Neonatology

newborn in incubator

Neuroprotective effect of Src kinase in neonates affected by HIE

newborn in incubator

Hypoxic-ischemic encephalopathy (HIE) is a major cause of neonatal morbidity and mortality worldwide.

In a systematic review published by Frontiers in Neuroscience, and co-authored by Panagiotis Kratimenos, M.D., neonatologist at Children’s National Hospital, Ioannis Koutroulis, M.D., pediatric emergency medicine physician at Children’s National and Javid Ghaemmaghami, M.S., researcher with the Center for Neuroscience Research at Children’s National, it was concluded that Src kinase is an effective neuroprotective target in the setting of acute hypoxic injury.

The paper reviews hypoxic-ischemic encephalopathy (HIE), a major cause of neonatal morbidity and mortality worldwide (one in four perinatal deaths is attributed to hypoxic-ischemic). While therapeutic hypothermia has improved neurodevelopmental outcomes for some survivors of HIE, this treatment is only available to a subset of affected neonates. Src kinase, an enzyme central to the apoptotic cascade, is a potential pharmacologic target to preserve typical brain development after HIE. This paper, a product of collaboration for a Master’s Thesis with the Aristotle University School of Medicine, Thessaloniki, Greece, where Dr. Kratimenos holds the appointment of Visiting  Professor,  presents evidence of the neuroprotective effects of targeting Src kinase in preclinical models of HIE.

The systematic review shows that while heterogeneity and risk for bias were limiting factors, the overall results indicate that Src-i neuroprotective properties could be a promising therapeutic strategy for neonates after hypoxic events.

Read more about the full review.

illustration of a brain

Inducing strokes in newborns to treat hemimegalencephaly

“The number one thing people are perplexed by is how well these babies recover and how they can only live with half a brain,” said Tayyba Anwar, M.D., neonatal neurologist and co-director of the Hemimegalencephaly Program at Children’s National Hospital. “People think if a child has half a brain that’s damaged or dysplastic, how are they functioning? But babies are so resilient. It still amazes me.”

The big picture

Children’s National experts have pioneered a novel approach of inducing strokes to stop seizures and improve neurodevelopmental outcomes in newborns under three months old with hemimegalencephaly (HME).

The procedure, called an endovascular embolic hemispherectomy, can be safely used to provide definitive treatment of HME-related epilepsy in neonates and young infants, according to a study in the Journal of NeuroInterventional Surgery.

Prior to this approach, the standard treatment was an anatomic hemispherectomy — surgical removal of the affected half of the brain. But infants had to be at least three months old to undergo such a complex surgery. Delaying surgery meant the persistent seizures compromised the development of the healthy half of the brain.

What they’re saying

In this video, Dr. Anwar and Panagiotis Kratimenos, M.D., Ph.D., neonatologist and co-director of Research in Neonatology at Children’s National, discuss the critically important neonatal care provided to babies who undergo endovascular embolic hemispherectomy and how protocols have evolved with each case to make this less invasive approach a feasible early alternative to surgical hemispherectomy.

Drs. Anwar and Kratimenos are part of the multidisciplinary team of neonatal neurologists, neurointerventional radiologistsneonatologists and neurosurgeons performing endovascular hemispherectomies.

Abstract Happy 2022 New Year greeting card with light bulb

The best of 2022 from Innovation District

Abstract Happy 2022 New Year greeting card with light bulbA clinical trial testing a new drug to increase growth in children with short stature. The first ever high-intensity focused ultrasound procedure on a pediatric patient with neurofibromatosis. A low dose gene therapy vector that restores the ability of injured muscle fibers to repair. These were among the most popular articles we published on Innovation District in 2022. Read on for our full top 10 list.

1. Vosoritide shows promise for children with certain genetic growth disorders

Preliminary results from a phase II clinical trial at Children’s National Hospital showed that a new drug, vosoritide, can increase growth in children with certain growth disorders. This was the first clinical trial in the world testing vosoritide in children with certain genetic causes of short stature.
(2 min. read)

2. Children’s National uses HIFU to perform first ever non-invasive brain tumor procedure

Children’s National Hospital successfully performed the first ever high-intensity focused ultrasound (HIFU) non-invasive procedure on a pediatric patient with neurofibromatosis. This was the youngest patient to undergo HIFU treatment in the world.
(3 min. read)

3. Gene therapy offers potential long-term treatment for limb-girdle muscular dystrophy 2B

Using a single injection of a low dose gene therapy vector, researchers at Children’s National restored the ability of injured muscle fibers to repair in a way that reduced muscle degeneration and enhanced the functioning of the diseased muscle.
(3 min. read)

4. Catherine Bollard, M.D., M.B.Ch.B., selected to lead global Cancer Grand Challenges team

A world-class team of researchers co-led by Catherine Bollard, M.D., M.B.Ch.B., director of the Center for Cancer and Immunology Research at Children’s National, was selected to receive a $25m Cancer Grand Challenges award to tackle solid tumors in children.
(4 min. read)

5. New telehealth command center redefines hospital care

Children’s National opened a new telehealth command center that uses cutting-edge technology to keep continuous watch over children with critical heart disease. The center offers improved collaborative communication to better help predict and prevent major events, like cardiac arrest.
(2 min. read)

6. Monika Goyal, M.D., recognized as the first endowed chair of Women in Science and Health

Children’s National named Monika Goyal, M.D., M.S.C.E., associate chief of Emergency Medicine, as the first endowed chair of Women in Science and Health (WISH) for her outstanding contributions in biomedical research.
(2 min. read)

7. Brain tumor team performs first ever LIFU procedure on pediatric DIPG patient

A team at Children’s National performed the first treatment with sonodynamic therapy utilizing low intensity focused ultrasound (LIFU) and 5-aminolevulinic acid (5-ALA) medication on a pediatric patient. The treatment was done noninvasively through an intact skull.
(3 min. read)

8. COVID-19’s impact on pregnant women and their babies

In an editorial, Roberta L. DeBiasi, M.D., M.S., provided a comprehensive review of what is known about the harmful effects of SARS-CoV-2 infection in pregnant women themselves, the effects on their newborns, the negative impact on the placenta and what still is unknown amid the rapidly evolving field.
(2 min. read)

9. Staged surgical hybrid strategy changes outcome for baby born with HLHS

Doctors at Children’s National used a staged, hybrid cardiac surgical strategy to care for a patient who was born with hypoplastic left heart syndrome (HLHS) at 28-weeks-old. Hybrid heart procedures blend traditional surgery and a minimally invasive interventional, or catheter-based, procedure.
(4 min. read)

10. 2022: Pediatric colorectal and pelvic reconstructive surgery today

In a review article in Seminars in Pediatric Surgery, Marc Levitt, M.D., chief of the Division of Colorectal and Pelvic Reconstruction at Children’s National, discussed the history of pediatric colorectal and pelvic reconstructive surgery and described the key advances that have improved patients’ lives.
(11 min. read)

Hyperfine Swoop System

$1.6m grant to boost MRI access globally for maternal, child health

Researchers at Children’s National Hospital are investigating ways to bring more portable and accessible low-field magnetic resonance imaging (MRI) to parts of the world that lack access to this critical diagnostic tool, thanks to a grant from the Bill & Melinda Gates Foundation.

