Neonatal baby

Thrasher to fund Children’s project

Neonatal baby

The Thrasher Research Fund will fund a Children’s National Health System project, “Defining a new parameter for post-hemorrhagic ventricular dilation in premature infants,” as part of its Early Career Award Program, an initiative designed to support the successful training and mentoring of the next generation of pediatric researchers.

The proposal was submitted by Rawad Obeid, M.D., a neonatal neurology clinical research fellow at Children’s National who will serve as the project’s principal investigator. The competition for one-year Thrasher Research Fund awards is highly competitive with just two dozen granted across the nation. Research clinicians at Children’s National received two awards this funding cycle, with another awarded to support a neurologic outcomes study about Zika-affected pregnancies led by Fetal-Neonatal Neurologist Sarah B. Mulkey, M.D., Ph.D.

“Preterm infants born earlier than the 29th gestational week are at high risk for developing cerebral palsy and other brain injuries,” Dr. Obeid says. “Infants with intraventricular hemorrhage (IVH) followed by hydrocephalus (post-hemorrhagic hydrocephalus) face the highest risks of such brain injuries.”

Dr. Obeid hypothesizes that measuring distinct frontal and temporal horn ratio trajectories in extremely premature infants with and without IVH will help to definitively characterize post-hemorrhagic ventricular dilation (PHVD). Right now, experts disagree about the degree of PHVD that should trigger treatment to avoid life-long impairment.

He will be mentored by Anna A. Penn, M.D., Ph.D., Director, Translational Research for Hospital-Based Services & Board of Visitors Cerebral Palsy Prevention Program; Taeun Chang, M.D., Director of the Neonatal Neurology Program within the Division of Neurophysiology, Epilepsy & Critical Care; and Dorothy Bulas, M.D., F.A.C.R., F.A.I.U.M., F.S.R.U., Vice Chief of Academic Affairs.

In the award nomination letter, Dr. Penn noted that in “clinical settings and in the laboratory, I have supervised many trainees, but a trainee like Dr. Obeid is rare. He has pursued his research interests with great commitment. Before coming to Children’s National, he already had multiple job offers, but chose further training to enhance his research skills. While I have worked with many accomplished students, residents and fellows, Dr. Obeid stands out not only for his strong clinical skills, but also for his eagerness to learn and his dedication to both his patients and his research.”

 

pregnancy

New Children’s National and Inova collaboration

pregnancy

A new research collaboration will streamline completion of retrospective and prospective research studies, shedding light on myriad conditions that complicate pregnancies.

A new three-year, multi-million dollar research and education collaboration in maternal, fetal and neonatal medicine aims to improve the health of pregnant women and their children. The partnership between Children’s National Health System and Inova will yield a major, nationally competitive research and academic program in these areas that will leverage the strengths of both health care facilities and enhance the quality of care available for these vulnerable populations.

The collaboration will streamline completion of retrospective and prospective research studies, shedding light on a number of conditions that complicate pregnancies. It is one of several alliances between the two institutions aimed at improving the health and well-being of children in Northern Virginia and throughout the region.

“The Washington/Northern Virginia region has long had the capability to support a major, nationally competitive research and academic program in maternal and fetal medicine,” says Adre du Plessis, M.B.Ch.B., Director of the Fetal Medicine Institute at Children’s National and a co-Principal Investigator for this partnership. “The Children’s National/Inova maternal-fetal-neonatal research education program will fill this critical void.

“This new partnership will help to establish a closer joint education program between the two centers, working with the OB/Gyn residents at Inova and ensuring their involvement in Children’s National educational programs and weekly fetal case review meetings,” Dr. du Plessis adds.

Larry Maxwell, M.D., Chairman of Obstetrics and Gynecology at Inova Fairfax Medical Campus and a co-Principal Investigator for the collaboration, further emphasizes that “Inova’s experience in caring for women and children — combined with genomics- and proteomics-based research — will synergize with Children National’s leadership in neonatal pediatrics, placental biology and fetal magnetic resonance imaging (MRI) to create an unprecedented research consortium. This will set the stage for developing clinically actionable interventions for mothers and babies in metropolitan District of Columbia.”

