Meetings

doctor's stethescope coming out of a computer

Virtual cardiology follow-ups may save families time and money

doctor's stethescope coming out of a computer

Virtual cardiology follow-ups via computer or smartphone are a feasible alternative to in-person patient follow-ups for some pediatric cardiac conditions.

A poster presentation at the AHA Scientific Sessions shows successful implementation of virtual care delivered directly to patients and families via technology.

Health provider follow-ups delivered via computer or smartphone is a feasible alternative to in-person patient follow-ups for some pediatric cardiac conditions, according to the findings of a pilot study presented at the AHA Scientific Sessions this week.

“We’ve used telemedicine in pediatric cardiology for physician-to-physician communications for years at Children’s National, thanks to cardiologists like Dr. Craig Sable,” says Ashraf Harahsheh, M.D., cardiologist at Children’s National Hospital and senior author of the study. “But this is the first time we’ve really had the appropriate technology to speak directly to patients and their families in their homes instead of requiring an in-person visit.”

“We developed it [telemedicine] into a primary every day component of reading echocardiograms around the region and the globe,” says Craig Sable, M.D., associate chief of cardiology at Children’s National. “Telemedicine has enabled doctors at Children’s National to extend our reach to improve the care of children and avoid unnecessary transport, family travel and lost time from work.”

Participants in the virtual visit pilot study were previously established patients with hyperlipidemia, hypercholesterolemia, syncope, or who needed to discuss cardiac testing results. The retrospective sample included 18 families who met the criteria and were open to the virtual visit/telehealth follow up option between 2016 and 2019. Six months after their virtual visit, none of the participants had presented urgently with a cardiology issue. While many (39%) had additional visits with cardiology scheduled as in person, none of those subsequent in-person visits were a result of a deficiency related to the virtual visit.

“There are many more questions to be answered about how best to appropriately use technology advances that allow us to see and hear our patients without requiring them to travel a great distance,” adds Dr. Harahsheh. “But my team and I were encouraged by the results of our small study, and by the anecdotal positive reviews from families who participated. We’re looking forward to determining how we can successfully and cost-effectively implement these approaches as additional options for our families to get the care they need.”

The project was supported by the Research, Education, Advocacy, and Child Health Care (REACH) program within the Children’s National Hospital Pediatric Residency Program.

###

Direct-to-Consumer Cardiology Telemedicine: A Single Large Academic Pediatric Center Experience
Aaron A. Phillips, M.D., Craig A. Sable, M.D., FAAP; Christina Waggaman, M.S.; and Ashraf S. Harahsheh, M.D., F.A.C.C., F.A.A.P.
Poster Presentation by first author Aaron Phillips, M.D., a third-year resident at Children’s National
CH.APS.12 – Man vs. Machine: Tech in Kids
AHA Scientific Sessions 2019
November 17, 2019
12:30 -1:00 p.m.

baby with tubes

BPA analogues may be less likely to disrupt heart rhythm

Some chemical alternatives to plastic bisphenol-a (BPA), which is still commonly used in medical settings such as operating rooms and intensive care units, may be less disruptive to heart electrical function than BPA.

A poster at the AHA Scientific Sessions suggests bisphenol-s (BPS) and bisphenol-f (BPF) may have less impact on heart function than bisphenol-a (BPA).

Some chemical alternatives to plastic bisphenol-a (BPA), which is still commonly used in medical settings such as operating rooms and intensive care units, may be less disruptive to heart electrical function than BPA, according to a pre-clinical study that explored how the structural analogues bisphenol-s (BPS) and bisphenol-f (BPF) interact with the chemical and electrical functions of heart cells.

The findings suggest that in terms of toxicity for heart function, these chemicals that are similar in structure to BPA may actually be safer for medically fragile heart cells, such as those in children with congenital heart disease. Previous research has found a high likelihood that BPA exposure may impact the heart’s electrical conductivity and disrupt heart rhythm, and patients are often exposed to the plastic via clinical equipment found in intensive care and in the operating room.

“There are still many questions that need to be answered about the safety and efficacy of using chemicals that look and act like BPA in medical settings, especially in terms of their potential contribution to endocrine disruption,” says Nikki Gillum Posnack, Ph.D., the poster’s senior author and a principal investigator in the Sheikh Zayed Institute for Pediatric Surgical Innovation at Children’s National Hospital. “What we can say is that, in this initial pre-clinical investigation, it appears that these structural analogues have less of an impact on the electrical activity within the heart and therefore, may be less likely to contribute to dysrhythmias.”

Future studies will seek to quantify the risk that these alternative chemicals pose in vulnerable populations, including pediatric cardiology and cardiac surgery patients. Since pediatric patients’ hearts are still growing and developing, the interactions may be different than what was seen in this pilot study.

Learn more the impacts of exposure to plastics such as bisphenol-A and plasticizers such as DEHP and MEHP that are commonly used in medical devices:

###

Bisphenol-a Analogues May Be Safer Alternatives For Plastic Medical Products
Rafael Jaimes, Damon McCullough, Luther M Swift, Marissa Reilly, Morgan Burke, Jiansong Sheng, Javier Saiz, Nikki G Posnack
Poster Presentation by senior author Nikki G Posnack
CH.APS.01 – Translational Research in Congenital Heart Disease
AHA Scientific Sessions
November 16, 2019
1:30 p.m. – 2:00 p.m.

Newborn baby laying in crib

Can cells collected from bone marrow stimulate generation of new neurons in babies with CHD?

Newborn baby laying in crib

The goal of the study will be to optimize brain development in babies with congenital heart disease (CHD) who sometimes demonstrate delay in the development of cognitive and motor skills.

An upcoming clinical trial at Children’s National Hospital will harness cardiopulmonary bypass as a delivery mechanism for a novel intervention designed to stimulate brain growth and repair in children who undergo cardiac surgery for congenital heart disease (CHD).

