Neonatology

Dr. Kurt Newman in front of the capitol building

Kurt Newman, M.D., shares journey as a pediatric surgeon in TEDx Talk

Kurt Newman, M.D., president and chief executive officer of Children’s National, shares his poignant journey as a pediatric surgeon, offering a new perspective for approaching the most chronic and debilitating health conditions. In this independently-organized TEDx event, Dr. Newman also shares his passion for Children’s National and the need to increase pediatric innovations in medicine.

Robin Steinhorn in the NICU

Coming together as a team for the good of the baby

Robin Steinhorn in the NICU

Children’s National has a new program to care for children who have severe bronchopulmonary dysplasia, a serious complication of preterm birth.

Around the 1-year-old’s crib is a tight circle of smiling adults, and at the foot of his bed is a menagerie of plush animals, each a different color and texture and shape to spark his curiosity and sharpen his intellect.

Gone are the days a newborn with extremely complex medical needs like Elijah would transfer from the neonatal intensive care unit (NICU) to the pediatric intensive care unit and transition through a couple of other hospital units by the time he was discharged. Gone are the days when he’d see a variety of new physician faces at every stop. And gone are the days he’d be confined to his room, divorced from the sights and sounds and scents of the outside world, stimulation that helps little baby’s neural networks grow stronger.

Children’s National has a new program designed to meet the unique needs of children like Elijah who have severe bronchopulmonary dysplasia (BPD), a common complication of preterm birth.

“It’s more forward-thinking – and I mean thinking for the future of each individual baby, and it’s allowing the baby to have one team and one location to take advantage of a deep knowledge of and relationship with that baby and family,” says Robin Steinhorn, M.D. Dr. Steinhorn is senior vice president of the Center for Hospital-Based Specialties and one of Children’s multidisciplinary team members who visited Elijah’s bed twice weekly during his lengthy hospitalization and who continues to see him regularly during outpatient visits.

“The pulmonologist, the neonatologist, the respiratory therapist, the physical therapist, the dietitian, the cardiologist – we all come as a team to work together for the good of the baby,” Dr. Steinhorn adds. “We stick with these babies through thick and thin. We will stick with that baby with this team and this location until they are ready to go home – and beyond.”

BPD, a serious lung condition, mostly affects extremely low birthweight preterm babies whose lungs were designed to continue developing inside the womb until the pregnancy reaches full term. Often born months before their due dates, these extremely vulnerable newborns have immature organs, including the lungs, which are not ready for the task of breathing air. Children’s program targets infants who experience respiratory failure from BPD. The respiratory support required for these infants ranges from oxygen delivered through a nasal cannula to mechanical ventilators.

Robin Steinhorn and Colleague

“It’s more forward-thinking – and I mean thinking for the future of each individual baby, and it’s allowing the baby to have one team and one location to take advantage of a deep knowledge of and relationship with that baby and family,” says Robin Steinhorn, M.D.

About 1 percent of all preterm births are extremely low birthweight, or less than 1,500 grams. Within that group, up to 40 percent will develop BPD. While they represent a small percentage of overall births, these very sick babies need comprehensive, focused care for the first few years of their lives. And some infants with severe BPD also have pulmonary hypertension which, at Children’s National, is co-managed by cardiology and pulmonary specialists.

Children’s BPD team not only focuses on the child’s survival and medical care, they focus on the neurodevelopmental and social care that a baby needs to thrive. From enhanced nutrition to occupational and physical therapy to a regular sleep cycle, the goal is to help these babies achieve their full potential.

“These babies are at tremendous risk for long-term developmental issues. Everything we do is geared to alleviate that,” adds John T. Berger III, M.D., director of Children’s Pulmonary Hypertension Program.

“Our NICU care is more focused, comprehensive and consistent,” agrees Mariam Said, M.D., a neonatologist on the team. “We’re also optimizing the timing of care and diagnostic testing that will directly impact health outcomes.”

Leaving no detail overlooked, the team also ensures that infants have age-appropriate developmental stimuli, like toys, and push for early mobility by getting children up and out of bed and into a chair or riding in a wagon.

“The standard approach is to keep the baby in a room with limited physical or occupational therapy and a lack of appropriate stimulation,” says Geovanny Perez, M.D., a pulmonologist on the team. “A normal baby interacts with their environment inside the home and outside the home. We aim to mimic that within the hospital environment.”

Dr. Steinhorn, who had long dreamed of creating this comprehensive team care approach adds that “it’s been so gratifying to see it adopted and embraced so quickly by Children’s NICU caregivers.”

toddler nursing

Newborns with suspected food allergies breastfed significantly longer

toddler nursing

Mothers whose newborns had suspected food allergies reported breastfeeding them significantly longer than women whose infants had no adverse reactions after food exposure, according to preliminary research led by Karen A. Robbins, M.D., and presented during the American Academy of Allergy, Asthma & Immunology 2019 Annual Meeting.

According to the Centers for Disease Control and Prevention (CDC), food allergies affect 4 to 6 percent of U.S. children, making such allergies a growing public health concern. Researchers are attempting to learn more about the interplay between food allergies and what, when and how children eat to inform allergy-prevention efforts. Little is known about the association between perceived food allergies, intolerance or hypersensitivity among babies eating their first bites of solid food and how long they’re breastfed.

Dr. Robbins and colleagues analyzed data gathered through a longitudinal study led by the Food and Drug Administration (FDA) and the CDC from 2005 to 2007. The Infant Feeding Practices Study II tracked diet and feeding practices of about 2,000 women late in their pregnancies and followed their babies’ diets through the first year of life.

Some 2,586 breastfeeding mothers in the study completed surveys when their infants were 4, 9 and 12 months old. The women were asked whether there were problems caused by food, such as an allergic reaction, sensitivity or intolerance. The majority of these infants (84.6 percent) had no suspected allergic reaction to either food they ate on their own or to food they were exposed to via breastmilk. The mothers reported that nearly 11 percent of infants reacted to something they ate; 2.4 percent reacted to food products they were exposed to via breastmilk; and 2.4 percent reacted to both food they consumed directly or were exposed to via breastfeeding. They also found:

  • Infants with suspected food allergies after exposure to food their mothers ate were breastfed a mean of 45.8 weeks.
  • Infants with food intolerance after both exposure to food their mother consumed and food they ate themselves were breastfed a mean of 40.2 weeks.

That contrasts with infants with no concern for food reactions, who were breastfed a mean of 32 weeks.

“Breastfeeding a newborn for the first few months of life helps their developing immune system become more robust, may affect the microbiome, and could influence or prevent development of allergy later in life,” says Dr. Robbins, an allergist at Children’s National Health System and lead author of the research. “However, mothers’ perceptions of their newborns’ adverse reactions to food appears to factor into how long they breastfeed.”

One potential concern is that extended breastfeeding can impact solid food introduction practices.

“Gradually transitioning to solid food gives infants an opportunity to sample an array of foods, nibble by nibble, including food allergens like peanut and eggs. We know from previously published research that introducing high-risk babies to a food allergen like peanuts early in life appropriately primes their immune system and dramatically decreases how often these children actually develop peanut allergies,” Dr. Robbins adds. “The relationship between breastfeeding and allergy development is complex, so understanding mothers’ practices is important. We also do not know how often these early reactions result in true food allergy, compared with transient food intolerance.”

American Academy of Allergy, Asthma & Immunology 2019 Annual Meeting presentation

  • “Perceived food allergy, sensitivity or intolerance and its impact on breastfeeding practices.”

Monday, Feb. 25, 2019, 9:45-10:45 a.m. (PST)

Karen A. Robbins M.D., lead author; Marni Jacobs, Ph.D., co-author; Ashley Ramos Ph.D., co-author; Daniel V. DiGiacomo, M.D., co-author; Katherine M. Balas BS, co-author; and Linda Herbert, Ph.D., director of Children’s Division of Allergy and Immunology’s psychosocial clinical program and senior author.

Breastfeeding Mom

Exclusive breastfeeding lowers odds of some schoolchildren having eczema

Breastfeeding Mom

Children exclusively breastfed for the first three months of life had significantly lower odds of having eczema at age 6 compared with peers who were not breastfed or were breastfed for less time, according to preliminary research presented during the American Academy of Allergy, Asthma & Immunology 2019 Annual Meeting.

