of oxygen and nutrients and prevent resulting impacts on cardiac metabolism and output. Doing so will decrease short term mortality and morbidity and may also improve circulation systemically, potentially reducing long term health impacts of reduced oxygenation, such as neurodevelopmental disorders.

Denice Cora-Bramble with the Mayor’s Commission on Healthcare Systems Transformation

Denice Cora-Bramble, M.D., MBA, selected for Mayor’s Commission on Healthcare Systems Transformation

Denice Cora-Bramble with the Mayor’s Commission on Healthcare Systems Transformation

Photo credit: Executive Office of the Mayor

Denice Cora-Bramble, M.D., MBA, chief medical officer and executive vice president of Ambulatory and Community Health Services at Children’s National, has been selected to serve as a member of the Mayor’s Commission on Healthcare Systems Transformation. Established by Mayor Muriel Bowser, the commission will make recommendations on strategies and investments necessary to transform health care delivery in the District of Columbia.

Dr. Cora-Bramble is one of three representatives appointed to the commission from specialty hospitals in the District. “I am honored to have been invited to participate in the commission’s important discussions,” she says.

While D.C. has many resources related to health care and is home to several acute care hospitals, residents still need help accessing services. The 27-member commission will work to alleviate these challenges and over the next six months they will develop recommendations for improving access to primary, acute and specialty care services, addressing health system capacity issues for inpatient, outpatient, pre-hospital and emergency room services and maternal health.

The commission will also work to promote equitable acute care and specialty services in communities east of the Anacostia River.

“I’m looking forward to serving as a resource to citizens living within the District,” says Dr. Cora-Bramble.  “I am hopeful that the group’s recommendations will improve the delivery of health services, particularly for vulnerable and underserved populations.”

Dr. Cora-Bramble joined Children’s National in 2002. In her role as chief medical officer, she leads the tri-state clinical operations of Children’s National primary and specialty sites, including regional outpatient centers, emergency departments, community health centers, pediatric practices, school-based health centers, mobile medical units and nursing services in D.C. Public Schools and Public Charter Schools. She also oversees the telemedicine program and the Children’s National Health Network.

Children’s National ranked No. 6 overall and No. 1 for newborn care by U.S. News

Children’s National in Washington, D.C., is the nation’s No. 6 children’s hospital and, for the third year in a row, its neonatology program is No.1 among all children’s hospitals providing newborn intensive care, according to the U.S. News Best Children’s Hospitals annual rankings for 2019-20.

This is also the third year in a row that Children’s National has been in the top 10 of these national rankings. It is the ninth straight year it has ranked in all 10 specialty services, with five specialty service areas ranked among the top 10.

“I’m proud that our rankings continue to cement our standing as among the best children’s hospitals in the nation,” says Kurt Newman, M.D., President and CEO for Children’s National. “In addition to these service lines, today’s recognition honors countless specialists and support staff who provide unparalleled, multidisciplinary patient care. Quality care is a function of every team member performing their role well, so I credit every member of the Children’s National team for this continued high performance.”

The annual rankings recognize the nation’s top 50 pediatric facilities based on a scoring system developed by U.S. News. The top 10 scorers are awarded a distinction called the Honor Roll.

“The top 10 pediatric centers on this year’s Best Children’s Hospitals Honor Roll deliver outstanding care across a range of specialties and deserve to be nationally recognized,” says Ben Harder, chief of health analysis at U.S. News. “According to our analysis, these Honor Roll hospitals provide state-of-the-art medical expertise to children with rare or complex conditions. Their rankings reflect U.S. News’ assessment of their commitment to providing high-quality, compassionate care to young patients and their families day in and day out.”

The bulk of the score for each specialty is based on quality and outcomes data. The process also includes a survey of relevant specialists across the country, who are asked to list hospitals they believe provide the best care for patients with challenging conditions.

Below are links to the five specialty services that U.S. News ranked in the top 10 nationally:

The other five specialties ranked among the top 50 were cardiology and heart surgery, diabetes and endocrinology, gastroenterology and gastro-intestinal surgery, orthopedics, and urology.

Sadiqa Kendi

Sadiqa Kendi, M.D., FAAP, CPST, is 2019 Bloomberg Fellow

Sadiqa Kendi

Sadiqa Kendi, M.D., FAAP, CPST, a pediatric emergency physician at Children’s National and medical director of Safe Kids DC, is among the 2019 cohort of Bloomberg Fellows, an initiative that provides world-class training to public health professionals tackling some of the most intractable challenges facing the U.S.

The Bloomberg American Health Initiative at the Johns Hopkins Bloomberg School of Public Health on June 6, 2019, announced fellows who will receive full scholarships to earn an MPH or DrPH as they tackle five U.S. health challenges: addiction and overdose, environmental challenges, obesity and the food system, risks to adolescent health and violence. Now in its third year, the largest group of fellows to date includes representatives from organizations headquartered in 24 states and the District of Columbia.

As part of her environmental challenges fellowship, Dr. Kendi will attempt to lessen the significant morbidity and mortality suffered by children, especially children of color, due to unintentional injuries. Children’s emergency department handles more than 100,000 pediatric visits per year, 1,200 of which result in hospital admission.

“The numbers are staggering: 25% of emergency department visits by kids and more than $28 billion in health care spending are associated with injuries. These preventable injuries claim the highest number of pediatric lives, and children of color and lower income families often disproportionately bear this burden,” Dr. Kendi says.

Bloomberg Fellows Graphic

“Regrettably, I have seen the personal toll close up, and it has been sobering to hug a sobbing parent whose child clings to life after being struck by a car; to clasp the hand of a frightened child who has fallen from playground equipment and suffered a severe fracture; to see the angst written on a caregiver’s face as I lead our team in trying to save a life that easily could have been safeguarded by installing a window guard,” she adds.

Under the auspices of Safe Kids District of Columbia, Dr. Kendi is developing a one-stop Safety Center at Children’s National to provide injury prevention equipment and education to families in five focus areas: child passenger safety, home, pedestrian, sleep and sports.

Safe Kids Worldwide, the umbrella non-profit organization for Safe Kids DC, started at Children’s National and has grown to more than 400 coalitions around the world. Safe Kids DC is the local coalition that is working to address the burden of injury in local District of Columbia communities.

“I’m grateful to be named a Bloomberg Fellow because this opportunity will enable me to better understand the theories, methods of evaluation and tools for addressing the burden of injury in the District of Columbia, including how to assess and address the built environment. This training will help me to better lead my Safe Kids DC team in developing projects, outreach programs and legislative advocacy that have the potential to directly impact the communities we serve,” she adds.

pill bottles and pills

Fewer than 60% of young women diagnosed with STIs in emergency departments fill scripts

Fewer than 60% of young women diagnosed with sexually transmitted infections (STIs) in the emergency department fill prescriptions for antimicrobial therapy to treat these conditions, according to a research letter published online May 28, 2019, by JAMA Pediatrics.

Adolescents make up nearly half of the people diagnosed with sexually transmitted infections each year. According to the Centers for Disease Control and Prevention, untreated sexually transmitted diseases in women can cause pelvic inflammatory disease (PID), an infection of the reproductive organs that can complicate getting pregnant in the future.

“We were astonished to find that teenagers’ rates of filling STI prescriptions were so low,” says Monika K. Goyal, M.D., MSCE, assistant chief of Children’s Division of Emergency Medicine and Trauma Services and the study’s senior author. “Our findings demonstrate the imperative need to identify innovative methods to improve treatment adherence for this high-risk population.”

