Neurology & Neurosurgery

graphic abstract for brain tumor paper

First large-scale proteogenomic analysis offers insights into pediatric brain tumor biology

graphic abstract for brain tumor paper

In the first large-scale, multicenter study of its kind, researchers conducted comprehensive analysis yielding a more complete understanding of pediatric brain tumors (PBT), which are the leading cause of cancer-related deaths in children. Researchers from the Clinical Proteomic Tumor Analysis Consortium (CPTAC) and Children’s Brian Tumor Network (CBTN) generated and analyzed proteomic data, which identifies common biological characteristics among different tumor types. The consortia consist of collaborators from the Icahn School of Medicine at Mount Sinai, National Cancer Institute, Fred Hutchinson Cancer Research Center, Children’s National Hospital and Children’s Hospital of Philadelphia. The study, published in Cell on November 25, 2020, provides a clearer understanding of the molecular basis of pediatric brain tumors and proposes new therapeutic avenues.

The molecular characterization of brain tumors has largely hinged upon the presence of unique alterations in the tumor genome ignoring the many layers of regulation that exist between DNA and the functional biology of the tumor cell that is actuated by proteins. The integration of proteomic data identifies common biological themes that span histologic boundaries, suggesting that treatments used for one histologic type may be applied effectively to other tumors sharing similar proteomic features.

Brian Rood, M.D., medical director of the Brain Tumor Institute and associate professor of pediatrics in the Center for Cancer and Blood Disorders at Children’s National Hospital, participated in this study and explains the importance of what the team discovered.

Q: Why was it important that researchers came together to do this work?

A: Comprehensive characterization of the fundamental biology of pediatric brain tumors, including the proteogenomic analysis done in this study, is essential to better understand and treat pediatric brain tumors.

Our study is based on the recognition that proteomics and phosphoproteomics needs to be integrated with other omics data to gain an improved systems biology view of the molecular features of brain tumors. In addition, characterizing biological themes that cross histologic boundaries and cells of origin can suggest extending treatments shown to be effective in one type of tumor to other histologically disparate tumors sharing the same proteomic features.

Proteomic data further reveal the functional impacts of somatic mutations and copy number variations (CNVs) not evident in transcriptomic data alone. Further, kinase-substrate network analyses identify activated biological mechanisms of tumor biology.

This work was only possible because of a unique collaboration between the CPTAC program of the NCI and the CBTN, of which Children’s National is a member.

Q: How will this work advance understanding and treatment of pediatric brain tumors?

A: Pediatric brain tumors have not benefitted from molecularly targeted drugs as much as other tumor types largely because they harbor relatively few gene mutations. Therefore, identifying key pathways to target in these patients’ tumors has been a challenge. The integration of proteomic and phosphoproteomic data with genomic data allows for the construction of a more comprehensive model of brain tumor biology and nominates specific key pathways to be targeted.

Q: What did you find that excites you?

A: Proteomic data revealed a number of findings that were not present in the genomic data. We found evidence to support a molecularly targeted approach to treating craniopharyngioma, a tumor that has previously been unresponsive to chemotherapy. We also found a prognostic marker for high grade gliomas that do not have a mutation in the H3 histone. We were able to identify specific kinases that may dictate the aggressive nature of certain ependymoma tumors. Importantly, we demonstrated the potential of proteomic studies to uncover unique tumor biology, paving the way for more extensive investigations using this approach.

You can find the full study published in Cell. Learn more about the Brain Tumor Institute at Children’s National.


Dr. Rood recently joined a live panel discussion with researchers from the Children’s Brain Tumor Network and the Clinical Proteomic Tumor Analysis Consortium to explore the impact of their landmark study.

EEG with electrical activity of abnormal brain

Speckle tracking echo reveals possible biomarker for SUDEP risk

EEG with electrical activity of abnormal brain

A study published in the journal Epilepsia used speckle tracking echocardiography to detect subtle changes in heart function found in pediatric patients with refractory epilepsy when compared to controls. Children with refractory epilepsy had impaired systolic ventricular strain compared to controls, not correlated to epilepsy history. These differences in ventricular function may be a biomarker that can indicate someone with epilepsy is at higher risk for Sudden Unexpected Death in Epilepsy (SUDEP).

Speckle tracking echocardiography is a non-invasive technique where software automatically identifies and tracks individual “speckles” of the myocardial wall on a routine echocardiogram in order to directly quantify the extent of contraction.

The study’s first authors, John Schreiber, M.D., medical director of Electroencephalography (EEG) and director of the Epilepsy Genetics program, and Lowell Frank, M.D., advanced imaging cardiologist and director of the Cardiology Fellowship Training program, both at Children’s National Hospital, answered some questions about the study findings.

Why is this important work?

Sudden unexpected death in epilepsy (SUDEP) is a rare but devastating consequence of epilepsy. Some of the proposed mechanisms of SUDEP implicate brain stem, cardiac and respiratory pathways.

This study identified alterations in ventricular function that may serve as one potential biomarker for SUDEP risk that can be evaluated non-invasively and regularly.

How will this work benefit patients?

Identification of children or adults with markedly impaired ventricular strain or diastolic function may provide the opportunity to implement a targeted treatment or monitoring strategy to prevent SUDEP.

What did you find that excites you? What are you hoping to discover?

These differences in cardiac strain were true for all patients with refractory epilepsy as a whole, not one particular group. This suggests that refractory convulsive epilepsy itself, rather than other patient-specific factors, produces these changes. Thanks in part to a grant from the Dravet Syndrome Foundation, the team is currently examining a cohort of patients with epilepsy due to pathogenic variants in sodium channel genes, SCN1A and SCN8A, to determine if these patients have greater degrees of impaired cardiac strain. SCN1A and SCN8A are also expressed in the heart, and patients have a considerably higher risk of SUDEP. It will be particularly exciting to examine for differences in specific genetic epilepsies.

How is this work unique?

Strain has been evaluated in many disease states in adult and pediatric populations and may be more sensitive to early myocardial damage than traditional measures of systolic and diastolic function. Children’s National Hospital has been an innovator in using speckle tracking echocardiography and similar techniques to evaluate subtle changes in heart function. This study is a great example of collaboration between The Comprehensive Pediatric Epilepsy Program and the Children’s National Heart Institute that is driving innovative research at Children’s National Hospital.

illustration of the brain

New research provides glimpse into landscape of the developing brain

illustration of the brain

Stem and progenitor cells exhibit diversity in early brain development that likely contributes to later neural complexity in the adult cerebral cortex, this according to a new study in Science Advances. This research expands on existing ideas about brain development, and could significantly impact the clinical care of neurodevelopmental diseases in the future.