The nearly $1.6 million in funding will enable clinicians to better treat pediatric neurological conditions including ischemic brain injury, hydrocephalus, micro- and macrocephaly and more, using analysis tools that are designed to handle the loss in image quality and related challenges inherent to low-field MRI. The research brings together teams at Children’s National and Children’s Hospital Los Angeles — two organizations with extensive experience in designing processing software tools for pediatric brain MRI analysis and data enhancement.

The patient benefit

“For 30 years, MRI has primarily helped patients in high-income countries. Our team is thrilled by the prospect of expanding this powerful tool to patients coming from a wide range of nations, geographies and socioeconomic backgrounds,” said Marius George Linguraru, D.Phil., M.A., M.Sc., principal investigator at the Sheikh Zayed Institute for Pediatric Surgical Innovation (SZI). “Low-field MRI comes with great advantages including portability at the point of care of patients, lower clinical costs and the elimination of sedation for young children.”

Linguraru and his long-time collaborator, Natasha Lepore, Ph.D., principal investigator at The Saban Research Institute at Children’s Hospital Los Angeles, will analyze data from the brains of children from birth for the maternal and child health studies. The MRI data analyzed will form the basis for future studies of children’s brain anatomy in health and disease.

The big picture

Through the new grant, researchers will develop a suite of tools to help clinicians better analyze data and images from low-field MRI systems. These systems already have been integrated into interventional and observational studies to help characterize early neurodevelopmental patterns and identify drivers of abnormal development. They are also evaluating the efficacy of maternal and infant-focused interventions aimed at improving neurodevelopmental outcomes.

Why we’re excited

At Children’s National, SZI has installed a Hyperfine Swoop system, and Linguraru’s team is creating image enhancement tools tailored to the unique challenges of low-field MRI. Chief among them, conventional processing tools developed over the past several decades remain incompatible with the low-field data and require new software to take full advantage of the diagnostic power of imaging.

The work brings together a prestigious international consortium of scientists and clinicians from around the world to harness the power of computing and expand the reach of diagnostic imaging. Lepore said the team is eager to bring modern medical imaging to parts of the world that have missed its many benefits.

“Children’s brain development in underserved areas can be affected by so many factors, like malnutrition or anemia,” Lepore said. “The software we will design for the Hyperfine scanners will improve research into these factors, so the optimal interventions can be designed. We are excited to bring our expertise to this important and timely project.”

Baby on ventilator

Autonomic markers of extubation readiness in premature infants

Baby on ventilator

Premature infants often require a breathing tube and mechanical ventilation as a mainstay in their therapy. It can be difficult to predict when these patients are ready to come off the ventilator (extubate).

Premature infants often require a breathing tube and mechanical ventilation as a mainstay in their therapy. It can be difficult to predict when these patients are ready to come off the ventilator (extubate). In a study from Pediatric Research, experts from Children’s National Hospital describe a model to predict the success of extubation using markers of autonomic tone (rest and digest versus fight or flight response). This study was led by Suma Hoffman, M.D., neonatologist and co-authored by Adré J. du Plessis, M.B.Ch.B., M.P.H., division chief of Prenatal Pediatrics Institute, Sarah Schlatterer, M.D., prenatal and neonatal neurologist, and Rathinaswamy B. Govindan, Ph.D.

The team deployed a study of 89 infants less than 28 weeks. Heart rate variability (HRV) metrics 24 hours prior to extubation were compared for those with and without extubation success within 72 hours. Receiver-operating curve analysis was conducted to determine the predictive ability of each metric and a predictive model was created.

Conclusions show that extubation success is associated with HRV. The authors demonstrate an autonomic imbalance with low sympathetic and elevated parasympathetic tone in those who failed. α1, a marker of sympathetic tone, was noted to be the best predictor of extubation success especially when incorporated into a clinical model.

Learn more about the study in Pediatric Research.

Illustration of brain and brainwaves

Effective treatment for children with hemimegalencephaly

Illustration of brain and brainwaves

Anatomic or functional hemispherectomy are established neurosurgical treatment options and are recommended for effective seizure control and improved neurodevelopmental outcome in patients with HME.

Endovascular hemispherectomy can be safely used to provide definitive treatment of hemimegalencephaly (HME) related epilepsy in neonates and young infants when intraprocedural events are managed effectively, a new study finds.

The authors of the study, which published in the Journal of NeuroInterventional Surgery, add that this less invasive novel approach should be considered a feasible early alternative to surgical hemispherectomy.

Why it matters

Anatomic or functional hemispherectomy are established neurosurgical treatment options and are recommended for effective seizure control and improved neurodevelopmental outcome in patients with HME. Hemispherectomy in the neonate, however, is associated with high surgical risks and most neurosurgeons defer surgical hemispherectomy until the patient is at least 8 weeks old. This delay comes at a significant neurocognitive cost as the uncontrolled seizures during this time of deferred surgery have a deleterious effect on future neurocognitive outcome.

Why we’re excited

“The procedure we have developed, endovascular hemispherectomy by transarterial embolization, acutely stops seizures and this cessation of seizures has been sustained in each of the treated patients,” says Monica Pearl, M.D., director of the Neurointerventional Radiology Program at Children’s National Hospital and the study’s lead author.

This treatment option – performed early in life – provides hope and a better quality of life for these patients post procedure.

What’s been the hold-up in the field?

Currently, the only effective treatment option is hemispherectomy. With the patient population of neonates and young infants, hemispherectomy has a very high mortality and complication rate resulting in most neurosurgeons deferring treatment until at least 8 weeks. This leaves neonates and young infants without effective treatment options and on multiple antiseizure medications in an effort to control the seizures

How does this work move the field forward?

“Embolization provides a highly effective treatment option that acutely stops seizures during a time period of critical neurodevelopment and one in which traditional open neurosurgical procedures are not viable options,” Dr. Pearl says. “Specifically, we can consider and perform embolization in children as young as one or two weeks of age rather than waiting until at least 8 weeks of age. The impact of earlier intervention – acutely stopping the seizures, reducing the dose and number of antiseizure medications and avoiding more invasive surgical procedures (hemispherectomy, shunt placement) – appears to be dramatic in our recent series. We are conducting long term studies to assess this effect on neurodevelopmental outcome.”

How is Children’s National leading in this space?

