boy on a treadmil

Therapeutic targets in African-American youth with type 2 diabetes

boy on a treadmil

Ongoing research is helping to define the broad spectrum and multi-faceted nature of type 2 diabetes in terms of its presentation, its rapidity of progression and its underlying genetic susceptibilities. In a recent study of 8,980 adults published in The Lancet, diabetes was further classified into five clusters, ranging from insulin-deficient, typically referred to as type 1, to groups of patients with primary insulin-resistance, traditionally classified as type 2 diabetes, with the caveat that each cluster had a distinct risk profile for disease progression and risk for diabetes complications.

Moreover, investigators have recently demonstrated, through the Restoring Insulin Secretion (RISE) Consortium, that youth compared to adults with early type 2 diabetes have greater insulin resistance relative to insulin secretion. Understanding variances on the diabetes spectrum, especially as it relates to risk for disease progression in youth, helps researchers develop targeted therapies that may help reduce complications and the burden of this chronic disease.

Ongoing research

Stephanie Chung, M.B.B.S., a pediatric endocrinologist at the National Institutes of Health and an adjunct assistant professor of pediatrics at Children’s National, is one researcher who hopes to use this knowledge to transform public health outcomes. Dr. Chung is studying how teens and young adults with severe insulin-resistant diabetes (SIRD) respond to new treatment, paired with lifestyle-based interventions.

Here is a Q&A with Dr. Chung about her latest research:

Tell Innovation District readers more about your diabetes research. How has your previous research influenced this study?

My research and publications are focused on understanding how genes, environment and lifestyle factors contribute to the pathology of diabetes, obesity and insulin resistance in populations of African descent and on identifying more effective screening and treatment options.

We know that African-American youth with type 2 diabetes have the highest complication and treatment failure rates among minority youth. However, the reasons underlying this health disparity are still not fully understood. Metformin, the only approved oral diabetes treatment for youth with type 2 diabetes, works less than half of the time in African-American youth. Although new evidence suggests that gut bacteria and genetics may influence the efficacy of metformin, this data is insufficient in African-American youth.

What is your goal with this diabetes clinical study?

The primary objective of this new study, entitled Therapeutic Targets in African-American Youth with Type 2 Diabetes, is to compare the combination of metformin and liraglutide versus metformin alone to reduce excess glucose produced by the liver in African-American youth with type 2 diabetes.

Additional objectives will evaluate the mechanism of action in the liver of these two agents and the influence of genetics and gut bacteria. This project brings together the research expertise of the National Institute of Diabetes and Digestive and Kidney Diseases, the National Human Genome Research Institute and the Children’s National Medical Center.

Do you envision this type of dual therapy, a combination of drugs and lifestyle interventions, will serve as a bridge to optimal insulin function?

While metformin, diet and lifestyle changes remain the mainstay of diabetes treatment, our study will evaluate whether this combination regimen could help to slow the progression of type 2 diabetes in African American youth. Our ultimate goal is the development of new precision medicine treatment options that can address the disparities in outcomes for African-American youth with type 2 diabetes.

What lessons do you see participants learning as they progress through the trial?

Our patients and their families are equal partners in care. Our comprehensive team of doctors, nurses, dietitians and counselors work closely with the patients and their families to help empower them to take charge of managing their diabetes. We teach them skills that include regularly monitoring their blood glucose levels and understanding how their activity and foods affect these levels. They are coached on making healthy food choices and incorporating exercise into their daily lives.

How do you teach children and teens about how their body responds to different foods?

This education starts as soon as participants enter the study. While patients are at the NIH for the inpatient study, we provide them with meals containing different ratios of carbohydrates, proteins, and fats and help them to analyze how their blood sugar responds to these levels, both before and after they take the medication. This type of education is important since participants will also have to monitor their blood sugar twice a day at home during the study. Most of the time, we use real-life situations as teaching moments. For example, if a participant had pizza for dinner, we will discuss with them why their blood sugar spiked and suggest alternative food choices. We provide this type of coaching every week. I often joke that after three months they become tired of hearing from us. But one of the strengths of this study is that participants receive personalized feedback that enables them to make healthy food choices for the rest of their life.

Can you tell us more about targeted food choices for teens?

A very enlightening procedure that we conduct on all of our study participants is measuring their basal metabolic rate (energy expenditure at rest). We show them how many calories they need to consume each day to maintain their body’s normal functions and compare that number with an estimate of how many calories they usually consume in a day. For many participants this is the first time that they have insight into the reasons for their weight gain.

How does this lab work help with meal planning?

After we create a participant’s metabolic chart we make food plans that support their lifestyle and caloric needs and are realistic to follow. For example, a 2,000 calorie per day diet can be separated into 400 calories for breakfast, 600 calories for lunch, 200 calories for snack and 800 calories for dinner.

How do you envision personalizing the field of diabetes research and treatment?

A precision medicine approach to type 2 diabetes will help us to better explore if and how factors like genes, environment and lifestyle impact insulin and glucose metabolism in populations with significant treatment outcomes disparities. With this approach we hope to uncover novel targeted treatment and prevention strategies that demonstrate more efficacy and cost-efficiency than current treatment approaches for high-risk populations.

Where can people learn more about the trial?

Learn more about the study by watching this informational video. If you’re interested in joining the study, please contact the NIH Office of Clinical Trial Recruitment at 866-999-1116.