Stem and progenitor cells exhibit diversity in early brain development that likely contributes to later neural complexity in the adult cerebral cortex, this according to a study published Nov. 6, 2020, in Science Advances. Researchers from the Center for Neuroscience Research (CNR) at Children’s National Hospital say this research expands on existing ideas about brain development, and could significantly impact the clinical care of neurodevelopmental diseases in the future. The study was done in collaboration with a research team at Yale University led by Nenad Sestan, M.D, Ph.D.

“Our study provides a new glimpse into the landscape of the developing brain. What we are seeing are new complex families of cells very early in development,” says Tarik Haydar, Ph.D., director of CNR at Children’s National, who led this study. “Understanding the role of these cells in forming the cerebral cortex is now possible in a way that wasn’t possible before.”

The cerebral cortex emerges early in development and is the seat of higher-order cognition, social behavior and motor control. While the rich neural diversity of the cerebral cortex and the brain in general is well-documented, how this variation arises is relatively poorly understood.

“We’ve shown in our previous work that neurons generated from different classes of cortical stem and progenitor cells have different functional properties,” says William Tyler, Ph.D., CNR research faculty member and co-first author of the study. “Part of the reason for doing this study was to go back and try to classify all the different progenitors that exist so that eventually we can figure out how each contributes to the diversity of neurons in the adult brain.”

Using a preclinical model, the researchers were able to identify numerous groups of cortical stem and precursor cells with distinct gene expression profiles. The team also found that these cells showed early signs of lineage diversification likely driven by transcriptional priming, a process by which a mother cell produces RNA for the sole purpose of passing it on to its daughter cells for later protein production.

Tarik Haydar

“Our study provides a new glimpse into the landscape of the developing brain. What we are seeing are new complex families of cells very early in development,” says Tarik Haydar, Ph.D., director of CNR at Children’s National, who led this study. “Understanding the role of these cells in forming the cerebral cortex is now possible in a way that wasn’t possible before.”

Using novel trajectory reconstruction methods, the team observed distinct developmental streams linking precursor cell types to particular excitatory neurons. After comparing the dataset of the preclinical model to a human cell database, notable similarities were found, such as the surprising cross-species presence of basal radial glial cells (bRGCs), an important type of progenitor cell previously thought to be found mainly in the primate brain.

“At a very high level, the study is important because we are directly testing a fundamental theory of brain development,” says Zhen Li, Ph.D., CNR research postdoctoral fellow and co-first author of the study. The results add support to the protomap theory, which posits that early stem and progenitor diversity paves the way for later neuronal diversity and cortical complexity. Furthermore, the results also hold exciting translational potential.

“There is evidence showing that neurodevelopmental diseases affect different populations of the neural stem cells differently,” says Dr. Li. “If we can have a better understanding of the complexity of these neural stem cells there is huge implication of disease prevention and treatment in the future.”

“If we can understand how this early landscape is affected in disorders, we can predict the resulting changes to the cortical architecture and then very narrowly define ways that groups of cells behave in these disorders,” adds Dr. Haydar. “If we can understand how the cortex normally achieves its complex architecture, then we have key entry points into improving the clinical course of a given disorder and improving quality of life.”

Future topics the researchers hope to study include the effects of developmental changes on brain function, the origin and operational importance of bRGCs, and the activity, connections and cognitive features enabled by different families of neurons.

Research & Innovation Campus

Boeing gives $5 million to support Research & Innovation Campus

Research & Innovation Campus

Children’s National Hospital announced a $5 million gift from The Boeing Company that will help drive lifesaving pediatric discoveries at the new Children’s National Research & Innovation Campus.

Children’s National Hospital announced a $5 million gift from The Boeing Company that will help drive lifesaving pediatric discoveries at the new Children’s National Research & Innovation Campus. The campus, now under construction, is being developed on nearly 12 acres of the former Walter Reed Army Medical Center. Children’s National will name the main auditorium in recognition of Boeing’s generosity.

“We are deeply grateful to Boeing for their support and commitment to improving the health and well-being of children in our community and around the globe,” said Kurt Newman, M.D., president and CEO of Children’s National “The Boeing Auditorium will help the Children’s National Research & Innovation campus become the destination for discussion about how to best address the next big healthcare challenges facing children and families.”

The one-of-a-kind pediatric hub will bring together public and private partners for unprecedented collaborations. It will accelerate the translation of breakthroughs into new treatments and technologies to benefit kids everywhere.

“Children’s National Hospital’s enduring mission of positively impacting the lives of our youngest community members is especially important today,” said Boeing President and CEO David Calhoun. “We’re honored to join other national and community partners to advance this work through the establishment of their Research & Innovation Campus.”

Children’s National Research & Innovation Campus partners currently include Johnson & Johnson Innovation – JLABS, Virginia Tech, the National Institutes of Health (NIH), Food & Drug Administration (FDA), U.S. Biomedical Advanced Research and Development Authority (BARDA), Cerner, Amazon Web Services, Microsoft, National Organization of Rare Diseases (NORD) and local government.

The 3,200 square-foot Boeing Auditorium will be the focal point of the state-of-the-art conference center on campus. Nationally renowned experts will convene with scientists, medical leaders and diplomats from around the world to foster collaborations that spur progress and disseminate findings.

Boeing’s $5 million commitment deepens its longstanding partnership with Children’s National. The company has donated nearly $2 million to support pediatric care and research at Children’s National through Chance for Life and the hospital’s annual Children’s Ball. During the coronavirus pandemic, Boeing fabricated and donated 2,000 face shields to help keep patients and frontline care providers at Children’s National safe.

MRI of the patient's head close-up

Madison Berl, Ph.D., receives 2020 PERF award for Infrastructure/Registry Research

MRI of the patient's head close-up

The Pediatric Epilepsy Research Foundation Grant (PERF) has awarded Madison Berl, Ph.D., neuropsychologist at Children’s National Hospital, the 2020 PERF award for Infrastructure/Registry Research. The funds will support her work on researching neuropsychological outcomes of children being considered for pediatric epilepsy surgery.

This grant, which provides $200,000 of research funding, will allow Dr. Berl to systematically collect data outcomes and create robust prediction models that are critical to achieving precision medicine that allows for selecting the most effective surgical treatment for an individual child.

“While seizures are a critical outcome, there is increasing recognition that outcomes beyond seizure control is critical to children and their families when evaluating and treating the impact of epilepsy and its treatments,” said Dr. Berl.

Guidelines and consensus statements related to pediatric epilepsy surgery are uniformly lacking high quality published outcome data to support clinical decisions that impact likelihood of seizure freedom and optimizing outcomes beyond seizures (e.g., neuropsychological functioning, quality of life, improved sleep). Despite recognition of the need for standardized collection of data on a multi-institutional basis, the efforts that exist are limited in scope.