The retrospective cohort study, conducted at two emergency departments affiliated with a large, urban, tertiary care children’s hospital, enrolled adolescents aged 13 to 19 who were prescribed antimicrobial treatment from Jan. 1, 2016, to Dec. 31, 2017, after being diagnosed with PID or testing positive for chlamydia.

Of 696 emergency department visits for diagnosed STIs, 208 teenagers received outpatient prescriptions for antimicrobial treatments. Only 54.1% of those prescriptions were filled.

“Teenagers may face a number of hurdles when it comes to STI treatment, including out-of-pocket cost, access to transportation and confidentiality concerns,” Dr. Goyal adds.

Future studies will attempt to identify barriers to filling prescriptions in order to inform development of targeted interventions based in the emergency department that promote adherence to STI treatment.

In addition to Dr. Goyal, study co-authors include Lead Author, Alexandra Lieberman, BA, The George Washington University School of Medicine & Health Sciences; and co-authors Gia M. Badolato, MPH, and Jennifer Tran, PA-C, MPH, both of Children’s National.

An-Massaro

Looking for ‘help’ signals in the blood of newborns with HIE

An Massaro

“This data support our hypothesis that a panel of biomarkers – not a one-time test for a single biomarker – is needed to adequately determine the risk and timing of brain injury for babies with HIE,” says An N. Massaro, M.D.

Measuring a number of biomarkers over time that are produced as the body responds to inflammation and injury may help to pinpoint newborns who are more vulnerable to suffering lasting brain injury due to disrupted oxygen delivery and blood flow, according to research presented during the Pediatric Academic Societies 2019 Annual Meeting.

Hypoxic-ischemic encephalopathy (HIE) happens when blood and oxygen flow are disrupted around the time of birth and is a serious birth complication for full-term infants. To lessen the chance of these newborns suffering permanent brain injury, affected infants undergo therapeutic cooling, which temporarily lowers their body temperatures.

“Several candidate blood biomarkers have been investigated in HIE but we still don’t have one in clinical use.  We need to understand how these markers change over time before we can use them to direct care in patients,” says An N. Massaro, M.D., co-director of the Neonatal Neurocritical Care Program at Children’s National and the study’s senior author. “The newborns’ bodies sent out different ‘help’ signals that we detected in their bloodstream, and the markers had strikingly different time courses. A panel of plasma biomarkers has the potential to help us identify infants most in need of additional interventions, and to help us understand the most optimal timing for those interventions.”

Past research has keyed in on inflammatory cytokines and Tau protein as potential biomarkers of brain injury for infants with HIE who are undergoing therapeutic cooling. The research team led by Children’s faculty wanted to gauge which time periods to measure such biomarkers circulating in newborns’ bloodstreams. They enrolled 85 infants with moderate or severe HIE and tapped unused blood specimens that had been collected as cooling began, as well as 12, 24, 72 and 96 hours later. The infants’ mean gestational age was 38.7 weeks, their mean birth weight was about 7 pounds (3.2 kilograms), and 19% had severe brain disease (encephalopathy).

Cytokines – chemicals like Interleukin (IL) 6, 8 and 10 that regulate how the body responds to infection, inflammation and trauma – peaked in the first 24 hours of cooling for most of the newborns. However, the highest measure of Tau protein for the majority of newborns was during or after the baby’s temperature was restored to normal.

“After adjusting for clinical severity of encephalopathy and five-minute Apgar scores, IL-6, IL-8 and IL-10 predicted adverse outcomes, like severe brain injury or death, as therapeutic hypothermia began. By contrast, Tau protein measurements predicted adverse outcomes during and after the infants were rewarmed,” Dr. Massaro says.

IL-6 and IL-8 proteins are pro-inflammatory cytokines while IL-10 is considered anti-inflammatory.  These chemicals are released as a part of the immune response to brain injury. Tau proteins are abundant in nerve cells and stabilize microtubules.

“This data support our hypothesis that a panel of biomarkers – not a one-time test for a single biomarker – is needed to adequately determine the risk and timing of brain injury for babies with HIE,” she adds.

Pediatric Academic Societies 2019 Annual Meeting presentation

  • “Serial plasma biomarkers of brain injury in infants with hypoxic ischemic encephalopathy (HIE) treated with therapeutic hypothermia (TH).”
    • Saturday, April 27, 2019, 6 p.m. (EST)

Meaghan McGowan, lead author; Alexandra C. O’Kane, co-author; Gilbert Vezina, M.D.,  director, Neuroradiology Program and co-author; Tae Chang, M.D., director, Neonatal Neurology Program and co-author; and An N. Massaro, M.D., co-director of the Neonatal Neurocritical Care Program and senior author; all of Children’s National; and co-author Allen Everett, of Johns Hopkins School of Medicine.

DNA Molecule

Decoding cellular signals linked to hypospadias

DNA Molecule

“By advancing our understanding of the genetic causes and the anatomic differences among patients, the real goal of this research is to generate knowledge that will allow us to take better care of children with hypospadias,” Daniel Casella, M.D. says.

Daniel Casella, M.D., a urologist at Children’s National, was honored with an AUA Mid-Atlantic Section William D. Steers, M.D. Award, which provides two years of dedicated research funding that he will use to better understand the genetic causes for hypospadias.

With over 7,000 new cases a year in the U.S., hypospadias is a common birth defect that occurs when the urethra, the tube that transports urine out of the body, does not form completely in males.

Dr. Casella has identified a unique subset of cells in the developing urethra that have stopped dividing but remain metabolically active and are thought to represent a novel signaling center. He likens them to doing the work of a construction foreman. “If you’re constructing a building, you need to make sure that everyone follows the blueprints.  We believe that these developmentally senescent cells are sending important signals that define how the urethra is formed,” he says.

His project also will help to standardize the characterization of hypospadias. Hypospadias is classically associated with a downward bend to the penis, a urethra that does not extend to the head of the penis and incomplete formation of the foreskin. Still, there is significant variability among patients’ anatomy and to date, no standardized method for documenting hypospadias anatomy.

“Some surgeons take measurements in the operating room, but without a standardized classification system, there is no definitive way to compare measurements among providers or standardize diagnoses from measurements that every surgeon makes,” he adds. “What one surgeon may call ‘distal’ may be called ‘midshaft’ by another.” (With distal hypospadias, the urethra opening is near the penis head; with midshaft hypospadias, the urethra opening occurs along the penis shaft.)

“By advancing our understanding of the genetic causes and the anatomic differences among patients, the real goal of this research is to generate knowledge that will allow us to take better care of children with hypospadias,” he says.

Parents worry about lingering social stigma, since some boys with hypospadias are unable to urinate while standing, and in older children the condition can be associated with difficulties having sex. Surgical correction of hypospadias traditionally is performed when children are between 6 months to 1 year old.

When reviewing treatment options with family, “discussing the surgery and postoperative care is straight forward. The hard part of our discussion is not having good answers to questions about long-term outcomes,” he says.

Dr. Casella’s study hopes to build the framework to enable that basic research to be done.

“Say we wanted to do a study to see how patients are doing 15-20 years after their surgery.  If we go to their charts now, often we can’t accurately describe their anatomy prior to surgery.  By establishing uniform measurement baselines, we can accurately track long-term outcomes since we’ll know what condition that child started with and where they ended up,” he says.