Children’s National, ranked No. 3 nationally in neonatology, has expertise in pediatric neurology, fetal and neonatal neurology, fetal and pediatric cardiology, infectious diseases, genetics, neurodevelopment and dozens of additional pediatric medical subspecialties. Its clinicians are national leaders in next-generation imaging techniques, such as MRI. Eighteen specialties and 50 consultants evaluate more than 700 cases per year through its Fetal Medicine Institute. In mid-2016, Children’s National created a Congenital Zika Virus Program to serve as a dedicated resource for referring clinicians and pregnant women. The hospital performs deliveries in very high-risk, complex situations, but does not offer a routine labor and delivery program.

Inova Fairfax Medical Campus is home to both Inova Women’s Hospital and Inova Children’s Hospital. Inova Women’s Hospital is the region’s most comprehensive and highest-volume women’s hospital — delivering more than 10,000 babies in 2016. Inova Children’s Hospital serves as Northern Virginia’s children’s hospital —providing expert care in pediatric and fetal cardiology, cardiac surgery, genetics, complex general surgery, neurology, neurosurgery and other medical and surgical specialties. Its 108-bed Level IV neonatal intensive care unit is one of the largest and most comprehensive in the nation. Inova’s Translational Medicine Institute includes a genomics lab, as well as a research Institute focused on studies designed to build genetic models that help answer questions about individual disease. Each of these specialties is integrated into the Inova Fetal Care Center — which serves as a connection point between Inova Women’s and Children’s Hospitals. The Inova Fetal Care Center provides complex care coordination for women expecting infants with congenital anomalies or with other fetal concerns. Because Inova Women’s Hospital and Inova Children’s Hospital are co-located, women are able to deliver their babies in the same building where their children will receive care.

The research collaboration will support research assistants; tissue technicians; a placental biologist; as well as support for biomedical engineering, fetal-neonatal imaging, telemedicine, regulatory affairs and database management. The joint research projects that will take place under its auspices include:

  • Fetal growth restriction (FGR), which occurs when the failing placenta cannot support the developing fetus adequately. FGR is a major cause of stillbirth and death, and newborns who survive face numerous risks for multiple types of ailments throughout their lives. A planned study will use quantitative MRI to identify signs of abnormal brain development in pregnancies complicated by FGR.
  • Placental abnormalities, including placenta accreta. A planned study will combine quantitative MRI studies on the placenta during the third trimester and other points in time with formal histopathology to identify MRI signals of placenta health and disease.
  • Microcephaly, a condition that is characterized by babies having a much smaller head size than expected due to such factors as interrupted brain development or brain damage during pregnancy. While the global Zika virus epidemic has heightened awareness of severe microcephaly cases, dozens of pregnancies in the region in recent years have been complicated by the birth defect for reasons other than Zika infection. A planned study will examine the interplay between MRI within the womb and head circumference and weight at birth to examine whether brain volume at birth correlates with the baby’s developmental outcomes.
Vittorio Gallo

Vittorio Gallo named Chief Research Officer

Vittorio Gallo

As chief research officer, Vittorio Gallo, Ph.D., will be instrumental in developing and realizing Children’s Research Institute’s long-term strategic vision.

Children’s National Health System has appointed the longtime director of its Center for Neuroscience Research, Vittorio Gallo, Ph.D., as Chief Research Officer. Gallo’s appointment comes at a pivotal time for the institution’s research strategic plan, as significant growth and expansion will occur in the next few years. Gallo is a neuroscientist who studies white matter disorders, with particular focus on white matter growth and repair. He is also the Wolf-Pack Chair in Neuroscience at Children’s Research Institute, the academic arm of Children’s National.