The NIH has awarded Children’s National $2.5 million to test the hypothesis that mesenchymal stromal cells (MSCs), which have been shown to possess regenerative properties and the ability to modulate immune responses in a variety of diseases, collected from allogeneic bone marrow, may promote regeneration of damaged neuronal and glial cells in the early postnatal brain. If successful, the trial will determine the safety of the proposed treatment in humans and set the stage for a Phase 2 efficacy trial of what could potentially be the first treatment for delays in brain development that happen before birth as a consequence of congenital heart disease. The study is a single-center collaboration between three Children’s National physician-researchers: Richard Jonas, M.D.Catherine Bollard, M.B.Ch.B., M.D. and Nobuyuki Ishibashi, M.D.

Dr. Jonas, chief of cardiac surgery at Children’s National, will outline the trial and its aims on Monday, November 18, 2019, at the American Heart Association’s Scientific Sessions 2019. Dr. Jonas was recently recognized by the Cardiac Neurodevelopmental Outcome Collaborative for his lifelong research of how cardiac surgery impacts brain growth and development in children with CHD.

Read more about the study: Researchers receive $2.5M grant to optimize brain development in babies with CHD.

###

Regenerative Cell Therapy in Congenital Heart Disease – Protecting the Immature Brain
Presented by Richard Jonas, M.D.
AHA Scientific Sessions
Session CH.CVS.608 Congenital Heart Disease and Pediatric Cardiology Seminar: A Personalized Approach to Heart Disease in Children
9:50 a.m. to 10:05 a.m.
November 18, 2019

Marva Moxey-Mims in her office at Children's National.

Kidney disease outcomes differ between severely obese kids vs. adults after bariatric surgery

Marva Moxey-Mims in her office at Children's National.

“We know that bariatric surgery improves markers of kidney health in severely obese adults and adolescents,” says Marva Moxey-Mims, M.D. “This research helps to elucidate possible differences in kidney disease outcomes between children and adults post-surgery.”

Adolescents with Type 2 diabetes experienced more hyperfiltration and earlier attenuation of their elevated urine albumin-to-creatinine ratio (UACR) after gastric bypass surgery compared with adults. This finding contrasts with adolescents or adults who did not have diabetes prior to surgery, according to research presented Nov. 8, 2019, during the American Society of Nephrology’s Kidney Week 2019, the world’s largest gathering of kidney researchers.

“Findings from this work support a recent policy statement by the American Academy of Pediatrics (AAP) that advocates for increasing severely obese youths’ access to bariatric surgery,” says Marva Moxey-Mims, M.D., Chief of the Division of Nephrology at Children’s National Hospital and a study co-author.  “We know that bariatric surgery improves markers of kidney health in severely obese adults and adolescents. This research helps to elucidate possible differences in kidney disease outcomes between children and adults post-surgery.”

According to the AAP, the prevalence of severe obesity in youth aged 12 to 19 has nearly doubled since 1999. Now, 4.5 million U.S. children are affected by severe obesity, defined as having a body mass index ≥35 or ≥120% of the 95th percentile for age and sex.

In a Roux-en-Y gastric bypass, the surgeon staples the stomach to make it smaller, so people eat less. Then, they attach the lower part of the small intestine in a way that bypasses most of the stomach so the body takes in fewer calories.

The multi-institutional study team examined the health effects of such gastric bypass surgeries by comparing 161 adolescents with 396 adults enrolled in related studies. They compared their estimated glomerular filtration rates by serum creatinine and cystatin C. UACR was also compared at various time periods, up till five years after surgery.

Across the board, adolescents had higher UACR – a key marker for chronic kidney disease – than adults. However, for kids who had Type 2 diabetes prior to surgery, the prevalence of elevated UACR levels dip from 29% pre-surgery to 6% one year post-surgery. By contrast, adults who had diabetes prior to surgery and elevated UACR did not see a significant reduction in UACR until five years post-surgery.

While hyperfiltration prevalence was similar in study participants who did not have Type 2 diabetes, adolescents who had Type 2 diabetes prior to surgery had an increased prevalence of hyperfiltration for the duration of the study period.

Financial support for research described in this post was provided by the National Institute of Diabetes and Digestive and Kidney Diseases.

###

ASN Kidney Week 2019 presentation

Five-year kidney outcomes of bariatric surgery in adolescents compared with adults
Friday, Nov. 8, 2019, 10 a.m. to noon (EST)
Petter Bjornstad, University of Colorado School of Medicine; Todd Jenkins, Edward Nehus and Mark Mitsnefes, all of Cincinnati Children’s Hospital; Marva M. Moxey-Mims, Children’s National Hospital; and Thomas H. Inge, Children’s Hospital Colorado.

 

Evan P Nadler

Biliary complication rates similar for kids and adults after weight-loss surgery

Evan P Nadler

“We definitely need more research, across a more diverse population, to understand the mechanisms behind this higher likelihood of acute pancreatitis in pediatric patients,” says Evan Nadler, M.D., “More importantly, this study provides a proof point that weight-loss surgery doesn’t pose any higher risk of biliary complications for kids than it does for adults.”

Adolescents and teens experience biliary side effects after weight-loss surgery at about the same rate as adults. However, in younger patients, the symptoms are more likely to manifest as pancreatic inflammation, or acute pancreatitis, according to a new study published in the November issue of the journal Obesity.

“Biliary issues after laparoscopic sleeve gastrectomy occur with about the same frequency in pediatric patients as they do in adults,” says Evan Nadler, M.D., senior author on the study and director of the Bariatric Surgery Program at Children’s National Hospital. “We were surprised, however, to find that the small number of pediatric patients who do experience these complications seem to be more likely to have acute pancreatitis as a result. In adults, it’s more commonly the gall bladder that acts up as opposed to the pancreas.”

The study included 309 patients without previous or concurrent history of biliary disease or gallstones who had undergone laparoscopic sleeve gastrectomy at Children’s National. Twenty-one patients, or 6.7% of the cohort, were diagnosed with biliary disease after surgery. Sixty-two percent of the pediatric patients with biliary disease also showed signs of acute pancreatitis, while only one-third of those with post-operative biliary disease presented with a gallstone blockage, or biliary colic. In adults, biliary colic is a primary symptom after surgery and far fewer adults experience acute pancreatitis.