Moreover, as new techniques – such as laser ablation and brain stimulation – are approved for pediatric patients, there is little information available to determine which children will benefit from which intervention.

“This project fundamentally is a multi-site registry for epilepsy surgery outcomes,” Dr. Berl added.

“However, this type of infrastructure also fosters growth and active collaboration within a network of pediatric epilepsy clinicians. I am excited because if successful, this will be the start of long-term collaborative effort.”

Artificial Intelligence concept image

Thrombectomy can be efficient and safe in childhood stroke, new study finds

Artificial Intelligence concept image

A recent study adds to the growing evidence that mechanical thrombectomy can be effective and safe not only in adults, but also in childhood stroke.

Previous randomized trials proved the effectiveness of thrombectomy for large intracranial vessel occlusions in adults only. However, a recent retrospective study led by Monica S. Pearl, M.D., Neurointerventional Radiology Program director at Children’s National Hospital, finds that thrombectomy can be safely performed in carefully selected cases of childhood stroke. The study further shows that treated children have good neurological outcomes.

In the findings, Dr. Pearl and other leading experts discussed specific circumstances and important considerations to take into account when managing a child with acute ischemic stroke due to a large vessel occlusion.

“We are raising the bar for the expected level of care for children with acute ischemic stroke,” said Dr. Pearl. “Care should be multidisciplinary and involve stroke neurology, neuroradiology, neurointerventional radiology, neurosurgery, cardiology, hematology and ICU teams.”

Prior to the study, clear guidelines for patient selection, thrombectomy technique and periprocedural care did not exist for the pediatric population despite the proven success of mechanical thrombectomy in adults.

Through a case-based approach encompassing a broad range of ages and clinical presentations, Dr. Pearl and other leading experts presented select cases of acute ischemic stroke in children and discussed the nuances, risks, benefits and management plan for each child.

Many of the clinical scenarios highlighted unanswered questions in the management and treatment of children with acute ischemic stroke due to large vessel occlusion. The study adds to the growing evidence that mechanical thrombectomy can be effective and safe not only in adults, but also in childhood stroke.

“It’s exciting to be shaping management for children with acute ischemic stroke,” said Dr. Pearl. “We are serving as the model for individualized, patient-centered care with multidisciplinary specialists and institutional collaboration caring for children with acute ischemic stroke.”

However, Dr. Pearl and experts encourage caution because etiology in childhood stroke differs substantially from that in acute ischemic stroke in adults, with potentially major impact on procedure success and safety.

The mission of the Neurointerventional Radiology Program, a new effort at Children’s National, is to provide exceptional family-centered care and cutting-edge diagnostic and endovascular treatment options for children with neurovascular disorders. Dr. Pearl serves as the program’s full time, dedicated neurointerventional radiologist, a specialized expertise found only in a handful of other pediatric hospitals in the country.

You can find the full study published in JAHA. Learn more about the Children’s National Research Institute Center for Neuroscience Research.

illustration of brain showing cerebellum

NIH grant supports research on locomotor dysfunction in Down Syndrome

illustration of brain showing cerebellum

The National Institutes of Health (NIH) has granted the Children’s National Research Institute (CNRI) nearly $500,000 to better understand and identify specific alterations in the circuitry of the cerebellum that results in locomotor dysfunction in down syndrome.

Down syndrome (DS), the most commonly diagnosed chromosomal condition, affects a range of behavioral domains in children including motor and cognitive function. Cerebellar pathology has been consistently observed in DS, and is thought to contribute to dysfunction in locomotor and adaptive motor skills. However, the specific neural pathways underlying locomotor learning that are disrupted in DS remain poorly understood.

The National Institutes of Health (NIH) has granted the Children’s National Research Institute (CNRI) nearly $500,000 through their NIH-wide initiative INCLUDE – INvestigating Co-occurring conditions across the Lifespan to Understand Down syndrome – to better understand and identify specific alterations in the circuitry of the cerebellum that results in locomotor dysfunction in DS. The INCLUDE initiative aims to support the most promising high risk-high reward basic science.

“There is still a lot unknown about Down syndrome, in particular how fundamental cellular and physiological mechanisms of neural circuit function are altered in this syndrome,” says Vittorio Gallo, Ph.D., chief research officer at Children’s National Hospital and scientific director of CNRI. “Grant funding is particularly important to have the resources to develop and apply new cutting-edge methodology to study this neurodevelopmental disorder.”

The main goal of this research is to identify specific alterations in the circuitry of the cerebellum that result in locomotor dysfunction in DS. Defining specific abnormalities in motor behavior, and identifying the brain regions and neurons which are functionally involved will provide the basis for developing potential therapies for treating motor problems in individuals with DS.

“The last decade has brought rapid advances in neurotechnology to address questions at the ‘systems-level’ understanding of brain function,” says Aaron Sathyanesan, Ph.D., a Children’s National postdoctoral research fellow. “This technology has rarely been applied to preclinical models of neurodevelopmental disorders, and even more rarely to models of Down syndrome.”

An example is the use of fiber-optics to probe changes in neural circuitry during behavior. Using this technology, researchers can now directly correlate the changes in circuitry to deficits in behavior.

“Along with the other approaches in our proposal, this represents the synthesis of a new experimental paradigm that we hope will push the field forward,” says Dr. Sathyanesan.

In 1960, the average life expectancy of a baby with Down syndrome was around 10 years. Today, that life expectancy has increased to more than 47 years. That significant increase reflects critical advances in medicine, however, kids with DS still live with long-term challenges in motor and cognitive ability.

Children’s National strongly supports translation and innovation, and recently recruited internationally renowned DS researcher, Tarik Haydar, Ph.D., as its new director of the Center for Neuroscience Research.

“We’re building significant strength in this area of research. This grant helps open new avenues of investigation to define which cells and circuits are impacted by this common neurodevelopmental disorder,” says Dr. Gallo. “Our cutting-edge approach will help us answer questions that we could not answer before.”

Illustration of brain hemispheres

Children use both brain hemispheres to understand language

Illustration of brain hemispheres

New research finds young children process language in both hemispheres of the brain, which could help compensation after a neural injury. This is unlike adults who process most language tasks in one side (usually the left) of their brain’s two hemispheres. It suggests a possible reason why children often seem to recover from brain injury more easily than adults.

New research finds young children process language in both hemispheres of the brain, which could help compensate after a neural injury. The study, published Sept. 8, 2020, in PNAS, says this is unlike adults who process most language tasks in one side (usually the left) of their brain’s two hemispheres. It suggests a possible reason why children often seem to recover from brain injury more easily than adults.

We talked with researcher William D. Gaillard, M.D., chief of the Divisions of Child Neurology, Epilepsy and Neurophysiology at Children’s National Hospital, to discuss the importance of this work.