Dr. Casella’s research project will be conducted at Children’s National under the mentorship of Eric Vilain, M.D., Ph.D., an international expert in sex and genitalia development; Dolores J. Lamb, Ph.D., HCLD, an established leader in urology based at Weill Cornell Medicine; and Marius George Linguraru, DPhil, MA, MSc, an expert in image processing and artificial intelligence.

Billie Lou Short and Kurt Newman at Research and Education Week

Research and Education Week honors innovative science

Billie Lou Short and Kurt Newman at Research and Education Week

Billie Lou Short, M.D., received the Ninth Annual Mentorship Award in Clinical Science.

People joke that Billie Lou Short, M.D., chief of Children’s Division of Neonatology, invented extracorporeal membrane oxygenation, known as ECMO for short. While Dr. Short did not invent ECMO, under her leadership Children’s National was the first pediatric hospital to use it. And over decades Children’s staff have perfected its use to save the lives of tiny, vulnerable newborns by temporarily taking over for their struggling hearts and lungs. For two consecutive years, Children’s neonatal intensive care unit has been named the nation’s No. 1 for newborns by U.S. News & World Report. “Despite all of these accomplishments, Dr. Short’s best legacy is what she has done as a mentor to countless trainees, nurses and faculty she’s touched during their careers. She touches every type of clinical staff member who has come through our neonatal intensive care unit,” says An Massaro, M.D., director of residency research.

For these achievements, Dr. Short received the Ninth Annual Mentorship Award in Clinical Science.

Anna Penn, M.D., Ph.D., has provided new insights into the central role that the placental hormone allopregnanolone plays in orderly fetal brain development, and her research team has created novel experimental models that mimic some of the brain injuries often seen in very preterm babies – an essential step that informs future neuroprotective strategies. Dr. Penn, a clinical neonatologist and developmental neuroscientist, “has been a primary adviser for 40 mentees throughout their careers and embodies Children’s core values of Compassion, Commitment and Connection,” says Claire-Marie Vacher, Ph.D.

For these achievements, Dr. Penn was selected to receive the Ninth Annual Mentorship Award in Basic and Translational Science.

The mentorship awards for Drs. Short and Penn were among dozens of honors given in conjunction with “Frontiers in Innovation,” the Ninth Annual Research and Education Week (REW) at Children’s National. In addition to seven keynote lectures, more than 350 posters were submitted from researchers – from high-school students to full-time faculty – about basic and translational science, clinical research, community-based research, education, training and quality improvement; five poster presenters were showcased via Facebook Live events hosted by Children’s Hospital Foundation.

Two faculty members won twice: Vicki Freedenberg, Ph.D., APRN, for research about mindfulness-based stress reduction and Adeline (Wei Li) Koay, MBBS, MSc, for research related to HIV. So many women at every stage of their research careers took to the stage to accept honors that Naomi L.C. Luban, M.D., Vice Chair of Academic Affairs, quipped that “this day is power to women.”

Here are the 2019 REW award winners:

2019 Elda Y. Arce Teaching Scholars Award
Barbara Jantausch, M.D.
Lowell Frank, M.D.

Suzanne Feetham, Ph.D., FAA, Nursing Research Support Award
Vicki Freedenberg, Ph.D., APRN, for “Psychosocial and biological effects of mindfulness-based stress reduction intervention in adolescents with CHD/CIEDs: a randomized control trial”
Renee’ Roberts Turner for “Peak and nadir experiences of mid-level nurse leaders”

2019-2020 Global Health Initiative Exploration in Global Health Awards
Nathalie Quion, M.D., for “Latino youth and families need assessment,” conducted in Washington
Sonia Voleti for “Handheld ultrasound machine task shifting,” conducted in Micronesia
Tania Ahluwalia, M.D., for “Simulation curriculum for emergency medicine,” conducted in India
Yvonne Yui for “Designated resuscitation teams in NICUs,” conducted in Ghana
Xiaoyan Song, Ph.D., MBBS, MSc, “Prevention of hospital-onset infections in PICUs,” conducted in China

Ninth Annual Research and Education Week Poster Session Awards

Basic and Translational Science
Faculty:
Adeline (Wei Li) Koay, MBBS, MSc, for “Differences in the gut microbiome of HIV-infected versus HIV-exposed, uninfected infants”
Faculty: Hayk Barseghyan, Ph.D., for “Composite de novo Armenian human genome assembly and haplotyping via optical mapping and ultra-long read sequencing”
Staff: Damon K. McCullough, BS, for “Brain slicer: 3D-printed tissue processing tool for pediatric neuroscience research”
Staff: Antonio R. Porras, Ph.D., for “Integrated deep-learning method for genetic syndrome screening using facial photographs”
Post docs/fellows/residents: Lung Lau, M.D., for “A novel, sprayable and bio-absorbable sealant for wound dressings”
Post docs/fellows/residents:
Kelsey F. Sugrue, Ph.D., for “HECTD1 is required for growth of the myocardium secondary to placental insufficiency”
Graduate students:
Erin R. Bonner, BA, for “Comprehensive mutation profiling of pediatric diffuse midline gliomas using liquid biopsy”
High school/undergraduate students: Ali Sarhan for “Parental somato-gonadal mosaic genetic variants are a source of recurrent risk for de novo disorders and parental health concerns: a systematic review of the literature and meta-analysis”

Clinical Research
Faculty:
Amy Hont, M.D., for “Ex vivo expanded multi-tumor antigen specific T-cells for the treatment of solid tumors”
Faculty: Lauren McLaughlin, M.D., for “EBV/LMP-specific T-cells maintain remissions of T- and B-cell EBV lymphomas after allogeneic bone marrow transplantation”

Staff: Iman A. Abdikarim, BA, for “Timing of allergenic food introduction among African American and Caucasian children with food allergy in the FORWARD study”
Staff: Gelina M. Sani, BS, for “Quantifying hematopoietic stem cells towards in utero gene therapy for treatment of sickle cell disease in fetal cord blood”
Post docs/fellows/residents: Amy H. Jones, M.D., for “To trach or not trach: exploration of parental conflict, regret and impacts on quality of life in tracheostomy decision-making”
Graduate students: Alyssa Dewyer, BS, for “Telemedicine support of cardiac care in Northern Uganda: leveraging hand-held echocardiography and task-shifting”
Graduate students: Natalie Pudalov, BA, “Cortical thickness asymmetries in MRI-abnormal pediatric epilepsy patients: a potential metric for surgery outcome”
High school/undergraduate students:
Kia Yoshinaga for “Time to rhythm detection during pediatric cardiac arrest in a pediatric emergency department”

Community-Based Research
Faculty:
Adeline (Wei Li) Koay, MBBS, MSc, for “Recent trends in the prevention of mother-to-child transmission (PMTCT) of HIV in the Washington, D.C., metropolitan area”
Staff: Gia M. Badolato, MPH, for “STI screening in an urban ED based on chief complaint”
Post docs/fellows/residents:
Christina P. Ho, M.D., for “Pediatric urinary tract infection resistance patterns in the Washington, D.C., metropolitan area”
Graduate students:
Noushine Sadeghi, BS, “Racial/ethnic disparities in receipt of sexual health services among adolescent females”

Education, Training and Program Development
Faculty:
Cara Lichtenstein, M.D., MPH, for “Using a community bus trip to increase knowledge of health disparities”
Staff:
Iana Y. Clarence, MPH, for “TEACHing residents to address child poverty: an innovative multimodal curriculum”
Post docs/fellows/residents:
Johanna Kaufman, M.D., for “Inpatient consultation in pediatrics: a learning tool to improve communication”
High school/undergraduate students:
Brett E. Pearson for “Analysis of unanticipated problems in CNMC human subjects research studies and implications for process improvement”

Quality and Performance Improvement
Faculty:
Vicki Freedenberg, Ph.D., APRN, for “Implementing a mindfulness-based stress reduction curriculum in a congenital heart disease program”
Staff:
Caleb Griffith, MPH, for “Assessing the sustainability of point-of-care HIV screening of adolescents in pediatric emergency departments”
Post docs/fellows/residents:
Rebecca S. Zee, M.D., Ph.D., for “Implementation of the Accelerated Care of Torsion (ACT) pathway: a quality improvement initiative for testicular torsion”
Graduate students:
Alysia Wiener, BS, for “Latency period in image-guided needle bone biopsy in children: a single center experience”

View images from the REW2019 award ceremony.