Eczema is a chronic condition characterized by extremely itchy skin that, when scratched, becomes inflamed and covered with blisters that crack easily. While genes and the environment are implicated in this inflammatory disease, many questions remain unanswered, such as how best to prevent it. According to the Centers for Disease Control and Prevention (CDC), breastfed infants have reduced risks for developing many chronic conditions, including asthma and obesity.

“The evidence that being exclusively breastfed protects children from developing eczema later in life remains mixed,” says Katherine M. Balas, BS, BA, a clinical research assistant at Children’s National and the study’s lead author. “Our research team is trying to help fill that data gap.”

Balas and colleagues tapped data collected in Infant Feeding Practices Study II, a longitudinal study co-led by the CDC and the Food and Drug Administration (FDA) from 2005 to 2007, as well as the agencies’ 2012 follow-up examination of that study cohort. This study first tracked the diets of about 2,000 pregnant women from their third trimester and examined feeding practices through their babies’ first year of life. Their follow-up inquiry looked at the health, development and dietary patterns for 1,520 of these children at 6 years of age.

About 300 of the children had been diagnosed with eczema at some point in their lives, and 58.5 percent of the 6-year-olds had eczema at the time of the CDC/FDA Year Six Follow-Up. Children with higher socioeconomic status or a family history of food allergies had higher odds of being diagnosed with eczema.

“Children who were exclusively breastfed for three months or longer were significantly less likely (adjusted odds ratio: 0.477) to have continued eczema at age 6, compared with peers who were never breastfed or who were breastfed for less than three months,” Balas adds. “While exclusive breastfeeding may not prevent kids from getting eczema, it may protect them from experiencing extended flare-ups.”

American Academy of Allergy, Asthma & Immunology 2019 Annual Meeting presentation

  • “Exclusive breastfeeding in infancy and eczema diagnosis at 6 years of age.”

Sunday, Feb. 24, 2019, 9:45 a.m. (PST)

Katherine M. Balas BS, BA, lead author; Karen A. Robbins M.D., co-author; Marni Jacobs, Ph.D., co-author; Ashley Ramos Ph.D., co-author; Daniel V. DiGiacomo, M.D., co-author; and Linda Herbert, Ph.D., director of Children’s Division of Allergy and Immunology’s psychosocial clinical program and senior author.

Dr. Anna Penn uses a microscope

New model mimics persistent interneuron loss seen in prematurity

Dr. Anna Penn uses a microscope

Children’s research-clinicians created a novel preclinical model that mimics the persistent interneuron loss seen in preterm human infants, identifying interneuron subtypes that could become future therapeutic targets to prevent or lessen neurodevelopmental risks.

Research-clinicians at Children’s National Health System have created a novel preclinical model that mimics the persistent interneuron loss seen in preterm human infants, identifying interneuron subtypes that could become future therapeutic targets to prevent or lessen neurodevelopmental risks, the team reports Jan. 31, 2019, in eNeuro. The open access journal for Society for Neuroscience recognized the team’s paper as its “featured” article.

In the prefrontal cortex (PFC) of infants born preterm, there are decreased somatostatin and calbindin interneurons seen in upper cortical layers in infants who survived for a few months after preterm birth. This neuronal damage was mimicked in an experimental model of preterm brain injury in the PFC, but only when the newborn experimental models had first experienced a combination of prenatal maternal immune activation and postnatal chronic sublethal hypoxia. Neither neuronal insult on its own produced the pattern of interneuron loss in the upper cortical layers observed in humans, the research team finds.

“These combined insults lead to long-term neurobehavioral deficits that mimic what we see in human infants who are born extremely preterm,” says Anna Penn, M.D., Ph.D., a neonatologist in the Division of Neonatology and the Fetal Medicine Institute and a developmental neuroscientist at Children’s National Health System, and senior study author. “Future success in preventing neuronal damage in newborns relies on having accurate experimental models of preterm brain injury and well-defined outcome measures that can be examined in young infants and experimental models of the same developmental stage.”

According to the Centers for Disease Control and Prevention 1 in 10 infants is born preterm, before the 37th week of pregnancy. Many of these preterm births result from infection or inflammation in utero. After delivery, many infants experience other health challenges, like respiratory failure. These multi-hits can exacerbate brain damage.

Prematurity is associated with significantly increased risk of neurobehavioral pathologies, including autism spectrum disorder and schizophrenia. In both psychiatric disorders, the prefrontal cortex inhibitory circuit is disrupted due to alterations of gamma-aminobutyric acid (GABA) interneurons in a brain region involved in working memory and social cognition.

Cortical interneurons are created and migrate late in pregnancy and early infancy. That timing leaves them particularly vulnerable to insults, such as preterm birth.

In order to investigate the effects of perinatal insults on GABAergic interneuron development, the Children’s research team, led by Helene Lacaille, Ph.D., in Dr. Penn’s laboratory, subjected the new preterm encephalopathy experimental model to a battery of neurobehavioral tests, including working memory, cognitive flexibility and social cognition.

“This translational study, which examined the prefrontal cortex in age-matched term and preterm babies supports our hypothesis that specific cellular alterations seen in preterm encephalopathy can be linked with a heightened risk of children experiencing neuropsychiatric disorders later in life,” Dr. Penn adds. “Specific interneuron subtypes may provide specific therapeutic targets for medicines that hold the promise of preventing or lessening these neurodevelopmental risks.”

In addition to Dr. Penn and Lead Author Lacaille, Children’s co-authors include Claire-Marie Vacher; Dana Bakalar, Jiaqi J. O’Reilly and Jacquelyn Salzbank, all of Children’s Center for Neuroscience Research.

Financial support for research described in this post was provided by the National Institutes of Health under award R01HD092593, District of Columbia Intellectual Developmental Disabilities Research Center under award U54HD090257, Cerebral Palsy Alliance Research Foundation, Children’s National Board of Visitors, Children’s Research Institute and Fetal Medicine Institute.

Vittorio Gallo

Neurodevelopmental disorders: Developing medical treatments

Vittorio Gallo

Vittorio Gallo, Ph.D., Chief Research Officer, participates in the world’s largest general scientific gathering, leading panelists in a timely conversation about progress made so far with neurodevelopmental disorders and challenges that lie ahead.

The human brain is the body’s operating system. Imagine if rogue code worked its way into its hardware and software, delaying some processes, disrupting others, wreaking general havoc.

Neurodevelopmental disorders are like that errant code. They can occur early in life and impact brain development for the rest of the person’s life. Not only can fundamental brain development go awry, processes that refine the brain also can become abnormal, creating a double neural hit.  Adding to those complications, children with neurodevelopmental disorders like autism spectrum disorder (ASD) and Fragile X syndrome often contend with multiple, overlapping cognitive impairments and learning disabilities.

The multiple layers of complexities for these disorders can make developing effective medical treatments particularly challenging, says Vittorio Gallo, Ph.D., Chief Research Officer at Children’s National Health System and recipient of a coveted Senator Jacob Javits Award in the Neurosciences.

During the Feb. 16, 2019, “Neurodevelopmental Disorders: Developing Medical Treatments” symposium, Gallo will guide esteemed panelists in a timely conversation about progress made so far and challenges that lie ahead during the AAAS Annual Meeting in Washington, the world’s largest general scientific gathering.

“This is a very important symposium; we’re going to put all of the open questions on the table,” says Gallo. “We’re going to present a snapshot of where the field is right now: We’ve made incredible advances in developmental neuroscience, neonatology, neurology, diagnostic imaging and other related fields. The essential building blocks are in place. Where are we now in developing therapeutics for these complex disorders?”

For select disorders, many genes have been identified, and each new gene has the potential to become a target for improved therapies. However, for other neurodevelopmental disorders, like ASD, an array of new genes continue to be discovered, leaving an unfinished picture of which genetic networks are of most importance.

Gallo says the assembled experts also plan to explore major research questions that remain unanswered as well as how to learn from past experiences to make future studies more powerful and insightful.

“One topic up for discussion will be new preclinical models that have the potential to help in identifying specific mechanisms that cause these disorders. A combination of genetic, biological, psychosocial and environmental risk factors are being combined in these preclinical models,” Gallo says.

“Our studies of the future need to move beyond describing and observing in order to transform into studies that establish causality between the aberrant developmental processes and these constellations of neurodevelopmental disorders.”