Q: Tell us a little bit about this study.

A: This is a study we did with our colleagues at Georgetown University Medical Center, using fMRI to map brain regions that are used to process language across development. What we found was that younger children have more bilateral “activation” in language processing regions, the traditional left and homotopic regions in the right. With aging there is consolidation that becomes more left lateralized. This process is most clearly seen in the frontal brain regions, called Broca’s area, where the right activation diminishes over age

Q: Why are these findings important?

A: It’s important because this work provides evidence for how cognitive systems, and the neural networks that underlie them, become consolidated and lateralized over time during development. It provides insights into principles of the development of cognitive systems.

The timeline for lateralization of language systems means that the cognitive systems that sustain language are “plastic” – that is the right hemisphere can sustain language functions in the setting of injury to the left hemisphere until around 10 years of age.

Q: What excites you about this work?

A: This is part of a larger collaborative effort that is mapping out the consolidation of cognitive systems across development (language, visual spatial, memory and working memory). This work will help us to understand the limits of brain plasticity in the setting of injury caused by stroke or epilepsy, which could have benefits down the road to helping patients recover from these types of events.

Q: How is Children’s National leading the ongoing discovery in this space?

A: It is a true team effort. We are working with colleagues at Georgetown University Medical Center, MedStar National Rehabilitation Network and Johns Hopkins Medicine. Team members come from diverse backgrounds and scientific skills. We are one of the leading groups using advanced functional imaging to investigate brain development of critical cognitive systems and their response to brain injury.

You can find the full study published in PNAS. Learn more about the Children’s National Research Institute Center for Neuroscience Research.

 

illustration of the amygdaloid body

Research reveals physiological sex differences in medial amygdala neurons

illustration of the amygdaloid body

The medial amygdala (MeA) is a region of the brain that modulates innate social and non-social behaviors in several mammals, including humans.

The medial amygdala (MeA) is a region of the brain that modulates innate social and non-social behaviors in several mammals, including humans. Notedly sexually dimorphic, MeA neurons exhibit well-documented sex differences in anatomy, morphology and molecular characteristics. Recently, a pioneer study published in eNeuro from the Children’s National Hospital Center for Neuroscience Research has unveiled new information regarding physiological sex differences in MeA neurons, which, until now, has remained a missing piece in understanding how the MeA codes differently in males and females.

Previous research from Children’s National has shown that two subpopulations of MeA inhibitory output neurons descended from Dbx1 and Foxp2 transcription factors display different responses to innate olfactory cues and in a sex-specific manner. The newest study examines whether these transcription factor defined neurons also possess sex-specific biophysical signatures. The scientists posit that understanding how sex and lineage impact upstream differences at the neuronal level can help illuminate how the MeA processes information and codes for sex-specific behavioral differences.

Using whole-cell patch clamp recording and stepwise current injection, the researchers were able to analyze the intrinsic electrophysiological profiles of the two subclasses of MeA neurons in males and females in a pre-clinical model. Data revealed that the spike frequency of Dbx1-lineage and Foxp2-lineage neurons differed by lineage, sex and stimulus strength. Dbx1-lineage neurons in females discharged more spikes than those in males during high-amplitude current injection, while Foxp2-lineage neurons in females discharged more spikes than those in males during low-amplitude current injection. Across lineage, researchers observed that Dbx1-lineage neurons discharged more spikes than Foxp2-lineage neurons in females, but only at the highest amplitude stimulus, while Dbx1-lineage neurons spiked more than Foxp2-lineage neurons in males during low rather than high-amplitude current injection.

Different spiking patterns are generally indicative of different intrinsic cell properties. However, this study found that the intrinsic properties of the cell – such as membrane potential, resistance, and rheobase – were the same at rest across sex and lineage. The only significant difference was found in capacitance, an electrical measurement that roughly corresponds with cell size. Additionally, the study found that spike frequency adaptation correlated with neuronal lineage and sex, with males having a higher adaptation factor than females and Foxp2-lineage neurons displaying a higher adaptation factor than Dbx1-lineage neurons. In tandem, these results indicated that changes in the intrinsic properties were taking place during stimulation.

The researchers then used waveform phase-plots to visualize phases of the different action potentials and contrived an innovative new method of analyzing these quantitatively instead of solely qualitatively. This allowed them to know that broadly, ion channels that work with repolarization are likely different, and prompted them to focus on the family of ion channels that are known to modify the repolarization phase. From 62 candidate ion channels, the researchers chose 10 to investigate. Experiments ultimately revealed that only one ion channel was found to exhibit statistically significant sex differences in the Foxp2 population. This result indicated that molecular expression of these ion channels are likely driving differences in the physiology of the cells which may be the basis of behavioral expression. Future research topics include how and when sex hormones shape MeA neuronal firing properties and how this relates to network function.

“This is a small piece of contribution to the overall understanding of how the brain as a biological machine codes for different outputs,” says first author Heidi Y. Matos, Ph.D.

By showing sex differences in neural function, this research represents progress in understanding the biological underpinnings of a host of developmental disorders, particularly those diagnosed in different proportions between males and females. Autism spectrum disorders, for example, often have symptoms that manifest through social interaction, and understanding these disorders requires a better understanding of normal MeA physiology.

“In order to get to the why, we have to get to the how of that circuit,” says Dr. Matos.

Just as the brain harnesses the collective power of a diverse range of neurons, the Center for Neuroscience harnesses the aggregate talent of a diverse group of neuroscientists to produce innovative work. This study in particular champions diversity in the sciences, with more than half of the authors coming from underrepresented minorities, including Dr. Matos.

“I think this work is a shining example of the tremendous contributions that are made by neuroscientists from all backgrounds,” says principal investigator Joshua G. Corbin, Ph.D.

“Sex Differences in Biophysical Signatures across Molecularly Defined Medial Amygdala Neuronal Subpopulations” was published in eNeuro. Additional authors include David Hernandez-Pineda, Claire M. Charpentier, Allison Rusk and Kevin S. Jones, Ph.D.

Youssef Kousa

Dr. Youssef Kousa awarded Pediatric Epilepsy Research Grant

zika virus

The Child Neurology Foundation has awarded Youssef A. Kousa, M.S., D.O., Ph.D., the 2020 Pediatric Epilepsy Research Foundation Shields Research Grant. The funds will support his work on identifying genetic risk factors in congenital Zika syndrome.

The Child Neurology Foundation has awarded Youssef A. Kousa, M.S., D.O., Ph.D., physician-scientist within the Division of Neurology at Children’s National Hospital, and founder and director of the Zika Genetics Consortium, the 2020 Pediatric Epilepsy Research Foundation Shields Research Grant. The funds will support his work on identifying genetic risk factors in congenital Zika syndrome.

