Surgical Innovation

Antonio R. Porras

Antonio R. Porras, Ph.D., awarded prestigious NIH grant for craniosynostosis modeling, career advancement

Antonio R. Porras

Antonio R. Porras, Ph.D., is a staff scientist in the Sheikh Zayed Institute for Pediatric Surgical Innovation at Children’s National Health System.

Antonio R. Porras, Ph.D., a staff scientist in the Sheikh Zayed Institute for Pediatric Surgical Innovation at Children’s National Health System, has received the prestigious Pathway to Independence Award from the National Institutes of Health (NIH). This award funds Dr. Porras’ research for the next five years, enabling him to develop two bone growth models that will better inform clinicians treating patients with craniosynostosis and help to optimize outcomes. Also referred to as the K99/R00 grant, this NIH award is for researchers who are either in the postdoctoral/residency period or who are early career investigators. It is designed to transition them from mentored positions to independent, tenure-track or equivalent faculty positions so that they can launch competitive research careers.

Marius George Linguraru, D.Phil., M.A., M.Sc., a principal investigator in the Sheikh Zayed Institute for Pediatric Surgical Innovation, is Dr. Porras’ primary mentor on this research project along with co-mentors Robert Keating, M.D., division chief of neurosurgery at Children’s National, and Maximilian Muenke, M.D., chief in the Medical Genetics Branch at the National Human Genome Research Institute.

Dr. Porras has taken a research interest in craniosynostosis, the early fusion of one or more cranial sutures that may lead to craniofacial malformations and brain growth constraints during childhood. With this NIH K99/R00 award, Dr. Porras will employ his expertise in computer science, biomedical engineering, quantitative imaging and statistical modeling to create a personalized computational predictive model of cranial bone growth for subjects without cranial pathology and for patients with craniosynostosis. Dr. Porras will also quantify the coupled growth patterns of the cranial bones and the brain using an existing brain growth model.

Affecting one in 2,100 to 2,500 live births, craniosynostosis complications can result in elevated intra-cranial pressure and subsequent impaired brain growth. While treatable, optimal outcomes are stymied by subjectivity in the evaluation of cranial malformations and prediction of cranial bone development. There are currently no personalized clinical tools available to predict healthy or pathological cranial growth and no objective techniques to optimize the long-term outcome of treatment for patients with craniosynostosis.

Children’s National ranked No. 6 overall and No. 1 for newborn care by U.S. News

Children’s National in Washington, D.C., is the nation’s No. 6 children’s hospital and, for the third year in a row, its neonatology program is No.1 among all children’s hospitals providing newborn intensive care, according to the U.S. News Best Children’s Hospitals annual rankings for 2019-20.

This is also the third year in a row that Children’s National has been in the top 10 of these national rankings. It is the ninth straight year it has ranked in all 10 specialty services, with five specialty service areas ranked among the top 10.

“I’m proud that our rankings continue to cement our standing as among the best children’s hospitals in the nation,” says Kurt Newman, M.D., President and CEO for Children’s National. “In addition to these service lines, today’s recognition honors countless specialists and support staff who provide unparalleled, multidisciplinary patient care. Quality care is a function of every team member performing their role well, so I credit every member of the Children’s National team for this continued high performance.”

The annual rankings recognize the nation’s top 50 pediatric facilities based on a scoring system developed by U.S. News. The top 10 scorers are awarded a distinction called the Honor Roll.

“The top 10 pediatric centers on this year’s Best Children’s Hospitals Honor Roll deliver outstanding care across a range of specialties and deserve to be nationally recognized,” says Ben Harder, chief of health analysis at U.S. News. “According to our analysis, these Honor Roll hospitals provide state-of-the-art medical expertise to children with rare or complex conditions. Their rankings reflect U.S. News’ assessment of their commitment to providing high-quality, compassionate care to young patients and their families day in and day out.”

The bulk of the score for each specialty is based on quality and outcomes data. The process also includes a survey of relevant specialists across the country, who are asked to list hospitals they believe provide the best care for patients with challenging conditions.

Below are links to the five specialty services that U.S. News ranked in the top 10 nationally:

The other five specialties ranked among the top 50 were cardiology and heart surgery, diabetes and endocrinology, gastroenterology and gastro-intestinal surgery, orthopedics, and urology.

Dr. Anitha John, third from right, director of the Washington Adult Congenital Heart Program, hosts the eighth-annual “Adult Congenital Heart Disease in the 21st Century” conference

CME spotlight: Treating adult congenital heart disease

Dr. Anitha John, third from right, director of the Washington Adult Congenital Heart Program, hosts the eighth-annual “Adult Congenital Heart Disease in the 21st Century” conference

Dr. Anitha John, third from right, director of the Washington Adult Congenital Heart Program, hosts the eighth-annual “Adult Congenital Heart Disease in the 21st Century” conference, which takes place Oct. 4-5, 2019.

A two-day continuing medical education (CME) conference for physicians and clinicians treating patients with adult congenital heart disease (ACHD) takes place Oct. 4-5, 2019, at the Bethesda Marriott in Bethesda, Maryland.

The eighth-annual conference, “Adult Congenital Heart Disease in the 21st Century,” hosted by Children’s National Health System and MedStar Washington Hospital Center provides a comprehensive review of the evaluation, diagnosis and management of ACHD, including guidelines to help ACHD patients manage a healthy pregnancy and clinical guidance about the progression of congenital heart disease (CHD) treatment from adolescence through adulthood.

Two tracks accommodate these themes, with the first focusing on a multidisciplinary approach clinicians can use to help ACHD patients assess risks for pregnancy complications, while planning and managing a healthy pregnancy, with input from cardiologists, anesthesiologists and maternal fetal medicine specialists. The second focuses on cardiac defects, starting with anatomical cardiac lessons with 3D heart models, then moves to imaging review, examining echocardiograms and MRI’s, and ends with clinical management review.

“This conference brings the best science and the most innovative approaches to treatment with questions doctors receive in the exam room,” says Anitha John, M.D., Ph.D., the conference organizer and director of the Washington Adult Congenital Heart program at Children’s National. “We’re inviting patients to join the afternoon of the second day of the CME conference again this year to support shared knowledge of these concepts, which supports lifelong treatment and education.”

Dr. John planned this year’s conference with the November 6 ACHD board exams in mind, integrating topics that will appear on the third ACHD certification exam issued by the American Board of Internal Medicine.

At this year’s CME conference, more than a dozen faculty members, including several physicians and nurses from Children’s National, will guide lectures to help attendees meet 13 objectives, from understanding the prevalence of congenital heart disease and its complications to learning about when surgical interventions and referrals to specialists are necessary.

Attendees will review new and innovative PAH therapies, mechanical support therapies, catheter-based interventional procedures and appraise the use of pacemaker and defibrillator therapy among adults with CHD.

Patients and families attending the patient sessions, held from 12:30 to 3:45 p.m. on Saturday, October 5, have a chance to participate in three sessions that support the medical and social needs of ACHD patients. Topics range from workshops that address the neurodevelopment and psychosocial factors of living with a congenital heart defect to sessions that focus on reproductive options for patients and personalized lifestyle recommendations, including fitness and exercise guidelines.

“To support cardiovascular health throughout the lifespan, it helps to educate patients about their heart’s structure and unique needs,” notes Dr. John. “We want to spark a dialogue now and have future conversations with patients, especially while they are young.”

The American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines updated ACHD treatment recommendations in August 2018, the first time in 10 years, and many of these guidelines manifest as panel discussions and interactive lectures presented at the 2019 Adult Congenital Heart Disease in the 21st Century conference.

Attendees can receive up to 12.5 credits from the Accreditation Council for Continuing Medical Education, the Accreditation Council for Pharmacy Education, the American Nurses Credentialing Center and the American Academy of PAs.

Those interested in starting their own ACHD program can attend an evening symposium, entitled “ACHD Program Building 101,” hosted by representatives from the Mid-Atlantic ACHD Regional Group. Topics in the six-session panel range from managing ACHD patients in a pediatric hospital setting to the role of clinical nurse coordinators in ACHD care.

To learn more about or to register for the conference, visit CE.MedStarHealth.org/ACHD. You can also listen to an interview with Dr. Anitha John about the upcoming Adult Congenital Heart Disease (ACHD) conference.

NCC-PDI Pitch Winners

NCC-PDI announces medical device pitch winners

NCC-PDI Pitch Winners

Five pediatric medical device innovators each captured $50K in funding and access to a new pediatric device accelerator program in a competition hosted April 30, 2019 by National Capital Consortium for Pediatric Device Innovation that focused on orthopedic and spine devices. Clockwise from front left: Kolaleh Eskandanian, Children’s National Health System; Cristian Atria, nView Medical; John Barrett, Auctus Surgical Inc.; Paul Mraz, ApiFix; Dan Sands, AMB Surgical II; Anuradha Dayal, BabySteps, Children’s National Health System; Paul Grand, MedTech Innovator; (center) Bill Bentley, Robert E. Fischell Institute for Biomedical Devices, University of Maryland.