Study authors Aaron Sathyanesan, Ph.D., Joseph Abbah, B.Pharm., Ph.D., Srikanya Kundu, Ph.D. and Vittorio Gallo, Ph.D.

Children’s perinatal hypoxia research lauded

Study authors Aaron Sathyanesan, Ph.D., Joseph Abbah, B.Pharm., Ph.D., Srikanya Kundu, Ph.D. and Vittorio Gallo, Ph.D.

Study authors Aaron Sathyanesan, Ph.D., Joseph Abbah, B.Pharm., Ph.D., Srikanya Kundu, Ph.D. and Vittorio Gallo, Ph.D.

Chronic sublethal hypoxia is associated with locomotor miscoordination and long-term cerebellar learning deficits in a clinically relevant model of neonatal brain injury, according to a study led by Children’s National Health System researchers published by Nature Communications. Using high-tech optical and physiological methods that allow researchers to turn neurons on and off and an advanced behavioral tool, the research team found that Purkinje cells fire significantly less often after injury due to perinatal hypoxia.

The research team leveraged a fully automated, computerized apparatus – an Erasmus Ladder – to test experimental models’ adaptive cerebellar locomotor learning skills, tracking their missteps as well as how long it took the models to learn the course.

The research project, led by Aaron Sathyanesan, Ph.D., a Children’s postdoctoral research fellow, was honored with a F1000 prime “very good rating.” The Children’s research team used both quantitative behavior tests and electrophysiological assays, “a valuable and objective platform for functional assessment of targeted therapeutics in neurological disorders,” according to the recommendation on a digital forum in which the world’s leading scientists and clinicians highlight the best articles published in the field.

Calling the Erasmus Ladder an “elegant” behavioral system, Richard Lu, Ph.D., and Kalen Berry write that the Children’s National Health System research team “revealed locomotor behavior and cerebellar learning deficits, and further utilized multielectrode recording/optogenetics approaches to define critical pathophysiological features, such as defects in Purkinje cell firing after neonatal brain injury.”

Lu, Beatrice C. Lampkin Endowed Chair in Cancer Epigenetics, and Berry, an associate faculty member in the Cancer and Blood Diseases Institute, both at Cincinnati Children’s, note that the Children’s results “suggest that GABA signaling may represent a potential therapeutic target for hypoxia-related neonatal brain injury that, if provided at the correct time during development post-injury, could offer lifelong improvements.”

In addition to Sathyanesan, Children’s co-authors include Co-Lead Author, Srikanya Kundu, Ph.D., and Joseph Abbah, both of Children’s Center for Neuroscience Research, and Vittorio Gallo, Ph.D., Children’s Chief Research Officer and the study’s senior author.

Research covered in this story was supported by the Intellectual and Developmental Disability Research Center under award number U54HD090257.

Preemie Baby

Getting micro-preemie growth trends on track

Preemie Baby

According to Children’s research presented during the Institute for Healthcare Improvement 2018 Scientific Symposium, standardizing feeding practices – including the timing for fortifying breast milk and formula with essential elements like zinc and protein – improves growth trends for the tiniest preterm infants.

About 1 in 10 infants is born before 37 weeks gestation. These premature babies have a variety of increased health risks, including deadly infections and poor lung function.

Emerging research suggests that getting their length and weight back on track could help. According to Children’s research presented during the Institute for Healthcare Improvement 2018 Scientific Symposium, standardizing feeding practices – including the timing for fortifying breast milk and formula with essential elements like zinc and protein – improves growth trends for the tiniest preterm infants.

The quality-improvement project at Children’s National Health System targeted very low birth weight infants, who weigh less than 3.3 pounds (1,500 grams) at birth. These fragile infants are born well before their internal organs, lungs, brain or their digestive systems have fully developed and are at high risk for ongoing nutritional challenges, health conditions like necrotizing enterocolitis (NEC) and overall poor development.

The research team measured progress by tracking the micro-preemies’ mean delta weight Z-score for weight gain, which measures nutritional status.

“In this cohort, mean delta weight Z-scores improved by 43 percent, rising from -1.8 to the goal of -1.0, when we employed an array of interventions. We saw the greatest improvement, 64 percent, among preterm infants who had been born between 26 to 28 weeks gestation,” says Michelande Ridoré, MS, Children’s NICU quality-improvement program lead who presented the group’s preliminary findings. “It’s very encouraging to see improved growth trends just six months after introducing these targeted interventions and to maintain these improvements for 16 months.”

Within Children’s neonatal intensive care unit (NICU), micro-preemies live in an environment that mimics the womb, with dimmed lighting and warmed incubators covered by blankets to muffle extraneous noise. The multidisciplinary team relied on a number of interventions to improve micro-preemies’ long-term nutritional outcomes, including:

  • Reducing variations in how individual NICU health care providers approach feeding practices
  • Fortifying breast milk (and formula when breast milk was not available), which helps these extra lean newborns add muscle and strengthen bones
  • Early initiation of nutrition that passes through the intestine (enteral feeds)
  • Re-educating all members of the infants’ care teams about the importance of standardized feeding and
  • Providing a decision aid about feeding intolerance.

Dietitians were included in the daily rounds, during which the multidisciplinary team discusses each infant’s care plan at their room, and used traffic light colors to describe how micro-preemies were progressing with their nutritional goals. It’s common for these newborns to lose weight in the first few days of life.

  • Infants in the “green” zone had regained their birth weight by day 14 of life and possible interventions included adjusting how many calories and protein they consumed daily to reflect their new weight.
  • Infants in the “yellow” zone between day 15 to 18 of life remained lighter than what they weighed at birth and were trending toward lower delta Z-scores. In addition to assessing the infant’s risk factors, the team could increase calories consumed per day and add fortification, among other possible interventions.
  • Infants in the “red” zone remained below their birth weight after day 19 of life and recorded depressed delta Z-scores. These infants saw the most intensive interventions, which could include conversations with the neonatologist and R.N. to discuss strategies to reverse the infant’s failure to grow.

Future research will explore how the nutritional interventions impact newborns with NEC, a condition characterized by death of tissue in the intestine. These infants face significant challenges gaining length and weight.

Institute for Healthcare Improvement 2018 Scientific Symposium presentation

  • “Improved growth of very low birthweight infants in the neonatal intensive care unit.”

Caitlin Forsythe, MS, BSN, RNC-NIC, NICU clinical program coordinator, Neonatology, and lead author; Michelande Ridoré, MS, NICU quality-improvement program lead; Victoria Catalano Snelgrove, RDN, LD, CNSC, CLC, pediatric clinical dietitian; Rebecca Vander Veer, RD, LD, CNSC, CLC, pediatric clinical dietitian; Erin Fauer, RDN, LD, CNSC, CLC, pediatric clinical dietitian; Judith Campbell, RNC, IBCLC, NICU lactation consultant; Eresha Bluth, MHA, project administrator; Anna Penn, M.D., Ph.D., neonatologist; Lamia Soghier, M.D., MEd, Medical Unit Director, Neonatal Intensive Care Unit; and Mary Revenis, M.D., NICU medical lead on nutrition and senior author; all of Children’s National Health System.

new mom with baby

Fighting perinatal mood and anxiety disorders on multiple levels

new mom with baby

Over the past several decades, it’s become increasingly recognized that perinatal mood and anxiety disorders (PMADs), including postpartum depression, are more than just “baby blues.” They’re the most common complication of childbirth in the U.S., affecting about 14 percent of women in their lifetimes and up to 50 percent in some specific populations. PMADs can lead to a variety of adverse outcomes for both mothers and their babies, including poor breastfeeding rates, poor maternal-infant bonding, lower infant immunization rates and maternal suicides that account for up to 20 percent of postpartum deaths.

But while it’s obvious that PMADs are a significant problem, finding a way to solve this issue is far from clear. In a policy statement published December 2018 in the journal Pediatrics, the American Academy of Pediatrics recommends that pediatric medical homes coordinate more effectively with prenatal providers to ensure PMAD screening occurs for new mothers at well-child checkups throughout the first several weeks and months of infancy and use community resources and referrals to ensure women suffering with these disorders receive follow-up treatment.