“We definitely need more research, across a more diverse population, to understand the mechanisms behind this higher likelihood of acute pancreatitis in pediatric patients. More importantly, this study provides a proof point that weight-loss surgery doesn’t pose any higher risk of biliary complications for kids than it does for adults.”

Obesity’s editorial team selected the study as one of the Top 5 most innovative scientific research studies to prevent and treat obesity in 2019. It appears in a special section of the November 2019 print edition. Dr. Nadler will present his findings during the Obesity Journal Symposium on Nov. 5, 2019, as part of ObesityWeek®, the annual meeting of The Obesity Society.

“We’ve got one of the largest, if not the largest, weight-loss surgery programs dedicated solely to caring for children and adolescents,” adds Dr. Nadler. “That gives us a unique ability to collect and analyze a statistically significant sample of pediatric-specific patient data and really contribute a better understanding of how bariatric surgery specifically impacts younger patients.”

In late October 2019, the American Academy of Pediatrics issued guidance with the aim of providing severely obese teens easier access to bariatric surgery.

“Our study is just the latest contribution to a significant body of evidence that weight-loss surgery should be considered a viable treatment approach for children and teenagers with severe obesity, an idea that is now endorsed by the nation’s largest organization of pediatricians,” he points out.

The Obesity Journal Symposium occurs on Tuesday, Nov. 5, 2019, from 3:30 – 5:00 p.m. at the Mandalay Bay South Convention Center in Las Vegas, Nev. ObesityWeek® is a partnership of The Obesity Society and the American Society for Metabolic and Bariatric Surgery.

###

Presentation: Pattern of Biliary Disease Following Laparoscopic Sleeve Gastrectomy in Adolescents

Session: Obesity Journal Symposium

Date/Time: 11/5/2019, 3:30 pm – 5:00 pm

Co-authors: Jun Tashiro , Arunachalam A. Thenappan, and Evan P. Nadler

Dr. Wiedermann's pyramid for determining study type

The five easy pieces of literature appraisal for busy front-line providers

Dr. Wiedermann's pyramid for determining study type

To help practitioners appraise medical literature, Bernhard Wiedermann, M.D., MA, suggests determining where it fits on this pyramid.

Practitioners often read journal articles to help inform them about best clinical practices and policies, but some may not feel comfortable changing their clinical practice in the absence of published practice guidelines.

During this year’s American Academy of Pediatrics National Conference and Exhibition, Bernhard Wiedermann, M.D., MA, an infectious disease specialist at Children’s National Hospital, spoke to a room full of pediatric providers about how to stay current with medical literature, quickly analyze the material and decide whether to apply it to their practice. “This interactive session served to help primary care pediatric providers understand how to critically appraise what they are reading in medical literature,” says Dr. Wiedermann. “Practitioners need to be able to critically read journal articles to better decide when to apply new studies or recommendations to their clinical practice.”

Dr. Wiedermann’s presentation, entitled “Should that new article change your practice? The five easy pieces of literature appraisal for busy front-line providers,” covered:

  • Techniques that providers should use when searching and browsing for literature
  • How to review abstracts for relevant content
  • How to determine the type of study (Where does it fit on the pyramid?)
  • Whether or not your patient fits the study population
  • How to explain findings to parents and patients

At the session, attendees gained the ability to develop a streamlined plan to keep current with the medical literature, apply simple strategies to select and appraise potentially worthwhile articles and discuss new management options with patients and families.

2019 National Maternal & Infant Health Summit

Children’s National Hospital participated in the second annual National Maternal & Infant Health Summit which highlights the District’s approaches to ensure the health of women, babies and families. From L to R are: Sahira Long, M.D., Jessica Nash, M.D., Hope Rhodes, M.D., and Kofi Essel, M.D.

Children’s National Hospital participated in the second annual National Maternal & Infant Health Summit hosted by Mayor Muriel Bowser. The summit was built upon highlighting the District’s approaches to ensure the health of women, babies and families, while also seeking to increase public awareness and interest on these topics.

“I enjoyed the summit as a mother, parent, physician and presenter,” said Jessica Nash, M.D., a pediatrician at Children’s National. “I am excited about the future conversations about infant and maternal mortality and the strides needed in the District.”

Nash led a panel titled “Maternal and Infant Mental Health Landscape: Taking Steps to Improve Practice and Policy,” with Hope Rhodes, MD, MPH, Dominique Charlot-Swilley, Ph.D., Leandra Godoy, Ph.D. and Sarah Barclay Hoffman. The discussion identified infant and early childhood mental health resources available in the District, the current state of infant and early childhood mental health, future potential policy changes and the collaborative model that places HealthySteps DC within a child’s primary care medical home.

Children’s National Hospital’s Saharia Long, M.D., discusses the local efforts to improve healthy food access for families.

The day-long summit covered many topics including The Role of Food Policy, Access, and Nutrition in Supporting Positive Outcomes for Families, which focused on national and local efforts to improve healthy food access for families, breastfeeding and babies’ first foods. The discussion was a direct response to feedback on the absence of information about breastfeeding and nutrition during last year’s summit. Sahira Long, M.D., and Kofi Essel, M.D.  served as panelists.

“According to the Centers for Disease Control and Prevention (CDC), low rates of breastfeeding add $3 billion a year to medical costs for mothers and children in the U.S.” said Dr. Long. “Breastfeeding is more than an infant feeding choice, it’s a public health decision due to its impact on maternal and infant health.”

The Maternal and Infant Health Summit brings together residents of the District, elected officials, health and education officials and community-based partners to collaborate and explore strategies that will improve perinatal health and address racial disparities in birth outcomes.

Mother receives bad news from pediatrician

All in the family: How to run an effective family meeting

Mother receives bad news from pediatrician

Tessie October, M.D., M.P.H., led a qualitative study that discovered an increase in important information shared from families to the physician when physicians had openly responded with empathy and made time for families to share.

When critically ill children are in the intensive care unit (ICU), physicians must often lead difficult discussions with their families about the direction of care. These family conferences can be challenging for both the doctors leading them and for the families, who are unsure of their options, are under emotional strain and who may feel pressured to make decisions.