The National Capital Consortium for Pediatric Device Innovation (NCC-PDI) announced five winners of its “Make Your Medical Device Pitch for Kids!” competition held on April 30 at the University of Maryland. Each winner receives $50,000 in grant funding and gains access to the consortium’s first-of-its-kind “Pediatric Device Innovator Accelerator Program” led by MedTech Innovator.

NCC-PDI, one of five FDA Pediatric Device Consortia grant programs that support the development and commercialization of pediatric medical devices, is led by the Sheikh Zayed Institute for Pediatric Surgical Innovation at Children’s National Health System and the A. James Clark School of Engineering at the University of Maryland. The consortium recently added new accelerators BioHealth Innovation and MedTech Innovator and design firm partner, Smithwise.

A panel of 32 expert judges from business, healthcare, regulatory and legal sectors selected the winners based on the clinical significance and commercial feasibility of their medical devices for children. The competition focused solely on advancing care in the pediatric orthopedics and spine sector which the FDA identified as an emerging underserved specialty lacking innovation.

The competition winners are:

  • AMB Surgical, LLC, Dayton, Ohio – FLYTE, a device designed to reduce invasive and repetitive surgery in children and teens with orthopedic illnesses such as scoliosis and limb abnormalities
  • Auctus Surgical, Inc., San Francisco, Calif. – Auctus Surgical Dynamic Spinal Tethering System, a mechanism used to correct the scoliotic spine in pediatric patients through a tethering procedure
  • ApiFix Ltd, Boston, Mass. – ApiFix’s Minimally Invasive Deformity Correction (MID-C) System, a posterior dynamic deformity correction system for surgical treatment to provide permanent spinal curve correction while retaining flexibility
  • Children’s National Health System, Washington, D.C.– Babysteps platform to improve initial assessment of clubfoot deformity and predict the magnitude of correction
  • nView Medical, Salt Lake City, Utah – Surgical scanner using AI-based image creation to provide instant 3D imaging during surgery to improve imagery speed and accuracy

“All finalists are winners and we believe that, with NCC-PDI’s support, some of the awarded devices will be available to orthopedic and spine clinicians in the near future. That is vitally important since innovation has been stagnant in this area,” says Kolaleh Eskandanian, Ph.D., MBA, PMP, vice president and chief innovation officer at Children’s National and principal investigator of NCC-PDI. “This competition aims to increase the profile of companies by exposing them to a panel of industry leaders who may become future investors or strategic partners.”

Through the inaugural NCC-PDI “Pediatric Device Innovator Accelerator Program,” MedTech Innovator is providing winners with virtual in-depth, customized mentorship from some of the industry’s leading executives and investors. MedTech Innovator has a proven track record of identifying early-stage medical device companies with the key characteristics required for commercial success and accelerating their growth through its vast ecosystem of resources.

“As a pediatric orthopedic surgeon, I am encouraged by the innovations presented at this competition,” says Matthew Oetgen, M.D., division chief of Orthopaedic Surgery and Sports Medicine at Children’s National, who served on the judging panel. “We need more devices that compensate for the smaller size of children compared to adults and that can adapt as children’s bones continue to grow and develop. The finalists who competed fully embraced that challenge.”

This was NCC-PDI’s eighth competition in six years and a ninth competition is planned for fall 2019 that focuses on NICU. Including this recent round of winners, the consortium has supported 94 pediatric medical devices and helped five companies receive FDA or CE mark regulatory clearance.

To learn more about the winners and the fall 2019 pitch competition, visit the National Capital Consortium for Pediatric Device Innovation website.

Billie Lou Short and Kurt Newman at Research and Education Week

Research and Education Week honors innovative science

Billie Lou Short and Kurt Newman at Research and Education Week

Billie Lou Short, M.D., received the Ninth Annual Mentorship Award in Clinical Science.

People joke that Billie Lou Short, M.D., chief of Children’s Division of Neonatology, invented extracorporeal membrane oxygenation, known as ECMO for short. While Dr. Short did not invent ECMO, under her leadership Children’s National was the first pediatric hospital to use it. And over decades Children’s staff have perfected its use to save the lives of tiny, vulnerable newborns by temporarily taking over for their struggling hearts and lungs. For two consecutive years, Children’s neonatal intensive care unit has been named the nation’s No. 1 for newborns by U.S. News & World Report. “Despite all of these accomplishments, Dr. Short’s best legacy is what she has done as a mentor to countless trainees, nurses and faculty she’s touched during their careers. She touches every type of clinical staff member who has come through our neonatal intensive care unit,” says An Massaro, M.D., director of residency research.

For these achievements, Dr. Short received the Ninth Annual Mentorship Award in Clinical Science.

Anna Penn, M.D., Ph.D., has provided new insights into the central role that the placental hormone allopregnanolone plays in orderly fetal brain development, and her research team has created novel experimental models that mimic some of the brain injuries often seen in very preterm babies – an essential step that informs future neuroprotective strategies. Dr. Penn, a clinical neonatologist and developmental neuroscientist, “has been a primary adviser for 40 mentees throughout their careers and embodies Children’s core values of Compassion, Commitment and Connection,” says Claire-Marie Vacher, Ph.D.

For these achievements, Dr. Penn was selected to receive the Ninth Annual Mentorship Award in Basic and Translational Science.

The mentorship awards for Drs. Short and Penn were among dozens of honors given in conjunction with “Frontiers in Innovation,” the Ninth Annual Research and Education Week (REW) at Children’s National. In addition to seven keynote lectures, more than 350 posters were submitted from researchers – from high-school students to full-time faculty – about basic and translational science, clinical research, community-based research, education, training and quality improvement; five poster presenters were showcased via Facebook Live events hosted by Children’s Hospital Foundation.

Two faculty members won twice: Vicki Freedenberg, Ph.D., APRN, for research about mindfulness-based stress reduction and Adeline (Wei Li) Koay, MBBS, MSc, for research related to HIV. So many women at every stage of their research careers took to the stage to accept honors that Naomi L.C. Luban, M.D., Vice Chair of Academic Affairs, quipped that “this day is power to women.”

Here are the 2019 REW award winners:

2019 Elda Y. Arce Teaching Scholars Award
Barbara Jantausch, M.D.
Lowell Frank, M.D.

Suzanne Feetham, Ph.D., FAA, Nursing Research Support Award
Vicki Freedenberg, Ph.D., APRN, for “Psychosocial and biological effects of mindfulness-based stress reduction intervention in adolescents with CHD/CIEDs: a randomized control trial”
Renee’ Roberts Turner for “Peak and nadir experiences of mid-level nurse leaders”

2019-2020 Global Health Initiative Exploration in Global Health Awards
Nathalie Quion, M.D., for “Latino youth and families need assessment,” conducted in Washington
Sonia Voleti for “Handheld ultrasound machine task shifting,” conducted in Micronesia
Tania Ahluwalia, M.D., for “Simulation curriculum for emergency medicine,” conducted in India
Yvonne Yui for “Designated resuscitation teams in NICUs,” conducted in Ghana
Xiaoyan Song, Ph.D., MBBS, MSc, “Prevention of hospital-onset infections in PICUs,” conducted in China

Ninth Annual Research and Education Week Poster Session Awards

Basic and Translational Science
Faculty:
Adeline (Wei Li) Koay, MBBS, MSc, for “Differences in the gut microbiome of HIV-infected versus HIV-exposed, uninfected infants”
Faculty: Hayk Barseghyan, Ph.D., for “Composite de novo Armenian human genome assembly and haplotyping via optical mapping and ultra-long read sequencing”
Staff: Damon K. McCullough, BS, for “Brain slicer: 3D-printed tissue processing tool for pediatric neuroscience research”
Staff: Antonio R. Porras, Ph.D., for “Integrated deep-learning method for genetic syndrome screening using facial photographs”
Post docs/fellows/residents: Lung Lau, M.D., for “A novel, sprayable and bio-absorbable sealant for wound dressings”
Post docs/fellows/residents:
Kelsey F. Sugrue, Ph.D., for “HECTD1 is required for growth of the myocardium secondary to placental insufficiency”
Graduate students:
Erin R. Bonner, BA, for “Comprehensive mutation profiling of pediatric diffuse midline gliomas using liquid biopsy”
High school/undergraduate students: Ali Sarhan for “Parental somato-gonadal mosaic genetic variants are a source of recurrent risk for de novo disorders and parental health concerns: a systematic review of the literature and meta-analysis”

Clinical Research
Faculty:
Amy Hont, M.D., for “Ex vivo expanded multi-tumor antigen specific T-cells for the treatment of solid tumors”
Faculty: Lauren McLaughlin, M.D., for “EBV/LMP-specific T-cells maintain remissions of T- and B-cell EBV lymphomas after allogeneic bone marrow transplantation”