Beth Tarini

Getting to know SPR’s future President, Beth Tarini, M.D., MS

Beth Tarini

Quick. Name four pillar pediatric organizations on the vanguard of advancing pediatric research.

Most researchers and clinicians can rattle off the names of the Academic Pediatric Association, the American Academy of Pediatrics and the American Pediatric Society. But that fourth one, the Society for Pediatric Research (SPR), is a little trickier. While many know SPR, a lot of research-clinicians simply do not.

Over the next few years, Beth A. Tarini, M.D., MS, will make it her personal mission to ensure that more pediatric researchers get to know SPR and are so excited about the organization that they become active members. In May 2019 Dr. Tarini becomes Vice President of the society that aims to stitch together an international network of interdisciplinary researchers to improve kids’ health. Four-year SPR leadership terms begin with Vice President before transitioning to President-Elect, President and Past-President, each for one year.

Dr. Tarini says she looks forward to working with other SPR leaders to find ways to build more productive, collaborative professional networks among faculty, especially emerging junior faculty. “Facilitating ways to network for research and professional reasons across pediatric research is vital – albeit easier said than done. I have been told I’m a connector, so I hope to leverage that skill in this new role,” says Dr. Tarini, associate director for Children’s Center for Translational Research.

“I’m delighted that Dr. Tarini was elected to this leadership position, and I am impressed by her vision of improving SPR’s outreach efforts,” says Mark Batshaw, M.D., Executive Vice President, Chief Academic Officer and Physician-in-Chief at Children’s National. “Her goal of engaging potential members in networking through a variety of ways – face-to-face as well as leveraging digital platforms like Twitter, Facebook and LinkedIn – and her focus on engaging junior faculty will help strengthen SPR membership in the near term and long term.”

Dr. Tarini adds: “Success to me would be leaving after four years with more faculty – especially junior faculty – approaching membership in SPR with the knowledge and enthusiasm that they bring to membership in other pediatric societies.”

SPR requires that its members not simply conduct research, but move the needle in their chosen discipline. In her research, Dr. Tarini has focused on ensuring that population-based newborn screening programs function efficiently and effectively with fewer hiccups at any place along the process.

Thanks to a heel stick to draw blood, an oxygen measurement, and a hearing test, U.S. babies are screened for select inherited health conditions, expediting treatment for infants and reducing the chances they’ll experience long-term health consequences.

“The complexity of this program that is able to test nearly all 4 million babies in the U.S. each year is nothing short of astounding. You have to know the child is born – anywhere in the state – and then between 24 and 48 hours of birth you have to do testing onsite, obtain a specific type of blood sample, send the blood sample to an off-site lab quickly, test the sample, find the child if the test is out of range, get the child evaluated and tested for the condition, then send them for treatment. Given the time pressures as well as the coordination of numerous people and organizations, the fact that this happens routinely is amazing. And like any complex process, there is always room for improvement,” she says.

Dr. Tarini’s research efforts have focused on those process improvements.

As just one example, the Advisory Committee on Heritable Disorders in Newborns and Children, a federal advisory committee on which she serves, was discussing how to eliminate delays in specimen processing to provide speedier results to families. One possible solution floated was to open labs all seven days, rather than just five days a week. Dr. Tarini advocated for partnering with health care engineers who could help model ways to make the specimen transport process more efficient, just like airlines and mail delivery services. A more efficient and effective solution was to match the specimen pick-up and delivery times more closely with the lab’s operational times – which maximizes lab resources and shortens wait times for parents.

Conceptual modeling comes so easily for her that she often leaps out of her seat mid-sentence, underscoring a point by jotting thoughts on a white board, doing it so often that her pens have run dry.

“It’s like a bus schedule: You want to find a bus that not only takes you to your destination but gets you there on time,” she says.

Dr. Tarini’s current observational study looks for opportunities to improve how parents in Minnesota and Iowa are given out-of-range newborn screening test results – especially false positives – and how that experience might shake their confidence in their child’s health as well as heighten their own stress level.

“After a false positive test result, are there parents who walk away from newborn screening with lingering stress about their child’s health? Can we predict who those parents might be and help them?” she asks.

Among the challenges is the newborn screening occurs so quickly after delivery that some emotionally and physically exhausted parents may not remember it was done. Then they get a call from the state with ominous results. Another challenge is standardizing communication approaches across dozens of birthing centers and hospitals.

“We know parents are concerned after receiving a false positive result, and some worry their infant remains vulnerable,” she says. “Can we change how we communicate – not just what we say, but how we say it – to alleviate those concerns?”

Johannes Van den Anker

Dr. Johannes van den Anker awarded 2019 Sumner J. Yaffe Lifetime Achievement Award

Johannes Van den Anker

Johannes van den Anker, M.D., Ph.D., division chief of Clinical Pharmacology and vice chair of Pediatrics for Experimental Therapeutics at Children’s National Health System, has been selected to receive the 2019 Sumner J. Yaffe Lifetime Achievement Award in Pediatric Pharmacology and Therapeutics by the Pediatric Pharmacy Advocacy Group (PPAG). Given annually, the Yaffe Award was established in 2002 by the PPAG Board of Directors and recognizes individuals with significant and sustained contributions toward the improvement of children’s health through the field of pediatric pharmacology and therapeutics.

Dr. van den Anker was selected as this year’s recipient for his contributions to the field of pediatric pharmacology and therapeutics, which have expanded and enhanced medical knowledge about the use of drugs in children and about the treatment of disease. He has also played an integral role in training the next generation of clinical pharmacists and pharmacologists.

“This award means a lot to me as it recognizes the importance of the field I am so passionate about and to which I have dedicated my career,” says Dr. van den Anker.

Dr. van den Anker joined Children’s National in 2002 and has become a leader in the discipline of pediatric pharmacology and therapeutics with significant contributions to research in this field. Some of his work includes changes in the dosing guidelines for frequently used antibacterial agents in newborns, the optimization of the dosing of pain medications in newborns and young infants and studies addressing the pharmacology of drugs in obese pediatric and adolescent patients.

“I am excited about being the 2019 recipient of this award” Dr. van den Anker says, “I am enthusiastic about future developments in the field of pediatric pharmacology and therapeutics with multiple ongoing studies with my colleagues, ranging from antibiotic dosing to the management of muscular dystrophy with novel drugs.”

The award will be presented at the 28th PPAG Annual Meeting on Friday, April 12 in Oklahoma City, OK., where he will also present the 2019 Yaffe Award Lecture to the attendees. The title of his lecture is “The Evolution of Neonatal Pharmacology and Therapeutics:  A Story of Resistance, Resilience and Revelation”.