To help solve the huge issue of PMADs requires a more comprehensive approach, suggests Lenore Jarvis, M.D., MEd, an emergency medicine specialist at Children’s National Health System. A poster that Dr. Jarvis and colleagues from Children’s Perinatal Mental Health Taskforce recently presented at the American Academy of Pediatrics 2018 National Convention and Exhibit in Orlando, Florida, details the integrated care to help women with PMADs that originated at Children’s National and is being offered at several levels, including individual, interpersonal, organizational, community and policy. The poster was ranked best in its section for the Council on Early Childhood.

At the base level of care for mothers with possible PMADs, Dr. Jarvis says, are the one-on-one screenings that take place in primary care clinics. Currently, all five of Children’s primary care clinics screen for mental health concerns at annual visits. At the 2-week, 1-, 2-, 4- and 6-month visits, mothers are screened for PMADs using the Edinburgh Postnatal Depression Scale, a validated tool that’s long been used to gauge the risk of postpartum depression. In addition, recent studies at Children’s neonatal intensive care unit (NICU) and emergency department (ED) suggest that performing PMAD screenings in these settings as well could help catch even more women with these disorders: About 45 percent of parents had a positive screen for depression at NICU discharge, and about 27 percent of recent mothers had positive screens for PMADs in the ED.

To further these efforts, Children’s National recently started a Perinatal Mental Health Taskforce to promote multidisciplinary collaboration and open communication with providers among multiple hospital divisions. This taskforce is working together to apply lessons learned from screening in primary care, the NICU and the ED to discuss best practices and develop hospital-wide recommendations. They’re also sharing their experiences with hospitals across the country to help them develop best practices for helping women with PMADs at their own institutions.

Furthering its commitment to PMAD screening, Children’s National leadership set a goal of increasing screening in primary care by 15 percent for fiscal year 2018 – then exceeded it. Children’s National is also helping women with PMADs far outside the hospital’s walls by developing a PMAD screening toolkit for other providers in Washington and across the country and by connecting with community partners through the DC Collaborative for Mental Health in Pediatric Primary Care. In April 2019, the hospital will host a regional perinatal mental health conference that not only will include its own staff but also staff from other local hospitals and other providers who care for new mothers, including midwives, social workers, psychologists, community health workers and doulas.

Finally, on a federal level, Dr. Jarvis and colleagues are part of efforts to obtain additional resources for PMAD screening, referral and treatment. They successfully advocated for Congress to fully fund the Screening and Treatment for Maternal Depression program, part of the 21st Century Cures Act. And locally, they provided testimony to help establish a task force to address PMADs in Washington.

Together, Dr. Jarvis says, these efforts are making a difference for women with PMADs and their families.

“All this work demonstrates that you can take a problem that is very personal, this individual experience with PMADS, and work together with a multidisciplinary team in collaboration to really have an impact and promote change across the board,” she adds.

In addition to Dr. Jarvis, the lead author, Children’s co-authors include Penelope Theodorou, MPH; Sarah Barclay Hoffman, MPP, Program Manager, Child Health Advocacy Institute; Melissa Long, M.D.; Lamia Soghier M.D., MEd, NICU Medical Unit Director; Karen Fratantoni M.D., MPH; and Senior Author Lee Beers, M.D., Medical Director, Municipal and Regional Affairs, Child Health Advocacy Institute.

AlgometRX

Breakthrough device objectively measures pain type, intensity and drug effects

AlgometRX

Clinical Research Assistant Kevin Jackson uses AlgometRx Platform Technology on Sarah Taylor’s eyes to measure her degree of pain. Children’s National is testing an experimental device that aims to measure pain according to how pupils react to certain stimuli. (AP Photo/Manuel Balce Ceneta)

Pediatric anesthesiologist Julia C. Finkel, M.D., of Children’s National Health System, gazed into the eyes of a newborn patient determined to find a better way to measure the effectiveness of pain treatment on one so tiny and unable to verbalize. Then she realized the answer was staring back at her.

Armed with the knowledge that pain and analgesic drugs produce an involuntary response from the pupil, Dr. Finkel developed AlgometRx, a first-of-its-kind handheld device that measures a patient’s pupillary response and, using proprietary algorithms, provides a diagnostic measurement of pain intensity, pain type and, after treatment is administered, monitors efficacy. Her initial goal was to improve the care of premature infants. She now has a device that can be used with children of any age and adults.

“Pain is very complex and it is currently the only vital sign that is not objectively measured,” says Dr. Finkel, who has more than 25 years of experience as a pain specialist. “The systematic problem we are facing today is that healthcare providers prescribe pain medicine based on subjective self-reporting, which can often be inaccurate, rather than based on an objective measure of pain type and intensity.” To illustrate her point, Dr. Finkel continues, “A clinician would never prescribe blood pressure medicine without first taking a patient’s blood pressure.”

The current standard of care for measuring pain is the 0-to-10 pain scale, which is based on subjective, observational and self-reporting techniques. Patients indicate their level of pain, with zero being no pain and ten being highest or most severe pain. This subjective system increases the likelihood of inaccuracy, with the problem being most acute with pediatric and non-verbal patients. Moreover, Dr. Finkel points out that subjective pain scores cannot be standardized, heightening the potential for misdiagnosis, over-treatment or under-treatment.

Dr. Finkel, who serves as director of Research and Development for Pain Medicine at the Sheikh Zayed Institute for Pediatric Surgical Innovation at Children’s National, says that a key step in addressing the opioid crisis is providing physicians with objective, real-time data on a patient’s pain level and type, to safely prescribe the right drug and dosage or an alternate treatment.,

She notes that opioids are prescribed for patients who report high pain scores and are sometimes prescribed in cases where they are not appropriate. Dr. Finkel points to the example of sciatica, a neuropathic pain sensation felt in the lower back, legs and buttocks. Sciatica pain is carried by touch fibers that do not have opioid receptors, which makes opioids an inappropriate choice for treating that type of pain.

A pain biomarker could rapidly advance both clinical practice and pain research, Dr. Finkel adds. For clinicians, the power to identify the type and magnitude of a patient’s nociception (detection of pain stimuli) would provide a much-needed scientific foundation for approaching pain treatment. Nociception could be monitored through the course of treatment so that dosing is targeted and personalized to ensure patients receive adequate pain relief while reducing side effects.

“A validated measure to show whether or not an opioid is indicated for a given patient could ease the health care system’s transition from overreliance on opioids to a more comprehensive and less harmful approach to pain management,” says Dr. Finkel.

She also notes that objective pain measurement can provide much needed help in validating complementary approaches to pain management, such as acupuncture, physical therapy, virtual reality and other non-pharmacological interventions.

Dr. Finkel’s technology, called AlgometRx, has been selected by the U.S. Food and Drug Administration (FDA) to participate in its “Innovation Challenge: Devices to Prevent and Treat Opioid Use Disorder.” She is also the recipient of Small Business Innovation Research (SBIR) grant from the National Institute on Drug Abuse.

pregnant woman holding eggs

How does diet during pregnancy impact allergies in offspring?

pregnant woman holding eggs

A small percentage of women said they consumed fewer allergens during pregnancy to stave off food allergies in their newborns, according to preliminary research Karen Robbins, M.D., presented during the American College of Asthma Allergy and Immunology 2018 Annual Scientific Meeting.

Pregnant women routinely swear off alcohol and tobacco to boost their chances of having a healthy baby. What about common food allergens like nuts and milk?

There are scant data that describe how often pregnant women deliberately stop eating a specific food item in order to prevent future food allergies in their newborns. As a first step toward addressing this data gap, a research team led by Karen Robbins, M.D., an allergist at Children’s National Health System, pored through a longitudinal study conducted by the Food and Drug Administration (FDA) and the Centers for Disease Control and Prevention.

About 4,900 pregnant women completed the Infant Feeding Practices Study II prenatal questionnaire from May 2005 to June 2007. The study tracked 2,000 pregnant women from the third trimester of pregnancy and their infants through the first year of life. A small percentage of women said they had consumed fewer allergens during pregnancy to stave off food allergies in their newborns, according to a poster Dr. Robbins presented during the American College of Asthma Allergy and Immunology 2018 Annual Scientific Meeting. While their numbers were small, most of these women reported giving up major allergens like nuts, milk or eggs during pregnancy, including:

  • 144 (2.9 percent) reported restricting their diet in some way to prevent future food allergies in their offspring
  • 84 women (1.7 percent) ate fewer nuts
  • 15 women (.3 percent) ate fewer eggs and
  • 2 women (.04 percent) ate/drank consumed less dairy/milk.