“We have patients with serious illnesses discussing major decisions and we don’t do a great job thinking about how to structure those meetings,” says Tessie October, M.D., M.P.H., a critical care specialist at Children’s National Hospital.

Dr. October seeks to help doctors better bridge the gap between themselves and families with her presentation entitled “All in the family: How to run an effective family meeting,” which she presented during the American Academy of Pediatrics (AAP) National Conference and Exhibition in New Orleans on October 28th.

During her session, Dr. October role-played a family conference scenario and allowed the audience to experience key skills needed to successfully facilitate them. “Many people think family conferences are about being nice and assume that physicians know how to do this well,” says October. “There is a skill to navigating the conversation where you ensure that the family hears what you’re saying and you respond to the emotions that follow.”

Dr. October led a qualitative study that discovered an increase in important information shared from families to the physician when physicians had openly responded with empathy and made time for families to share. “Families experience increased satisfaction, physicians become more confident in leading these family conferences and the time needed to make medical decisions is shortened because the family heard the information clearly enough for them to make the decision,” says Dr. October.

Within her study, the 68 recorded conferences that took place at Children’s National pediatric ICU (PICU) showed that physicians missed opportunities to respond to the emotions expressed by a patient’s family in 26% of their interactions. “Families want a doctor to be professional caregiver, to be honest with them, and to present clear information that allows the family to make an informed decision.”

Dr. October and her colleagues intend to help physicians learn to communicate better, starting at Children’s National. “My goal is to expand the program hospital-wide, starting with hematology, neonatology, emergency medicine and cardiology fellows, all of whom will most likely have these difficult treatment and end-of-life discussions with families at some point.”

little girl reaching for gun

Empowering pediatricians to reduce preventable firearm injuries and deaths

little girl reaching for gun

Lenore Jarvis, M.D., MEd, FAAP, will participate in a symposium of surgeons, neurosurgeons and emergency medicine doctors during the American Academy of Pediatrics National Conference and Exhibition – the first time these groups have come together to help reduce the number of kids hurt or killed by firearms.

Lenore Jarvis, M.D., MEd, FAAP, remembers feeling fatigue and frustration when, despite her team’s herculean efforts, a 5-year-old died from accidental gunshot wounds. The preschooler had been feeling playful: He surprised a family member who mistook him for an intruder and fired, fatally wounding the child.

As an Emergency Medicine and Trauma Services specialist at Children’s National Hospital, Dr. Jarvis has cared for kids with a range of firearm-related injuries from accidental shootings, intentional acts of violence or suicide attempts. Even when children survive such traumatic injuries, their lives are indelibly altered.

“We’re trained to save lives, but we also want to prevent childhood injuries, if possible. As I considered this young child’s life ending so prematurely and so tragically, I thought I should do more. I could do more,” recalls Dr. Jarvis, the division’s director of advocacy and health policy.

To that end, in addition to advocacy at the regional and national level, on Oct. 26, 2019, Dr. Jarvis will participate in a four-hour symposium of surgeons, neurosurgeons and emergency medicine doctors during the American Academy of Pediatrics (AAP) National Conference and Exhibition – the first time these groups have come together to explore ways they can help to reduce the number of kids hurt or killed by firearms.

Dr. Jarvis will set the stage for the day’s collective call to action when she counsels pediatricians about how they can advocate within the clinic by simple actions such as:

  • Asking families if there are firearms in the home
  • Making time for such conversations during routine care, including well-child visits
  • Paying special attention to warning signs of suicide and depression
  • Having frank conversations with parents about curious toddlers

“The safest home is a home without a firearm. If that’s not possible, the firearm should be stored in a locked cabinet with the ammunition stored separately,” she says. “Toddlers are especially curious and they actively explore their environment. An unsecured firearm can be a tragic accident waiting to happen with curious young children in the home. And if teenagers happen upon the weapon, it could be used in a homicide or suicide.”

In addition to empowering clinicians to have these conversations routinely, symposium speakers will emphasize empowering parents to ask other families: “Is there an unlocked gun in your house?”

“It’s no different than a parent of a child with a life-threatening sensitivity to peanuts asking if there are peanuts in any home that child may visit,” she adds. “As one of the leading causes of death among children and youth, unsecured firearms are even more dangerous than peanuts. And families should feel comfortable making informed decisions about whether their children will be safe as they play and socialize with friends.”

***
AAP National Conference and Exhibition presentation
Saturday, Oct. 26, 2:15 p.m. to 6:15 p.m. (ET)
“AAP NCE Section on Emergency Medicine/Section on Surgery/Section on Neurosurgery gun advocacy joint program”

doctor giving girl checkup

Decision support tool reduces unneeded referrals of low-risk patients with chest pain

doctor giving girl checkup

A simple evidence-based change to standard practice could avert needless referrals of low-risk patients to cardiac specialists, potentially saving nearly $4 million in annual health care spending while also easing worried parents’ minds.

Few events strike more fear in parents than hearing their child’s heart “hurts.”

When primary care pediatricians – who are on the frontline of triaging such distressing doctor visits – access a digital helping hand tucked into the patient’s electronic health record to help them make assessments, they are more likely to refer only the patients whose chest pain is rooted in a cardiac problem to a specialist.

That simple evidence-based change to standard practice could avert needless referrals of low-risk patients to cardiac specialists according to a quality-improvement project presented during the American Academy of Pediatrics (AAP) National Conference and Exhibition. This has the potential to save nearly $4 million in annual health care spending while also easing worried parents’ minds.

“Our decision support tool incorporates the know-how of providers and helps them to accurately capture the type of red flags that point to a cardiac origin for chest pain,” says Ashraf Harahsheh, M.D., FACC, FAAP, pediatric and preventive cardiologist and director of Resident Education in Cardiology at Children’s National Hospital. Those red flags include:

  • Abnormal personal medical history
    • Chest pain with exertion
    • Exertional syncope
    • Chest pain that radiates to the back, jaw, left arm or left shoulder
    • Chest pain that increases with supine position
    • Chest pain temporarily associated with a fever (>38.4°C)
  • A worrisome family history, including sudden unexplained death and cardiomyopathy.