Congratulations to Dr. Johannes van den Anker for this highly deserved honor!

Meghan Delaney

Pathology chief appointed to board of pathology advisory committee

Meghan Delaney

The American Board of Pathology (ABPath) has appointed the chief of Pathology and Laboratory Medicine at Children’s National Health System, Meghan Delaney, D.O., M.P.H., to its Test Development and Advisory Committee (TDAC) for blood banking and transfusion medicine. As a member of the committee, Dr. Delaney will play a role in the development and review of the American Board of Pathology certification exam questions. Physicians selected to serve on the TDAC are established subject matter experts in their subspecialty, with knowledge on the latest advances in the field of pathology and patient care.

“As TDAC members, these physicians play a critical role in the development of the exams and are entrusted with maintaining the integrity of the board-certified designation. The appointment to a TDAC indicates the physician is highly regarded in the field of pathology and exemplifies the utmost standards of care,” states Rebecca L. Johnson, M.D., CEO of the American Board of Pathology.

Dr. Delaney joined Children’s National as Chief of Pathology and Laboratory Medicine in 2017. A diplomate of the American Board of Pathology, with certification in transfusion medicine/blood banking and clinical pathology, she is an active member of several professional societies. She serves as chair of the AABB Transfusion Medicine Subsection Pediatric Subcommittee and as chair of the American Society of Apheresis Applications Committee Pediatric Subcommittee.  Dr. Delaney is also a scientific member of the BEST Collaborative, an associate editor for the journal Transfusion Medicine and a member of the editorial board of Transfusion.

The mission of the American Board of Pathology, as a member of the American Board of Medical Specialties, is to serve the public and advance the profession of pathology, by setting certification standards and promoting lifelong competency of pathologists. Founded in 1936, the ABPath accomplishes this mission by establishing certification and continuing certification standards, as well as, assessing the qualifications of those seeking to obtain voluntary certification in the specialty of pathology.  Since 1971, the ABPath has appointed test committees for each specialty area of pathology. The committee consists of ABPath trustees and other pathologists, or specialty physicians, who are recognized experts in their respective disciplines.

ACC19 attendees from Children's National

ACC.19: A focus on pediatric cardiology

ACC19 attendees from Children's National

Dr. Gerard Martin, center, accepts an award before delivering the 2019 Dan G. McNamara Keynote lecture at ACC.19.

“Innovation meets tradition,” is how many attendees and journalists described the American College of Cardiology’s 68th Scientific Sessions (ACC.19), which took place March 16-18, 2019 in New Orleans, La.

Gerard Martin, M.D., F.A.A.P., F.A.C.C., F.A.H.A., a pediatric cardiologist and the medical director of Global Services at Children’s National, supported this narrative by referencing both themes in his 2019 Dan G. McNamara keynote lecture, entitled “Improved Outcomes in Congenital Heart Disease through Advocacy and Collaboration.” Dr. Martin highlighted advancements in the field of pediatric cardiology that took place over the past 15 years, while touting modern advancements – such as pulse oximetry screenings for critical congenital heart disease – that were a result of physician-led advocacy and collaboration.

Dr. Martin’s message was to continue to invest in research and technology that leads to medical breakthroughs, but to remember the power of partnerships, such as those formed by the National Pediatric Cardiology Quality Improvement Collaborative. These alliances, which generated shared protocols and infrastructure among health systems, improved interstage mortality rates between surgeries for babies born with hypoplastic left heart syndrome.

A dozen cardiologists and clinicians from the Children’s National Heart Institute also participated in CME panel discussions or delivered poster presentations to support future versions of this template, touching on early-stage innovations and multi-institution research collaborations. The themes among Children’s National Heart Institute faculty, presented to a diverse crowd of 12,000-plus professional attendees representing 108 countries, included:

Personalized guidelines:

  • Sarah Clauss, M.D., F.A.C.C., a cardiologist, presented “Unique Pediatric Differences from Adult Cholesterol Guidelines: Lipids and Preventive Cardiology,” before Charles Berul, M.D., division chief of cardiology and co-director of the Children’s National Heart Institute, presented “Unique Pediatric Differences from Adult Guidelines: Arrhythmias in Adults with Congenital Heart Disease,” in a joint symposium with the American Heart Association and the American College of Cardiology.
  • Berul, who specializes in electrophysiology, co-chaired a congenital heart disease pathway session, entitled “Rhythm and Blues: Electrophysiology Progress and Controversies in Congenital Heart Disease,” featuring components of pediatric electrophysiology, including heart block, surgical treatment of arrhythmias and sudden death risk.

Early detection:

  • Anita Krishnan, M.D., associate director of the echocardiography lab, presented “Identifying Socioeconomic and Geographic Barriers to Prenatal Detection of Hypoplastic Left Heart Syndrome and Transposition of the Great Arteries” as a moderated poster in Fetal Cardiology: Quickening Discoveries.
  • Jennifer Romanowicz, M.D., a cardiology fellow, and Russell Cross, M.D., director of cardiac MRI, presented the “Neonatal Supraventricular Tachycardia as a Presentation of Critical Aortic Coarctation” poster in FIT Clinical Decision Making: Congenital Heart Disease 2.
  • Pranava Sinha, M.D., a cardiac surgeon, presented the poster “Neuroprotective Effects of Vitamin D Supplementation in Children with Cyanotic Heart Defects: Insights from a Rodent Hypoxia Model” in Congenital Heart Disease: Therapy 2.

Coordinated care:

  • Ashraf Harahsheh, M.D., F.A.C.C., F.A.A.P., a cardiologist with a focus on hyperlipidemia and preventive cardiology, co-presented an update about BMI quality improvement (Q1) activity from the American College of Cardiology’s Adult Congenital and Pediatric Quality Network – BMI Q1 leadership panel.
  • Niti Dham, M.D., director of the cardio-oncology program, and Deepa Mokshagundam, M.D., cardiology fellow, presented the poster “Cardiac Changes in Pediatric Cancer Survivors” in Heart Failure and Cardiomyopathies: Clinical 3.
  • Nancy Klein, B.S.N., R.N., C.P.N., clinical program coordinator of the Washington Adult Congenital Heart program at Children’s National, presented the poster “Improving Completion of Advanced Directives in Adults with Congenital Heart Disease” in Risks and Rewards in Adult Congenital Heart Disease.

Innovation:

  • Jai Nahar, M.D., a cardiologist, moderated “Future Hub: Augmented Cardiovascular Practitioner: Giving Doctors and Patients a New Voice.” The session focused on technical aspects of artificial intelligence, such as language processing and conversational artificial intelligence, as well as how applications are used in patient-physician interactions.
  • Nahar also participated in a key event on the Heart-to-Heart stage, entitled “Rise of Intelligent Machines: The Potential of Artificial Intelligence in Cardiovascular Care.”

“While I enjoyed the significant representation of Children’s National faculty at the meeting and all of the presentations this year, one research finding that I found particularly compelling was Dr. Krishnan’s poster about geographical disparities in detecting congenital heart disease,” says Dr. Berul. “Her research finds obstetricians providing care to women in the lowest quartile of socioeconomic areas were twice as likely to miss a diagnosis for a critical congenital heart defect during a fetal ultrasound, compared to obstetricians providing care for women in the highest quartiles.”