“At the time the survey was conducted, few pregnant women in this large data set said they gave up certain foods with the express aim of avoiding a food allergy in their babies,” Dr. Robbins says. “However, mothers who had an older child with a food allergy or who had food allergies themselves had significantly higher odds of trying this food avoidance strategy.”

Despite the diet changes, infants born to these expectant mothers were twice as likely to experience problems with food at age 4 months – though not at age 9 months or 12 months. And these infants were no more likely to be diagnosed with a food allergy.

According to the FDA, millions of Americans suffer a food allergy each year. Reactions can range from mild to life-threatening and can begin soon after eating a problematic food item or an ingredient from that food. Among the most common allergenic foods are milk, eggs, fish, shellfish, tree nuts, peanuts, wheat and soybeans.

“We really need to know more about how often targeted food avoidance occurs among U.S. pregnant women who have a family history of food allergies,” Dr. Robbins adds. “We hope to learn what factors into these women’s decision-making as well as why many of them settled on food avoidance as a potential strategy to try to prevent food allergy in their infants.”

American College of Asthma Allergy and Immunology 2018 Annual Scientific Meeting presentation

  • “Prenatal food allergen avoidance practices for food allergy prevention.”

Karen Robbins M.D., lead author; Ashley Ramos Ph.D., co-author; Marni Jacobs, Ph.D., co-author; Kate Balas BS, co-author; and Linda Herbert, Ph.D., director of Children’s Division of Allergy and Immunology’s psychosocial clinical program, and senior author.

Sarah Mulkey

MRI and ultrasound imaging detect the spectrum of Zika’s impact

Sarah Mulkey

“A combination of prenatal MRI and US was able to detect Zika-related brain abnormalities during pregnancy, giving families timely information to prepare for the potential complex care needs of these infants,” says Sarah B. Mulkey, M.D., Ph.D.

Worldwide, thousands of babies have been born to mothers who were infected during pregnancy with Zika, a virus associated with neurological deficits, impaired vision and neurodevelopmental disabilities, among other birth defects. These birth defects are sometimes severe, causing lifelong disability. But they’re also relatively rare compared with the overall rates of infection.

Predicting how many Zika-exposed babies would experience neurological birth defects has been challenging.

However, an international study led by Children’s faculty suggests that ultrasound (US) imaging performed during pregnancy and after childbirth revealed most Zika-related brain abnormalities experienced by infants exposed to the Zika virus during pregnancy, according to a prospective cohort study published online Nov. 26, 2018, in JAMA Pediatrics. Some Zika-exposed infants whose imaging had been normal during pregnancy had mild brain abnormalities detected by US and magnetic resonance imaging (MRI) after they were born.

“A combination of prenatal MRI and US was able to detect Zika-related brain abnormalities during pregnancy, giving families timely information to prepare for the potential complex care needs of these infants,” says Sarah B. Mulkey, M.D., Ph.D., a fetal-neonatal neurologist at Children’s National Health System and the study’s lead author. “In our study, we detected mild brain abnormalities on postnatal neuroimaging for babies whose imaging was normal during pregnancy. Therefore, it is important for clinicians to continue to monitor brain development for Zika-exposed infants after birth.”

As of Nov. 20 2018, nearly 2,500 pregnant women in the U.S. had laboratory confirmed Zika infection, and about 2,400 of them had given birth, according to the Centers for Disease Control and Prevention (CDC). While more than 100 U.S. infants were born with Zika-associated birth defects, the vast majority of Zika-exposed U.S. infants were apparently normal at birth. The sequential neuroimaging study Dr. Mulkey leads seeks to determine the spectrum of brain findings in infants exposed to Zika in the womb using both US and MRI before and after birth.

The international research team enrolled 82 women in the study from June 15, 2016, through June 27, 2017. All of the women had been exposed to Zika during pregnancy; all but one experienced clinical symptoms by a mean gestational age of 8.2 weeks. Eighty of those women lived in or near Barranquilla, Colombia, and were exposed to Zika there. Two U.S. study participants were exposed to the primarily mosquito-borne illness during travel to Zika hot zones.

All women received fetal MRIs and US during the second and/or third trimester of pregnancy. After their infants were born, the children received brain MRI and cranial US. Blood samples from both mothers and babies were tested for Zika using polymerase chain reaction and serology.

Fetal MRI was able to discern Zika-related brain damage as early as 18 weeks gestation and picked up significant fetal brain abnormalities not fully appreciated in US imaging. In one case, the US remained normal while fetal MRI alone detected brain abnormalities. Three fetuses (4 percent) had severe fetal brain abnormalities consistent with Zika infection, including:

Seventy-five infants were born at term. One pregnancy was terminated at 23 weeks gestation due to the gravity of the fetal brain abnormalities. One fetus with normal imaging died during pregnancy. One newborn who was born with significant fetal brain abnormalities died at age 3 days.

Cranial US and brain MRI was performed on the majority of infants whose prenatal imaging had been normal.  Seven of 53 (13 percent) Zika-exposed infants had mild brain abnormalities detected by MRI after birth. In contrast, postnatal cranial US was better at detecting changes of lenticulostriate vasculopathy, cysts within the brain’s choroid plexus (cells that produce cerebrospinal fluid), germinolytic/subependymal cysts and/or calcifications, which were seen in 21 of 57 (37 percent) infants.

“Sequential neuroimaging revealed that the majority of Zika-exposed fetuses had normal brain development. Tragically, in a small number of pregnancies, Zika-related brain abnormalities were quite severe,” Dr. Mulkey adds. “Our data support the CDC’s recommendation that cranial US be performed after Zika-exposed babies are born. In addition, there is clearly a need to follow these babies over time to gauge whether the brain anomalies we see in imaging affects language, motor and social skills.”

Companion editorial: Revealing the effects of Zika

In addition to Dr. Mulkey, study co-authors include Dorothy I. Bulas, M.D.Gilbert Vezina, M.D., Margarita Arroyave-Wessel, MPH,  Stephanie Russo, B.S, Youssef A. Kousa, D.O, Ph.D.Roberta L. DeBiasi, M.D., MS, Senior Author Adré J. du Plessis, M.B.Ch.B., MPH, all of Children’s National; Christopher Swisher, BS, Georgetown University and Caitlin Cristante, BS, Loyola University, both of  whose contributions included research performed at Children’s National; Yamil Fourzali, M.D., Armando Morales, M.D., both of Sabbag Radiologos; Liliana Encinales, M.D., Allied Research Society; Nelly Pacheco, Bacteriologa, Bio-Nep; Robert S. Lanciotti, Ph.D., Arbovirus Diseases Branch, Centers for Disease Control and Prevention; and Carlos Cure, M.D., BIOMELAB.

Research reported in this news release was supported by the IKARIA fund.

little girl in hosptial corridor

A growing list of factors that impact CKD severity for kids

little girl in hosptial corridor

Myriad biological and societal factors can impact the occurrence and accelerate progression of chronic kidney disease for children of African descent – including preterm birth, exposure to toxins during gestation and lower socioeconomic status – and can complicate these children’s access to effective treatments.

Myriad biological and societal factors can impact the occurrence and accelerate progression of chronic kidney disease (CKD) for children of African descent – including preterm birth, exposure to toxins during gestation and lower socioeconomic status – and can complicate these children’s access to effective treatments, according to an invited commentary published in the November 2018 edition of American Journal of Kidney Diseases.

Clinicians caring for “these vulnerable children should be mindful of these multiple competing and compounding issues as treatment options are being considered along the continuum from CKD to kidney failure to transplantation,” writes Marva Moxey-Mims, M.D., chief of the Division of Nephrology at Children’s National Health System.

The supplemental article was informed by lessons learned from The Chronic Kidney Disease in Children (CKiD) longitudinal study and conversations that occurred during the Frank M. Norfleet Forum for Advancement of Health, “African Americans and Kidney Disease in the 21st Century.”