As Chief Research Officer, Gallo will be instrumental in developing and realizing Children’s Research Institute’s long-term strategic vision, which includes building out the nearly 12-acre property once occupied by Walter Reed National Military Medical Center to serve as a regional innovation hub and to support Children’s scientists conducting world-class pediatric research in neuroscience, genetics, clinical and translational science, cancer and immunology. He succeeds Mendel Tuchman, M.D., who has had a long and distinguished career as Children’s Chief Research Officer for the past 12 years and who will remain for one year in an emeritus role, continuing federally funded research projects and mentoring junior researchers.

“I am tremendously pleased that Vittorio has agreed to become Chief Research Officer as of July 1, 2017, at such a pivotal time in Children’s history,” says Mark L. Batshaw, M.D., Physician-in-Chief and Chief Academic Officer at Children’s National. “Since Mendel announced plans to retire last summer, I spent a great deal of time talking to Children’s Research Institute investigators and leaders and also asking colleagues around the nation about the type of person and unique skill sets needed to serve as Mendel’s successor. With each conversation, it became increasingly clear that the most outstanding candidate for the Chief Research Officer position already works within Children’s walls,” Dr. Batshaw adds.

“I am deeply honored by being selected as Children’s next Chief Research Officer and am excited about being able to play a leadership role in defining the major areas of research that will be based at the Walter Reed space. The project represents an incredible opportunity to maintain the core nucleus of our research strengths – genetics, immunology, neurodevelopmental disorders and disabilities – and to expand into new, exciting areas of research. What’s more, we have an unprecedented opportunity to form new partnerships with peers in academia and private industry, and forge new community partnerships,” Gallo says. “I am already referring to this as Walter Reed ‘Now,’ so that we are not waiting for construction to begin to establish these important partnerships.”

Gallo’s research focus has been on white matter development and injury, myelin and glial cells – which are involved in the brain’s response to injury. His past and current focus is also on neural stem cells. His work in developmental neuroscience has been seminal in deepening understanding of cerebral palsy and multiple sclerosis. He came to Children’s National from the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) intramural program. His intimate knowledge of the workings of the National Institutes of Health (NIH) has helped him to establish meaningful collaborations between both institutions. During his tenure, he has transformed the Center for Neuroscience Research into one of the nation’s premier programs. The Center is home to the prestigious NIH/NICHD-funded District of Columbia Intellectual and Developmental Disabilities Research Center, which Gallo directs.

Children’s research scientists working under the auspices of Children’s Research Institute conduct and promote highly collaborative and multidisciplinary research within the hospital that aims to better understand, treat and, ultimately, prevent pediatric disease. As Chief Research Officer, Gallo will continue to establish and enhance collaborations between research and clinical programs. Such cross-cutting projects will be essential in defining new mechanisms that underlie pediatric disease. “We know, for instance, that various mechanisms contribute to many genetic and neurological pediatric diseases, and that co-morbidities add another layer of complexity. Tapping expertise across disciplines has the potential to unravel current mysteries, as well as to better characterize unknown and rare diseases,” he says.

“Children’s National is among the nation’s top seven pediatric hospitals in NIH research funding, and the extraordinary innovations that have been produced by our clinicians and scientists have been put into practice here and in hospitals around the world,” Dr. Batshaw adds. “Children’s leadership aspires to nudge the organization higher, to rank among the nation’s top five pediatric hospitals in NIH research funding.”

Gallo says the opportunity for Children’s research to expand beyond the existing buildings and the concurrent expansion into new areas of research will trigger more hiring. “We plan to grow our research enterprise through strategic hires and by attracting even more visiting investigators from around the world. By expanding our community of investigators, we aim to strengthen our status as one of the nation’s leading pediatric hospitals,” he says.