Dr. Krishnan’s study was the collaborative effort of 21 centers in the United States and Canada, and investigated how socioeconomic and geographic factors affect prenatal detection of hypoplastic left heart syndrome and transposition of the great arteries.

“We studied over 1,800 patients, and chose these diseases because they require early stabilization by a specialized team at a tertiary care center,” says Dr. Krishnan, who led the research in conjunction with the Fetal Heart Society Research Collaborative. “We hope that by understanding what the barriers are, we can reduce disparities in care through education and community-based outreach.”

Nichole Jefferson and Patrick Gee

African American stakeholders help to perfect the APOLLO study

Nichole Jefferson and Patrick Gee

Nichole Jefferson and Patrick O. Gee

African Americans who either donated a kidney, received a kidney donation, are on dialysis awaiting a kidney transplant or have a close relative in one of those categories are helping to perfect a new study that aims to improve outcomes after kidney transplantation.

The study is called APOLLO, short for APOL1 Long-Term Kidney Transplantation Outcomes Network. Soon, the observational study will begin to enroll people who access transplant centers around the nation to genotype deceased and living African American kidney donors and transplant recipients to assess whether they carry a high-risk APOL1 gene variant.

The study’s Community Advisory Council – African American stakeholders who know the ins and outs of kidney donation, transplantation and dialysis because they’ve either given or  received an organ or are awaiting transplant – are opening the eyes of researchers about the unique views of patients and families.

Already, they’ve sensitized researchers that patients may not be at the same academic level as their clinicians, underscoring the importance of informed consent language that is understandable, approachable and respectful so people aren’t overwhelmed. They have encouraged the use of images and color to explain the apolipoprotein L1 (APOL1) gene. The APOL1 gene is found almost exclusively in people of recent African descent, however only 13 percent of these people carry the high-risk APOL1 variant that might cause kidney problems.

One issue arose early, during one of the group’s first monthly meetings, as they discussed when to tell patients and living donors about the APOLLO study. Someone suggested the day of the transplant.

“The Community Advisory Council told them that would not be appropriate. These conversations should occur well before the day of the transplant,” recalls Nichole Jefferson.

“The person is all ready to give a kidney. If you’re told the day of transplant ‘we’re going to include you in this study,’ that could possibly stop them from giving the organ,” Jefferson says. “We still remember the Tuskegee experiments. We still remember Henrietta Lacks. That is what we are trying to avoid.”

Patrick O. Gee, Ph.D., JLC, another Community Advisory Council member, adds that it’s important to consider “the mental state of the patient and the donor. As a patient, you know you are able to endure a five- to eight-hour surgery. The donor is the recipient’s hero. As the donor, you want to do what is right. But if you get this information; it’s going to cause doubt.”

Gee received his kidney transplant on April 21, 2017, and spent 33 days in the hospital undergoing four surgeries. His new kidney took 47 days to wake up, which he describes as a “very interesting journey.” Jefferson received her first transplant on June 12, 2008. Because that kidney is in failure, she is on the wait list for a new kidney.

“All I’ve ever known before APOLLO was diabetes and cardiovascular issues. Nobody had ever talked about genetics,” Gee adds. “When I tell people, I tread very light. I try to stay in my lane and not to come off as a researcher or a scientist. I just find out information and just share it with them.”

As he spoke during a church function, people began to search for information on their smart phones. He jotted down questions “above his pay grade” to refer to the study’s principal investigator. “When you start talking about genetics and a mutated gene, people really want to find out. That was probably one of the best things I liked about this committee: It allows you to learn, so you can pass it on.”

Jefferson’s encounters are more unstructured, informing people who she meets about her situation and kidney disease. When she traveled from her Des Moines, Iowa, home to Nebraska for a transplant evaluation, the nephrologist there was not aware of the APOL1 gene.

And during a meeting at the Mayo Clinic with a possible living donor, she asked if they would test for the APOL1 gene. “They stopped, looked at me and asked: ‘How do you know about that gene?’ Well, I’m a black woman with kidney failure.”

Patrick O. Gee received his kidney transplant on April 21, 2017, and spent 33 days in the hospital undergoing four surgeries. His new kidney took 47 days to wake up, which he describes as a “very interesting journey.”

About 100,000 U.S. children and adults await a kidney transplant. APOLLO study researchers believe that clarifying the role that the APOL1 gene plays in kidney-transplant failure could lead to fewer discarded kidneys, which could boost the number of available kidneys for patients awaiting transplant.

Gee advocates for other patients and families to volunteer to join the APOLLO Community Advisory Council. He’s still impressed that during the very first in-person gathering, all researchers were asked to leave the table. Only patients and families remained.

“They wanted to hear our voices. You rarely find that level of patient engagement. Normally, you sit there and listen to conversations that are over your head. They have definitely kept us engaged,” he says. “We have spoken the truth, and Dr. Kimmel is forever saying ‘who would want to listen to me about a genotype that doesn’t affect me? We want to hear your voice.’ ”

(Paul L. Kimmel, M.D., MACP, a program director at the National Institute of Diabetes and Digestive and Kidney Diseases, is one of the people overseeing the APOLLO study.)

Jefferson encourages other people personally impacted by kidney disease to participate in the APOLLO study.

“Something Dr. Kimmel always says is ‘You’re in the room.’ We’re in the room while it’s happening. It’s a line from Hamilton. That’s a good feeling,” she says. “I knew right off, these are not necessarily improvements I will see in my lifetime. I am OK with that. With kidney disease, we have not had advances in a long time. As long as my descendants don’t have to go through the same things I have gone through, I figure I have done my part. I have done my job.”

Kinsley and Dr. Timothy Kane

Case study: Diagnosing a choledochal cyst in utero

Kinsley and Dr. Timothy Kane

The Feigel family worked with Timothy Kane, M.D., the division chief of general and thoracic surgery at Children’s National, to ensure an accurate diagnosis, coordinate a corrective procedure and support a strong recovery for Kinsley, who just celebrated a 5-month milestone.

On Sept. 30, 2018, Elizabeth Feigel gave birth to a healthy baby girl, Kinsley Feigel. Thirty-two days later, Elizabeth and her husband, Steven Feigel, delighted in another hospital moment: Kinsley, who developed a choledochal cyst in utero, was recovering from a surgical procedure to remove an abnormal bile duct cyst, which also required the removal of her gallbladder.

While the series of events, interspersed with multiple hospital visits, would likely create uneasiness in new parents, the Feigel family worked with Vahe Badalyan, M.D., a gastroenterologist at Children’s National Health System, and with Timothy Kane, M.D., the division chief of general and thoracic surgery at Children’s National, to ensure an accurate diagnosis, coordinate a corrective procedure and support a strong recovery for Kinsley, who just celebrated a 5-month milestone.

One of the keys to Kinsley’s success was close communication between her parents and providers.

Dr. Badalyan and Dr. Kane listened to Elizabeth and Steven’s concerns, explained complex medical terms in lay language, and provided background about Kinsley’s presenting symptoms, risk factors and procedures. Instead of second-guessing the diagnosis, Elizabeth and Steven put their trust into and remained in contact with the medical team, sharing updates about Kinsley at home. This parent-physician partnership helped ensure an accurate diagnosis and tailored treatment for Kinsley.

Here is her story.

An early diagnosis

During a 12-week prenatal ultrasound, Elizabeth discovered that Kinsley had an intra-abdominal cyst. Before Elizabeth came to Children’s National for an MRI, she met with several fetal medicine specialists and had a variety of tests, including an amniocentesis to rule out chromosomal abnormalities, such as Down syndrome.