Staff: Iman A. Abdikarim, BA, for “Timing of allergenic food introduction among African American and Caucasian children with food allergy in the FORWARD study”
Staff: Gelina M. Sani, BS, for “Quantifying hematopoietic stem cells towards in utero gene therapy for treatment of sickle cell disease in fetal cord blood”
Post docs/fellows/residents: Amy H. Jones, M.D., for “To trach or not trach: exploration of parental conflict, regret and impacts on quality of life in tracheostomy decision-making”
Graduate students: Alyssa Dewyer, BS, for “Telemedicine support of cardiac care in Northern Uganda: leveraging hand-held echocardiography and task-shifting”
Graduate students: Natalie Pudalov, BA, “Cortical thickness asymmetries in MRI-abnormal pediatric epilepsy patients: a potential metric for surgery outcome”
High school/undergraduate students:
Kia Yoshinaga for “Time to rhythm detection during pediatric cardiac arrest in a pediatric emergency department”

Community-Based Research
Faculty:
Adeline (Wei Li) Koay, MBBS, MSc, for “Recent trends in the prevention of mother-to-child transmission (PMTCT) of HIV in the Washington, D.C., metropolitan area”
Staff: Gia M. Badolato, MPH, for “STI screening in an urban ED based on chief complaint”
Post docs/fellows/residents:
Christina P. Ho, M.D., for “Pediatric urinary tract infection resistance patterns in the Washington, D.C., metropolitan area”
Graduate students:
Noushine Sadeghi, BS, “Racial/ethnic disparities in receipt of sexual health services among adolescent females”

Education, Training and Program Development
Faculty:
Cara Lichtenstein, M.D., MPH, for “Using a community bus trip to increase knowledge of health disparities”
Staff:
Iana Y. Clarence, MPH, for “TEACHing residents to address child poverty: an innovative multimodal curriculum”
Post docs/fellows/residents:
Johanna Kaufman, M.D., for “Inpatient consultation in pediatrics: a learning tool to improve communication”
High school/undergraduate students:
Brett E. Pearson for “Analysis of unanticipated problems in CNMC human subjects research studies and implications for process improvement”

Quality and Performance Improvement
Faculty:
Vicki Freedenberg, Ph.D., APRN, for “Implementing a mindfulness-based stress reduction curriculum in a congenital heart disease program”
Staff:
Caleb Griffith, MPH, for “Assessing the sustainability of point-of-care HIV screening of adolescents in pediatric emergency departments”
Post docs/fellows/residents:
Rebecca S. Zee, M.D., Ph.D., for “Implementation of the Accelerated Care of Torsion (ACT) pathway: a quality improvement initiative for testicular torsion”
Graduate students:
Alysia Wiener, BS, for “Latency period in image-guided needle bone biopsy in children: a single center experience”

View images from the REW2019 award ceremony.

Beth Tarini

Getting to know SPR’s future President, Beth Tarini, M.D., MS

Beth Tarini

Quick. Name four pillar pediatric organizations on the vanguard of advancing pediatric research.

Most researchers and clinicians can rattle off the names of the Academic Pediatric Association, the American Academy of Pediatrics and the American Pediatric Society. But that fourth one, the Society for Pediatric Research (SPR), is a little trickier. While many know SPR, a lot of research-clinicians simply do not.

Over the next few years, Beth A. Tarini, M.D., MS, will make it her personal mission to ensure that more pediatric researchers get to know SPR and are so excited about the organization that they become active members. In May 2019 Dr. Tarini becomes Vice President of the society that aims to stitch together an international network of interdisciplinary researchers to improve kids’ health. Four-year SPR leadership terms begin with Vice President before transitioning to President-Elect, President and Past-President, each for one year.

Dr. Tarini says she looks forward to working with other SPR leaders to find ways to build more productive, collaborative professional networks among faculty, especially emerging junior faculty. “Facilitating ways to network for research and professional reasons across pediatric research is vital – albeit easier said than done. I have been told I’m a connector, so I hope to leverage that skill in this new role,” says Dr. Tarini, associate director for Children’s Center for Translational Research.

“I’m delighted that Dr. Tarini was elected to this leadership position, and I am impressed by her vision of improving SPR’s outreach efforts,” says Mark Batshaw, M.D., Executive Vice President, Chief Academic Officer and Physician-in-Chief at Children’s National. “Her goal of engaging potential members in networking through a variety of ways – face-to-face as well as leveraging digital platforms like Twitter, Facebook and LinkedIn – and her focus on engaging junior faculty will help strengthen SPR membership in the near term and long term.”

Dr. Tarini adds: “Success to me would be leaving after four years with more faculty – especially junior faculty – approaching membership in SPR with the knowledge and enthusiasm that they bring to membership in other pediatric societies.”

SPR requires that its members not simply conduct research, but move the needle in their chosen discipline. In her research, Dr. Tarini has focused on ensuring that population-based newborn screening programs function efficiently and effectively with fewer hiccups at any place along the process.

Thanks to a heel stick to draw blood, an oxygen measurement, and a hearing test, U.S. babies are screened for select inherited health conditions, expediting treatment for infants and reducing the chances they’ll experience long-term health consequences.

“The complexity of this program that is able to test nearly all 4 million babies in the U.S. each year is nothing short of astounding. You have to know the child is born – anywhere in the state – and then between 24 and 48 hours of birth you have to do testing onsite, obtain a specific type of blood sample, send the blood sample to an off-site lab quickly, test the sample, find the child if the test is out of range, get the child evaluated and tested for the condition, then send them for treatment. Given the time pressures as well as the coordination of numerous people and organizations, the fact that this happens routinely is amazing. And like any complex process, there is always room for improvement,” she says.

Dr. Tarini’s research efforts have focused on those process improvements.

As just one example, the Advisory Committee on Heritable Disorders in Newborns and Children, a federal advisory committee on which she serves, was discussing how to eliminate delays in specimen processing to provide speedier results to families. One possible solution floated was to open labs all seven days, rather than just five days a week. Dr. Tarini advocated for partnering with health care engineers who could help model ways to make the specimen transport process more efficient, just like airlines and mail delivery services. A more efficient and effective solution was to match the specimen pick-up and delivery times more closely with the lab’s operational times – which maximizes lab resources and shortens wait times for parents.

Conceptual modeling comes so easily for her that she often leaps out of her seat mid-sentence, underscoring a point by jotting thoughts on a white board, doing it so often that her pens have run dry.

“It’s like a bus schedule: You want to find a bus that not only takes you to your destination but gets you there on time,” she says.

Dr. Tarini’s current observational study looks for opportunities to improve how parents in Minnesota and Iowa are given out-of-range newborn screening test results – especially false positives – and how that experience might shake their confidence in their child’s health as well as heighten their own stress level.

“After a false positive test result, are there parents who walk away from newborn screening with lingering stress about their child’s health? Can we predict who those parents might be and help them?” she asks.

Among the challenges is the newborn screening occurs so quickly after delivery that some emotionally and physically exhausted parents may not remember it was done. Then they get a call from the state with ominous results. Another challenge is standardizing communication approaches across dozens of birthing centers and hospitals.

“We know parents are concerned after receiving a false positive result, and some worry their infant remains vulnerable,” she says. “Can we change how we communicate – not just what we say, but how we say it – to alleviate those concerns?”

Jeffrey Lukish

Pediatric Surgeon receives ACS/APSA Health Policy Scholarship

Jeffrey Lukish

Jeffrey Lukish, M.D., a pediatric surgeon at Children’s National Health System, has been named a 2019 American College of Surgeons (ACS) and American Pediatric Surgical Association (APSA) Health Policy Scholar for 2019.

The scholarship supports Dr. Lukish’s attendance at the Executive Leadership Program in Health Policy and Management at Brandeis University, which teaches knowledge and skills essential for participating in health care policy and equips health leaders with tools to create innovative and sustainable ways to improve health care service delivery. As a 2019 scholar, he will also provide health policy-related assistance to the ACS and the APSA as requested, and will have opportunities to build relationships with local, state and federal lawmakers.

Dr. Lukish is a nationally recognized expert in advanced minimally invasive surgery in infants and children, as well as pediatric surgical innovation. He has been voted a Baltimore Top Doctor by his peers for five of the last eight years. He holds academic appointments as a professor of surgery from the Uniformed Services University and associate professor of surgery at the George Washington University.

Dr. Lukish is a fellow of the American College of Surgeons and the American Academy of Pediatrics, and member of several prominent professional societies, including the American Pediatric Surgical Society, the Pediatric Cancer Oncology Group and the International Pediatric Endosurgery Group.  He has authored over 100 publications.

ACC19 attendees from Children's National

ACC.19: A focus on pediatric cardiology

ACC19 attendees from Children's National

Dr. Gerard Martin, center, accepts an award before delivering the 2019 Dan G. McNamara Keynote lecture at ACC.19.

“Innovation meets tradition,” is how many attendees and journalists described the American College of Cardiology’s 68th Scientific Sessions (ACC.19), which took place March 16-18, 2019 in New Orleans, La.

Gerard Martin, M.D., F.A.A.P., F.A.C.C., F.A.H.A., a pediatric cardiologist and the medical director of Global Services at Children’s National, supported this narrative by referencing both themes in his 2019 Dan G. McNamara keynote lecture, entitled “Improved Outcomes in Congenital Heart Disease through Advocacy and Collaboration.” Dr. Martin highlighted advancements in the field of pediatric cardiology that took place over the past 15 years, while touting modern advancements – such as pulse oximetry screenings for critical congenital heart disease – that were a result of physician-led advocacy and collaboration.