Dr. Pearl and the late Taeung Chang, M.D., neurologist at Children’s National, pioneered this concept and treatment pathway. The multidisciplinary team is led by Dr. Pearl, who has performed all the embolization procedures (transarterial embolization/endovascular hemispherectomy) and Tayyba Anwar, M.D., Co-Director, Hemimegalencephaly Program at Children’s National Hospital. Our epilepsy team, neonatology team and neurosurgery team work collaboratively managing the patients before and after each procedure.

pregnant woman

Early SARS-CoV-2 exposure may impact infant development

pregnant woman

The study found that some infants with in utero or early-life exposure to SARS-CoV-2 had borderline to low developmental screening scores.

Early SARS-CoV-2 exposure may impact neurodevelopment, especially among infants exposed in utero to symptomatic parents. This is according to a new study led by Sarah Mulkey, M.D., Ph.D., prenatal-neonatal neurologist in the Prenatal Pediatrics Institute at Children’s National Hospital. Dr. Mulkey and team conclude that vaccination and other precautions to reduce early-in-life infection may protect against neurodevelopmental delays. Children with early SARS-CoV-2 exposure should have additional long-term screening for neurodevelopmental delays.

Children’s National Hospital leads the way

The developing brain is vulnerable to both direct and indirect effects of infection during pregnancy and in the early neonatal period. To chart the impact of this exposure, the team created a clinical follow-up protocol in the Congenital Infection Program at Children’s National to chart the development of 34 infants exposed to SARS-CoV-2 in utero or in the neonatal period.

What we hoped to discover

“We conducted this study because we know that infants, when exposed to maternal COVID-19 infection in utero can be exposed to inflammation, fever and an abnormal intrauterine environment. SARS-CoV-2 can also affect the placenta, and in turn, the developing brain,” Dr. Mulkey shared with Healio.

This study aimed to determine if infants with early SARS-CoV-2 exposure developed abnormal neurodevelopment in infancy and the factors that may impact neurodevelopment differences. The study found that some infants with in utero or early-life exposure to SARS-CoV-2 had borderline to low developmental screening scores, most common among babies born to mothers with symptomatic COVID-19. Researchers followed the infants in their first months of life, gauging how the exposure affected their neurologic development. Results were demonstrated using a screening test called the Ages & Stages Questionnaires (ASQ), and those whose scores were borderline or low were most often born to mothers with symptomatic COVID-19.

Why it matters

In conducting this study, the team found that babies born during the pandemic, specifically under these conditions, do, in fact, require additional follow-up in the early stages of life. We may also see more differences in developmental outcomes as children get older.

“Any measure we can take to help prevent infections for mothers in their pregnancy can improve long-term developmental outcomes for children,” says Dr. Mulkey.

Other members of the Children’s National team that contributed to this work include Roberta L. DeBiasi, M.D., M.S.; Meagan E. Williams, M.S.P.H.; Nadia Jadeed, R.N.C.; Anqing Zhang, Ph.D.; and Smitha Israel, B.S.N.

Dr. Mulkey also published a recent article in the American Journal of Obstetrics & Gynecology that found the COVID-19 vaccine may protect pregnant women from SARS-CoV-2 placentitis and stillbirth. This work builds upon Dr. Mulkey’s longitudinal studies on Zika virus infection in pregnancy and long-term impacts on the child, funded by the Thrasher Research Fund and the National Institutes of Health.

Sarah Mulkey

Exposure to Zika in utero may produce neurodevelopmental differences

Sarah Mulkey

“There are still many unanswered questions about the long-term impacts of Zika on children exposed in utero,” says Sarah Mulkey, M.D., Ph.D., a prenatal-neonatal neurologist in the Prenatal Pediatrics Institute at Children’s National Hospital.

Children who are exposed to the Zika virus while in the womb, but who are not subsequently diagnosed with Zika-related birth defects and congenital Zika syndrome (CZS), may still display differences in some aspects of cognitive development, mood and mobility compared to unexposed children, reports a study published in Pediatric Research. These findings suggest that Zika-exposed children may need some additional support and monitoring as they get older.

“There are still many unanswered questions about the long-term impacts of Zika on children exposed in utero,” says Sarah Mulkey, M.D., Ph.D., a prenatal-neonatal neurologist in the Prenatal Pediatrics Institute at Children’s National Hospital and the study’s first author. “These findings are another piece of the puzzle that provides insight into the long-term neurodevelopment of children with prenatal Zika virus exposure. Further evaluation is needed as these children get older.”

It has not been clear how children who were exposed to the Zika virus in the womb during the 2015–2017 epidemic, but who did not develop CZS and serious neurological complications, will develop as they get older.

Dr. Mulkey and colleagues examined the neurodevelopment of 55 children aged 3-5 years who were exposed to Zika in the womb in Sabanalarga, Colombia, and compared them to 70 control children aged 4-5 years who had not been exposed to Zika. Assessments occurred between December 2020 and February 2021. Health professionals tested the children’s motor skills (such as manual dexterity, aiming and catching, and balance) and their readiness for school (including knowledge of colors, letters, numbers and shapes). Parents completed three questionnaires providing information about their child’s cognitive function (such as memory and emotional control), behavioral and physical conditions (such as responsibility and mobility), and their parenting experience (including whether they felt distress).

Parents of Zika-exposed children reported significantly lower levels of mobility and responsibility compared to control children, although differences in cognitive function scores were not significant. Additionally, parents of 6 (11%) Zika-exposed children reported mood problems compared to 1 (1%) of control children, and Zika-exposed parents were significantly more likely to report parental distress.

Professional testing revealed no significant differences in the Zika-exposed children’s manual dexterity, such as their ability to catch an object or post a coin through a slot, compared to the control children. Both Zika-exposed and control children also scored lowly on readiness for school.

The authors highlight that parental responses may have been influenced by the Zika-exposed children’s parents’ perceptions or increased worry about the development of their child. Some differences in results may also have been caused by the age – and therefore developmental – differences between the groups of children.

The authors conclude that while these Zika-exposed children are making progress as they develop, they may need additional support as they prepare to start school.

Dr. Mulkey is committed to studying the long-term neurodevelopmental impacts that viruses like Zika and SARS-CoV-2 have on infants born to mothers who were infected during pregnancy through research with the Congenital Infection Program at Children’s National and in collaboration with colleagues in Colombia.

Depressed mom sitting on couch with infant

Improving post-partum depression screening in the NICU and ED

Depressed mom sitting on couch with infant

A universal screening program is a critical first step for hospitals caring for postpartum caregivers, both inpatient and outpatient.

Perinatal Mood and Anxiety Disorders (PMADs) — particularly postpartum depression — are more prevalent among parents who have newborns admitted to a Neonatal Intensive Care Unit (NICU). Children’s National Hospital sought to increase the number of parents screened for PMADs in the NICU and Emergency Department (ED), where there was a high incidence of people seeking care. The team found that a universal screening program is a critical first step for hospitals caring for postpartum caregivers, both inpatient and outpatient.