African American children represent 23 percent of the overall population of kids with CKD in the CKiD study. While acquired kidney diseases can get their start during childhood when the diseases betray few symptoms, the full impact of illness may not be felt until adulthood. A number of factors can uniquely affect children of African descent, heightening risk for some kids who already are predisposed to suffering more severe symptoms. These include:

  • Preterm birth. African American children make up 36 percent of patients in CKiD with glomerular disease, which tends to have faster progression to end-stage renal disease. These diseases impair kidney function by weakening glomeruli, which impairs the kidneys’ ability to clean blood. Patients with a high-risk apolipoprotein L1 (APOL1) genotype already are at higher risk for focal segmental glomerulosclerosis (FSGS) and CKD. Researchers hypothesize that preterm birth may represent “a second hit that facilitates the development of glomerular damage resulting from the high-risk genotype.” According to the Centers for Disease Control and Prevention, 1 in 10 U.S. infants in 2016 was born preterm, e.g., prior to 37 weeks gestation.
  • APOL1 genotype. Compared with children who had a low-risk genotype and FSGS, children with a high-risk genotype had higher rates of uncontrolled hypertension, left ventricular hypertrophy, elevated C-reactive protein levels and obesity.
  • Human immunodeficiency viral (HIV) status. About 65 percent of U.S. children with HIV-1/AIDS are African American. In a recent nested case-control study of children infected with HIV in the womb, infants with high-risk APOL1 genotypes were 3.5 times more likely to develop CKD with viral infection serving as “a likely second hit.”
  • Access to kidney transplant. African American adults experience a faster transition to end-stage renal disease and are less likely to receive kidney transplants. African American children with CKD from nonglomerular diseases begin renal replacement therapy 1.6 years earlier than children of other races, after adjusting for socioeconomic status. Their wait for dialysis therapy was 37.5 percent shorter. However, these African American children waited 53.7 percent longer for transplants. Although donor blood types, genetic characteristics and other biological factors each play contributing roles, “these findings may reflect sociocultural and institutional differences not captured by socioeconomic status,” Dr. Moxey-Mims writes.

To alleviate future health care disparities, she suggests that additional research explore the impact of expanding services to pregnant women to lower their chances of giving birth prematurely; early childhood interventions to help boost children’s educational outcomes, future job prospects and income levels; expanded studies about the impact of environmental toxicities on prenatal and postnatal development; and heightened surveillance of preterm infants as they grow older to spot signs of kidney disease earlier to slow or prevent disease progression.

“Clinicians can now begin to take into account genetics, socioeconomic status and the impact of the built environment, rather than blaming people and assuming that their behavior alone brought on kidney disease,” Dr. Moxey-Mims adds. “Smoking, not eating properly and not exercising can certainly make people vulnerable to disease. However, there are so many factors that go into developing a disease that patients cannot control: You don’t control to whom you’re born, where you live or available resources where you live. These research projects will be useful to help us really get to the bottom of which factors we can impact and which things can’t we prevent but can strive to mitigate.”

The article covered in this post is part of a supplement that arose from the Frank M. Norfleet Forum for Advancement of Health: African Americans and Kidney Disease in the 21st Century, held March 24, 2017, in Memphis, Tennessee. The Forum and the publication of this supplement were funded by the Frank M. Norfleet Forum for Advancement of Health, the Community Foundation of Greater Memphis and the University of Tennessee Health Science Center.

newborn kangaroo care

Boosting parental resilience in the NICU

newborn kangaroo care

Preliminary findings from an ongoing cross-sectional study presented during the American Academy of Pediatrics 2018 National Conference & Exhibition suggests a strong relationship between resilience and the presence of social support, which may help parents to better contend with psychological distress related to their preterm infant being in the NICU.

Resilience is the remarkable ability of some people to bounce back and overcome stress, trauma and adversity. Being resilient is especially important for parents whose babies are born prematurely – a condition that predisposes these children to numerous health risks both immediately and far into the future and that often triggers a stay in the neonatal intensive care unit (NICU). According to the Centers for Disease Control and Prevention, about 1 in 10 U.S. infants was born preterm in 2016.

Parents of these vulnerable newborns who feel less resilient may experience more symptoms of psychological distress, including depression and anxiety. However, preliminary findings from an ongoing cross-sectional study presented during the American Academy of Pediatrics (AAP) National Conference & Exhibition suggests a strong relationship between resilience and the presence of social support, which may help parents to better contend with psychological distress related to their preterm infant being in the NICU.

“Oftentimes, parenting a child in the NICU can be a time of crisis for families,” says Ololade A. Okito, M.D., FAAP, a Neonatal-Perinatal Medicine Fellow at Children’s National Health System who presented the preliminary study results during the 2018 AAP conference. “Studies have indicated a relationship between higher resilience and a reduction in psychological stress in other groups of people. However, it was unclear whether that finding also applies to parents of infants in the NICU.”

Because parental psychological distress can impact the quality of parent-child interactions, the Children’s research team wants to evaluate the relationship between resilience and psychological distress in these parents and to gauge whether activities that parents themselves direct, like the skin-to-skin contact that accompanies kangaroo care, helps to bolster resiliency.

So far, they have analyzed data from 30 parents of preterm infants in the NICU and used a number of validated instruments to assess parental resilience, depressive symptoms, anxiety, NICU-related stress and perceived social support, including:

The infants were born at a mean gestational age of 29.2 weeks. When their newborns were 2 weeks old:

  • 44 percent of parents (16 of 30) reported higher resilience
  • 37 percent of parents (11 of 30) screened positive for having elevated symptoms of depression and
  • 33 percent of parents had elevated anxiety.

“These early findings appear to support a relationship between low parental resilience scores and higher scores for depression, anxiety and NICU-related stress. These same parents were less likely to participate in kangaroo care and had lower social support. By contrast, parents who had more social support – including  receiving support from family, friends and significant others – had higher resilience scores,” says Lamia Soghier, M.D., FAAP, CHSE, Medical Unit Director of Children’s Neonatal Intensive Care Unit and senior study author.

The study is an offshoot from “Giving Parents Support (GPS) after NICU discharge,” a large, randomized clinical trial exploring whether providing peer-to-peer parental support after NICU discharge improves babies’ overall health as well as their parents’ mental health. The research team hopes to complete study enrollment in early 2019.

American Academy of Pediatrics National Conference & Exhibition presentation

  • “Parental resilience and psychological distress in the neonatal intensive care unit (PARENT) study.”

Ololade A. Okito, M.D., FAAP, Neonatal-Perinatal Medicine Fellow and presenting author; Yvonne Yui, M.D.; Nicole Herrera, MPH, Children’s Research Institute; Randi Streisand, Ph.D., Chief, Division of Psychology and Behavioral Health; Carrie Tully, Ph.D.; Karen Fratantoni, M.D., MPH, Medical Director of the Complex Care Program; and Senior Author, Lamia Soghier, M.D., FAAP, CHSE, Medical Unit Director, Neonatal Intensive Care Unit; all of Children’s National Health System.

QUILT conference

Children’s National hosts Quality Improvement Leadership Training Course

QUILT conference

In October 2018, Children’s National hosted 20 neonatologists from 15 hospitals in China for a 10 day Quality Improvement Leadership Training Course focused on quality improvement principles and methodology. The course also featured presentations on hospital-wide quality improvement work and included speakers from the Quality & Safety Department, Nursing Quality, and the Neonatal Intensive Care Unit (NICU). The Performance Improvement team worked with the attendees on their own projects, such as reducing antibiotic use and increasing family-centered care in the NICU. The attendees then presented at the end of the course to their colleagues, as well as to five hospital presidents visiting from China.

Marva Moxey Mims

Making the case for a comprehensive national registry for pediatric CKD

Marva Moxey Mims

“It’s of utmost importance that we develop more sensitive ways to identify children who are at heightened risk for developing CKD.,” says Marva Moxey-Mims, M.D. “A growing body of evidence suggests that this includes children treated in pediatric intensive care units who sustained acute kidney injury, infants born preterm and low birth weight, and obese children.”

Even though chronic kidney disease (CKD) is a global epidemic that imperils cardiovascular health, impairs quality of life and heightens mortality, very little is known about how CKD uniquely impacts children and how kids may be spared from its more devastating effects.

That makes a study published in the November 2018 issue of the American Journal of Kidney Diseases all the more notable because it represents the largest population-based study of CKD prevalence in a nationally representative cohort of adolescents aged 12 to 18, Sun-Young Ahn, M.D., and Marva Moxey-Mims, M.D., of Children’s National Health System, write in a companion editorial published online Oct. 18, 2018.