“We know that evidence-based tools can be very effective in guiding physician behavior and reducing unnecessary testing and referrals which saves both the health care system in dollars and families in time and anxiety,” Dr. Harahsheh adds.

The abstract builds on a multi-institutional study published in Clinical Pediatrics in 2017 for which Dr. Harahsheh was lead author. More than 620,000 office-based visits (1.3%) to pediatricians in 2012 were for chest pain, he and co-authors wrote at the time. While children often complain of having chest pain, most of the time it is not due to an actual heart problem.

Over recent years, momentum has built for creating an evidence-based approach for determining which children with chest pain to refer to cardiac specialists. In response, the team’s quality-improvement tool, first introduced at two local primary pediatric offices, was expanded to the entire Children’s Pediatricians & Associates network of providers who offer pediatric primary care in Washington, D.C., and Maryland.

One daunting challenge: How to ensure that busy clinicians actually use the tool. To improve adoption, the project team embedded the decision support tool within the patient’s electronic medical record.  Now, they seek to make sure the tool gets used by more pediatricians around the country.

“If the chest pain decision support tool/medical red-flags criteria were adopted nationwide, we expect to save a minimum of $3.8 million in health care charges each year,” Dr. Harahsheh says. “That figure is very likely an underestimate of the true potential savings, because we did not calculate the value of lost productivity and other direct costs to families who shuttle from one appointment to the next.”

To ensure the changes stick, the team plans to train fledgling physicians poised to embrace the quality-improvement approach as they first launch their careers, and also look for evangelists within outpatient cardiology and pediatric clinics who can catalyze change.

“These types of quality-improvement projects require a change to the status quo. In order to be successful, we need members of the care team – including frontline clinicians and nurse practitioners – to champion change at the clinic level. With their help, we can continue to refine this tool and move toward nationwide implementation,” he explains.

***

AAP National Conference and Exhibition presentation
Saturday, Oct. 26, 9 a.m. to 2 p.m. (ET)
H2086 Council on Quality Improvement and Patient Safety Program

Saturday, Oct. 26, noon to 1 p.m. (ET)
Poster viewing
“Reducing low-probability cardiology referrals for chest pain from primary care: a quality improvement initiative”
Ashraf Harahsheh, M.D., FACC, FAAP; Ellen Hamburger, M.D.; Lexi Crawford, M.D.; Christina Driskill, MPH, RN, CPN; Anusha Rao, MHSA; Deena Berkowitz, M.D., MPH

***

Additional AAP 2019 activities featuring cardiology faculty at Children’s National Hospital include:

    • Rohan Kumthekar, M.D., recipient of the “Trainee Pediatric Cardiology Research Award” sponsored by the Children’s Heart Foundation
    • “Motion-corrected cardiac MRI limits anesthesia exposure and healthcare costs in children,” Adam B. Christopher, M.D.; Rachel Quinn, M.D.; Sara Zoulfagharian; Andrew Matisoff, M.D.; Russell Cross, M.D.; Adrienne Campbell-Washburn, Ph.D.; Laura Olivieri, M.D.
    • “Prevalence of abnormal echocardiograms in healthy, asymptomatic adolescents with Down syndrome,” Sarah B. Clauss, M.D.; Samuel S. Gidding M.D.; Claire I. Cochrane, BA; Rachel Walega, MS; Babette S. Zemel, Ph.D.; Mary E. Pipan, M.D.; Sheela N. Magge, M.D., MSCE;  Andrea Kelly, M.D., MSCE; Meryl S. Cohen, M.D.
    • “American College of Cardiology body mass index measurement and counseling quality improvement initiative,” Ashraf Harahsheh, M.D., FACC, FAAP; Arash Sabati, M.D., FACC; Jeffrey Anderson, M.D.; Clara Fitzgerald; Kathy Jenkins, M.D., MPH; Carolyn M. Wilhelm, M.D., MS, FACC, FAAP; Roy Jedeikin, M.D. FACC, MBA; Devyani Chowdhury, M.D.
allopregnanolone molecule

Autism spectrum disorder risk linked to insufficient placental steroid

allopregnanolone molecule

A study led by Children’s National Hospital and presented during Neuroscience 2019 finds that loss of allopregnanolone, a key hormone supplied by the placenta, leads to long-term structural alterations of the cerebellum – a brain region essential for smooth motor coordination, balance and social cognition – and increases the risk of developing autism.

An experimental model study suggests that allopregnanolone, one of many hormones produced by the placenta during pregnancy, is so essential to normal fetal brain development that when provision of that hormone decreases – as occurs with premature birth – offspring are more likely to develop autism-like behaviors, a Children’s National Hospital research team reports at the Neuroscience 2019 annual meeting.

“To our knowledge, no other research team has studied how placental allopregnanolone (ALLO) contributes to brain development and long-term behaviors,” says Claire-Marie Vacher, Ph.D., lead author. “Our study finds that targeted loss of ALLO in the womb leads to long-term structural alterations of the cerebellum – a brain region that is essential for motor coordination, balance and social cognition ­– and increases the risk of developing autism,” Vacher says.

According to the Centers for Disease Control and Prevention, about 1 in 10 infants is born preterm, before 37 weeks gestation; and 1 in 59 children has autism spectrum disorder.

In addition to presenting the abstract, on Monday, Oct. 21, Anna Penn, M.D., Ph.D., the abstract’s senior author, will discuss the research with reporters during a Neuroscience 2019 news conference. This Children’s National abstract is among 14,000 abstracts submitted for the meeting, the world’s largest source of emerging news about brain science and health.

ALLO production by the placenta rises in the second trimester of pregnancy, and levels of the neurosteroid peak as fetuses approach full term.

To investigate what happens when ALLO supplies are disrupted, a research team led by Children’s National created a novel transgenic preclinical model in which they deleted a gene essential in ALLO synthesis. When production of ALLO in the placentas of these experimental models declines, offspring had permanent neurodevelopmental changes in a sex- and region-specific manner.

“From a structural perspective, the most pronounced cerebellar abnormalities appeared in the cerebellum’s white matter,” Vacher adds. “We found increased thickness of the myelin, a lipid-rich insulating layer that protects nerve fibers. From a behavioral perspective, male offspring whose ALLO supply was abruptly reduced exhibited increased repetitive behavior and sociability deficits – two hallmarks in humans of autism spectrum disorder.”