This prestigious grant provides $100,000 of research funding to help identify treatments and cures for pediatric neurologic diseases. It will allow Dr. Kousa to test the hypothesis that rare genetic variants in individuals contributed to being affected with congenital Zika syndrome and the severity of the phenotype for those who were affected.

“Despite decades of research, identifying those at greatest risk of congenital infection or being severely affected remains an elusive goal,” says Dr. Kousa. “This research is important because identifying genetic risk or protective factors for developmental brain malformations can help teach us how the brain develops.”

Youssef Kousa

In 2015, Dr. Kousa established the Zika Genetic Consortium to investigate whether maternal and fetal genetic factors can modify the risk of brain injury from congenital infections.

Dr. Kousa adds that this work will provide key insights into maternal and fetal genetic factors that can contribute to brain malformations. The hope is that these insights may one day translate into targeted prevention efforts.

“Dr. Kousa’s project is very creative and has a fantastic opportunity to look at factors of Zika on brain development,” says William D. Gaillard, M.D., division chief of both Epilepsy and Neurophysiology, and Neurology at Children’s National. “This is a very competitive award. It’s a tremendous achievement that few accomplish.”

Children’s National is the leading site for this international research study.

In 2015, Dr. Kousa established the Zika Genetic Consortium to investigate whether maternal and fetal genetic factors can modify the risk of brain injury from congenital infections. Dr. Kousa is the principal investigator of the consortium, which includes 19 co-investigators representing 13 different institutions.

The consortium is bringing together cohorts of 12,000 mother-infant participants retrospectively and prospectively. These cohorts come from 15 international health centers in seven countries in collaboration with partners at the National Institutes of Health, and the Centers for Disease Control and Prevention.

“This support gives us the opportunity to test our hypothesis,” says Dr. Kousa. “We also hope what we continue to learn about Zika can play a role in helping us understand other congenital infections and neurodevelopment diseases.”

Charcot-Marie-Tooth diseas form

Children’s National designated CMTA Center of Excellence

Charcot-Marie-Tooth diseas form

Charcot-Marie-Tooth (CMT) is a degenerative nerve disease that frequently appears in adolescents and early adulthood but can also be seen with onset in early childhood.

Children’s National Hospital is proud to receive the designation as a CMTA Center of Excellence. One of the CMTA’s primary missions is improving the quality of life for those with Charcot-Marie-Tooth (CMT), a degenerative nerve disease that while frequently appears in adolescents and early adulthood, can also be seen with onset in early childhood. Through these 35 CMTA Centers of Excellence, children, adults and families affected by CMT can be assured of receiving comprehensive care by a team of CMT experts that will now be available at Children’s National.

“It’s an honor for Children’s National and our multidisciplinary team to be recognized as a CMTA Care Center,” says Diana Bharucha-Goebel, M.D., neuromuscular neurologist and neurophysiologist at Children’s National. “Our team has long strived to provide comprehensive and specialized care for children with CMT, ranging from expertise in genetic and electrophysiologic diagnostics to specialized family centered care in orthopedics, physical and occupational therapies, physical medicine and rehabilitation, neurology, nutrition and bone health.”

This is the first time Children’s National has received the CMTA Center of Excellence designation. Doctors at Children’s National applied for this designation directly through the CMTA and were selected based on recognition of its program services, patient volume, expertise and experience.

Approximately 20 of the CMTA Centers of Excellence are INC-designated centers, a group of academic medical centers, patient support organizations and clinical research resources sponsored in part by the CMTA. The CMTA Centers of Excellence will become even more important as the CMTA begins clinical trials for candidate therapies.

The success of these trials will largely depend on how much information is available about the natural history of CMT. Specifically, how different types of CMT progress over time and whether novel medications are slowing the course of the disease. Much of that information will be provided by the Centers of Excellence.

“We are excited for the ongoing opportunities as a CMTA Care Center, especially at a time when novel therapeutic strategies are emerging in the field of neuromuscular medicine,” said Dr. Bharucha-Goebel.

To learn more information about the neuromuscular medicine program and the members of the team click here.

Kristina Hardy

Kristina Hardy awarded St. Baldrick’s Foundation research grant for supportive care

Kristina Hardy

Kristina Hardy, Ph.D., pediatric neuropsychologist within the Division of Neuropsychology at Children’s National Hospital, was a recipient of a $60,000 grant for children with acute lymphoblastic leukemia (ALL), a cancer of the blood, from the St. Baldrick’s Foundation, the largest charitable funder of childhood cancer research grants. .

Dr. Hardy along with her co-principal investigator in this project, Dr. Sarah Alexander, an oncologist from the Hospital for Sick Children in Toronto, study neurocognitive difficulties in survivors of pediatric cancer. Through their research, both doctors will examine the potential connections between specific anesthesia medications, their doses, the amount of time they’re given and the chances of patients having learning problems later on in life. This critical research will be important for patients, families and clinical teams in helping to make the best choices for anesthesia use.

“About 20-40% of children who are diagnosed with ALL develop problems with thinking and learning after treatment,” said Dr. Hardy. “This research is exciting because if certain types or amounts of anesthesia are shown to increase risk for cognitive changes in survivors, we may be able to quickly change the way that we use anesthesia to lessen the risk.”

The St. Baldrick’s Foundation is on a mission to defy childhood cancers by supporting the most promising research to find cures and better treatments for all childhood cancers. As a leader in the pediatric cancer community, St. Baldrick’s works tirelessly to ensure that current and future children diagnosed with cancer will have access to the most cutting-edge treatment from the best leaders in the pediatric oncology field.

Yuan Zhu

Study suggests glioblastoma tumors originate far from resulting tumors

Yuan Zhu

“The more we continue to learn about glioblastoma,” Yuan Zhu, Ph.D., says, “the more hope we can give to these patients who currently have few effective options.”

A pre-clinical model of glioblastoma, an aggressive type of cancer that can occur in the brain, suggests that this recalcitrant cancer originates from a pool of stem cells that can be a significant distance away from the resulting tumors. The findings of a new study, led by Children’s National Hospital researchers and published July 22 in the journal Nature Communications, suggest new ways to fight this deadly disease.

Despite decades of research, glioblastoma remains the most common and lethal primary brain tumor in adults, with a median survival of only 15 months from diagnosis, says study leader Yuan Zhu, Ph.D., the scientific director and endowed professor of the Gilbert Family Neurofibromatosis Institute at Children’s National. Unlike many cancers, which start out as low-grade tumors that are more treatable when they’re caught at an early stage, most glioblastomas are almost universally discovered as high-grade and aggressive lesions that are difficult to treat with the currently available modalities, including surgery, radiation and chemotherapy.