The team at Children’s National didn’t want to prematurely confirm Kinsley’s choledochal cyst in utero, but additional ultrasounds and an MRI helped narrow the diagnosis to a few conditions.

After Kinsley was born, and despite looking like a healthy, full-term baby, she was transported to the neonatal intensive care unit (NICU) at Children’s National. Dr. Badalyan and Dr. Kane analyzed Kinsley’s postnatal sonogram and found the cyst was bigger than they previously thought. Over a five-day period, the medical team kept Kinsley under their close watch, running additional tests, including an additional sonogram. They then followed up with Kinsley on an outpatient basis to better understand and diagnose her cyst.

Outpatient care

Over the next few weeks, Kinsley, Elizabeth and Steven returned to Children’s National to coordinate multiple exams, ranging from an MRI to a HIDA scan. During this period, Elizabeth and Steven remained in contact with Dr. Badalyan. They heard about Kinsley’s lab results and sent updates about her symptoms, including her stool, which helped the medical team monitor her status.

Meanwhile, Dr. Badalyan and Dr. Kane worked closely with the lab to measure Kinsley’s bilirubin levels. Her presenting symptoms and risk factors, she had jaundice and is a female baby of Asian descent, are associated with both choledochal cysts and biliary atresia.

Over time and with the help of Elizabeth, Steven and the pediatric radiologists, Dr. Badalyan and Dr. Kane confirmed Kinsley had a type 1 choledochal cyst, the most common. Originally, the plan was to operate at three to six months, but Dr. Kane needed to expedite the procedure and operate on Kinsley at one month due to a rise in her bilirubin, a sign of progressive liver disease.

Higher bilirubin levels are common in newborns and remain elevated at about 5 mg/dL after the first few days of birth, but Kinsley’s levels peaked and remained elevated. Instead of her bile flowing into her intestine, her choledochal cyst reduced the flow of bile, which accumulated and started to pour back into her liver. The timing of the surgery was as important as the procedure.

The surgery

On Oct. 31, Halloween, Kinsley had laparoscopic surgery to remove the choledochal cyst. Approximately five to seven patients per year undergo choledochal cyst removal at Children’s National. Smaller infants typically undergo removal of a choledochal cyst using a large incision (or open procedure). Kinsley was the smallest baby at Children’s National to have this type of surgery performed by minimally invasive laparoscopic surgery, which required a few 3-mm incisions – the size of coriander seeds.

Some hospitals use the da Vinci robot, which starts at 8-mm incisions, the size of a small pearl, to conduct this procedure on infants, but this method cannot effectively be done in very small infants. Instead, Dr. Kane prefers to stitch sutures by hand. This technique keeps the incisions small and is technically demanding, but Dr. Kane doesn’t mind (he views this as an advanced technical skill). The goal for this surgery was to cut out the abnormal piece of Kinsley’s common bile duct, comprised of the cyst, remove  this and then sew the bile duct to the small intestine (duodenum), creating a digestive pathway. The new digestive tube allows for bile to flow from her liver through the common hepatic duct, in place of the pathway where the cyst formed, and into her intestine.

Like other surgeries, Dr. Kane needed to adapt the procedure, especially with Kinsley’s size: Taking too much from the bile duct would create a tight space, and could create obstruction, blocking bile, while leaving too much room could create leakage and spilling of the bile, requiring a follow-up surgical procedure within a week or two of the original operation.

Dr. Kane had a few options in mind before he operated. He didn’t know which would be most suitable until the operation, but he remained open and prepared for all three. Adopting this mindset, instead of having one procedure in mind, has helped Dr. Kane with precise and tailored surgeries, which often result in the best procedure and a stronger recovery period for young patients.

After 4.5 hours, the surgery, a two-part procedure – removing the cyst and recreating a functional bile duct – was complete.

Kinsley moved into the recovery unit, where she rested and recovered under close medical supervision for five days. During the first few days, she didn’t have liquids or milk, but she did have two bedside nurses monitoring her status in addition to surgeons making regular rounds. Elizabeth and Steven were relieved: The diagnosis and surgery were over.

Managing risk factors

Before Kinsley left the hospital, Elizabeth and Steven scheduled a follow-up visit to ensure Kinsley was recovering well and avoided risk of infection, such as cholangitis, which can occur suddenly and become chronic.

Following Kinsley’s post-surgical bloodwork in early November, Dr. Badalyan noticed Kinsley’s white blood count was high, signaling infection, and he immediately brought the family back to the hospital. To help her body fight the infection, Kinsley received antibiotics and intravenous fluids. She stayed in the hospital for five days. Fortunately, cholangitis is easy to treat with antibiotics; the key is to detect it early.

Kinsley returned home in time for Thanksgiving. She came back to the hospital for biweekly visits. At this point, she was filling out, reaching a 2-month milestone and nearing a full recovery. She returned for follow-up visits in December and January – and has been healthy ever since. She will continue to make routine visits during her first year to ensure her white blood count remains in a healthy range.

Investing in youth resilience

Dr. Badalyan and Dr. Kane envision a healthy future for Kinsley. They don’t expect she’ll need additional operations. Her parents are also looking on the bright side: Since gallbladders aren’t essential for survival or long-term health outcomes, and since many people can easily live without them, Kinsley may be at an advantage. Elizabeth thinks Kinsley may be more cautious about lifestyle choices to support living without a gallbladder, which also support longevity.

Another perspective noted by Dr. Badalyan and Dr. Kane is Kinsley’s resilience factor. Having the surgery earlier brought unique challenges, but her age makes it easier for Kinsley to bounce back as her body rapidly develops. Her tissues were healthy, compared to adult patients undergoing surgery with chronic liver problems or heart disease, which puts her at an advantage for a faster healing process. Dr. Badalyan also mentions that while it’s good for her Kinsley and her family to continue to monitor risks for infections, she won’t have gallstones.

Elizabeth also started to notice something that Kinsley’s doctors likely wouldn’t pick up on: Her personality seems to be a result of her hospital experience and stay. Kinsley’s an easy baby. She eats well and sleeps well, which Elizabeth credits to being around clinicians and to learning the art of self-soothing, a skill she likely acquired while recovering from surgery.

This month, Kinsley has another adventure. She’ll travel with her parents to visit extended family in Seattle, Napa Valley, Calif. and West Virginia. She has several relatives and family friends, all of whom are looking forward to meeting her.

Prescription for a healthy heart: pediatric-driven partnerships

Dr. Martin and a patient share a smile after a visit at Children’s National Health System.

For pediatric cardiologists, February, National Heart Month, is a special time. We share health tips in the hospital and talk about heart health with those looking for advice, especially with patients and families impacted by congenital heart disease (CHD). It’s also a time to look back at what’s worked well in the field, while accelerating advancements for CHD treatment.

To start, congenital heart disease, a structural abnormality of the heart or of the blood vessels surrounding it, is the most common birth defect and occurs in about one in every 100 live births, affecting 40,000 babies born in the U.S. each year. One million children and 1.4 million adults in the U.S. have CHD. Over the past 15 years, pediatric cardiologists have cut mortality rates for CHD in half. Gratefully, now instead of saving children’s lives, the emphasis is on improving them. The catalyst for this paradigm shift isn’t simply due to a medical breakthrough, but is also the result of collaboration and advocacy.