Dr. Martin’s message was to continue to invest in research and technology that leads to medical breakthroughs, but to remember the power of partnerships, such as those formed by the National Pediatric Cardiology Quality Improvement Collaborative. These alliances, which generated shared protocols and infrastructure among health systems, improved interstage mortality rates between surgeries for babies born with hypoplastic left heart syndrome.

A dozen cardiologists and clinicians from the Children’s National Heart Institute also participated in CME panel discussions or delivered poster presentations to support future versions of this template, touching on early-stage innovations and multi-institution research collaborations. The themes among Children’s National Heart Institute faculty, presented to a diverse crowd of 12,000-plus professional attendees representing 108 countries, included:

Personalized guidelines:

  • Sarah Clauss, M.D., F.A.C.C., a cardiologist, presented “Unique Pediatric Differences from Adult Cholesterol Guidelines: Lipids and Preventive Cardiology,” before Charles Berul, M.D., division chief of cardiology and co-director of the Children’s National Heart Institute, presented “Unique Pediatric Differences from Adult Guidelines: Arrhythmias in Adults with Congenital Heart Disease,” in a joint symposium with the American Heart Association and the American College of Cardiology.
  • Berul, who specializes in electrophysiology, co-chaired a congenital heart disease pathway session, entitled “Rhythm and Blues: Electrophysiology Progress and Controversies in Congenital Heart Disease,” featuring components of pediatric electrophysiology, including heart block, surgical treatment of arrhythmias and sudden death risk.

Early detection:

  • Anita Krishnan, M.D., associate director of the echocardiography lab, presented “Identifying Socioeconomic and Geographic Barriers to Prenatal Detection of Hypoplastic Left Heart Syndrome and Transposition of the Great Arteries” as a moderated poster in Fetal Cardiology: Quickening Discoveries.
  • Jennifer Romanowicz, M.D., a cardiology fellow, and Russell Cross, M.D., director of cardiac MRI, presented the “Neonatal Supraventricular Tachycardia as a Presentation of Critical Aortic Coarctation” poster in FIT Clinical Decision Making: Congenital Heart Disease 2.
  • Pranava Sinha, M.D., a cardiac surgeon, presented the poster “Neuroprotective Effects of Vitamin D Supplementation in Children with Cyanotic Heart Defects: Insights from a Rodent Hypoxia Model” in Congenital Heart Disease: Therapy 2.

Coordinated care:

  • Ashraf Harahsheh, M.D., F.A.C.C., F.A.A.P., a cardiologist with a focus on hyperlipidemia and preventive cardiology, co-presented an update about BMI quality improvement (Q1) activity from the American College of Cardiology’s Adult Congenital and Pediatric Quality Network – BMI Q1 leadership panel.
  • Niti Dham, M.D., director of the cardio-oncology program, and Deepa Mokshagundam, M.D., cardiology fellow, presented the poster “Cardiac Changes in Pediatric Cancer Survivors” in Heart Failure and Cardiomyopathies: Clinical 3.
  • Nancy Klein, B.S.N., R.N., C.P.N., clinical program coordinator of the Washington Adult Congenital Heart program at Children’s National, presented the poster “Improving Completion of Advanced Directives in Adults with Congenital Heart Disease” in Risks and Rewards in Adult Congenital Heart Disease.

Innovation:

  • Jai Nahar, M.D., a cardiologist, moderated “Future Hub: Augmented Cardiovascular Practitioner: Giving Doctors and Patients a New Voice.” The session focused on technical aspects of artificial intelligence, such as language processing and conversational artificial intelligence, as well as how applications are used in patient-physician interactions.
  • Nahar also participated in a key event on the Heart-to-Heart stage, entitled “Rise of Intelligent Machines: The Potential of Artificial Intelligence in Cardiovascular Care.”

“While I enjoyed the significant representation of Children’s National faculty at the meeting and all of the presentations this year, one research finding that I found particularly compelling was Dr. Krishnan’s poster about geographical disparities in detecting congenital heart disease,” says Dr. Berul. “Her research finds obstetricians providing care to women in the lowest quartile of socioeconomic areas were twice as likely to miss a diagnosis for a critical congenital heart defect during a fetal ultrasound, compared to obstetricians providing care for women in the highest quartiles.”

Dr. Krishnan’s study was the collaborative effort of 21 centers in the United States and Canada, and investigated how socioeconomic and geographic factors affect prenatal detection of hypoplastic left heart syndrome and transposition of the great arteries.

“We studied over 1,800 patients, and chose these diseases because they require early stabilization by a specialized team at a tertiary care center,” says Dr. Krishnan, who led the research in conjunction with the Fetal Heart Society Research Collaborative. “We hope that by understanding what the barriers are, we can reduce disparities in care through education and community-based outreach.”

Kinsley and Dr. Timothy Kane

Case study: Diagnosing a choledochal cyst in utero

Kinsley and Dr. Timothy Kane

The Feigel family worked with Timothy Kane, M.D., the division chief of general and thoracic surgery at Children’s National, to ensure an accurate diagnosis, coordinate a corrective procedure and support a strong recovery for Kinsley, who just celebrated a 5-month milestone.

On Sept. 30, 2018, Elizabeth Feigel gave birth to a healthy baby girl, Kinsley Feigel. Thirty-two days later, Elizabeth and her husband, Steven Feigel, delighted in another hospital moment: Kinsley, who developed a choledochal cyst in utero, was recovering from a surgical procedure to remove an abnormal bile duct cyst, which also required the removal of her gallbladder.

While the series of events, interspersed with multiple hospital visits, would likely create uneasiness in new parents, the Feigel family worked with Vahe Badalyan, M.D., a gastroenterologist at Children’s National Health System, and with Timothy Kane, M.D., the division chief of general and thoracic surgery at Children’s National, to ensure an accurate diagnosis, coordinate a corrective procedure and support a strong recovery for Kinsley, who just celebrated a 5-month milestone.

One of the keys to Kinsley’s success was close communication between her parents and providers.

Dr. Badalyan and Dr. Kane listened to Elizabeth and Steven’s concerns, explained complex medical terms in lay language, and provided background about Kinsley’s presenting symptoms, risk factors and procedures. Instead of second-guessing the diagnosis, Elizabeth and Steven put their trust into and remained in contact with the medical team, sharing updates about Kinsley at home. This parent-physician partnership helped ensure an accurate diagnosis and tailored treatment for Kinsley.

Here is her story.

An early diagnosis

During a 12-week prenatal ultrasound, Elizabeth discovered that Kinsley had an intra-abdominal cyst. Before Elizabeth came to Children’s National for an MRI, she met with several fetal medicine specialists and had a variety of tests, including an amniocentesis to rule out chromosomal abnormalities, such as Down syndrome.

The team at Children’s National didn’t want to prematurely confirm Kinsley’s choledochal cyst in utero, but additional ultrasounds and an MRI helped narrow the diagnosis to a few conditions.

After Kinsley was born, and despite looking like a healthy, full-term baby, she was transported to the neonatal intensive care unit (NICU) at Children’s National. Dr. Badalyan and Dr. Kane analyzed Kinsley’s postnatal sonogram and found the cyst was bigger than they previously thought. Over a five-day period, the medical team kept Kinsley under their close watch, running additional tests, including an additional sonogram. They then followed up with Kinsley on an outpatient basis to better understand and diagnose her cyst.

Outpatient care

Over the next few weeks, Kinsley, Elizabeth and Steven returned to Children’s National to coordinate multiple exams, ranging from an MRI to a HIDA scan. During this period, Elizabeth and Steven remained in contact with Dr. Badalyan. They heard about Kinsley’s lab results and sent updates about her symptoms, including her stool, which helped the medical team monitor her status.

Meanwhile, Dr. Badalyan and Dr. Kane worked closely with the lab to measure Kinsley’s bilirubin levels. Her presenting symptoms and risk factors, she had jaundice and is a female baby of Asian descent, are associated with both choledochal cysts and biliary atresia.

Over time and with the help of Elizabeth, Steven and the pediatric radiologists, Dr. Badalyan and Dr. Kane confirmed Kinsley had a type 1 choledochal cyst, the most common. Originally, the plan was to operate at three to six months, but Dr. Kane needed to expedite the procedure and operate on Kinsley at one month due to a rise in her bilirubin, a sign of progressive liver disease.

Higher bilirubin levels are common in newborns and remain elevated at about 5 mg/dL after the first few days of birth, but Kinsley’s levels peaked and remained elevated. Instead of her bile flowing into her intestine, her choledochal cyst reduced the flow of bile, which accumulated and started to pour back into her liver. The timing of the surgery was as important as the procedure.

The surgery

On Oct. 31, Halloween, Kinsley had laparoscopic surgery to remove the choledochal cyst. Approximately five to seven patients per year undergo choledochal cyst removal at Children’s National. Smaller infants typically undergo removal of a choledochal cyst using a large incision (or open procedure). Kinsley was the smallest baby at Children’s National to have this type of surgery performed by minimally invasive laparoscopic surgery, which required a few 3-mm incisions – the size of coriander seeds.