In their invited commentary, “Chronic kidney disease in children: the importance of a national epidemiological study,” Drs. Ahn and Moxey-Mims point out that pediatric CKD can contribute to growth failure, developmental and neurocognitive defects and impaired cardiovascular health.

“Children who require renal-replacement therapy suffer mortality rates that are 30 times higher than children who don’t have end-stage renal disease,” adds Dr. Moxey-Mims, chief of the Division of Nephrology at Children’s National. “It’s of utmost importance that we develop more sensitive ways to identify children who are at heightened risk for developing CKD. A growing body of evidence suggests that this includes children treated in pediatric intensive care units who sustained acute kidney injury, infants born preterm and low birth weight, and obese children.”

At its early stages, pediatric CKD usually has few symptoms, and clinicians around the world lack validated biomarkers to spot the disease early, before it may become irreversible.

While national mass urine screening programs in Japan, Taiwan and Korea have demonstrated success in early detection of CKD, which enabled successful interventions, such an approach is not cost-effective for the U.S., Drs. Ahn and Moxey-Mims write.

According to the Centers for Disease Control and Prevention, 1 in 10 U.S. infants in 2016 was born preterm, prior to 37 weeks gestation. Because of that trend, the commentators advocate for “a concerted national effort” to track preterm and low birth weight newborns. (These infants are presumed to have lower nephron endowment, which increases their risk for developing end-stage kidney disease.)

“We need a comprehensive, national registry just for pediatric CKD, a database that represents the entire U.S. population that we could query to glean new insights about what improves kids’ lifespan and quality of life. With a large database of anonymized pediatric patient records we could, for example, assess the effectiveness of specific therapeutic interventions, such as angiotensin-converting enzyme inhibitors, in improving care and slowing CKD progression in kids,” Dr. Moxey-Mims adds.

Vittorio Gallo

Vittorio Gallo, Ph.D., honored with Senator Jacob Javits Award in the Neurosciences

Vittorio Gallo

Vittorio Gallo, Ph.D., Children’s Chief Research Officer, has been awarded a prestigious Senator Jacob Javits Award in the Neurosciences, which extends federal funding for Gallo’s lab for at least seven years. The long-term support is offered to “investigators with a history of exceptional talent, imagination and preeminent scientific achievement.”

Only National Institute of Neurological Disorders and Stroke (NINDS) staff members or NINDS Council members may nominate researchers for the coveted awards, named in honor of Sen. Jacob Javits, (R-New York). Before his death, Sen. Javits advocated for additional research in a wide variety of disorders of the brain and nervous system.

“It’s a great recognition from the neuroscience community and from NINDS for contributions to neuroscience and outstanding service to the neuroscience community,” Gallo says. “It’s also very exciting because it gives additional national visibility to our Center for Neuroscience Research and to Children’s National Health System, as one of the nation’s leading research institutions.”

Through the award, Gallo’s successful five-year Research Project Grant from the National Institutes of Health will be converted to a seven-year award. In the fourth year of federal funding, he can apply for a budgetary increase.

“Thanks to this funding, I predict we will be able to identify cellular and molecular mechanisms that underlie developmental delays in children who experienced neonatal brain injury,” Gallo says.

“We are really starting to understand this very complex problem: How does neonatal brain injury lead to developmental delays later in a child’s life? What are the mechanisms? We know there are cognitive and behavioral abnormalities that are common to children who have experienced hypoxia as newborns. But we don’t really know how these behavioral abnormalities arise at the physiological, cellular and molecular levels.”

Gallo says identifying these cellular targets will make it possible to tailor interventions that target distinct cell types at different times in the child’s life.

Recent work by Gallo’s lab includes a research paper published online Aug. 13, 2018, by Nature Communications that found chronic sublethal hypoxia is associated with locomotor miscoordination and long-term cerebellar learning deficits in a clinically relevant model of neonatal brain injury.

Natella Rakhamania

Natella Yurievna Rakhmanina named to regional HIV planning commission

Natella Rakhamania

Natella Yurievna Rakhmanina, M.D., Ph.D., FAAP, AAHIVS, director of Ryan White HIV Services at Children’s National Health System, was appointed a commissioner to the Washington, D.C., Regional Planning Commission on Health and HIV.

Dr. Rakhmanina will be among the District of Columbia board and commission appointees honored during a swearing-in ceremony on Sept. 17, 2018, at the Walter Washington Convention Center.

Looking back over the last decade, she says the District has made impressive progress in lowering the prevalence rate of human immunodeficiency virus (HIV), which in 2002 had 1,686 per 100,000 District residents diagnosed with AIDS.

“It was really high. I was stunned coming to clinic and seeing a large number of kids and adolescents in care and many suffering significant complications, as our treatment options were limited at the time,” she says.

Since that time, DC Health has made “incredible investments” and adopted innovative approaches, such as name-based reporting of HIV and a Red Carpet program, to ensure newly diagnosed people are quickly linked with care. As a proud partner of DC Health’s HIV/AIDS, Hepatitis, STD and TB Administration, Children’s National launched a campaign in 2009 to universally test adolescents for HIV in two pediatric emergency departments (ED), she says.

“All teenagers aged 13 and older who arrive for any medical diagnosis are offered an oral HIV test. Children’s National ED-based HIV screening program alone has tested 30,000 children at both of our emergency departments,” she says. “We’re still not at our goal. However, the prevalence of HIV had dropped to 1.9 percent in the latest department of health analysis. We are doing better. We have much fewer people dying from AIDS. We are diagnosing earlier.”

What’s more, trends in mother-to-child transmission, a major route of transmission for pediatric HIV, also have improved in D.C.

“In 2006, our maternal HIV transmission rates were among the highest in the nation. But, in 2013, 2014 and 2015 there were zero cases. We have seen some setbacks recently, however.  In 2016, there were three perinatally acquired cases and four in 2017, but these cases came out of the larger Metropolitan D.C. area,” she explains. “Every perinatally transmitted case for us is a red star. We work very closely with the regional departments of health. We really want to get back to zero cases of maternal transmission in the region.”

The regional planning commission meets several times per year to decide how to distribute federal funding in Washington and the Metropolitan D.C. area to support HIV prevention, diagnosis, treatment and care.

“My voice on the council is to make sure I speak up for services for mothers, children and adolescents,” Dr. Rakhmanina says. “The biggest challenge of HIV care remains treating children. There’s a good selection of medicines for adults, but not all are suited for kids. Young children in particular can’t be given one pill once a day. Really young children can’t swallow a pill. Using a liquid formulation, which kids prefer, may mean opening three different bottles twice daily and swallowing a liquid that often doesn’t taste good.”

Adolescents diagnosed with HIV also find medication adherence challenging, she says.

“At that age, they face a lot of challenges to self-acceptance and disease management, in part, because it’s not a physical disability. A young person with HIV may not feel anything,” she says. “They struggle with staying on daily medications. Many of them tell us they don’t want to think about HIV and face stigma.”

Another ongoing challenge is ensuring moms living with HIV remain on medicines after they’ve given birth.

“They’re tremendously committed to continuing treatment while pregnant: Treatment means their babies are born free of HIV,” she says. “That is a great success. Once the baby is born, many times the women bring their babies to be tested, but the woman’s own health becomes less of a priority. We see a drop in adherence once they have the baby.”

By serving on the commission, Dr. Rakhmanina aims to push to extend Children’s commitment to excellence beyond its walls.

toddler on a playground

Perinatal hypoxia associated with long-term cerebellar learning deficits and Purkinje cell misfiring

toddler on a playground

The type of hypoxia that occurs with preterm birth is associated with locomotor miscoordination and long-term cerebellar learning deficits but can be partially alleviated with an off-the-shelf medicine, according to a study using a preclinical model.

Oxygen deprivation associated with preterm birth leaves telltale signs on the brains of newborns in the form of alterations to cerebellar white matter at the cellular and the physiological levels. Now, an experimental model of this chronic hypoxia reveals that those cellular alterations have behavioral consequences.

Chronic sublethal hypoxia is associated with locomotor miscoordination and long-term cerebellar learning deficits in a clinically relevant model of neonatal brain injury, according to a study led by Children’s National Health System researchers published online Aug. 13, 2018, by Nature Communications. Using high-tech optical and physiological methods that allow researchers to turn neurons on and off and an advanced behavioral tool, the research team finds that Purkinje cells fire significantly less often after injury due to perinatal hypoxia. However, an off-the-shelf medicine now used to treat epilepsy enables those specialized brain cells to regain their ability to fire, improving locomotor performance.

