Posts

Chromosomes

Precision medicine for Wilms tumor patients

Chromosomes

Previously, researchers discovered that loss of heterozygosity (LOH) on chromosomes 1 and 16 is associated with a significantly increased risk of relapse of Wilms tumor.

About 650 children are diagnosed each year in the U.S. with Wilms tumor, the most common pediatric kidney cancer. The vast majority of patients respond well to the current standard of care involving a combination of surgery, chemotherapy and radiation. However, approximately 20% of patients with “favorable histology” Wilms tumor experience recurrence.

Previously, researchers discovered that loss of heterozygosity (LOH) on chromosomes 1 and 16 is associated with a significantly increased risk of relapse. A research team in the Children’s Oncology Group (COG), led by Jeffrey Dome, M.D., Ph.D., vice president of the Center for Cancer and Blood Disorders at Children’s National Hospital, sought to determine whether an augmented chemotherapy regimen can overcome the negative effect of LOH.

More than 2,500 patients with Wilms tumor were enrolled in the biology and classification study over a 7–year period. Tumor tissue was tested for LOH and patients with LOH at both chromosomes 1 and 16 received more intensive chemotherapy regimens compared to the standard approach. The results showed that the increased treatment provided a statistically significant benefit in the 4-year event-free survival, with trends toward improved overall survival. For low-stage disease (stage I-II), the four-year event-free survival was 87.3%, compared to a historical rate of 68.8%. Similarly, for advanced stage disease (stage III/IV) four-year event-free survival was 90.2%, compared with 61.3% historically.

Although the new regimens involved additional chemotherapy agents compared to the standard regimens, the short-term toxicities were expected and manageable. There is an increased risk of long-term toxicity including infertility and second malignancies, which requires careful discussion with families. Future studies will seek to mitigate these risks with newer chemotherapy agents.

By better understanding which patients might benefit from more intensive treatment regimens through precision medicine, doctors can tailor therapy according to the risk of relapse, Dr. Dome says.

“This study represents a significant milestone in the treatment of Wilms tumor because it is the first to demonstrate that patient outcome can be improved using a molecular biomarker to guide treatment,” he explains. “We have entered the age of precision medicine for Wilms tumor.”

Robert J. Freishtat working in the lab

Detecting early signs of type 2 diabetes through microRNA

Robert J. Freishtat working in the lab

Obesity is a major risk factor for insulin resistance and type 2 diabetes. Now researchers understand the pathogenesis better among teens with mid-level obesity, thanks to clues released from circulating adipocyte-derived exosomes.

Researchers know that exosomes, tiny nanoparticles released from fat cells, travel through the bloodstream and body, regulating a variety of processes, from growth and development to metabolism. The exosomes are important in lean, healthy individuals in maintaining homeostasis, but when fat gets ‘sick’ – the most common reason for this is too much weight gain – it can change its phenotype, becoming inflammatory, and disrupts how our organs function, from how our skeletal muscle and liver metabolize sugar to how our blood vessels process cholesterol.

Robert J. Freishtat, M.D., M.P.H., the chief of emergency medicine at Children’s National Health System and a professor of precision medicine and genomics at the George Washington University School of Medicine and Health Sciences, and Sheela N. Magge M.D., M.S.C.E., who is now the director of pediatric endocrinology and an associate professor of medicine at the Johns Hopkins School of Medicine, were curious about what this process looked like in teens who fell in the mid-range of obesity.

Obesity is a major risk factor for insulin resistance and type 2 diabetes, but Dr. Freishtat and Dr. Magge wanted to know: Why do some teens with obesity develop type 2 diabetes over others? Why are some teens in this mid-range of obesity metabolically healthy while others have metabolic syndrome? Can fat in obese people become sick and drive disease?

To test this, Dr. Freishtat and Dr. Magge worked with 55 obese adolescents, ages 12 to 17, as part of a study at Children’s National. The participants – 32 obese normoglycemic youth and 23 obese hyperglycemic youth – were similar in age, sex, race, pubertal stage, body mass index and overall fat mass. The distinguishing factor: The hyperglycemic study participants, the teens with elevated blood sugar, differed in where they stored fat. They had extra visceral fat (or adipose tissue) storage, the type of fat that surrounds the liver, pancreas and intestines, a known risk factor for type 2 diabetes.

Dr. Magge and Dr. Freishtat predicted that circulating exosomes from the teens with elevated blood sugar are enriched for microRNAs targeting carbohydrate metabolism.

They used three tests to examine study participants’ metabolism, body composition and circulating exosomes. The first test, an oral glucose tolerance test, measures how efficiently the body metabolizes sugar; the second test is the whole body DXA, or dual-energy x-ray absorptiometry, which analyzes body composition, including lean tissue, fat mass and bone mineral density; and the third test, the serum adipocyte-derived exosomal microRNA assays, is an analysis of circulating fat signals in the bloodstream.