Some hospitals use the da Vinci robot, which starts at 8-mm incisions, the size of a small pearl, to conduct this procedure on infants, but this method cannot effectively be done in very small infants. Instead, Dr. Kane prefers to stitch sutures by hand. This technique keeps the incisions small and is technically demanding, but Dr. Kane doesn’t mind (he views this as an advanced technical skill). The goal for this surgery was to cut out the abnormal piece of Kinsley’s common bile duct, comprised of the cyst, remove  this and then sew the bile duct to the small intestine (duodenum), creating a digestive pathway. The new digestive tube allows for bile to flow from her liver through the common hepatic duct, in place of the pathway where the cyst formed, and into her intestine.

Like other surgeries, Dr. Kane needed to adapt the procedure, especially with Kinsley’s size: Taking too much from the bile duct would create a tight space, and could create obstruction, blocking bile, while leaving too much room could create leakage and spilling of the bile, requiring a follow-up surgical procedure within a week or two of the original operation.

Dr. Kane had a few options in mind before he operated. He didn’t know which would be most suitable until the operation, but he remained open and prepared for all three. Adopting this mindset, instead of having one procedure in mind, has helped Dr. Kane with precise and tailored surgeries, which often result in the best procedure and a stronger recovery period for young patients.

After 4.5 hours, the surgery, a two-part procedure – removing the cyst and recreating a functional bile duct – was complete.

Kinsley moved into the recovery unit, where she rested and recovered under close medical supervision for five days. During the first few days, she didn’t have liquids or milk, but she did have two bedside nurses monitoring her status in addition to surgeons making regular rounds. Elizabeth and Steven were relieved: The diagnosis and surgery were over.

Managing risk factors

Before Kinsley left the hospital, Elizabeth and Steven scheduled a follow-up visit to ensure Kinsley was recovering well and avoided risk of infection, such as cholangitis, which can occur suddenly and become chronic.

Following Kinsley’s post-surgical bloodwork in early November, Dr. Badalyan noticed Kinsley’s white blood count was high, signaling infection, and he immediately brought the family back to the hospital. To help her body fight the infection, Kinsley received antibiotics and intravenous fluids. She stayed in the hospital for five days. Fortunately, cholangitis is easy to treat with antibiotics; the key is to detect it early.

Kinsley returned home in time for Thanksgiving. She came back to the hospital for biweekly visits. At this point, she was filling out, reaching a 2-month milestone and nearing a full recovery. She returned for follow-up visits in December and January – and has been healthy ever since. She will continue to make routine visits during her first year to ensure her white blood count remains in a healthy range.

Investing in youth resilience

Dr. Badalyan and Dr. Kane envision a healthy future for Kinsley. They don’t expect she’ll need additional operations. Her parents are also looking on the bright side: Since gallbladders aren’t essential for survival or long-term health outcomes, and since many people can easily live without them, Kinsley may be at an advantage. Elizabeth thinks Kinsley may be more cautious about lifestyle choices to support living without a gallbladder, which also support longevity.

Another perspective noted by Dr. Badalyan and Dr. Kane is Kinsley’s resilience factor. Having the surgery earlier brought unique challenges, but her age makes it easier for Kinsley to bounce back as her body rapidly develops. Her tissues were healthy, compared to adult patients undergoing surgery with chronic liver problems or heart disease, which puts her at an advantage for a faster healing process. Dr. Badalyan also mentions that while it’s good for her Kinsley and her family to continue to monitor risks for infections, she won’t have gallstones.

Elizabeth also started to notice something that Kinsley’s doctors likely wouldn’t pick up on: Her personality seems to be a result of her hospital experience and stay. Kinsley’s an easy baby. She eats well and sleeps well, which Elizabeth credits to being around clinicians and to learning the art of self-soothing, a skill she likely acquired while recovering from surgery.

This month, Kinsley has another adventure. She’ll travel with her parents to visit extended family in Seattle, Napa Valley, Calif. and West Virginia. She has several relatives and family friends, all of whom are looking forward to meeting her.

Dr. Kurt Newman in front of the capitol building

Kurt Newman, M.D., shares journey as a pediatric surgeon in TEDx Talk

Kurt Newman, M.D., president and chief executive officer of Children’s National, shares his poignant journey as a pediatric surgeon, offering a new perspective for approaching the most chronic and debilitating health conditions. In this independently-organized TEDx event, Dr. Newman also shares his passion for Children’s National and the need to increase pediatric innovations in medicine.

The traction sisters

Spinal-halo-gravity traction times three

The traction sisters

Three girls received spinal-halo-gravity traction at the same time at Children’s National prior to surgery for acute idiopathic scoliosis.

Washington, D.C.’s ABC affiliate, WJLA, recently featured a story about three girls who received treatment for acute idiopathic scoliosis through the Children’s National Spinal Fusion Surgical Home, a comprehensive and effective program that has demonstrated reductions in pain medication usage and medical stays following posterior spinal fusion surgery.

All three girls had extremely severe curvatures of the spine requiring a month long inpatient stay for spinal halo-gravity traction prior to surgical intervention. Spinal curves severe enough to require traction are rare, and often impede a child’s quality of life just as severely – eating, breathing and moving are difficult. Given the long hospital stay required and the challenges of asking a child to stay in a traction frame 23 hours out of every day, the orthopaedic surgery team tries to coordinate cases so that when possible, patients can support each other throughout the process. This was the first time, however, that the team had three traction patients on similar trajectories on the unit at the same time.

Spinal halo-gravity traction can reduce the degree of surgical intervention necessary by accomplishing some pre-operative gradual straightening of the spine prior to spinal fusion procedures. For severe spinal deformities this has been shown to improve the safety and effectiveness of the final surgical procedure.

Prescription for a healthy heart: pediatric-driven partnerships

Dr. Martin and a patient share a smile after a visit at Children’s National Health System.

For pediatric cardiologists, February, National Heart Month, is a special time. We share health tips in the hospital and talk about heart health with those looking for advice, especially with patients and families impacted by congenital heart disease (CHD). It’s also a time to look back at what’s worked well in the field, while accelerating advancements for CHD treatment.

To start, congenital heart disease, a structural abnormality of the heart or of the blood vessels surrounding it, is the most common birth defect and occurs in about one in every 100 live births, affecting 40,000 babies born in the U.S. each year. One million children and 1.4 million adults in the U.S. have CHD. Over the past 15 years, pediatric cardiologists have cut mortality rates for CHD in half. Gratefully, now instead of saving children’s lives, the emphasis is on improving them. The catalyst for this paradigm shift isn’t simply due to a medical breakthrough, but is also the result of collaboration and advocacy.

Pediatric cardiologists worked together with other stakeholders – nurses, neonatologists, parents, state and federal agencies – to implement newborn screening methods in hospitals, with the introduction pulse oximetry screenings for critical congenital heart defects (CCHD). The screening, which measures blood oxygen levels in newborns, focuses on screening babies for CCHD before they leave the hospital. The concept and a national protocol for screening began with a small project in 2002, was endorsed by medical associations by 2012 and required by all states in 2018. The impact of CCHD screening of newborns is remarkable. Data published in JAMA showed a 33 percent reduction in CCHD infant deaths associated with states that required CCHD screening.

The pulse oximetry screening’s impact on the number of lives saved goes beyond identifying newborns with CCHD. Worldwide, though the detection of secondary conditions, such as hypothermia, pneumonia, and sepsis, the pulse oximetry screening is estimated to save roughly 772,000 lives by 2030.

In addition to newborn screening recommendations for CCHD, a group of cardiologists, including myself, worked for the Joint Council on Congenital Heart Disease (JCCHD) to form and support the National Pediatric Cardiology Quality Improvement Collaborative (NPC-QIC). We developed measures to see how we could improve survival rates between surgeries for infants born with hypoplastic left heart syndrome (HLHS), one of the most common and severe forms of CCHD.

Babies born with HLHS require two heart surgeries within the baby’s first six months. Babies that survived the first operation had a significant mortality rate (15 percent) and frequent growth failure, while waiting for the second operation. Our focused aims were to both decrease the death rate and improve growth in these children. We analyzed data from medical centers, utilized quality improvement principals from the Institute for Health Care Improvement, talked with doctors and families, and invited teams from across the U.S. to partner with us to put quality and safety measures into place.

We emphasized the following points:

  1. Clear communication. Parents leaving the hospital received consistent messages about CHD, the type of surgery their baby had, next steps and how to care for their child at home.
  2. Improved nutrient intake. Parents received clear guidelines about how many calories babies needed to consume, were asked to weigh their baby each day, and taught how to augment feeding.
  3. Warning signs.Parents received a list of typical infant behaviors and HLHS red flags to watch out for, such as if a baby isn’t gaining a certain amount of weight. They received monitors to measure oxygen saturation levels at home. If oxygen saturation dropped significantly or if parents noticed a problem, they called their doctor immediately.