Step out of the car onto the pavement, hop up to the level of the curb, stride to the entrance, and climb a flight of stairs. Or, play a round of tennis. The cerebellum coordinates such locomotor performance and muscle memory, guiding people of all ages as they adapt to a changing environment.

“Most of us successfully coordinate our movements to navigate the three-dimensional spaces we encounter daily,” says Vittorio Gallo, Ph.D., Children’s Chief Research Officer and the study’s senior author. “After children start walking, they also have to learn how to navigate the environment and the spaces around them.”

These essential tasks, Gallo says, are coordinated by Purkinje cells, large neurons located in the cerebellum that are elaborately branched like interlocking tree limbs and represent the only source of output for the entire cerebellar cortex. The rate of development of the fetal cerebellum dramatically increases at a time during pregnancy that often coincides with preterm birth, which can delay or disrupt normal brain development.

“It’s almost like a short circuit. Purkinje cells play a very crucial role, and when the frequency of their firing is diminished by injury the whole output of this brain region is impaired,” Gallo says. “For a family of a child who has this type of impaired neural development, if we understand the nature of this disrupted circuitry and can better quantify it, in terms of locomotor performance, then we can develop new therapeutic approaches.”

Study authors Aaron Sathyanesan, Ph.D., Joseph Abbah, B.Pharm., Ph.D., Srikanya Kundu, Ph.D. and Vittorio Gallo, Ph.D.

The research team leveraged a fully automated, computerized apparatus that looks like a ladder placed on a flat surface, encased in glass, with a darkened box at either end. Both the hypoxic and control groups had training sessions during which they learned how to traverse the horizontal ladder, coaxed out of the darkened room by a gentle puff of air and a light cue. Challenge sessions tested their adaptive cerebellar locomotor learning skills. The pads they strode across were pressure-sensitive and analyzed individual stepping patterns to predict how long it should take each to complete the course.

During challenge sessions, obstacles were presented in the course, announced by an audible tone. If learning was normal, then the response to the tone paired with the obstacle would be a quick adjustment of movement, without breaking stride, says Aaron Sathyanesan, Ph.D., co-lead author. Experimental models exposed to perinatal hypoxia showed significant deficits in associating that tone with the obstacle.

“With the control group, we saw fewer missteps during any given trial,” Sathyanesan says. “And, when they got really comfortable, they took longer steps. With the hypoxic group, it took them longer to learn the course. They made a significantly higher number of missteps from day one. By the end of the training period, they could walk along all of the default rungs, but it took them longer to learn how to do so.”

Purkinje cells fire two different kinds of spikes. Simple spikes are a form of constant activity as rhythmic and automatic as a heartbeat. Complex spikes, by contrast, occur less frequently. Sathyanesan and co-authors say that some of the deficits that they observed were due to a reduction in the frequency of simple spiking.

Two weeks after experiencing hypoxia, the hypoxic group’s locomotor performance remained significantly worse than the control group, and delays in learning could still be seen five weeks after hypoxia.

Gamma-aminobutyric acid (GABA), a neurotransmitter, excites immature neurons before and shortly after birth but soon afterward switches to having an inhibitory effect within in the cerebellum, Sathyanesan says. The research team hypothesizes that reduced levels of excitatory GABA during early development leads to long-term motor problems. Using an off-the-shelf drug to increase GABA levels immediately after hypoxia dramatically improved locomotor performance.

“Treating experimental models with tiagabine after hypoxic injury elevates GABA levels, partially restoring Purkinje cells’ ability to fire,” Gallo says. “We now know that restoring GABA levels during this specific window of time has a beneficial effect. However, our approach was not specifically targeted to Purkinje cells. We elevated GABA everywhere in the brain. With more targeted and selective administration to Purkinje cells, we want to gauge whether tiagabine has a more powerful effect on normalizing firing frequency.”

In addition to Gallo and Sathyanesan, Children’s co-authors include Co-Lead Author, Srikanya Kundu, Ph.D., and Joseph Abbah, B.Pharm., Ph.D., both of Children’s Center for Neuroscience Research.

Research covered in this story was supported by the Intellectual and Developmental Disability Research Center under award number U54HD090257.

Tory Peitz and Victoria Catalano

Making weight: Ensuring that micro preemies gain pounds and inches

Tory Peitz and Victoria Catalano

Tory Peitz, R.N., (left) and Victoria Catalano, RDN, LD, CNSC, CLC, (right) Pediatric Dietitian Specialist in the Neonatal Intensive Care Unit at Children’s National Health System, measure the length of a micro preemie who weighed 1.5 pounds at birth.

A quality-improvement project to standardize feeding practices for micro preemies – preterm infants born months before their due date –  helped to boost their weight and nearly quadrupled the frequency of lactation consultations ordered in the neonatal intensive care unit (NICU), a multidisciplinary team from Children’s National Health System finds.

According to the Centers for Disease Control and Prevention, about 1 in 10 infants in 2016 was preterm, born prior to completing 37 gestational weeks of pregnancy. Micro preemies are the tiniest infants in that group, weighing less than 1,500 grams and born well before their brain, lungs and organs like the liver are fully developed.

As staff reviewed charts for very low birth weight preterm infants admitted to Children’s NICU, they found dramatic variation in nutritional practices among clinicians and a mean decline in delta weight Z-scores, a more sensitive way to monitor infants’ weight gain along growth percentiles for their gestational age. A multidisciplinary team that included dietitians, nurses, neonatologists, a lactation consultant and a quality-improvement leader evaluated nutrition practices and determined key drivers for improving nutrition status.

“We tested a variety of strategies, including standardizing feeding practices; maximizing intended delivery of feeds; tracking adequacy of calorie, protein and micronutrient intake; and maximizing use of the mother’s own breast milk,” says Michelande Ridoré, MS, a Children’s NICU quality-improvement lead who will present the group’s findings during the Virginia Neonatal Nutrition Association conference this fall. “We took nothing for granted: We reeducated everyone in the NICU about the importance of the standardized feeding protocol. We shared information about whether infants were attaining growth targets during daily rounds. And we used an infographic to help nursing moms increase the available supply of breastmilk,” Ridoré says.

On top of other challenges, very low birth weight preterm infants are born very lean, with minimal muscle. During the third trimester, pregnant women pass on a host of essential nutrients and proteins to help satisfy the needs of the fetus’ developing muscles, bones and brain. “Because preterm infants miss out on that period in utero, we add fortification to provide preemies with extra protein, phosphorus, calcium and zinc they otherwise would have received from mom in the womb,” says Victoria Catalano, RDN, LD, CNSC, CLC, a pediatric clinical dietitian in Children’s NICU and study co-author. Babies’ linear growth is closely related to neurocognitive development, Catalano says. A dedicated R.N.  is assigned to length boards for Children’s highest-risk newborns to ensure consistency in measurements.

Infants who were admitted within the first seven days of life and weighed less than 1,500 grams were included in the study. At the beginning of the quality-improvement project, the infants’ mean delta Z-score for weight was -1.8. By December 2018, that had improved to -1.3. And the number of lactation consultation ordered weekly increased from 1.1 to four.

“We saw marked improvement in micro preemies’ nutritional status as we reduced the degree of variation in nutrition practices,” says Mary Revenis, M.D., NICU medical lead on nutrition and senior author for the research. “Our goal was to increase mean delta Z-scores even more. To that end, we will continue to test other key drivers for improved weight gain, including zinc supplementation, updating infants’ growth trajectories in the electronic medical record and advocating for expanded use of birth mothers’ breast milk,” Dr. Revenis says.

In addition to Ridoré, Catalano and Dr. Revenis, study co-authors include Caitlin Forsythe MS, BSN, RNC-NIC, lead author; Rebecca Vander Veer RD, LD, CNSC, CLC, pediatric dietitian specialist; Erin Fauer RDN, LD, CNSC, CLC, pediatric dietitian specialist; Judith Campbell, RN, IBCLC, NICU lactation consultant; Eresha Bluth MHA; Anna Penn M.D., Ph.D., neonatalogist; and Lamia Soghier M.D., Med., NICU medical unit director.