The big picture

Without treatment, PMADs affect the caregiver and disturb their interaction with their infant, impacting the child’s cognitive and emotional development.

“What surprised us was how many people we saw that screen positive for postpartum depression and anxiety disorders. The percentage of our population is higher than what is reported in the literature,” said Sofia Perazzo, M.D., program lead at Children’s National.

What we did

The team initiated a multifaceted approach, using an electronic version of the Edinburgh Postpartum Depression Screening tool.

  • A part-time family services support staff was hired to screen caregivers. Funding later expanded the team to cover more days and hours.
  • Real-time social work interventions and linkage to resources were provided to all caregivers.
  • A part-time psychologist was hired to provide telemedicine therapy to NICU parents.
  • Remote screening was implemented for those who could not be screened in-person.

In the NICU, 1,596 parents were approached from August 2018-April 2022. Of those approached, 90% completed the screen, 26% screened positive, 4% indicated having suicidal thoughts and about 13% of caregivers were fathers.

What we learned

  • Action plans need to be in place for positive screens at start.
  • Electronic tools can aid significantly in expanding screening.
  • Trained personnel and multidisciplinary approaches are key.
  • Screening in two different settings can be challenging as they present different systems.
  • Being flexible and adapting tools and the system are key to success.
  • Good team communication with the nurse is vital.

“We’re working on improving our screening system to make it more efficient. We also realized that we need to make more resources available to these families,” said Dr. Perazzo. “Our team is constantly looking for community resources that can help them along the way. There is also a big need to educate our families on mental health issues, so we use this encounter as an opportunity to do that as well.”

This work was made possible by an investment from A. James & Alice B. Clark Foundation to Children’s National that aims to provide families with greater access to mental health care and community resources. Read more about the work of the Perinatal Mental Health Task Force at Children’s National.

Platinum ELSO Award logo

Children’s National receives Platinum ELSO Award of Excellence

Platinum ELSO Award logoIn 1984, Children’s National Hospital became the first children’s hospital to offer Extracorporeal Membrane Oxygenation (ECMO) and remains one of the largest ECMO programs in the nation, led by Billie Lou Short, M.D., chief of the Division of Neonatology at Children’s National. This year, the Children’s National ECMO Program was recognized by the Extracorporeal Life Support Organization (ELSO) with the Platinum ELSO Award of Excellence in Extracorporeal Life Support. This award recognizes centers that demonstrate an exceptional commitment to evidence-based processes and quality measures, staff training and continuing education, patient satisfaction and ongoing clinical care.

By being designated as a Center of Excellence with ELSO, Children’s National has demonstrated extraordinary achievement in the following three categories:

  • Excellence in promoting the mission, activities and vision of ELSO
  • Excellence in patient care by using the highest quality measures, processes and structures based upon evidence
  • Excellence in training, education, collaboration and communication supporting ELSO guidelines that contributes to a healing environment for families, patients and staff

“As a member of the Founding Steering Committee of the ELSO organization which started in 1989, the goal was to bring critical care providers doing this highly technical therapy together to develop quality outcome data and standards of care,” says Dr. Short. “ELSO is now the international organization that most programs — neonatal, pediatric and adult — around the world belong to. So, it is an honor this year to have received the ELSO Award of Excellence at the platinum level representing the amazing Extracorporeal Life Support Team we have at Children’s National, caring for patients in all three ICUs.”

Join Children’s National at our 39th annual symposium, ECMO and the Advanced Therapies for Cardiovascular and Respiratory Failure, on February 26-March 1, 2023. Learn more at ecmomeeting.com.

pregnant woman getting vaccinated

COVID-19 vaccine may protect pregnant women from SARS-CoV-2 placentitis and stillbirth

pregnant woman getting vaccinated

In a new article published in the American Journal of Obstetrics & Gynecology, researchers conclude that the vaccine not only protects pregnant women but may also be lifesaving for their unborn children.

Stillbirth is a recognized complication of COVID-19 in pregnant women caused by harmful changes to the placenta induced by the virus. Termed SARS-CoV-2 placentitis, it can render the placenta incapable of providing oxygen to the fetus, leading to stillbirth and neonatal death. Researchers now suggest that pregnant women who get the COVID-19 vaccine may be protected from SARS-CoV-2 placentitis and stillbirth. In a new article published in the American Journal of Obstetrics & Gynecology, researchers conclude that the vaccine not only protects pregnant women but may also be lifesaving for their unborn children.

The extensive examination of published literature involved reviewing nearly 100 papers looking at COVID-19’s impacts on pregnant women and the effects on the placenta and pregnancy outcome. Sarah Mulkey, M.D., Ph.D., a prenatal-neonatal neurologist in the Division of Prenatal Pediatrics at Children’s National Hospital and co-author of the article, says the findings make a strong case for vaccination.

“The COVID-19 virus fortunately does not cause birth defects like other viruses such Zika, but it can cause severe injury to the placenta that can result in stillbirth and other pregnancy complications,” says Dr. Mulkey. “I hope patients who are pregnant or planning to become pregnant can learn how the COVID vaccine may help keep them and their baby healthy throughout pregnancy from some of the worst effects of this virus.”

While stillbirths can have many causes, the data analyzed supports that the COVID-19 vaccine is beneficial for pregnancies and for reducing the risk of stillbirth by reducing the risk of the virus impacting the placenta.

“In the multiple reports of SARS-CoV-2 placentitis that have been associated with stillbirths and neonatal deaths, none of the mothers had received COVID-19 vaccinations,” says David Schwartz, M.D., lead author, epidemiologist and perinatal pathologist. “And although not constituting proof, we’re not aware, either personally, via collegial networks, or in the published literature, of any cases of SARS-CoV-2 placentitis causing stillbirths among pregnant women having received the COVID-19 vaccine.”

Earlier in 2022, Dr. Schwartz led a team from 12 countries that found SARS-CoV-2 placentitis destroyed an average of 77.7% of placental tissue, resulting in placental insufficiency and fetal death, all occurring in unvaccinated mothers.

Fortunately, the large majority of pregnancies affected by a COVID-19 infection do not result in stillbirth. The development of SARS-CoV-2 placentitis is complex and likely involves both viral and immunological factors. The characteristics of a SARS-CoV-2 variant may also affect risk.

“Placental pathology is an important component in understanding the pathophysiology of SARS-CoV-2 infection during pregnancy,” says Dr. Mulkey.

As part of the Congenital Infection Program at Children’s National, Dr. Mulkey has been following infants born to mothers who had SARS-CoV-2 infection during pregnancy since the beginning of the pandemic. She will present the results of the early neurodevelopment of these infants at ID Week in Washington, D.C., on Oct. 22, 2022. Dr. Mulkey will also lead the neurodevelopmental follow-up of a large cohort of infants born to mothers with SARS-CoV-2 infection during pregnancy to better understand any long-term neurological effects to offspring.