On a positive note, providing a single ALLO injection during pregnancy was enough to avert both the cerebellar abnormalities and the aberrant social behaviors.

The research team is now launching a new area of research focus they call “neuroplacentology” to better understand the role of placenta function on fetal and newborn brain development.

“Our team’s data provide exciting new evidence that underscores the importance of placental hormones on shaping and programming the developing fetal brain,” Vacher notes.

  • Neuroscience 2019 presentation
    Sunday, Oct. 20, 9:30 a.m. (CDT)
    “Preterm ASD risk linked to cerebellar white matter changes”
    Claire-Marie Vacher, lead author; Sonia Sebaoui, co-author; Helene Lacaille, co-author; Jackie Salzbank, co-author; Jiaqi O’Reilly, co-author; Diana Bakalar, co-author; Panagiotis Kratimenos, M.D., neonatologist and co-author; and Anna Penn, M.D., clinical neonatologist and developmental neuroscientist and senior author.
Pitch Competition Winners

7th Annual Pediatric Device Innovation Symposium

 Melinda Richter and Dr. Newman

The event featured an onstage discussion by Melinda Richter, global head of Johnson & Johnson Innovation – JLABS and Dr. Kurt Newman, M.D., president and CEO of Children’s National Hospital, about the power of collaboration to spur innovation.

The 7th Annual Pediatric Device Innovation Symposium, presented by Children’s National Hospital, recently brought together stakeholders from across the clinical, investor, business and regulatory sectors of pediatric device development for a day-long program focused on closing the wide gap that exists between the number of medical devices developed for adults and the significantly smaller number developed for children.

Co-located with AdvaMed’s The MedTech Conference for the third consecutive year, the symposium featured an opening keynote address by Melinda Richter, global head of Johnson & Johnson Innovation – JLABS, who was later joined Kurt Newman, M.D., president and CEO of Children’s National Hospital, for an on-stage discussion about the power of collaboration to spur innovation.

That collaboration was on display as Dr. Newman and Richter shared details of the recently announced JLABS @ Washington, DC, a 32,000 square-foot facility to be located at the new Children’s National Research & Innovation Campus on the former Walter Reed Army Medical Center campus in the nation’s capital.

“We had this idea at Children’s National to develop the first pediatric research and innovation campus in the world to create a sustainable pipeline and ecosystem of everything needed to bring medical devices from concept to market for children. Seeing what Johnson & Johnson has accomplished with JLABS across the world, we knew they were the right partner,” said Dr. Newman.

Richter highlighted the need to take action, “We have made modest progress in pediatric device innovation, but we need to do better. We need to advance solutions that take into account the unique characteristics of our youngest and most vulnerable of patients. Only then will we achieve real progress for children and their families.” Of all the medical devices approved each year, only 25% are approved for children and most of those are approved for patients over the age of 18. Richter encouraged symposium attendees to leverage collaborations and convenings to move pediatric device development forward and lauded innovators focused on babies and children, calling them “super heroes.”

$150K medical device pitch competition

Pitch Competition Winners

Six innovations that address the significant unmet needs of neonatal intensive care unit (NICU) patients were awarded a total of $150K during the medical device pitch competition at the 7th Annual Pediatric Device Innovation Symposium hosted by Children’s National Hospital at Boston Convention & Exhibition Center. From L to R are: Anthony Sandler, M.D., Children’s National Hospital; Neil Ray, Raydiant Oximetry; Julia Finkel, M.D., AlgometRx, Inc.; Eric Chehab, Ph.D., Novonate; Xina Quan, Ph.D., PyrAmes, Inc.; Mark Lehmkuhle, Epitel, Inc.; Adam Zysk, Ph.D., Rhaeos, Inc.; and Kolaleh Eskandanian, Ph.D., Children’s National Hospital.

Six winners were announced in the symposium’s $150,000 “Make Your Medical Device Pitch for Kids!” competition, sponsored by the National Capital Consortium for Pediatric Device Innovation (NCC-PDI) and focused on NICU devices, which the FDA identifies as an area of significant need for innovation. Ten finalists presented their innovations for a panel of 25 expert judges. Each winner receives a $25,000 award and an opportunity to participate in a first-of-its-kind pediatric accelerator program led by MedTech Innovator.

The winning pediatric devices and companies are:

  • AlgometRx, Inc., Washington, D.C. – The AlgometRx Rapid Drug Test is used to detect and monitor neonatal abstinence syndrome, allowing for earlier assessment and intervention of opioid withdrawal to reduce physiological stress.
  • Epitel, Salt Lake City, Utah – Epilog is an inexpensive, discrete and disposable EEG machine that provides real-time monitoring to revolutionize the way neonates suspected of hypoxic-ischemic encephalopathy are managed at community hospitals.
  • Novonate, South San Francisco, Calif. – LifeBubble secures and protects the umbilical catheter insertion site for neonates in intensive care, preventing infection from caregivers and parents.
  • PyrAmes Inc., Cupertino, Calif. – Noninvasive and wireless, the Boppli Band allows for risk- and pain-free continuous blood pressure monitoring for neonates.
  • Raydiant Oximetry, Mountain View, Calif. – Raydiant Oximetry Sensing Systems is a novel, non-invasive technology that more accurately detects fetal distress during labor and delivery, reducing medically unnecessary cesarean deliveries and the occurrence of newborns suffering the consequences of metabolic acidosis.
  • Rhaeos, Inc., Evanston, Ill. – FlowSense is a wearable device that enables noninvasive monitoring of ventricular shunt function in patients who have hydrocephalus, obviating the need for imaging and unnecessary hospital visits and admissions.

“Improved neonatal monitoring devices, such as those among our award winners, can make a critical difference in detecting interventions that could positively impact the long-term developmental trajectory of many children, said Kolaleh Eskandanian, Ph.D., M.B.A., P.M.P., vice president and chief innovation officer at Children’s National and principal investigator of NCC-PDI. “We welcome these winning companies into the NCC-PDI network of device startups and entrepreneurs and look forward to helping them accelerate commercialization so that these innovations can benefit children everywhere as soon as possible.”