“Once the patient has neurological symptoms like headache, nausea, and vomiting, the tumor is already at an end state, and disease progression is very rapid,” Dr. Zhu says. “We know that the earlier you catch and treat cancers, the better the prognosis will be. But here, there’s no way to catch the disease early.”

However, some recent research in glioblastoma patients shows that the subventricular zone (SVZ) – an area that serves as the largest source of stem cells in the adult brain – contains cells with cancer-driving mutations that are shared with tumors found in other often far-distant brain regions.

To see if the SVZ might be the source for glioblastoma tumors, Dr. Zhu and his colleagues worked with pre-clinical models that carried a single genetic glitch: a mutation in a gene known as p53 that typically suppresses tumors. Mutations in p53 are known to be involved in glioblastoma and many other forms of cancer.

Using genetic tests and an approach akin to those used to study evolution, the researchers traced the cells that spurred both kinds of tumors back to the SVZ. Although both single and multiple tumors had spontaneously acquired mutations in a gene called Pten, another type of tumor suppressor, precursor cells for the single tumors appeared to acquire this mutation before they left the SVZ, while precursor cells for the multiple tumors developed this mutation after they left the stem cell niche. When the researchers genetically altered the animals to shut down the molecular pathway that loss of Pten activates, it didn’t stop cancer cells from forming. However, rather than migrate to distal areas of the brain, these malignant cells remained in the SVZ.

Dr. Zhu notes that these findings could help explain why glioblastoma is so difficult to identify the early precursor lesions and treat. This work may offer potential new options for attacking this cancer. If new glioblastoma tumors are seeded by cells from a repository in the SVZ, he explains, attacking those tumors won’t be enough to eradicate the cancer. Instead, new treatments might focus on this stem cell niche as target for treatment or even a zone for surveillance to prevent glioblastoma from developing in the first place.

Another option might be to silence the Pten-suppressed pathway through drugs, a strategy that’s currently being explored in various clinical trials. Although these agents haven’t shown yet that they can stop or reverse glioblastomas, they might be used to contain cancers in the SVZ as this strategy did in the pre-clinical model — a single location that might be easier to attack than tumors in multiple locations.

“The more we continue to learn about glioblastoma,” Dr. Zhu says, “the more hope we can give to these patients who currently have few effective options.”

Other Children’s National researchers who contributed to this study include Yinghua Li, Ph.D., Wei Li, Ph.D., Yuan Wang, Ph.D., Seckin Akgul, Ph.D., Daniel M. Treisman, Ph.D., Brianna R. Pierce, B.S., Cheng-Ying Ho, M.D. /Ph.D.

This work is supported by grants from the National Institutes of Health (2P01 CA085878-10A1, 1R01 NS053900 and R35CA197701).

zika virus

The importance of following the Zika population long-term

zika virus

Invited commentary by Sarah Mulkey, M.D., Ph.D., prenatal-neonatal neurologist in the Division of Prenatal Pediatrics at Children’s National Hospital, emphasizes importance of studying the Zika population long term.

A simple measuring tape could be the key to identifying which children could develop neurological and developmental abnormalities from Zika virus exposure during gestation. This is according to an invited commentary published July 7, 2020 in JAMA Network Open and written by Sarah Mulkey, M.D., Ph.D., prenatal-neonatal neurologist in the Division of Prenatal Pediatrics at Children’s National Hospital.

Zika virus (ZIKV), first isolated in 1947 in the Zika Forest in Uganda, made headlines in 2015-2016 for causing a widespread epidemic that spread through parts of North and South America, several islands in the Pacific and parts of Southeast Asia. Although previously linked with no or mild symptoms, researchers discovered during this epidemic that Zika can cross from a pregnant woman to her gestating fetus, leading to a syndrome marked by microcephaly (decreased brain growth), abnormal neurologic tone, vision and hearing abnormalities and joint contractures.

“For the 90% to 95% of ZIKV-exposed infants who fortunately were not born with severe abnormalities at birth and were normocephalic, our hope was that these children would have normal neurodevelopmental outcomes,” Dr. Mulkey writes in the commentary. “Unfortunately, this has not been the case.”

Her commentary expands on a study in the same issue entitled “Association between exposure to antenatal Zika virus and anatomic and neurodevelopmental abnormalities in children” by Cranston et al. In this study, the researchers find that head circumference — a simple measure taken regularly at postnatal appointments in the U.S. — can provide insight into which children were most likely to develop neurologic abnormalities. Their findings show that 68% of those whose head circumference was in the “normal” range at birth developed neurologic problems. Those whose head circumference was at the upper end of this range were significantly less likely to have abnormalities than those at the lower end.

Just this single measurement offers considerable insight into the risk of developing neurologic problems after Zika exposure. However, notes Dr. Mulkey, head circumference growth trajectory is also key. Of the 162 infants whose heads were initially in the normocephalic range at birth, about 10.5% went on to develop microcephaly in the months after birth.

“Because early head growth trajectory is associated with cognitive outcomes in early childhood,” Dr. Mulkey writes, “following the head circumference percentile over time can enable recognition of a child with increased risk for poor outcome who could benefit from early intervention therapies.”

This simple assessment could be significantly augmented with neuroimaging, she adds. The study by Cranston et al., as well as others in the field, have shown that brain imaging often reveals problems in ZIKV-exposed children, such as calcifications and cerebral atrophy, even in those with normal head circumferences. This imaging doesn’t necessarily need to take place at birth, Dr. Mulkey says. Postnatal development of microcephaly, failure to thrive or developmental delay can all be triggers for imaging later on.

Together, Dr. Mulkey says, the study by Cranston et al. and others that focus on ZIKV-exposed children support the need for following these patients long term. Children exposed to ZIKV in the epidemic nearly five years ago are now approaching school age, a time fraught with more complicated cognitive and social demands. Through her own research at Children’s National’s Congenital Zika Virus Program and collaboration with colleagues in Colombia, Dr. Mulkey is following multiple cohorts of ZIKV exposed children as they grow. She recently published a study on neurological abnormalities in one of these cohorts in JAMA Pediatrics in January 2020.

“It’s really important to follow these children as long as possible so we’ll really know the outcomes of this virus,” Dr. Mulkey says.

doctors operating

U.S. DoD awards $2M for study to protect neurological function after cardiac surgery

doctors operating

A collaboration between clinical and basic science researchers including Drs. Ishibashi, Hashimoto-Torii, Jonas, and Deutsch, seeks to to understand how caspase enzyme activation plays a role in the development of fine and gross motor skills in children who underwent cardiac surgery for CHD repair.

The U.S. Department of Defense has awarded $2 million to Children’s National Hospital to study how a family of protease enzymes known as caspases may contribute to brain cell degeneration when activated by prolonged anesthesia and cardiopulmonary bypass during cardiac surgery for congenital heart disease.