They found that teens with elevated blood sugar and increased visceral fat had different circulating adipocyte-derived exosomes. These study participants’ exosomes were enriched for 14 microRNAs, targeting 1,304 mRNAs and corresponding to 179 canonical pathways – many of which are directly associated with carbohydrate metabolism and visceral fat.

Dr. Magge will present this research, entitled “Changes in Adipocyte-Derived Exosomal MicroRNAs May Play a Role in the Progression from Obese Normoglycemia to Hyperglycemia/Diabetes,” as an oral abstract at the American Diabetes Association’s 79th Scientific Sessions on Saturday, June 8.

Dr. Freishtat envisions having this information will be especially helpful for a patient in a mid-range of obesity. Exosomes primarily consist of small non-coding RNAs. In the current study, the altered RNAs affect P13K/AKT and STAT3 signaling, vital pathways for metabolic and immune function.

“Instead of waiting until someone has the biochemical changes associated with type 2 diabetes, such as hyperglycemia, hyperlipidemia and insulin resistance, we’re hoping physicians will use this information to work with patients earlier,” says Dr. Freishtat. “Through earlier detection, clinicians can intervene when fat shows sign of illness, as opposed to when the overt disease has occurred. This could be intervening with diet and lifestyle for an obese individual or intervening with medication earlier. The goal is to work with children and teens when their system is more plastic and responds better to intervention.”

As this research evolves, Dr. Freishtat continues to look at the intergenerational effects of circulating adipocyte-derived exosomes. Through ongoing NIH-funded research in India, he finds these exosomes, similar in size to lipoproteins, can travel across the placenta, affecting development of the fetus in utero.

“What we’re finding in our initial work is that these exosomes, or ‘sick’ fat, cross the placenta and affect fetal development,” Dr. Freishtat says. “Some of the things that we’re seeing are a change in body composition of the fetus to a more adipose phenotype. Some of our work in cell cultures shows changes in stem cell function and differentiation, but what’s even more interesting to us is that if the fetus is a female sex that means her ovaries are developing while she’s in utero, which means a mother’s adipocyte-derived exosomes could theoretically be affecting her grandchild’s phenotype – influencing the health of three generations.”

While this research is underway, Dr. Freishtat is working with JPOD @ Boston, co-located with the Cambridge Innovation Center in Cambridge, Massachusetts, to develop a test to provide analyses of adipocyte-derived exosomal microRNAs.

“It’s important for families to know that these studies are designed to help researchers and doctors better understand the development of disease in its earliest stages, but there’s no need for patients to wait for the completion of our studies,” says Dr. Freishtat. “Reaching and maintaining a healthy body weight and exercising are important things teens and families can do today to reduce their risk for obesity and diabetes.”

Javad Nazarian

Meeting of the minds: Children’s National hosts first DIPG Round Table Discussion

Javad Nazarian at DIPG Round Table Discussion

Spearheaded by Javad Nazarian, Ph.D., MSC, Scientific Director of the Children’s National Brain Tumor Institute, the focused DIPG Round Table Discussion brought investigators, neurosurgeons and clinicians from North America, Europe and Australia to Children’s National in Washington, D.C.

Over 40 experts involved in the study and treatment of diffuse intrinsic pontine gliomas (DIPG) convened at the inaugural DIPG Round Table Discussion at Children’s National Health System Sept. 30-Oct. 2.

Spearheaded by Javad Nazarian, Ph.D., MSC, Scientific Director of the Children’s National Brain Tumor Institute, the focused DIPG Round Table Discussion brought investigators, neurosurgeons and clinicians from North America, Europe and Australia to Children’s National in Washington, D.C., to engage in dialogue and learn about the changing landscape of DIPG tumor biology and therapeutics. Attendees discussed the recent discoveries in DIPG research, precision medicine, preclinical modeling, immunotherapy, data sharing and the design of next generation clinical trials.

Families affected by DIPG also had an opportunity to participate in day 2 of the event. Many voiced the necessity of data sharing to ensure progress in the field. Dr. Nazarian seconded that point of view: “It is critical to get raw data and have it harmonized and integrated so that the end users (researchers) can utilize and do cross-data analysis…We need to break down the silos.” The highlight of the data sharing session was the Open DIPG Initiative that is spearheaded by Dr. Nazarian and the Children’s Brian Tumor Tissue Consortium (CBTTC).

Nazarian Lab at DIPG Roundtable Meeting

Eshini Panditharatna, Ph.D., Madhuri Kambhampati, Sridevi Yadavilli, M.D., Ph.D., and Erin Bonner of Children’s National at the DIPG Round Table.