Harnessing progenitor cells in neonatal white matter repair

The sirtuin protein Sirt1 plays a crucial role in the proliferation and regeneration of glial cells from an existing pool of progenitor cells — a process that rebuilds vital white matter following neonatal hypoxic brain injury. Although scientists do not fully understand Sirt1’s role in controlling cellular proliferation, this pre-clinical model of neonatal brain injury outlines for the first time how Sirt1 contributes to development of additional progenitor cells and maturation of fully functional oligodendrocytes.

The findings, published December 19 in Nature Communications, suggest that modulation of this protein could enhance progenitor cell regeneration, spurring additional white matter growth and repair following neonatal brain injury.

“It is not a cure. But, in order to regenerate the white matter that is lost or damaged, the first steps are to identify endogenous cells capable of regenerating lost cells and then to expand their pool. The glial progenitor cells represent 4 to 5 percent of total brain cells,” says Vittorio Gallo, Ph.D., Director of the Center for Neuroscience Research at Children’s National, and senior author of the study. “It’s a sizable pool, considering that the brain is made up of billions of cells. The advantage is that these progenitor cells are already there, with no requirement to slip them through the blood-brain barrier. Eventually they will differentiate into oligodendrocyte cells in white matter, mature glia, and that’s exactly what we want them to do.”

The study team identified Sirt1 as a novel, major regulator of basal oligodendrocyte progenitor cell (OPC) proliferation and regeneration in response to hypoxia in neonatal white matter, Gallo and co-authors write. “We demonstrate that Sirt1 deacetylates and activates Cdk2, a kinase which controls OPC expansion. We also elucidate the mechanism by which Sirt1 targets other individual members of the Cdk2 signaling pathway, by regulating their deacetylation, complex formation and E2F1 release, molecular events which drive Cdk2-mediated OPC proliferation,” says Li-Jin Chew, Ph.D., research associate professor at Children’s Center for Neuroscience Research and a study co-author.

Hypoxia-induced brain injury in neonates initiates spontaneous amplification of progenitor cells but also causes a deficiency of mature oligodendrocytes. Inhibiting Sirt1 expression in vitro and in vivo showed that loss of its deacetylase activity prevents OPC proliferation in hypoxia while promoting oligodendrocyte maturation – which underscores the importance of Sirt1 activity in maintaining the delicate balance between these two processes.

The tantalizing findings – the result of four years of research work in mouse models of neonatal hypoxia – hint at the prospect of lessening the severity of developmental delays experienced by the majority of preemies, Gallo adds. About 1 in 10 infants born in the United States are delivered preterm, prior to the 37th gestational week of pregnancy, according to the Centers for Disease Control and Prevention.  Brain injury associated with preterm birth – including white matter injury – can have long-term cognitive and behavioral consequences, with more than 50 percent of infants who survive prematurity needing special education, behavioral intervention and pharmacological treatment, Gallo says.

Time is of the essence, since Sirt1 plays a beneficial role at a certain place (white matter) and at a specific time (while the immature brain continues to develop). “We see maximal Sirt1 expression and activity within the first week after neonatal brain injury. There is a very narrow window in which to harness the stimulus that amplifies the progenitor cell population and target this particular molecule for repair,” he says.

Sirt1, a nicotinamide adenine dinucleotide-dependent class III histone deacetylase, is known to be involved in normal cell development, aging, inflammatory responses, energy metabolism and calorie restriction, the study team reports. Its activity can be modulated by sirtinol, an off-the-shelf drug that inhibits sirtuin proteins. The finding points to the potential for therapeutic interventions for diffuse white matter injury in neonates.

Next, the research team aims to study these processes in a large animal model whose brains are structurally, anatomically and metabolically similar to the human brain.

“Ideally, we want to be able to promote the timely regeneration of cells that are lost by designing strategies for interventions that synchronize these cellular events to a common and successful end,” Gallo says.

Altered blood flow may contribute to preemie brain injuries

A Children’s National research team for the first time mapped abnormalities in blood flow that may contribute to brain injury suffered by preterm infants.