The study builds upon Dr. Mulkey’s longitudinal studies on Zika virus infection in pregnancy and long-term impacts on the child that is funded by the Thrasher Research Fund.

baby getting heel prick

Researchers study murky findings in newborn screening panels with $3.7m NIH grant

baby getting heel prick

Children’s National received a grant to investigate the impact of newborn screening on families who receive an uncertain prognosis.

The National Institutes of Health (NIH) awarded Children’s National Hospital a $3.7 million grant to investigate the impact of newborn screening on the growing population of families who leave the testing with an uncertain prognosis.

Following the families longitudinally allows for a real-time view of the experiences of these children, sometimes referred to as “patients in waiting.”

Newborn screening is part of a universal, mandatory state health program that helps to identify inherited conditions that can affect a child’s health and survival. Millions of babies are screened annually for genetic, metabolic and endocrine disorders, using a few drops of blood from a prick to the heel; additional tests are done at the bedside such as hearing and heart screening. Sometimes, however, the results create medical odysseys and flag conditions that may never result in symptoms.

“For its first 50 years, newborn screening presented relatively consistent outcomes,” said principal investigator Beth Tarini, M.D., M.S., M.B.A., who serves as the associate director of the Center for Translational Research at Children’s National. “However, in the 21st century, new screening tests have created more ambiguous findings. As a result, we cannot accurately predict what type of symptoms a child may develop, when or if they will develop them, or how severe they will be. This is a lot to ask parents to deal with after the birth of a new child who appears otherwise healthy.”

Why it matters

The uncertainty can take a significant toll on parents by creating fear, anxiety and the medicalization of a child. However, to date, little long-term data exist to inform the care for these children. Ethically, that gap leaves clinicians unsure of how to weigh the benefit and harm of mandatory newborn screening programs. From a policy perspective, the drought of information leads to questions about how best to add disorders to newborn screening panels – an issue that will likely only grow as technology allows us to test for more conditions.

“We have a new group of children growing up and wondering when – or if – they will ever develop signs or symptoms of a disease,” Dr. Tarini said. “For some families, the information is an opportunity. For others, it becomes a burden. We owe it to these families to understand their experience and chart a sensible path forward to help them.”

What’s next

The four-year study will bring together researchers at Children’s National and Case Western University to analyze data and patient interviews from families in Virginia, Iowa and Oregon. The research team will include experts in newborn screening, genetics, health services, genetic counseling, psychology, bioethics and biostatistics.

Brain illustration

Paving the way toward better understanding and treatment of neonatal brain injuries

Brain illustration

The Gallo Lab’s latest research finds reduced expression of Sirt2 in the white matter of premature human infants and characterizes its role in white matter of the brain in normal conditions and during hypoxia.

Changes in myelination due to diffuse white matter injury are a common consequence of premature birth and hypoxic-ischemic injury due to asphyxia of sick term-born newborns. Hypoxic damage during the neonatal period can lead to motor disabilities and cognitive deficits with long-term consequences, including cerebral palsy, intellectual disability or epilepsy, which are often due to cellular and functional abnormalities.

The Gallo Lab, within the Center for Neuroscience Research at Children’s National Hospital, is focused on studying postnatal neural development and the impact of injury and disease on development and regeneration of neurons and glia. Their latest research, published in Nature Communications, finds reduced expression of Sirt2 in the white matter of premature human infants (born earlier than 32 weeks of gestation) and characterizes its role in white matter of the brain in normal conditions as well as during hypoxia.

What it means

The lab previously identified Sirt1 as important for the proliferative regenerative response of oligodendrocyte progenitor cells in response to chronic neonatal hypoxia. This new study characterizes the function of Sirt2 and finds that it acts as a critical promoter of oligodendrocyte differentiation during both normal brain development and after hypoxia.

It’s likely this reduced expression of Sirt2 contributes to the arrest in oligodendrocyte maturation and myelination failure seen in extremely low gestational age neonates. Therefore, targeting Sirt2 may be an opportunity to capture the early and small window of opportunity for therapeutic intervention.

How this moves the field forward

Sirtuins have been shown to play crucial therapeutic roles in various diseases, including aging, neurodegenerative disorders, cardiovascular disease and cancer. Identifying Sirt2 as a major regulator of white matter development and recovery and increasing the understanding of its protein and genomic interactions opens new avenues for Sirt2 as a therapeutic target for white matter injury in premature babies.

Why we’re excited

Interestingly, the team found that overexpression of Sirt2 in oligodendrocyte progenitor cells, but not mature oligodendrocytes, restores oligodendrocyte populations after hypoxia through enhanced proliferation and protection from apoptosis. This is exciting because:

  • It tells us that Sirt2 expression is very important for the transition from progenitor to differentiated oligodendrocyte.
  • It’s the first report, to the team’s knowledge, of Sirt2 regulating cell survival of oligodendrocytes.

Read more in Nature Communications

US News Badges

Children’s National named to U.S. News & World Report’s Best Children’s Hospitals Honor Roll

US News BadgesChildren’s National Hospital in Washington, D.C., was ranked No. 5 nationally in the U.S. News & World Report 2022-23 Best Children’s Hospitals annual rankings. This marks the sixth straight year Children’s National has made the list, which ranks the top 10 children’s hospitals nationwide. In addition, its neonatology program, which provides newborn intensive care, ranked No.1 among all children’s hospitals for the sixth year in a row.

For the twelfth straight year, Children’s National also ranked in all 10 specialty services, with seven specialties ranked in the top 10.

“In any year, it would take an incredible team to earn a number 5 in the nation ranking. This year, our team performed at the very highest levels, all while facing incredible challenges, including the ongoing pandemic, national workforce shortages and enormous stress,” said Kurt Newman, M.D., president and chief executive officer of Children’s National. “I could not be prouder of every member of our organization who maintained a commitment to our mission. Through their resilience, Children’s National continued to provide outstanding care families.”

“Choosing the right hospital for a sick child is a critical decision for many parents,” said Ben Harder, chief of health analysis and managing editor at U.S. News. “The Best Children’s Hospitals rankings spotlight hospitals that excel in specialized care.”

The annual rankings are the most comprehensive source of quality-related information on U.S. pediatric hospitals and recognizes the nation’s top 50 pediatric hospitals based on a scoring system developed by U.S. News.

The bulk of the score for each specialty service is based on quality and outcomes data. The process includes a survey of relevant specialists across the country, who are asked to list hospitals they believe provide the best care for patients with the most complex conditions.

The seven Children’s National specialty services that U.S. News ranked in the top 10 nationally are:

The other three specialties ranked among the top 50 were cardiology and heart surgerygastroenterology and gastro-intestinal surgery, and urology.

Dr. Limperopoulos talks to a mom

Pandemic-related stressors in pregnant women affect fetal brain development

Dr. Limperopoulos talks to a mom

Dr. Catherine Limperopoulos walking with a mom.