The implementation of these procedures reduced interstage mortality rates and the number of growth failures for HLHS patients. In 2008, six centers participated in the NPC-QIC pilot. By 2018, 65 medical centers in the U.S. and Canada used these methods. Similar to the pulse oximetry screening guidelines, this new method wasn’t the result of a medical breakthrough, but the result of shared learning and shared infrastructure.

Now, we’re referring more adult congenital heart patients to board-certified adult congenital heart disease (ACHD) specialists, a better fit than internists or pediatric cardiologists. Adults with congenital heart defects should have their heart examined at least once by a specialist and those with complex needs should meet with a specialist at least every two years. More than 300 board-certified ACHD specialists practice in the U.S. and the field is growing. The third ACHD board exam takes place this year.

Over the next few decades, I hope we’ll make even more progress with understanding, diagnosing and treating CHD.

Emerging research examines genetic clues for congenital heart defects, which were once thought to account for 8 percent of cases and may now account for 30 percent of conditions. We’re working with neurologists to examine the timing and pathway of potential oxygen inefficiencies that occur as the brain develops in utero, infancy, and after neonatal surgery. We’ve come a long way, but we continue looking at new frontiers and for innovative solutions.

Fortunately, as cardiologists, we’re good at fixing problems. We work with surgeons and medical teams to repair holes in hearts, or replace them, and reroute blood from an underdeveloped left ventricle to improve circulation. For almost every heart defect, we have evidence-based solutions. However, to continue to help children worldwide, it’s imperative that we don’t forget about what works well: good science, tracking data, sharing best practices, active listening, transparency and constant collaboration.

Gerard Martin, M.D., F.A.A.P., F.A.C.C., F.A.H.A., is a cardiologist and the medical director of global services at Children’s National Health System. Dr. Martin has practiced pediatric cardiology for 34 years and is the Dan G. McNamara keynote speaker at the American College of Cardiology’s 2019 Scientific Sessions. Follow Dr. Martin on Twitter @Gerard_MD.

This article first appeared on KevinMD.com.

Nikki Gillum Posnack

What are the health effects of plastics?

Nikki Gillum Posnack

Nikki Posnack, Ph.D., assistant professor at the Children’s National Heart Institute, is an early-stage investigator examining the impact plastic chemical exposure has on the developing hearts of newborns and young children.

For newborns or children in the pediatric intensive care unit, plastic tubing is part of daily life. It delivers life-sustaining blood transfusions, liquid nutrition and air to breathe. But small amounts of the chemicals in the plastic of this tubing and other medical devices can leak into the patient’s bloodstream. The potential effects of these chemicals on the developing hearts of newborns and very young children are not well understood.

One researcher, Nikki Posnack, Ph.D., an assistant professor at the Children’s National Heart Institute, aims to change that and shares her early insights, funded by the National Center for Advancing Translation Science (NCATS), in an NCATS news feature.

“While plastics have revolutionized the medical field, we know chemicals in plastics leach into the body and may have unintended effects,” Posnack said. “The heart is sensitive to toxins, so we want to look at the effect of these plastics on the most sensitive patient population: kids who are recovering from heart surgery and already prone to cardiac complications.”

Dr. Michael Hsieh's clay shield

Innovative urologist Michael Hsieh takes unbeaten path

Dr. Michael Hsieh's clay shield

For an elementary school art project, Michael H. Hsieh, M.D., Ph.D., was instructed to fashion a coat of arms out of clay. In addition to panels for truth, justice and Taiwan, in the shield’s M.D. panel, a snake twists around a rod, like the staff for Asclepius, a Greek god associated with healing.

Children’s urologist Michael H. Hsieh, M.D., Ph.D., knew from age 10 that he would become a doctor. Proof is at his parents’ home. For an elementary school art project, students were instructed to fashion a coat of arms out of clay. In addition to panels for truth, justice and Taiwan, in the shield’s M.D. panel, a snake twists around a rod, like the staff for Asclepius, a Greek god associated with healing.

“I liked science. When I can use it to help patients, that is very rewarding,” says Dr. Hsieh, the first doctor in his family.

These days, Dr. Hsieh’s Twitter profile serves as a digital coat of arms, describing him as “tinker, tailor,” #UTI #biologist, epithelial #immunologist, helminthologist and #urologist.

Tinker/tailor is shorthand for the mystery drama, “Tinker Tailor Solider Spy,” he explains, adding that the “tinker” part also refers “to the fact that I am always questioning things, and science is about experimentation, trying to seek answers to questions.”

While still in medical school during a rotation Dr. Hsieh saw a bladder operation on a young child and thought it was “amazing.” That experience in part inspired Dr. Hsieh to become a urologist and bladder scientist. His training in immunology and study of the bladder naturally led him to study urinary tract infections and parasitic worms that affect the urinary tract. In addition, thanks to R01 funding from the National Institutes of Health (NIH), Dr. Hsieh is co-principal investigator with Axel Krieger, University of Maryland, and Jin U. Kang, Johns Hopkins, on a project to develop imaging robots for supervised autonomous surgery on soft tissue.

The $1 million in NIH funding pushes the boundaries on amazing by using multi-spectral imaging technology and improved techniques to reduce surgical complications.

Anastomosis is a technique used by surgeons to join one thing to another, whether it’s a vascular surgeon suturing blood vessels, an orthopedic surgeon joining muscles or a urologist stitching healthy parts of the urinary tract back together. Complications can set in if their stitching is too tight, prompting scar tissue to form, or too loose, letting fluid seep out.

“The human eye can see a narrow spectrum of electromagnetic radiation. These multi-spectral imaging cameras would see across greater set of wavelengths,” he says.

The project has three aims: figuring out the best way to place sutures using multi-spectral imaging, accurately tracking soft tissue as they model suturing and comparing the handicraft of a robot against anastomosis hand-sewn by surgeons.

“I like challenges, and I like new things. I am definitely not interested in doing permutations of other people’s work,” Dr. Hsieh explains. “I would much rather go on a path that hasn’t been tread. It is more difficult in some ways, but on a day-to-day basis, I know I am making a contribution.”

In another innovative research project, Dr. Hsieh leveraged a protein secreted by a parasitic worm, Schistosoma haematobium, that suppresses inflammation in hosts as a new therapeutic approach for chemotherapy-induced hemorrhagic cystitis, a form of inflammation of the bladder.

Watching his first surgery nearly 30 years ago, he had no idea robots might one day vie to take over some part of that complicated procedure, or that parasite proteins could be harnessed as drugs. However, he has a clear idea which innovations could be on the horizon for urology in the next three decades.

“My hope is 30 years from now, we will have a solid UTI vaccine and more non-antibiotic therapies. UTIs are the second-most common bacterial infection in childhood and, in severe cases, can contribute to kidney failure,” he says.

Globally, parasitic worms pose an ongoing challenge, affecting more than 1 billion worldwide – second only to malaria. People persistently infected by schistosome worms fail to reach their growth potential, struggle academically and lack sufficient energy for exercise or work.


“There is a feeling that the infection prevalence might be decreasing globally, but not as quickly as everyone hopes. In 30 years perhaps with more mass drug administration and additional drugs – including a vaccine – we’ll have it close to eliminated globally. It would become more like polio, casting a slim shadow with small pockets of infection here or there, rather than consigning millions to perpetual poverty.”

Pedbot video game

Pedbot’s next step – Home-based therapy

Pedbot video game

Pedbot’s home version adapts the same airplane-themed video game to a smaller therapeutic platform that is more affordable to build.

The novel ankle rehabilitation robot built at Children’s National to help children with cerebral palsy build ankle strength and control through video gaming is taking a big step forward. Engineers have created a smaller, more affordable version of the robotic platform using 3D printed parts, to explore the effectiveness of a home-based therapy program.

“We’re seeing preliminary success in our trial for in clinic use of the Pedbot. Now we’re hoping to see if making the technology accessible at home means that 1) Kids use it more often and 2) More frequent, regular use over time leads to better range of motion,” says Kevin Cleary, Ph.D., the Sheikh Zayed Institute for Pediatric Surgical Innovation’s bioengineering technical director and engineering lead for Pedbot.

Pedbot’s video game, designed by software engineer Hadi Fooladi, M.S., allows kids to pilot an airplane through a series of hoops at varying speeds as determined by the therapist and programmer. The game isn’t the only thing that’s unique about this therapeutic robot, however.

Just like the clinic version, the home model moves in three translational directions (x, y and z) and rotates about three axes (the x, y and z axes), similar to the movement of a flight simulator. The result is a robot that helps the patient exercise across a greater range of motion and build muscle strength in a way that more closely mimics real-life ankle function.

Pedbot Home potentially eliminates an additional major therapeutic barrier – the clinic appointment.

“The great thing about Pedbot is you’re constantly working to reach a moving target, and the therapist can vary the movement type as much or as little as needed for each patient,” says Catherine Coley, DPT, a physical therapist at Children’s National who is a member of the Pedbot development team. “We think the home version might make it easier for the child to succeed with a long term therapy program by removing the need for repeat clinic visits.”