This U.S. Army Medical Research Acquisition Activity Award, Anesthesia Neurotoxicity in Congenital Heart Disease, is led by principal investigator Nobuyuki Ishibashi, M.D., with both clinical and basic science co-investigators including Kazue Hashimoto-Torii, Ph.D., (Neuroscience), Richard Jonas, M.D., (Cardiovascular Surgery) and Nina Deutsch, M.D., (Anesthesiology).

While the specific cellular and molecular mechanisms of how anesthesia and cardiac surgery impact cortical development are poorly understood, both seem to impact brain growth and development in young children. The most common neurologic deficit seen in children after CHD surgical repair is the impairment of fine and gross motor skills.

Both anesthetic agents and inflammation like that seen as a result of cardiopulmonary bypass have also been shown to contribute to the activation of a specific group of enzymes that play an essential role in the routine (programmed) death of cells: caspases. However, recent pre-clinical research shows that these enzymes may also contribute to other alterations to cells beyond cell death, including making changes to other cell structures. In pre-clinical models, these changes cause impairments to fine and gross motor skills – the same neurological deficits seen in children with CHD who have undergone procedures requiring prolonged anesthesia and cardiopulmonary bypass.

The research team hypothesizes that caspases are extensively activated as a result of cardiac surgery and while that activation is rarely causing reduced numbers of neurons, the changes that caspase enzymes trigger in neurons are contributing to neurological deficits seen in children with CHD after surgery.

While the study focuses specifically on the impacts of cardiac surgery for correction of a heart defect, the findings could have major implications for any pediatric surgical procedure requiring prolonged anesthesia and/or cardiopulmonary bypass.

Neurology infographic

2020 at a glance: Neurology and Neurosurgery at Children’s National

 

The Children’s National Division of Neurology and Neurosurgery is consistently recognized by U.S. News & World Report as one of the top neurology programs in the nation and is currently #3 in the nation.

US News Badges

Children’s National ranked a top 10 children’s hospital and No. 1 in newborn care nationally by U.S. News

US News Badges

Children’s National Hospital in Washington, D.C., was ranked No. 7 nationally in the U.S. News & World Report 2020-21 Best Children’s Hospitals annual rankings. This marks the fourth straight year Children’s National has made the list, which ranks the top 10 children’s hospitals nationwide.

In addition, its neonatology program, which provides newborn intensive care, ranked No.1 among all children’s hospitals for the fourth year in a row.

For the tenth straight year, Children’s National also ranked in all 10 specialty services, with seven specialties ranked in the top 10.

“Our number one goal is to provide the best care possible to children. Being recognized by U.S. News as one of the best hospitals reflects the strength that comes from putting children and their families first, and we are truly honored,” says Kurt Newman, M.D., president and CEO of Children’s National Hospital.

“This year, the news is especially meaningful, because our teams — like those at hospitals across the country — faced enormous challenges and worked heroically through a global pandemic to deliver excellent care.”

“Even in the midst of a pandemic, children have healthcare needs ranging from routine vaccinations to life-saving surgery and chemotherapy,” said Ben Harder, managing editor and chief of Health Analysis at U.S. News. “The Best Children’s Hospitals rankings are designed to help parents find quality medical care for a sick child and inform families’ conversations with pediatricians.”

The annual rankings are the most comprehensive source of quality-related information on U.S. pediatric hospitals. The rankings recognize the nation’s top 50 pediatric hospitals based on a scoring system developed by U.S. News. The top 10 scorers are awarded a distinction called the Honor Roll.

The bulk of the score for each specialty service is based on quality and outcomes data. The process includes a survey of relevant specialists across the country, who are asked to list hospitals they believe provide the best care for patients with the most complex conditions.

Below are links to the seven Children’s National specialty services that U.S. News ranked in the top 10 nationally:

The other three specialties ranked among the top 50 were cardiology and heart surgery, gastroenterology and gastro-intestinal surgery, and urology.

Nobuyuki Ishibashi

R01 grant funds white matter protection study for congenital heart disease

Nobuyuki Ishibashi

Nobuyuki Ishibashi, M.D., is the principal investigator on a $3.2 million NIH R01 to study white matter growth and repair in utero for fetal brains affected by congenital heart disease.

Many of the neurological deficits seen in children with congenital heart disease (CHD) are related to abnormal white matter development early in life caused by reduced oxygen supply to the brain while in utero. Children with immature white matter at birth also commonly sustain additional white matter injuries following cardiac surgery.

The NIH recently awarded a prestigious R01 grant totaling more than $3.2 million to a collaborative project led by the Center for Neuroscience Research, the Sheikh Zayed Institute for Pediatric Surgical Innovation and the Children’s National Heart Institute at Children’s National Hospital as well as MedStar Washington Hospital Center.

The research, titled “White matter protection in the fetus with congenital heart disease,” looks specifically at whether providing a supplemental amount of the naturally occurring tetrahydrobiopterin (BH4) for pregnant women could rescue white matter development of fetuses with congenital heart disease whose brains aren’t receiving enough oxygen – or suffering from hypoxic-ischemic events.

Previous preclinical studies have shown that this lack of oxygen depletes the brain’s natural BH4 level, and the researchers hypothesize that BH4 levels play a critical role in the growth and development of white matter in the fetal brain by triggering key cellular/molecular processes. Specifically, the study will focus on three aims:

  1. Establish in a preclinical model the optimal protective regiment for women pregnant with a fetus who has CHD to receive BH4.
  2. Determine the appropriate approach to deliver BH4 to this population
  3. Leverage genetic tools and biochemical techniques in the laboratory to better understand where and how BH4 levels play a role in the growth (or lack thereof) of oligodendrocytes—the primary cells of white matter.

This laboratory-based work is the first step to determining if the neurodevelopment of babies born with CHD can be preserved or recovered by addressing key brain development that occurs before the baby is even born. Findings related to congenital heart disease may also translate to other populations where white matter development is affected by hypoxia-ischemia, including premature infants.

The project is led by principal investigator Nobuyuki Ishibashi, M.D., with co-investigators Vittorio Gallo, Ph.D., Joseph Scafidi, D.O., and Mary Donofrio, M.D. as well as colleagues at MedStar Washington Hospital Center.

Vittorio Gallo and Mark Batshaw

Children’s National Research Institute releases annual report

Vittorio Gallo and Marc Batshaw

Children’s National Research Institute directors Vittorio Gallo, Ph.D., and Mark Batshaw, M.D.

The Children’s National Research Institute recently released its 2019-2020 academic annual report, titled 150 Years Stronger Through Discovery and Care to mark the hospital’s 150th birthday. Not only does the annual report give an overview of the institute’s research and education efforts, but it also gives a peek in to how the institute has mobilized to address the coronavirus pandemic.