As recent technological and molecular advances in DIPG biology have pushed the field forward, focus groups have become essential to share data, ideas and resources with the overarching goal of expediting effective treatments for children diagnosed with DIPG. An extremely aggressive form of pediatric brain cancer, DIPG accounts for roughly 10 to 15 percent of all brain tumors in children. Between 300 and 400 children in the United States are diagnosed with DIPG each year, but the 5-year survival for the brain tumor is less than 5 percent, a strikingly low number in comparison with other types of childhood cancer. DIPG research and clinical initiatives have changed in the past years mainly due to the generous support of families for basic research. The DIPG Open Table meeting was designed to coalesce a team of experts to expedite the first crack at curing this devastating childhood cancer.

Sarah B. Mulkey

Puzzling symptoms lead to collaboration

Sarah B. Mulkey, explaining the research

Sarah B. Mulkey, M.D., Ph.D., is lead author of a study that describes a brand-new syndrome that stems from mutations to KCNQ2, a genetic discovery that began with one patient’s unusual symptoms.

Unraveling one of the greatest mysteries of Sarah B. Mulkey’s research career started with a single child.

At the time, Mulkey, M.D., Ph.D., a fetal-neonatal neurologist in the Division of Fetal and Transitional Medicine at Children’s National Health System, was working at the University of Arkansas for Medical Sciences. Rounding one morning at the neonatal intensive care unit (NICU), she met a new patient: A newborn girl with an unusual set of symptoms. The baby was difficult to wake and rarely opened her eyes. Results from her electroencephalogram (EEG), a test of brain waves, showed a pattern typical of a severe brain disorder. She had an extreme startle response, jumping and twitching any time she was disturbed or touched, that was not related to seizures. She also had trouble breathing and required respiratory support.

Dr. Mulkey did not know what to make of her new patient: She was unlike any baby she had ever cared for before. “She didn’t fit anything I knew,” Dr. Mulkey remembers, “so I had to get to the bottom of what made this one child so different.”

Suspecting that her young patient’s symptoms stemmed from a genetic abnormality, Dr. Mulkey ran a targeted gene panel, a blood test that looks for known genetic mutations that might cause seizures or abnormal movements. The test had a hit: One of the baby’s genes, called KCNQ2, had a glitch. But the finding deepened the mystery even further. Other babies with a mutation in this specific gene have a distinctly different set of symptoms, including characteristic seizures that many patients eventually outgrow.

Dr. Mulkey knew that she needed to dig deeper, but she also knew that she could not do it alone. So, she reached out first to Boston Children’s Hospital Neurologist Philip Pearl, M.D., an expert on rare neurometabolic diseases, who in turn put her in touch with Maria Roberto Cilio, M.D., Ph.D., of the University of California, San Francisco and Edward Cooper, M.D., Ph.D., of Baylor College of Medicine. Drs. Cilio, Cooper and Pearl study KCNQ2 gene variants, which are responsible for causing seizures in newborns.

Typically, mutations in this gene cause a “loss of function,” causing the potassium channel to remain too closed to do its essential job properly. But the exact mutation that affected KCNQ2 in Dr. Mulkey’s patient was distinct from others reported in the literature. It must be doing something different, the doctors reasoned.

Indeed, a research colleague of Drs. Cooper, Cilio and Pearl in Italy — Maurizio Taglialatela, M.D., Ph.D., of the University of Naples Federico II and the University of Molise — had recently discovered in cell-based work that this particular mutation appeared to cause a “gain of function,” leaving the potassium channel in the brain too open.

Wondering whether other patients with this same type of mutation had the same unusual constellation of symptoms as hers, Dr. Mulkey and colleagues took advantage of a database that Dr. Cooper had started years earlier in which doctors who cared for patients with KCNQ2 mutations could record information about symptoms, lab tests and other clinical findings. They selected only those patients with the rare genetic mutation shared by her patient and a second rare KCNQ2 mutation also found to cause gain of function — a total of 10 patients out of the hundreds entered into the database. The researchers began contacting the doctors who had cared for these patients and, in some cases, the patients’ parents. They were scattered across the world, including Europe, Australia and the Middle East.

Dr. Mulkey and colleagues sent the doctors and families surveys, asking whether these patients had similar symptoms to her patient when they were newborns: What were their EEG results? How was their respiratory function? Did they have the same unusual startle response?

She is lead author of the study, published online Jan. 31, 2017 in Epilepsia, that revealed a brand-new syndrome that stems from specific mutations to KCNQ2. Unlike the vast majority of others with mutations in this gene, Dr. Mulkey and her international collaborators say, these gain-of-function mutations cause a distinctly different set of problems for patients.

Dr. Mulkey notes that with a growing focus on precision medicine, scientists and doctors are becoming increasingly aware that knowing about the specific mutation matters as much as identifying the defective gene. With the ability to test for more and more mutations, she says, researchers likely will discover more cases like this one: Symptoms that differ from those that usually strike when a gene is mutated because the particular mutation differs from the norm.

Such cases offer important opportunities for researchers to come together to share their collective expertise, she adds. “With such a rare diagnosis,” Dr. Mulkey says, “it’s important for physicians to reach out to others with knowledge in these areas around the world. We can learn much more collectively than by ourselves.”