Advanced noninvasive imaging permitted Children’s National Health System researchers to measure the lasting impact of abnormalities in blood flow on the immature brains of premature babies. Blood flow to the brain, or perfusion, has been studied previously to understand its role in other health conditions, but this is the first time a research team has mapped how these changes may contribute to brain injury suffered by babies born before 32 weeks’ gestation.

Preterm birth is a major risk factor for brain injury. The prospective study examined infants weighing less than 1,500 grams who were born prior to 32 gestational weeks.

Of 78 infants studied, 47 had structural brain injuries categorized as either mild or moderate to severe, and 31 had no brain injury. While global cerebral blood flow decreased with advancing postnatal age, the blood flow decreased more significantly among preterm infants with brain injury, says Eman S. Mahdi, M.D., M.B.Ch.B. Dr. Mahdi is a pediatric radiology fellow at Children’s National and lead author of the abstract.

“In addition to differences in global brain blood flow, we saw a marked decrease in regional blood flow to the thalamus and the pons, regions known to be metabolically active during this time,” Dr. Mahdi says. The thalamus helps to process information from the senses and relays it elsewhere within the brain. Located at the base of the brain, the pons is part of the central nervous system and also is a critical relay of information between the cerebrum and cerebellum. “These regional variations in blood flow reflect vulnerability of the cerebral-cerebellar circuitry,” she adds.

The Radiological Society of North America (RSNA) recognized Dr. Mahdi with its Trainee Research Prize. She presented the work, “Cerebral Perfusion Is Perturbed by Preterm Birth and Brain Injury,” during the RSNA Scientific Assembly and Annual Meeting, held from Nov. 27 to Dec. 2.

The findings point to the need for additional research to explore how cerebral blood flow trends evolve as preemies grow older and whether abnormal blood flow is linked to differences in health outcomes. In addition, the technique used by the research team, arterial spin labeling perfusion imaging – a type of magnetic resonance imaging – represents a useful and non-invasive technology for identifying early cerebral perfusion abnormalities in preterm infants, says Catherine Limperopoulos, Ph.D., director of the Developing Brain Research Laboratory at Children’s National and abstract senior author.

Premature birth may alter critical cerebellar development linked to learning and language

 Diffusion tensor imaging teases out subtle injury to cerebral and cerebellar white matter that is not evident with conventional MRI, allowing researchers to quantify brain tissue microstructure and classify white matter integrity.

Diffusion tensor imaging teases out subtle injury to cerebral and cerebellar white matter that is not evident with conventional MRI, allowing researchers to quantify brain tissue microstructure and classify white matter integrity.

Premature birth can interrupt a key period of brain development that occurs in the third trimester, which has the potential to impact a child’s long-term learning, language, and social skills. A recent case-control study published in The Journal of Pediatrics applied diffusion tensor magnetic resonance imaging (DTI) to zoom in on the microstructures comprising the critical cerebellar neural networks related to learning and language, and found significant differences between preterm and full-term newborns.

“The third trimester, during which many premature births occur, is typically when the developing cerebellum undergoes its most dramatic period of growth. Normally, the cerebellar white matter tracts that connect to the deep nuclei are rich in pathways where nerve fibers cross. Those connections permit information to flow from one part of the brain to another. It is possible that premature birth leads to aberrant development of these critical neural networks,” says Catherine Limperopoulos, Ph.D., director of the Developing Brain Research Laboratory at Children’s National Health System and senior study author.

One in 10 American babies is born prematurely. The brain injury that infants born prematurely experience is associated with a range of neurodevelopmental disabilities, including some whose influence isn’t apparent until years later, when the children begin school. Nearly half of extremely preterm infants go on to experience long-term learning, social, and behavioral impairments.

While conventional magnetic resonance imaging (MRI) can detect many brain abnormalities in newborns, a newer technique called DTI can tease out even subtle injury to cerebral and cerebellar white matter that is not evident with conventional MRI. White matter contains axons, which are nerve fibers that transmit messages. With DTI, researchers can quantify brain tissue microstructure and describe the integrity of white matter.