Prolonged levels of stress and depression during the COVID-19 pandemic contributed to altering key features of fetal brain development — even if the mother was not infected by the virus. This is what a study published in Communications Medicine suggests after following more than 200 pregnant women. The study, led by Children’s National Hospital experts, emphasized the need for more scientific inquiry to shed light on the long-term neurodevelopmental consequences of their findings and COVID-19 exposures on fetal brain development.

“Understanding how contemporary stressors may influence fetal brain development during pregnancy has major implications for basic science and informing public policy initiatives,” said Catherine Limperopoulos, Ph.D., chief and director of the Developing Brain Institute at Children’s National and senior author of the study. “With this work, we are able to show there’s a problem, it’s happening prenatally, and we can use this model to start exploring how we can reduce stress in moms and support unborn babies.”

To better understand the effects of environmental exposures on the fetus during pregnancy, further confirmation of the team’s latest findings is needed by ruling out other possibilities, such as maternal nutrition, financial security and genetic factors.

The psychosocial impact of COVID-19 on fetal brain development remains vastly understudied. The neurologic underpinnings of fetal development that turn into psycho-behavioral disorders later in life, including bipolar disorder, mood disorder or anxiety disorder, remain complex and difficult to explain.

Among the 202 participants from the Washington D.C. metropolitan area, 137 were part of the pre-pandemic cohort and 65 were part of the pandemic cohort.

Through advanced MRI imaging techniques and reconstruction of high-resolution 3D brain models, the researchers found a reduction of fetal white matter, hippocampal and cerebellar volumes and delayed brain gyrification in COVID-19 pandemic-era pregnancies. Validated maternal stress, anxiety and depression scales were also used to compare the scores between the two cohorts.

This study builds upon previous work from the Developing Brain Institute led by Limperopoulos, which discovered that anxiety in pregnant women appears to affect the brain development of their babies. Her team also found that maternal mental health, even in high socioeconomic status, alters the structure and biochemistry of the developing fetal brain, emphasizing the importance of mental health support for pregnant women.

“We’re looking at modifiable conditions,” said Limperopoulos. “What’s clear is the next frontier is intervening early to see how we can prevent or reduce stress in the mom’s current setting.”

crawling baby

Gene-targeting may help prevent or recover neonatal brain injuries

crawling baby

The findings of a new pre-clinical study published in The Journal of Neuroscience are helping pave the way toward better understanding, prevention and recovery of neonatal brain injuries.

The findings of a new pre-clinical study published in The Journal of Neuroscience are helping pave the way toward better understanding, prevention and recovery of neonatal brain injuries. During pregnancy, the fetus normally grows in low oxygen conditions. When babies are born preterm, there is an abrupt change into a high oxygen environment which may be higher than the baby can tolerate. These preterm babies often need support to breathe because their lungs are immature. If the oxygen they receive is too high, oxygen-free radicals can form and cause cell death.

Premature infants have underdeveloped antioxidant defenses that prevent or delay some types of cell damage under normal conditions. In a high oxygen environment, these underdeveloped defenses cannot fully protect against oxidative stress, damaging different brain regions without available treatments or preventative measures.

“I am thrilled that we identified a defect in a specific cell population in the hippocampus for memory development,” said Vittorio Gallo, Ph.D., interim chief academic officer and interim director of the Children’s National Research Institute, and principal investigator for the District of Columbia Intellectual and Developmental Disabilities Research Center. “I did not think we would be able to do it at a refined level, identifying cell populations sensitive to oxidative stress and its underlying signaling pathway and molecular mechanism.”

Vittorio Gallo

“I am thrilled that we identified a defect in a specific cell population in the hippocampus for memory development,” said Vittorio Gallo, Ph.D.

Children’s National Hospital experts found that oxidative stress over-activates a glucose metabolism enzyme, GSK3β, altering hippocampal interneuron development and impairing learning and memory, according to the pre-clinical study. The researchers also inhibited GSK3β in hippocampal interneurons, reversing these cellular and cognitive deficits.

The role of oxidative stress in the developing hippocampus, as well as GSK3β involvement in oxidative stress-induced neurodevelopmental disorders and cognitive deficits, have both been unexplored until now. Goldstein et al. suggest the study paves the way for the field as a viable approach to maximize functional recovery after neonatal brain injury.

To better understand the mechanisms underlying neonatal brain injury, the researchers mimicked the brain injury by inducing high oxygen levels in a pre-clinical model for a short time. This quest led to unlocking the underpinnings of the cognitive deficits, including the pathophysiology and molecular mechanisms of oxidative damage in the developing hippocampus.

Once they identified what caused cellular damage, the researchers used a gene-targeted approach to reduce GSK3β levels in POMC-expressing cells or Gad2-expressing interneurons. By regulating the levels of GSK3β in interneurons ⁠— but not in POMC-expressing cells — inhibitory neurotransmission was significantly improved and memory deficits due to high oxygen levels were reversed.

pregnant woman by window

Stress during pregnancy may hinder cognitive development

pregnant woman by window

This is the first study to shed light on an important link between altered in-utero fetal brain development and the long-term cognitive development consequences for fetuses exposed to high levels of toxic stress during pregnancy.

Women’s elevated anxiety, depression and stress during pregnancy altered key features of the fetal brain, which subsequently decreased their offspring’s cognitive development at 18 months. These changes also increased internalizing and dysregulation behaviors, according to a new study by Children’s National Hospital published in JAMA Network Open. Researchers followed a cohort of 97 pregnant women and their babies. The findings further suggest that persistent psychological distress after the baby is born may influence the parent-child interaction and infant self-regulation.

This is the first study to shed light on an important link between altered in-utero fetal brain development and the long-term cognitive development consequences for fetuses exposed to high levels of toxic stress during pregnancy. While in the womb, the researchers observed changes in the sulcal depth and left hippocampal volume, which could explain the neurodevelopment issues seen after birth. Once they grow into toddlers, these children may experience persistent social-emotional problems and have difficulty establishing positive relationships with others, including their mothers. To further confirm this, future studies with a larger sample size that reflect more regions and populations are needed.

“By identifying the pregnant women with elevated levels of psychological distress, clinicians could recognize those babies who are at risk for later neurodevelopmental impairment and might benefit from early, targeted interventions,” said Catherine Limperopoulos, Ph.D., chief and director of the Developing Brain Institute at Children’s National and senior author of the study.

Catherine Limperopoulos

“By identifying the pregnant women with elevated levels of psychological distress, clinicians could recognize those babies who are at risk for later neurodevelopmental impairment and might benefit from early, targeted interventions,” said Catherine Limperopoulos, Ph.D., chief and director of the Developing Brain Institute at Children’s National and senior author of the study.