 Julia Finkel

Children’s National anesthesiologist and innovator Julia Finkel, M.D., delivers a winning pitch for her AlgometRx device for detecting and monitoring neonatal abstinence syndrome.

Award-winner AlgometRx is a spinout company from Children’s National Hospital that was founded by anesthesiologist and pain medicine research chief Julia Finkel, M.D.  A non-invasive, handheld and portable device, AlgometRx captures a digital image of a patient’s pupillary light response and applies a series of propriety algorithms to measure pain type, intensity and drug effects in real time. Designed for use in virtually any clinical setting, Dr. Finkel originally developed this objective pain measurement technology to aid in diagnosing and monitoring non-verbal pediatric patients such as neonates. AlgometRx was also selected earlier this year to join the JLABS location in Philadelphia.

This is the ninth pediatric medical device competition sponsored by NCC-PDI, one of five FDA-funded programs focused on addressing unmet needs for pediatric medical devices. The consortium is led by the Sheikh Zayed Institute for Pediatric Surgical Innovation at Children’s National Hospital and the A. James Clark School of Engineering at the University of Maryland. NCC-PDI recently added new accelerators BioHealth Innovation and MedTech Innovator and design firm partner, Archimedic.

The symposium also featured four multidisciplinary panel discussions that followed the theme “Pediatric Device Clinical Trials: Forging a Better Path.” Solutions uncovered during these panels will be highlighted in an upcoming whitepaper that will be used to suggest FDA guidance on pediatric device trial conduct and best practices to safely validate medical devices for children more efficiently and effectively.

Vasum Peiris, M.D., chief medical officer, Pediatrics and Special Populations, Center for Devices and Radiological Health, FDA, gave the closing address, which outlined FDA initiatives focused on pediatric device development. David L. Wessel, M.D., senior vice president for the Center for Hospital-Based Specialties at Children’s National, provided an insightful overview of why NICU device development is so important and shared some of the NICU innovations currently in development at Children’s National, which ranks #1 nationally in NICU care.

Dr. Jonas and research collaborator Nobuyuki Ishibashi in the laboratory.

Cardiac surgery chief recognized for studies of surgery’s impacts on neurodevelopment

Dr. Jonas and research collaborator Nobuyuki Ishibashi in the laboratory.

Dr. Jonas and research collaborator Nobuyuki Ishibashi in the laboratory.

Richard Jonas, M.D., is this year’s recipient of the Newburger-Bellinger Cardiac Neurodevelopmental Award in recognition of his lifelong research into understanding the impact of cardiac surgery on the growth and development of the brain. The award was established in 2013 by the Cardiac Neurodevelopmental Outcome Collaborative (CNOC) to honor Jane Newburger and David Bellinger, pioneers in research designed to understand and improve neurodevelopmental outcomes for children with heart disease.

At Children’s National, Dr. Jonas’ laboratory studies of neuroprotection have been conducted in conjunction with Dr. Vittorio Gallo, director of neuroscience research at Children’s National, and Dr. Nobuyuki Ishibashi, director of the cardiac surgery research laboratory. Their NIH-supported studies have investigated the impact of congenital heart disease and cardiopulmonary bypass on the development of the brain, with particular focus on impacts to white matter, in people with congenital heart disease.

Dr. Jonas’s focus on neurodevelopment after cardiac surgery has spanned his entire career in medicine, starting with early studies in the Harvard psychology department where he developed models of ischemic brain injury. He subsequently undertook a series of highly productive pre-clinical cardiopulmonary bypass studies at the National Magnet Laboratory at MIT. These studies suggested that some of the bypass techniques used at the time were suboptimal. The findings helped spur a series of retrospective clinical studies and subsequently several prospective randomized clinical trials at Boston Children’s Hospital examining the neurodevelopmental consequences of various bypass techniques. These studies were conducted by Dr. Jonas and others, in collaboration with Dr. Jane Newburger and Dr. David Bellinger, for whom this award is named.

Dr. Jonas has been the chief of cardiac surgery and co-director of the Children’s National Heart Institute since 2004. He previously spent 20 years on staff at Children’s Hospital Boston including 10 years as department chief and as the William E. Ladd Chair of Surgery at Harvard Medical School.

As the recipient of the 2019 award, Dr. Jonas will deliver a keynote address at the 8th Annual Scientific Sessions of the Cardiac Neurodevelopmental Outcome Collaborative in Toronto, Ontario, October 11-13, 2019.

rabies virus illustration

Critters bugging! Test your infectious disease knowledge


Dengue virus

Children’s National/NIH team competes in #IDbugbowl

Dengue virus

IDBugBowl team member Maria Susana Rueda-Altez, M.D., hopes her knowledge of infectious diseases common to Peru, like dengue virus, will give her team an advantage.

It’s a bird. It’s a plane. No, it’s an infectious agent that zipped past country borders, infecting international passengers who shared the same commercial aircraft as a person who had symptomatic illness.

The buzzer rings. And the correct answer is: What is severe acute respiratory syndrome?

This fall, a combined team from Children’s National in Washington, D.C. and the National Institutes of Health (NIH) will compete against three other teams testing their collective infectious disease knowledge through IDBugBowl, a Jeopardy-style quiz geared toward fellows, residents and medical students. The competition is held during IDWeek2019. “From anaplasmosis to Zika, any topic is fair game,” according to organizers.

“BugBowl has become so popular that the IDWeek 2019 program committee carved out a separate time for the contest to ensure it would not conflict with any other symposia,” says Roberta L. DeBiasi, M.D., MS, chief of the Division of Pediatric Infectious Diseases at Children’s National. “On a day-to-day basis, we all contend with serious infectious diseases that have the potential to jeopardize human health. However, this event helps to expand knowledge among the general public in a fun and engaging way.”