“What if a child could come home from school and do their therapy at home after dinner? Would doing it every day for 20 minutes benefit the child more than just coming to see us once or twice a week for an hour? Can we make it easier for our patients to cooperate and follow through with therapy homework? These are some of the questions that we hope we can answer during our trial for the home version,” says Sally Evans, M.D., division chief of Pediatric Rehabilitation Medicine at Children’s National and clinical lead for the project.

The cross-functional Pedbot team includes engineers Reza Monfaredi Ph.D. and Tyler Salvador, B.S., as well as additional physical therapists, Stacey Kovelman, P.T. and Justine Belchner, P.T., and Sara Alyamani, B.A. Future expansions will include the addition of electromyography measurements in collaboration with Paola Pergami, M.D., Ph.D. and incorporation of other patient populations with Beth Wells, M.D.

Pedbot Home is currently being piloted in the home setting, with the goal of enrolling additional families to participate in a trial within the next year. The work is supported by a $500,000 federal grant from the Department of Health and Human Services’ National Institute on Disability, Independent Living, and Rehabilitation Research.

surgical theater

Virtual reality allows surgical planning from every angle

surgical theater

The virtual reality surgical system projects images into the operating room, allowing neurosurgeons to revisit the surgical plan in real time.

Neurosurgeons at Children’s National Health System are getting a new three-dimensional (3D) perspective on their cases thanks to an FDA-approved breakthrough virtual reality surgical system.

Children’s National is the first pediatric health system in metropolitan Washington, D.C., to use this state-of-the art system, created by Surgical Theater. It seamlessly integrates patient-specific surgical planning and navigation, professional education and rehearsal.

The technology acquisition was made possible through a generous gift from Sidney & Phyllis Bresler, in honor of their children Alex, Jonathan and Amanda and grandson Theo Charles Bresler, and in loving memory of Joshua Stouck.

“Virtual reality modeling enables us to further explore, analyze and find the best approach for each unique surgical procedure,” said Children’s National President and CEO Kurt Newman, M.D. “This generous gift from Sidney & Phyllis Bresler should translate into better outcomes for many of the more than 17,500 patients who receive surgery at our hospital each year, and will benefit generations to come. We are deeply grateful for the Breslers’ commitment to pediatric innovation.”

The 3D, 360-degree view gives surgeons a cutting-edge digital tool to plan procedures in depth using an accurate capture of the patient’s unique anatomy, and also allows the surgeon to illustrate the surgical path in greater detail than ever before for patients and their families.

“Technology such as Surgical Theater’s represents a quantum leap for neurosurgeons, both in and out of the operating room,” said Robert Keating, M.D., chief of Neurosurgery at Children’s National, in a press release from the company. “It allows us to marry state-of-the-art 3D simulation to the real world; for the patient and family as well as doctors in training, and ultimately offers a new tool for the neurosurgical armamentarium in approaching complex lesions in the brain, such as AVM’s, tumors, epilepsy and functional cases.”

Karun-Sharma-and-kids-MR-HIFU

Clinical Trial Spotlight: Treating tumors with ThermoDox® and MR-HIFU

Karun Sharma, M.D., is working with AeRang Kim, M.D., Ph.D., to evaluate the use of ThermoDox®, a heat-activated chemotherapy drug, in combination with noninvasive magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) to treat refractory or relapsed solid tumors in children and young adults.

A Phase I Study of Lyso-thermosensitive Liposomal Doxorubicin (LTLD, ThermoDox®) and Magnetic Resonance-Guided High Intensity Focused Ultrasound for Relapsed or Refractory Solid Tumors in Children, Adolescents, and Young Adults.

This study is looking to determine the maximum tolerated dose (MTD) and recommended phase 2 dose (RP2D) of lyso-thermosensitive liposomal doxorubicin (LTLD), a heat-activated formulation of liposomal doxorubicin with unique property of heat-activated release of doxorubicin, administered in combination with magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) in children with relapsed/refractory solid tumors.

MR-HIFU is an innovative device that provides precise and controlled delivery of heat inside a tumor using an external applicator. Unlike other heating systems used in local therapy, MR-HIFU is entirely non-invasive and does not use any radiation. Integration of MR imaging allows for real-time temperature monitoring for accurate and precise targeting of tumors. LTLD is a novel formulation of doxorubicin with the unique property of heat-activated release. This selective drug delivery mechanism allows for local and rapid release of doxorubicin in high concentrations in tumors when heated. This novel combination may potentiate known effective therapy to improve local control and drug delivery without increasing toxicity.

Children’s National Health System and Celsion Corp, a leading oncology drug-development company, were the first to launch a clinical study in the U.S. that evaluates the use of ThermoDox® with MR-HIFU. Learn more about the clinical trial.

For more information about this trial or other trials available at Children’s National, contact:

Melissa Salerno
Clinical Research Program Manager
202-476-2142
msalerno@childrensnational.org

View more open phase 1 and phase 2 cancer clinical trials at Children’s National.

The Children’s National Center for Cancer and Blood Disorders is committed to providing the best care for pediatric patients. Our experts play an active role in innovative clinical trials to advance pediatric cancer care. We offer access to novel trials and therapies, some of which are only available here at Children’s National. With research interests covering nearly aspect of pediatric cancer care, our work is making great advancements in childhood cancer.

Nobuyuki Ishibashi

Cortical dysmaturation in congenital heart disease

Nobuyuki Ishibashi

On Jan. 4, 2019, Nobuyuki Ishibashi, M.D., the director of the Cardiac Surgery Research Laboratory and an investigator with the Center for Neuroscience Research at Children’s National Health System, published a review in Trends in Neurosciences about the mechanisms of cortical dysmaturation, or disturbances in cortical development, that can occur in children born with congenital heart disease (CHD). By understanding the early-life impact and relationship between cardiac abnormalities and cortical neuronal development, Dr. Ishibashi and the study authors hope to influence strategies for neonatal neuroprotection, mitigating the risk for developmental delays among CHD patients.

Dr. Ishibashi answers questions about this review and CHD-neurodevelopmental research:

  1. Tell us more about your research. Why did you choose to study these interactions in this patient population?

My research focuses on studying how CHD and neonatal cardiac surgery affect the rapidly-developing brain. Many children with CHD, particularly the most complex anomalies, suffer from important behavioral anomalies and neurodevelopmental delays after cardiac surgery. As a surgeon scientist, I want to optimize treatment strategy and develop a new standard of care that will reduce neurodevelopmental impairment in our patients.

  1. How does this study fit into your larger body of work? What are a few take-home messages from this paper?

Our team and other laboratories have recently identified a persistent perinatal neurogenesis that targets the frontal cortex – the brain area responsible for higher-order cognitive functions. The main message from this article is that further understanding of the cellular and molecular mechanisms underlying cortical development and dysmaturation will likely help to identify novel strategies to treat and improve outcomes in our patients suffering from intellectual and behavioral disabilities.

  1. What do you want pediatricians and researchers to know about this study? Why is it important right now?

Although the hospital mortality risk is greatly reduced, children with complex CHD frequently display subsequent neurological disabilities affecting intellectual function, memory, executive function, speech and language, gross and fine motor skills and visuospatial functions. In addition to the impact of the neurological morbidity on the patients themselves, the toll on families and society is immense. Therefore it is crucial to determine the causes of altered brain maturation in CHD.

  1. How do you envision this research influencing future studies and pediatric health outcomes? As a researcher, how will you proceed?

In this article we placed special emphasis on the need for well-designed preclinical studies to define disturbances in cortical neurogenesis due to perinatal brain injury. I believe that further study of the impact of hypoxemia on brain development is of broad relevance — not just for children with congenital heart disease, but for other populations where intellectual and behavioral dysfunctions are a source of chronic morbidity, such as survivors of premature birth.

  1. What discoveries do you envision being at the forefront of this field?

One of the important questions is: During which developmental period, prenatal or postnatal, is the brain most sensitive to developmental and behavioral disabilities associated with hypoxemia? Future experimental models will help us study key effects of congenital cortical development anomalies on brain development in children with CHD.

  1. What impact could this research make? What’s the most striking finding and how do you think it will influence the field?

Although cortical neurogenesis at fetal and adult stages has been widely studied, the development of the human frontal cortex during the perinatal period has only recently received greater attention as a result of new identification of ongoing postnatal neurogenesis in the region responsible for important intellectual and behavioral functions. Children’s National is very excited with the discoveries because it has opened new opportunities that may lead to regeneration and repair of the dysmature cortex. If researchers identify ways to restore endogenous neurogenic abilities after birth, the risk of neurodevelopment disabilities and limitations could be greatly reduced.

  1. Is there anything else you would like to add that we didn’t ask you about? What excites you about this research?

In this article we highlight an urgent need to create a truly translational area of research in CHD-induced brain injury through further exploration and integration of preclinical models. I’m very excited about the highly productive partnerships we developed within the Center for Neuroscience Research at Children’s National, led by an internationally-renowned developmental neuroscientist, Vittorio Gallo, Ph.D., who is a co-senior author of this article. Because of our collaboration, my team has successfully utilized sophisticated and cutting-edge neuroscience techniques to study brain development in children born with CHD. To determine the causes of altered brain maturation in congenital heart disease and ultimately improve neurological function, we believe that a strong unity between cardiovascular and neuroscience research must be established.