“Our inaugural research program in 1947 began with a budget of less than $10,000 for the study of polio — a pressing health problem for Washington’s children at the time and a pandemic that many of us remember from our own childhoods,” says Vittorio Gallo, Ph.D., chief research officer at Children’s National Hospital and scientific director at Children’s National Research Institute. “Today, our research portfolio has grown to more than $75 million, and our 314 research faculty and their staff are dedicated to finding answers to many of the health challenges in childhood.”

Highlights from the Children’s National Research Institute annual report

  • In 2018, Children’s National began construction of its new Research & Innovation Campus (CNRIC) on 12 acres of land transferred by the U.S. Army as part of the decommissioning of the former Walter Reed Army Medical Center campus. In 2020, construction on the CNRIC will be complete, and in 2012, the Children’s National Research Institute will begin to transition to the campus.
  • In late 2019, a team of scientists led by Eric Vilain, M.D., Ph.D., director of the Center for Genetic Medicine Research, traveled to the Democratic Republic of Congo to collect samples from 60 individuals that will form the basis of a new reference genome data set. The researchers hope their project will generate better reference genome data for diverse populations, starting with those of Central African descent.
  • A gift of $5.7 million received by the Center for Translational Research’s director, Lisa Guay-Woodford, M.D., will reinforce close collaboration between research and clinical care to improve the care and treatment of children with polycystic kidney disease and other inherited renal disorders.
  • The Center for Neuroscience Research’s integration into the infrastructure of Children’s National Hospital has created a unique set of opportunities for scientists and clinicians to work together on pressing problems in children’s health.
  • Children’s National and the National Institute of Allergy and Infectious Diseases are tackling pediatric research across three main areas of mutual interest: primary immune deficiencies, food allergies and post-Lyme disease syndrome. Their shared goal is to conduct clinical and translational research that improves what we know about those conditions and how we care for children who have them.
  • An immunotherapy trial has allowed a little boy to be a kid again. In the two years since he received cellular immunotherapy, Matthew has shown no signs of a returning tumor — the longest span of time he’s been tumor-free since age 3.
  • In the past 6 years, the 104 device projects that came through the National Capital Consortium for Pediatric Device Innovation accelerator program raised $148,680,256 in follow-on funding.
  • Even though he’s watched more than 500 aspiring physicians pass through the Children’s National pediatric residency program, program director Dewesh Agrawal, M.D., still gets teary at every graduation.

Understanding and treating the novel coronavirus (COVID-19)

In a short period of time, Children’s National Research Institute has mobilized its scientists to address COVID-19, focusing on understanding the virus and advancing solutions to ameliorate the impact today and for future generations. Children’s National Research Institute Director Mark Batshaw, M.D., highlighted some of these efforts in the annual report:

  • Eric Vilain, M.D., Ph.D., director of the Center for Genetic Medicine Research, is looking at whether or not the microbiome of bacteria in the human nasal tract acts as a defensive shield against COVID-19.
  • Catherine Bollard, M.D., MBChB, director of the Center for Cancer and Immunology Research, and her team are seeing if they can “train” T cells to attack the invading coronavirus.
  • Sarah Mulkey, M.D., Ph.D., an investigator in the Center for Neuroscience Research and the Fetal Medicine Institute, is studying the effects of, and possible interventions for, coronavirus on the developing brain.

You can view the entire Children’s National Research Institute academic annual report online.

glial cells

Dr. Nathan A. Smith receives $600,000 DOD ARO grant to study the role of glial cells in neural excitability and cognition

glial cells

Microglia are the resident immune cells of the central nervous system that have highly dynamic processes that continuously survey the brain’s microenvironment, making contact with both neurons and astrocytes.

In his pursuit to understand the function of neural circuits within the brain, Nathan A. Smith, M.S., Ph.D., principal investigator at Children’s National Hospital, is examining how specialized glial cells, known as astrocytes and microglia, work together to influence neural networks and potentially enhance neuro-cognition.

Dr. Smith has just secured a new $600,000 grant from the Department of Defense Army Research Laboratory to pursue cutting-edge experimental approaches to examine the role of astrocytes in Ca2+-dependent microglia modulation of synaptic activity. This project will enhance our understanding of neuronal excitability and cognition, and define a new role for microglia in these processes.

“Glia cells play an important role in modulating synaptic function via Ca2+-dependent mechanisms,” says Dr. Smith. “It’s time for these cells to receive recognition as active participants, rather than passive contributors, in fundamental neural processes.”

Dr. Smith and his laboratory at Children’s National Research Institute are using novel experimental models to study the dynamics underlying Ca2+-mediated microglia process extension and retraction to further our understanding of how microglia, astrocytes and neurons interact in the healthy brain.

“Completion of the proposed studies has the potential to redefine the role(s) of microglia in higher brain functions and highlight the significant contribution of these cells,” Dr. Smith says. “Most importantly, elucidating the mechanisms that underlie glial cell modulation of neural circuits will not only further our understanding of normal brain function but also open new avenues to developing more accurate computational models of neural circuits.”

Dr. Nathan Smith

Dr. Smith and his laboratory at Children’s National Research Institute are using novel experimental models to study the dynamics underlying Ca2+-mediated microglia process extension and retraction to further our understanding of how microglia, astrocytes and neurons interact in the healthy brain.

Microglia are the resident immune cells of the central nervous system that have highly dynamic processes that continuously survey the brain’s microenvironment, making contact with both neurons and astrocytes. However, because of our inability to directly monitor Ca2+ activity in microglia, very little is known about the intracellular Ca2+ dynamics in resting microglia and their role in surveillance and modulation of synaptic activity.

Dr. Smith’s research team and his use of cutting-edge technology are a perfect match with the Army’s new modernization priorities. Dr. Smith’s research program and the new Army’s initiatives will greatly benefit from each other and ultimately contribute to a better understanding of the human brain.

“This research will help address a major gap in our understanding of the roles that glial cells play in regulating the computations of the nervous system through their interactions with neurons, which could also inspire a new class of artificial neural network architectures,” said Dr. Frederick Gregory, program manager, Army Research Office, an element of the U.S. Army Combat Capabilities Development Command’s Army Research Laboratory.

The grant will begin on July 1, 2020, and will last over three years. Dr. Smith’s research is also supported by other grants, including awards from the NIH and the National Science Foundation.

“As Dr. Smith’s mentor, the ultimate joy for a mentor is to see his mentees follow their dreams and be recognized for their accomplishments,” said Vittorio Gallo, Ph.D., Chief Research Officer at Children’s National Hospital. “I couldn’t be prouder of Nathan, and I am fully confident that this new research grant will help him continue to grow an exceptional research program.”