The research team compared imaging from 73 premature infants born before 32 weeks gestation who weighed less than 1,500 grams with 73 healthy newborns born to mothers who delivered at full term after 37 weeks. After the newborns had been fed, swaddled, and fitted with double ear protection, the imaging was performed as they slept. Nurses monitored their heart rates and oxygen saturation. Their brain abnormalities were scored as normal, mild, moderate, or severe.

All of the full-term newborns had normal brain MRIs as did 44 (60.3 percent) of the preemies.

The preemies had significantly higher fractional anisotropy in the cerebellum, the part of the brain that processes incoming information from elsewhere in the brain, permitting coordinated movement as well as modulating learning, language, and social skills. Alterations in cerebellar microarchitecture was associated with markers for illness severe enough to require surgery – such as correcting abnormal blood flow caused by the failure of the ductus arteriosus to close after birth and to remedy a bowel disease known as necrotizing enterocolitis. The risk factors also are associated with compromised cardiorespiratory function and low Apgar score at five minutes, Limperopoulos and co-authors write. The Apgar score is a quick way to gauge, one minute after birth, how well the newborn withstood the rigors of childbirth. It is repeated at five minutes to describe how the newborn is faring outside of the womb.

“In previous studies, we and others have associated cerebellar structural injury in preterm infants with long-term motor, cognitive, and socio-affective impairments. This is one of the first studies to provide a detailed report about these unexpected alterations in cerebellar microstructural organization,” she adds. “We postulate that the combination of premature birth and early exposure of the immature developing cerebellum to the extrauterine environment results in disturbed micro-organization.”

Additional research is warranted in larger groups of patients as well as long-term follow up of this cohort of newborns to determine whether this microstructural disorganization predicts long-term social, behavioral, and learning impairments.

“A large number of these prematurely born newborns had MRI readings in the normal range. Yet, we know that these children are uniquely at risk for developing neurodevelopmental disabilities later in life. With additional study, we hope to identify interventions that could lower those risks,” Limperopoulos says.

Related resources: The Journal of Pediatrics editorial

Children’s National NICU reduces chest x-rays, unintended extubations

nicu-reduces-xrays

Children’s National is taking the lead in safety and quality improvement by initiating two protocols in its neonatal intensive care unit (NICU) aimed at reducing chest X-rays and unintended extubations (UE). Through these efforts, the Neonatology and Radiology divisions have decreased the X-ray radiation dose levels to as low as reasonably achievable (ALARA), reduced the number of unintended extubations, and found significant cost-savings. Notably, the Children’s National team was awarded an Honorable Mention for their abstract submission on UE efforts at the Children’s Hospitals Neonatal Consortium Quality Symposium in September.

Evaluating effectiveness of the chest x-ray

Chest X-rays in the NICU are one of the top five unnecessary tests, according to the American Academy of Pediatrics. While they may be used to help with procedures, such as verifying placement of endotracheal tubes (ETT) and central venous catheters, they don’t increase efficacy or safety, and they have been found to increase the use of hospital resources.

There were concerns of an increased incidence of UEs and potential excess radiation exposure, and that’s when the NICU team at Children’s National developed a new protocol. It restricted the use of routine chest X-rays used to confirm ETT placement for all stable intubated patients.

Chest X-rays are now performed twice a week, instead of daily, or following a change in status, for stable ventilated patients. The team realized that daily chest X-rays might not be needed and that reducing their frequency would also decrease the likelihood of patients self-extubating during the procedure. Dropping the additional procedures was believed to be non-disruptive.

To measure the effectiveness of the new protocol, the team used Trendstar billing data to track the number of single chest X-rays for all NICU patients per patient day. It also used that data to show the total net charge for a single chest X-ray.