Regardless of their socioeconomic status, about one of every four pregnant women suffers from stress-related symptoms, the most common pregnancy complication. The relationship between altered fetal brain development, prenatal maternal psychological distress and long-term neurodevelopmental outcomes remain unknown. Studying in utero fetal brain development poses challenges due to fetal and maternal movements, imaging technology, signal-to-noise ratio issues and changes in brain growth.

All pregnant participants were healthy, most had some level of education and were employed. To quantify prenatal maternal stress, anxiety and depression, the researchers used validated self-reported questionnaires. Fetal brain volumes and cortical folding were measured from three-dimensional reconstructed images derived from MRI scans. Fetal brain creatine and choline were quantified using proton magnetic resonance spectroscopy. The 18-month child neurodevelopment was measured using validated scales and assessments.

This study builds upon previous work from the Developing Brain Institute led by Limperopoulos, which discovered that anxiety in pregnant women appears to affect the brain development of their babies. Her team also found that maternal mental health, even for women with high socioeconomic status, alters the structure and biochemistry of the developing fetal brain. The growing evidence underscores the importance of mental health support for pregnant women.

“We’re looking at shifting the health care paradigm and adopting these changes more broadly to better support moms,” said Limperopoulos. “What’s clear is early interventions could help moms reduce their stress, which can positively impact their symptoms and thereby their baby long after birth.”

zika virus

Researcher to decipher how viruses affect the developing brain with nearly $1M NIH award

zika virus

Zika virus in blood with red blood cells, a virus which causes Zika fever found in Brazil and other tropical countries.

The National Institutes of Health (NIH) awarded Children’s National Hospital nearly $1M of research support toward uncovering the specific cellular response that happens inside a developing brain once it is infected with a virus, including how the neuron gets infected, and how it dies or survives. The research is expected to gather critical information that can inform prenatal neuro-precision therapies to prevent or attenuate the effects of endemic and pandemic viruses in the future.

“We need to use all of the information we have from ongoing and past pandemics to prevent tomorrow’s public health crisis,” said Youssef Kousa, MS, D.O., Ph.D., neonatal critical care neurologist and physician-scientist at Children’s National. “There is still here a whole lot to learn and discover. We could eventually — and this is the vision that’s inspiring us — prevent neurodevelopmental disorders before a baby is born by understanding more about the interaction between the virus, mother, fetus, and environment, among other factors.”

Different viruses, including HIV, CMV, Zika and rubella, injure the developing brain in very similar ways. This line of work was fostered first by the clinical research team led by Adre du Plessis, M.B.Ch.B., and Sarah Mulkey, M.D., supported by Catherine Limperopoulos, Ph.D., chief and director of the Developing Brain Institute at Children’s National.

The clinical research findings then led to the NIH support, which then inspired more basic science research. Fast forward to now, Kousa will study how Zika affects the human brain and extrapolate what is learned and discovered for a broader understanding of neurovirology.

The research program is supported by senior scientists and advisors, including Tarik Haydar, Ph.D., and Eric Vilain, M.D., Ph.D., both at Children’s National and Avindra Nath, M.D., at NIH, as well as other leading researchers at various U.S. centers.

“This is a team effort;” added Kousa, “I’m thankful to have a group of pioneering and seasoned researchers engaged with me throughout this process to provide invaluable guidance.”

Many viruses can harm the developing brain when they replicate in the absence of host defenses, including the gene regulatory networks responsible for the neuronal response. As a result, viral infections can lead to brain injury and neurodevelopmental delays and disorders such as intellectual disability, seizures that are difficult to treat, and vision or hearing loss.

The big picture

Youssef Kousa

Youssef Kousa, MS, D.O., Ph.D., neonatal critical care neurologist and physician-scientist at Children’s National.

The translational research supported by NIH with this award synergistically complements nationally recognized clinical research programs and ongoing prospective cohort studies at Children’s National to identify the full spectrum of neurodevelopmental clinical outcomes after prenatal Zika and other viral infections led by Dr. Mulkey and Roberta DeBiasi, M.D., M.S..

The award also builds upon strengths at the Children’s National Research & Innovation Campus, which is in proximity to federal science agencies. Children’s National experts from the Center for Genetic Medicine Research, known for pediatric genomic and precision medicine, joined forces with the Center of Neuroscience Research and the NIH-NINDS intramural research program to focus on examining prenatal and childhood neurological disorders.

Kousa received this competitive career development award from the National Institute of Neurological Disorders and Stroke of the National Institutes of Health under Award Number K08NS119882. The research content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

The hold-up in the field

Many neurodevelopmental disorders are caused by endemic viruses, such as CMV, and by viral pandemics, including rubella as seen in the 1960s and Zika since 2015. By studying Zika and other prenatal viral infections, Kousa and team hope to gain deeper biological understanding of the viral effects toward developing therapies for anticipating, treating and preventing virally induced prenatal brain injury in the long-term future.

To date, little is known about how viruses affect developing neurons and, as a result, prenatal brain injury is not yet treatable. To bridge the gap towards prenatal neuro-precision therapies, the research explores how genes regulate neuronal developmental and viral clearance by innovatively integrating three systems:

  • Cerebral organoids, which illuminate how a neuron reacts to a viral infection
  • Pre-clinical models that link prenatal brain injury to postnatal neurodevelopmental outcomes
  • Populational genomics to identify human genetic risk or protective factors for prenatal brain injury

Given the scope and complexity of this issue, the international Zika Genetics Consortium, founded in 2015 by Kousa and a team of leading investigators across the world, provides critical samples and resources for the third arm of the research by performing comprehensive genomic analyses using sequencing data collected from diverse human populations throughout Central and South America, which are not as heavily sequenced as Western populations. Through partnerships with the Centers for Disease Control and Prevention and NIH, the consortium’s database and biorepository houses thousands of patient records and biospecimens for research studies to better understand how viruses affect the developing human brain.

“It is inspiring to imagine that, in the longer term, we could recognize early on the level of brain-injury risk faced by a developing fetus and have the tools to mitigate ensuing complications,” said Kousa. “What is driving this research is the vision that one day, brain injury could be prevented from happening before a baby is born.”

girl with down syndrome

Study finds delayed oligodendrocyte progenitor maturation in Down syndrome

girl with down syndrome

People with Down syndrome (DS) can have moderate to severe intellectual disability, which is thought to be associated with changes in early brain development.

People with Down syndrome (DS) can have moderate to severe intellectual disability, which is thought to be associated with changes in early brain development. Children’s National Hospital experts discovered delayed maturation in oligodendrocyte progenitors in DS. Oligodendrocytes produce the white matter which insulates neural pathways and ensures speedy electrical communication in the brain. The researchers identified these delays by measuring gene expression at key steps in cell development, according to a new study published in Frontiers in Cellular Neuroscience.

The findings further suggest that brain and spinal cord oligodendrocytes differ in their developmental trajectories and that “brain-like” oligodendrocyte progenitors were most different from control cells, indicating that oligodendrocytes in the brains of people with DS are not equally affected by the trisomy 21.