Pediatric cardiologists worked together with other stakeholders – nurses, neonatologists, parents, state and federal agencies – to implement newborn screening methods in hospitals, with the introduction pulse oximetry screenings for critical congenital heart defects (CCHD). The screening, which measures blood oxygen levels in newborns, focuses on screening babies for CCHD before they leave the hospital. The concept and a national protocol for screening began with a small project in 2002, was endorsed by medical associations by 2012 and required by all states in 2018. The impact of CCHD screening of newborns is remarkable. Data published in JAMA showed a 33 percent reduction in CCHD infant deaths associated with states that required CCHD screening.

The pulse oximetry screening’s impact on the number of lives saved goes beyond identifying newborns with CCHD. Worldwide, though the detection of secondary conditions, such as hypothermia, pneumonia, and sepsis, the pulse oximetry screening is estimated to save roughly 772,000 lives by 2030.

In addition to newborn screening recommendations for CCHD, a group of cardiologists, including myself, worked for the Joint Council on Congenital Heart Disease (JCCHD) to form and support the National Pediatric Cardiology Quality Improvement Collaborative (NPC-QIC). We developed measures to see how we could improve survival rates between surgeries for infants born with hypoplastic left heart syndrome (HLHS), one of the most common and severe forms of CCHD.

Babies born with HLHS require two heart surgeries within the baby’s first six months. Babies that survived the first operation had a significant mortality rate (15 percent) and frequent growth failure, while waiting for the second operation. Our focused aims were to both decrease the death rate and improve growth in these children. We analyzed data from medical centers, utilized quality improvement principals from the Institute for Health Care Improvement, talked with doctors and families, and invited teams from across the U.S. to partner with us to put quality and safety measures into place.

We emphasized the following points:

  1. Clear communication. Parents leaving the hospital received consistent messages about CHD, the type of surgery their baby had, next steps and how to care for their child at home.
  2. Improved nutrient intake. Parents received clear guidelines about how many calories babies needed to consume, were asked to weigh their baby each day, and taught how to augment feeding.
  3. Warning signs.Parents received a list of typical infant behaviors and HLHS red flags to watch out for, such as if a baby isn’t gaining a certain amount of weight. They received monitors to measure oxygen saturation levels at home. If oxygen saturation dropped significantly or if parents noticed a problem, they called their doctor immediately.

The implementation of these procedures reduced interstage mortality rates and the number of growth failures for HLHS patients. In 2008, six centers participated in the NPC-QIC pilot. By 2018, 65 medical centers in the U.S. and Canada used these methods. Similar to the pulse oximetry screening guidelines, this new method wasn’t the result of a medical breakthrough, but the result of shared learning and shared infrastructure.

Now, we’re referring more adult congenital heart patients to board-certified adult congenital heart disease (ACHD) specialists, a better fit than internists or pediatric cardiologists. Adults with congenital heart defects should have their heart examined at least once by a specialist and those with complex needs should meet with a specialist at least every two years. More than 300 board-certified ACHD specialists practice in the U.S. and the field is growing. The third ACHD board exam takes place this year.

Over the next few decades, I hope we’ll make even more progress with understanding, diagnosing and treating CHD.

Emerging research examines genetic clues for congenital heart defects, which were once thought to account for 8 percent of cases and may now account for 30 percent of conditions. We’re working with neurologists to examine the timing and pathway of potential oxygen inefficiencies that occur as the brain develops in utero, infancy, and after neonatal surgery. We’ve come a long way, but we continue looking at new frontiers and for innovative solutions.

Fortunately, as cardiologists, we’re good at fixing problems. We work with surgeons and medical teams to repair holes in hearts, or replace them, and reroute blood from an underdeveloped left ventricle to improve circulation. For almost every heart defect, we have evidence-based solutions. However, to continue to help children worldwide, it’s imperative that we don’t forget about what works well: good science, tracking data, sharing best practices, active listening, transparency and constant collaboration.

Gerard Martin, M.D., F.A.A.P., F.A.C.C., F.A.H.A., is a cardiologist and the medical director of global services at Children’s National Health System. Dr. Martin has practiced pediatric cardiology for 34 years and is the Dan G. McNamara keynote speaker at the American College of Cardiology’s 2019 Scientific Sessions. Follow Dr. Martin on Twitter @Gerard_MD.

This article first appeared on KevinMD.com.

DNA Molecule

Test your knowledge of APOL1’s role in kidney health

Nikki Gillum Posnack

What are the health effects of plastics?

Nikki Gillum Posnack

Nikki Posnack, Ph.D., assistant professor at the Children’s National Heart Institute, is an early-stage investigator examining the impact plastic chemical exposure has on the developing hearts of newborns and young children.

For newborns or children in the pediatric intensive care unit, plastic tubing is part of daily life. It delivers life-sustaining blood transfusions, liquid nutrition and air to breathe. But small amounts of the chemicals in the plastic of this tubing and other medical devices can leak into the patient’s bloodstream. The potential effects of these chemicals on the developing hearts of newborns and very young children are not well understood.

One researcher, Nikki Posnack, Ph.D., an assistant professor at the Children’s National Heart Institute, aims to change that and shares her early insights, funded by the National Center for Advancing Translation Science (NCATS), in an NCATS news feature.

“While plastics have revolutionized the medical field, we know chemicals in plastics leach into the body and may have unintended effects,” Posnack said. “The heart is sensitive to toxins, so we want to look at the effect of these plastics on the most sensitive patient population: kids who are recovering from heart surgery and already prone to cardiac complications.”

Matthew Oetgen, M.D., discusses an image of a patient’s spine.

Eliminating unnecessary radiation exposure from spinal radiography

Matthew Oetgen, M.D., discusses an image of a patient’s spine.

Chief of Orthopaedics and Sports Medicine Matthew Oetgen, M.D., discusses an image of a patient’s spine.

If a child arrives at the pediatric orthopaedic specialist for an idiopathic scoliosis evaluation without an adequate radiographic image of his or her spine, it’s often necessary to order yet another imaging study for accurate assessment.

A study published in the Journal of the American Academy of Orthopaedic Surgeons found that in a 6 month period, almost half (43 percent) of patients referred for evaluation required a repeat radiograph due to missing or poor quality existing images.

“Repeating the radiograph means these kids received another exposure to radiation, too,” says Matthew Oetgen, M.D., the study’s lead author and chief of Orthopaedic Surgery and Sports Medicine at Children’s National Health System. “It’s frustrating because in many cases, a simple change in how the initial radiograph was taken could have prevented the need for more imaging studies.”

Dr. Oetgen and the study authors note that there is currently no standardized protocol for spinal radiography of suspected idiopathic scoliosis. However, a few basic criteria could greatly reduce the number of repeat images necessary. Radiographic images that allow for proper evaluation of idiopathic scoliosis and reduce radiation exposure include:

  • A full coronal view of the spine including skull base and pelvis
  • The iliac crest as an indicator of skeletal maturity
  • A full-length lateral view of the spine

Study authors also reinforced the need to do everything possible to reduce radiation exposure for children through proper use of protective shielding for reproductive organs and digital radiograph technology.

“Orthopaedic surgeons and pediatricians share the responsibility to ensure children are exposed to as little iatrogenic radiation as possible,” Dr. Oetgen concludes. “All physicians should be sure that the radiology facilities they refer patients to for spinal radiography employ every technology and safety measure available to limit radiation exposure. Additionally, we can and should work with radiologists to define evaluation criteria and improve what’s captured by radiography on the first try.”