Taking measures to decrease unintended extubations

Unintended extubations are the fourth most common event in the NICU and are associated with hypoxia, ventilator-associated pneumonia, intraventricular hemorrhage, code events, and increased length of stay. In fact, UEs almost double the length of stay versus patients who do not experience UEs, and the cost of care increases by $34,000 per patient.

Realizing these detrimental effects, the Children’s NICU team launched a quality improvement project to reduce UE rates from a median of 0.6 events to less than 0.3 events per 100 vent days, and in turn its associated complications, by December 2016.

To accomplish this, the staff and stakeholders formed the Stop UNintended Extubations (SUN) Team to address key drivers such as consistent taping and re-taping practices, appropriate sedation of patients, standardizing practices around moving intubated patients, and more. The team designed and tested a UE Rick Scale to assess the likelihood of extubation, and each key driver was assigned several actionable interventions for high-risk patients to escalate and address cases prior to potential UE events. Interventions included team safety huddles and debriefs, risk reports, staff education, tube placement corrections, and taping standards among others.

The outcomes

The new X-ray protocol reduced the rate of chest X-rays and showed a 27 percent cost-savings for babies with longer NICU stays. The change also decreased the patient radiation doses to ALARA. The team will continue to track the data as it will review the rates again in December 2016.

The UE quality initiative calculated UE rates based on the number of total ventilator days less the number of tracheostomy days. Within a month of starting the project, the unintended extubation rate decreased from 1.18 to .59 events per 100 vent days. Within five months, the NICU reached its lowest rate below their benchmark median at 0.41 events per 100 vent days, and the number of days between events increased from a high of days prior to the project to a high of 33 days. The team continues to test the UE Risk Scale in order to validate it for external use.

ECMO

Children’s National gains international recognition for lifesaving ECMO treatment

ecmo

In 1984, Children’s National Health System became the first stand-alone children’s hospital to offer Extracorporeal Membrane Oxygenation (ECMO), one of the most advanced forms of life support for patients experiencing acute failure of the cardio-respiratory system. This year, for the fourth time, Children’s National received the “Excellence in Extracorporeal Life Support Award” from the Extracorporeal Life Support Organization (ELSO), an international consortium of centers offering ECMO.

The Excellence in Extracorporeal Life Support Award, started in 2006, recognizes centers that demonstrate an exceptional commitment to evidence-based processes and quality measures, staff training and continuing education, patient satisfaction, and ongoing clinical research.

ECMO allows time for the patient’s lungs or heart to heal by using a heart-lung machine to oxygenate and remove carbon dioxide outside the body over a period of time.

ECMO at Children’s National

Children’s National houses one of the only ECMO programs in the Washington, DC, area. At Children’s, the ECMO program is in the division of Neonatology but closely connected to the Advanced Cardiac Therapies and Heart Transplant Program and the team using Ventricular Assist Devices (VADs) in children. At the time of the interview for this article, the ECMO and VAD Program Manager, Gary Oldenburg, MS, RRT-NPS, said there were currently three ECMO patients and one VAD patient admitted to Children’s.

Oldenburg attributes the success of the program to the quality of patient care, favorable outcomes compared with like-institutions, competency in ECMO training and specialist education, as well as experts in the field who contribute back to the profession of ECMO.

One expert, Billie Lou Short, M.D., Chief of Neonatology at Children’s National, is a pioneer in the use of ECMO for newborns, has been involved with ECMO since its inception, and started the program at Children’s. Oldenburg is on the steering committee with ELSO and also is involved with the Education and Logistics Committee within ELSO.

Also on the team, there are two groups of respiratory therapists and nurses who have specialized training in ECMO, one that is exclusively working with ECMO patients and another that is part-time, borrowed from their home departments.

Children’s National will host the 33rd Annual Children’s National Symposium on ECMO and Advanced Therapies for Respiratory Failure, in Keystone, Colorado, February 26 – March 2, 2017.