“This is one of the critical steps towards identifying the key stages and molecular players in the DS white matter deficits,” said Tarik Haydar, Ph.D., director of the Center for Neuroscience Research. “With this knowledge, and with further work in this direction, we envision future therapies that may improve nerve cell communication in the brains of people with Down syndrome.”

The hold-up in the field

The mechanisms that lead to the reduction of white matter in the brains of people with DS are unknown. To better understand early neural precursors, they used isogenic pluripotent stem cell lines derived from two individuals with Down syndrome to study the brain development and spinal cord oligodendrocytes.

“I was excited that we discovered another example of how important it is not to generalize when studying DS brain development,” said Haydar. “This is one of several papers, from our group and others, that demonstrate how important it is to be very specific about the brain area and the developmental stage when investigating the causes of DS brain dysfunction.”

What’s next

Dysmaturation of oligodendrocyte cells are a relatively new discovery by the Haydar Lab, one of the preeminent labs in DS research. These results isolate specific steps that are affected in human cells with trisomy 21. They are using these results to develop a drug screening platform that may prevent altered generation of oligodendrocytes in the future.

You can read the full study “Sonic Hedgehog Pathway Modulation Normalizes Expression of Olig2 in Rostrally Patterned NPCs With Trisomy 21” in Frontiers in Cellular Neuroscience.

DNA moleucle

Multidisciplinary team seeks to reverse epigenetic changes associated with fetal alcohol syndrome disorder

DNA moleucle

The team hopes to optimize and develop treatments that can reverse epigenetic changes in clinical trials, paving the way to make significant progress in the field — something that is lacking to date.

A clinical team joined forces with a research team at Children’s National Hospital to help advance treatments that can improve a child’s development caused by fetal alcohol syndrome disorder (FASDs), which is a group of conditions that can occur in a person who was exposed to alcohol before birth. This boost in collaboration between the bench and clinical hopes to optimize and develop treatments that can reverse epigenetic changes in clinical trials, paving the way to make significant progress in the field — something that is lacking to date.

So far, Children’s National experts have published various pre-clinical studies that identified epigenetic changes caused by alcohol exposure during pregnancy. These changes observed in the pre-clinical models created neuropsychiatric problems like patients with fetal alcohol syndrome disorder. Now, they want to bring such potential treatments effective in pre-clinical models to the bedside.

“As a first step, we are going to test whether the epigenetic changes that were observed in pre-clinical models of FASD are also true in human patients,” said Kazue Hashimoto-Torii, Ph.D., principal investigator of the Center for Neuroscience Research at Children’s National. “We hope a small amount of blood donated by patients with FASD reveal the changes. Meanwhile, my group has also been optimizing drug candidates that reverse the epigenetic changes toward clinical trials.”

Advances in genetics and genomics have led to discoveries about the timing of exposure and developmental outcomes and genetic and epigenetic signatures that may be protective or harmful in terms of how in utero alcohol exposure affects developmental outcomes.

The hold-up in the field

While the exact number of people with FASDs is unknown, the National Institutes of Health estimates that 1% to 5% of the population have FASDs. FASDs has a spectrum of diagnoses that represent a broad range of effects that can be manifested in an individual whose mother drank alcohol during pregnancy. These conditions can affect everyone in different ways and range from mild to severe. Individuals with mild conditions may go undiagnosed. The more affected individuals have comorbid attention-deficit/hyperactivity disorder (ADHD) and behavioral problems that become the focus of clinical encounters. The individual’s health care provider may not recognize the core features as part of FASD.

“Because there is a stigma associated with drinking while pregnant, many providers fail to get this history, and women may be reluctant to offer this information,” said Andrea Gropman, M.D., division chief of Neurodevelopmental Pediatrics and Neurogenetics at Children’s National. “There are subtle and more obvious facial dysmorphology that may help with suspicion or identification, but many individuals do not have these findings.”

The core features may be nonspecific, such as intellectual disabilities and problems with behavior and learning, difficulties with math, memory, attention, judgment and poor impulse control, which are frequent findings in ADHD, autism, learning disorders and other conditions.

“Unless history is taken and FASD is in the differential diagnosis, the diagnosis may not be made,” said Dr. Gropman. “Individuals with FASD may feel stigmatized and opt not to participate in clinical trials.”

As mentioned by Dr. Gropman, stigma can make a patient family be reluctant to seek treatment, and thus the development of treatment for FASD cannot make significant progress to date, Hashimoto-Torii added.

Children’s National Hospital leads the way in an IRB approved study

Researchers at Children’s National have identified a potential drug candidate that reverse the epigenetic changes and may lead to clinical trials. The team is seeking people to participate in an IRB approved study. The study will involve cognitive testing, filling out surveys about current functioning and cheek swab and blood sample to determine if these changes are seen in patients. To participate, subjects must be

  • Children between the ages 5-12 with prenatal alcohol exposure.
  • Mother of child recruited above.

For participation, please contact Grace Johnson, research coordinator at to screen for eligibility at 202-476-6034 or gjohnson3@childrensnational.org

Meet the multidisciplinary team with different yet complementary skills in different fields, such as basic science, medical, social sciences, neurology and developmental disabilities, and development, who are working tirelessly to address the complex health problem.

Gropman lab:

Andrea Gropman, M.D., received her medical doctorate degree from the University of Massachusetts Medical School and specializes in neurogenetics, with a focus on mitochondrial disorders and Smith Magenis syndrome. Her latest research focuses on atypical patterns of inheritance, childhood mitochondrial disorders and other inborn errors of metabolism presenting with white matter disease.

Meira Meltzer, M.A., M.S., C.G.C., genetic counselor with a demonstrated history of working in the hospital and healthcare industry. Also skilled in molecular biology, clinical research and medical education. Strong healthcare services professional with a M.S. focused on genetic counseling from Brandeis University.

Cathy Scheiner, M.D., developmental behavioral pediatrician with a special interest in attention-deficit / hyperactivity disorder (ADHD), cerebral palsy and premature infant.

Grace Johnson, research assistant.

Hashimoto-Torii Lab:

Kazue Hashimoto-Torii, Ph.D., received her postdoctoral training in the Pasko Rakic laboratory at Yale University. Her research focuses on neurobehavior problems of children that stem from their environment during development, such as prenatal exposure to alcohol, drug and high-level glucose. A few drug candidates that her lab discovered have been patented and her lab is currently working hard to bring those medicines to bedside.

Satoshi Yamashita, M.D., Ph.D., postdoctoral research fellow skilled in developmental neurobiology. He is a pediatrician with Japanese medical license and received his Ph.D. with iPS cell research for STXBP1 encephalopathy in Japan.

Chiho Yamashita, B.N., research assistant passionate about child disease research. She is a nurse with a Japanese nursing license and worked in the pediatric department in Japan.