Additional study authors include Camille Leonetti, Ph.D., a postdoctoral research fellow with the Center for Neuroscience Research and Children’s National Heart Institute, and Stephen Back, M.D., Ph.D., a professor of pediatrics at Oregon Health and Science University.

The research was supported by multiple grants and awards from the National Institutes of Health, inclusive of the National Heart Lung and Blood Institute (RO1HL139712), the National Institute of Neurological Disorders and Stroke (1RO1NS054044, R37NS045737, R37NS109478), the National Institute on Aging (1RO1AG031892-01) and the National Institute of Child Health and Human Development (U54HD090257).

Additional support for this review was awarded by the American Heart Association (17GRNT33370058) and the District of Columbia Intellectual and Developmental Disabilities Research Center, which is supported through the Eunice Kennedy Shriver National Institute of Child Health and Human Development program grant 1U54HD090257.

AlgometRX

Breakthrough device objectively measures pain type, intensity and drug effects

AlgometRX

Clinical Research Assistant Kevin Jackson uses AlgometRx Platform Technology on Sarah Taylor’s eyes to measure her degree of pain. Children’s National is testing an experimental device that aims to measure pain according to how pupils react to certain stimuli. (AP Photo/Manuel Balce Ceneta)

Pediatric anesthesiologist Julia C. Finkel, M.D., of Children’s National Health System, gazed into the eyes of a newborn patient determined to find a better way to measure the effectiveness of pain treatment on one so tiny and unable to verbalize. Then she realized the answer was staring back at her.

Armed with the knowledge that pain and analgesic drugs produce an involuntary response from the pupil, Dr. Finkel developed AlgometRx, a first-of-its-kind handheld device that measures a patient’s pupillary response and, using proprietary algorithms, provides a diagnostic measurement of pain intensity, pain type and, after treatment is administered, monitors efficacy. Her initial goal was to improve the care of premature infants. She now has a device that can be used with children of any age and adults.

“Pain is very complex and it is currently the only vital sign that is not objectively measured,” says Dr. Finkel, who has more than 25 years of experience as a pain specialist. “The systematic problem we are facing today is that healthcare providers prescribe pain medicine based on subjective self-reporting, which can often be inaccurate, rather than based on an objective measure of pain type and intensity.” To illustrate her point, Dr. Finkel continues, “A clinician would never prescribe blood pressure medicine without first taking a patient’s blood pressure.”

The current standard of care for measuring pain is the 0-to-10 pain scale, which is based on subjective, observational and self-reporting techniques. Patients indicate their level of pain, with zero being no pain and ten being highest or most severe pain. This subjective system increases the likelihood of inaccuracy, with the problem being most acute with pediatric and non-verbal patients. Moreover, Dr. Finkel points out that subjective pain scores cannot be standardized, heightening the potential for misdiagnosis, over-treatment or under-treatment.

Dr. Finkel, who serves as director of Research and Development for Pain Medicine at the Sheikh Zayed Institute for Pediatric Surgical Innovation at Children’s National, says that a key step in addressing the opioid crisis is providing physicians with objective, real-time data on a patient’s pain level and type, to safely prescribe the right drug and dosage or an alternate treatment.,

She notes that opioids are prescribed for patients who report high pain scores and are sometimes prescribed in cases where they are not appropriate. Dr. Finkel points to the example of sciatica, a neuropathic pain sensation felt in the lower back, legs and buttocks. Sciatica pain is carried by touch fibers that do not have opioid receptors, which makes opioids an inappropriate choice for treating that type of pain.

A pain biomarker could rapidly advance both clinical practice and pain research, Dr. Finkel adds. For clinicians, the power to identify the type and magnitude of a patient’s nociception (detection of pain stimuli) would provide a much-needed scientific foundation for approaching pain treatment. Nociception could be monitored through the course of treatment so that dosing is targeted and personalized to ensure patients receive adequate pain relief while reducing side effects.

“A validated measure to show whether or not an opioid is indicated for a given patient could ease the health care system’s transition from overreliance on opioids to a more comprehensive and less harmful approach to pain management,” says Dr. Finkel.

She also notes that objective pain measurement can provide much needed help in validating complementary approaches to pain management, such as acupuncture, physical therapy, virtual reality and other non-pharmacological interventions.

Dr. Finkel’s technology, called AlgometRx, has been selected by the U.S. Food and Drug Administration (FDA) to participate in its “Innovation Challenge: Devices to Prevent and Treat Opioid Use Disorder.” She is also the recipient of Small Business Innovation Research (SBIR) grant from the National Institute on Drug Abuse.

Photo of nurses in the cardiac intensive care unit at Children's National

Can pyruvate support metabolic function following heart surgery?

Photo of nurses in the cardiac intensive care unit at Children's National

Nurses rush a child to the cardiac intensive care unit at Children’s National Health System.

Can pyruvate, the end product of glycolysis, help improve cardiovascular function in children who have cardiopulmonary bypass surgery and suffer from low cardiac output syndrome (LCOS)? This question is one that Rafael Jaimes, Ph.D., a staff scientist at Children’s National Heart Institute, a division of Children’s National Health System, is studying, thanks to a two-year grant from the American Heart Association.

The competitive grant awards Dr. Jaimes with $110,000 to study how pyruvate may help improve cardiac output among pediatric patients with LCOS. The compound aims to stimulate metabolic function, now treated by inotropic agents, such as dobutamine and milrinone. These agents ensure optimal delivery of oxygen from the heart to the brain, as well as to other organs in the body, following heart surgery. While these agents help patients with cardiac dysfunction, there is still a critical need for safe and effective therapies.

“If there’s any detriment in cardiac output, the heart’s function begins to degrade,” explains Dr. Jaimes. “You see a downward spiral effect with reduced cardiac output because the heart is dependent on its own perfusion. It needs to pump blood throughout the body to survive.”

This is where the pyruvate study, and the grant, will be applied: Can pyruvate target the essential muscle of the heart and reverse this cardiac destabilization – and as soon as possible?

“By increasing the metabolic output of the heart’s local muscle, cardiac output increases,” Dr. Jaimes explains. “That’s going to lead to better recovery.”

Better recovery could be measured by how fast a child recovers from heart surgery as well as how much time they spend in the hospital, clinically referred to as throughput. A faster recovery could also influence a child’s quality of life and reduce overall health care costs.

Based on preliminary data that shows pyruvate improves cardiac function in experimental models after ischemic insult, which is what happens when pediatric patients undergo cardiac surgery, Dr. Jaimes believes the results will likely replicate themselves in his preclinical models.

To start, he’ll test pyruvate using 100 blood samples and discarded tissue from patients. The blood samples will be tested for metabolic markers, including measured pyruvate levels.

Part of what encouraged Dr. Jaimes to study how this compound could complement or replace standard therapies was the encouragement he received from his mentors in the field.

“Nobody has looked into using pyruvate for almost 30 years,” says Dr. Jaimes. “It’s not commercially favorable, there’s no patent on it, it doesn’t have a lot of marketability and there are no financial incentives, so it’s been put aside.”

As part of a discussion with cardiologists at a medical conference in Washington, Dr. Jaimes brought up the idea of using pyruvate for pediatric heart surgeries and received positive feedback.

“Once everyone’s eyes lit up, I knew I was on to something,” says Dr. Jaimes about the encouragement he received to pursue this study.

“You put lactate and glucose in your IV solutions,” adds Dr. Jaimes. “Pyruvate is an essential nutrient. It’s almost an essential sugar so there’s no reason not to put it in. If these cardiologists are intrigued by the project, maybe the American Heart Association will be, too.”

In addition to funding the study, which could support future research about how metabolic makers in the blood can be stimulated to fast-track recovery following heart surgery, the American Heart Association grant is specific to pediatric health outcomes.

“The current state of pharmaceutical treatment for patients recovering from cardiac surgery is designed and created for adults,” says Dr. Jaimes. “From our research in pediatrics, we know that children aren’t small adults.”

Dr. Jaimes explains that children are different on an anatomical and physiological level. Their cells even look and function different, compared to adult cells, because they haven’t matured yet.

While congenital heart defects are rare, they affect 1 percent, or 40,000 births worldwide, they often require multiple surgeries throughout a child’s lifespan. LCOS impacts 25 percent of patients following cardiopulmonary bypass and the timing of treatment is important. In severe cases, insufficient cardiac output following surgery could impact a child’s long-term development, ranging from reasoning, learning, attention and executive function, to developing age-appropriate language and social skills.

“The metabolic insufficiencies I’m looking at, which may help improve the muscle function of the heart, are just one piece of a bigger puzzle in pediatric cardiology,” notes Dr. Jaimes about ongoing research at Children’s National Heart Institute. “We already know pyruvate is safe. We just have to see if it’s effective in supporting a patient’s recovery in the intensive care unit.”

Dr. Jaimes will work with his research mentor Nikki Posnack, Ph.D., assistant professor at the Children’s National Heart Institute, on this preclinical study throughout the grant’s lifecycle, which starts in early January 2019 and ends in late December 2020.