The Children’s National/NIH team participating in the Oct. 5 trivia contest includes:

  • Kevin Lloyd, M.D., third-year pediatrics resident
  • Maria Susana Rueda-Altez, M.D., third-year pediatrics resident
  • Kanal Singh, M.D., fellow, adult infectious diseases at the National Institutes of Health (NIH) and
  • Alexandra Yonts, M.D., fellow, pediatric infectious diseases at Children’s National

Even though she has little formal training in infectious diseases, team member Dr. Rueda-Altez says: “One thing I have in my favor is that I’m from Peru. We’re used to seeing infectious diseases that are less common elsewhere, including tuberculosis and hantavirus.”

And while disease-carrying mosquitoes aren’t abundant at Peru’s higher altitudes, closer to sea level and in its rain forests, infected mosquitoes spread chikungunya, dengue, malaria and Zika, she adds.

Take this quiz to test your infectious disease knowledge.

Dr. Natasha Shur shares “Genetics and Telemedicine: Extending Our Reach” at the Future of Pediatrics CME

Virtual visits: A new house call for rare disease treatment

Dr. Natasha Shur shares “Genetics and Telemedicine: Extending Our Reach” at the Future of Pediatrics CME

Natasha Shur, M.D., an attending clinical geneticist at Children’s National Health System, shares “Genetics and Telemedicine: Extending Our Reach” at the Future of Pediatrics CME symposium in Bethesda, Maryland, on June 20.

“For the first time it wasn’t autism, autism, autism,” Shannon Chin says after learning the reason her newborn daughter, Sariyah, who turned 3 in August, couldn’t feed like normal infants was due to a tiny deletion of chromosome 22. This atypical deletion, a variation of a genetic condition known as 22q11.2 deletion syndrome, left Sariyah unable to suck and obtain nourishment as an infant. She was born premature and relied on assisted feeding tubes, inserted through her nose, to help her grow.

At 22-weeks-old, Sariyah received the diagnosis, which affects 1 in 4,000 children born each year. Sariyah’s genetic tests encouraged Chin to follow up with a nagging question: What if her two sons, Rueben and Caleb, both of whom were diagnosed with autism spectrum disorder (ASD), had something else?

Debra Regier, M.D., a medical geneticist at Children’s National Health System, encouraged Chin to follow up with a genetic test to answer these questions and to confirm 22q11.2 deletion syndrome symptoms she observed in Rueben.

A microarray analysis recently revealed Rueben, 17, has atypical  22q11.2 deletion syndrome. Caleb, 5, took the test and has developmental delay and ASD, which is more likely to occur in children with 22q11.2 deletion syndrome. He tested negative for the same deletion as his siblings. Additional tests are underway.

As Chin juggles complex care for her children, she realizes the partial deletion of chromosome 22 presents differently in every child. Sariyah and Rueben share short stature; they fit into tiny clothes. That’s where the phenotypical clues stop. They don’t have a cleft palate or dysmorphic facial features, distinctive of typical cases of 22q11.2 deletion syndrome. Sariyah has physical symptoms. Her intestines merged together, which gastrointestinal surgery fixed. Rueben experiences behavioral and neurological symptoms, including picky eating, aggression and uncontrolled body movements, which led the Chin family to Dr. Regier. Sariyah, Rueben and Caleb all have neurodevelopmental delays that impact their speech and development.

Coordinating multiple visits with geneticists, specialists, surgeons, genetic counselors and pediatricians, while navigating insurance, is a lot for any parent, but especially for those, like Chin, who have special considerations. Her children are non-verbal, so she pays close attention to their physical cues. Simplifying this process is one reason why Natasha Shur, M.D., a medical geneticist at Children’s National, introduced virtual visits to her patients, including Rueben, who had challenges with in-person visits. She thought: How can we make medical care easier for patients and families?

In January, Dr. Shur expanded virtual visits into a pilot program for 50 to 60 patients, including Sariyah and Caleb, with the support of a grant from the Health Resources and Services Administration (HRSA), the division of telemedicine at Children’s National and the Rare Disease Institute (RDI), the medical home to thousands of pediatric patients living with rare or genetic conditions. This program lets patients with concern for or already diagnosed genetic conditions in Maryland, the District of Columbia and Virginia, where Dr. Shur is licensed to practice medicine, test out virtual visits. Patients can download the HIPAA-compliant app or click through a secure link on a digital device to connect with Dr. Shur or a pediatric subspecialist.

Dr. Shur shares the preliminary findings of a new virtual visits pilot program,

Dr. Shur shares the preliminary findings of a virtual visits pilot program, which 50-60 local patients have tested in conjunction with in-person visits as a flexible way to manage medical care for genetic conditions.

On June 20, Dr. Shur shared a presentation about the program, “Genetics and Telemedicine: Extending Our Reach,” with pediatricians attending the Children’s National Future of Pediatrics continuing medical education (CME) symposium in Bethesda, Maryland.

Instead of a formal pilot program launch and end date with data, Dr. Shur mentions she conducts quality improvement assessments with each patient. She asks what they like about virtual visits. Do they feel comfortable with the software and technology? What types of visits do they prefer to do at home? What works best at the hospital? Do they want to keep using this program?

For Chin and most participants, the answer is yes. These families appreciate saving time, mileage, and being in close access to pediatric subspecialists from the comfort of home.

Parents can conference call from separate locations and share screens with the doctors, which works well if one parent is at work and another is at home – or if they live apart. Children can maintain their normal routine, such as finishing breakfast, homework, playing or staying in bed if they don’t feel well, though it is important to see the child in the virtual visit.

Families can obtain virtual assessments about urgent conditions without taking time off from work or school. Currently, only 10 to 30% of virtual visit patients with concerns about genetic conditions need an in-person, follow-up appointment. Fortunately, many conditions are less urgent than thought at the time of referral. Dr. Shur and specialists also benefit from observing children in their natural environment.

At the symposium, Dr. Shur translates this into clinical terms: reduced no-show visits, the ability to schedule shorter, more flexible visits, the ability to quickly and accurately diagnose conditions and provide care, and the ability to keep children with compromised immune function out of public areas, including waiting rooms. She discussed building rapport with patients, almost all of whom like these flexible care models.

“The idea is that we’re trying to understand what is best done using virtual technology and what is better for those in-person connections. More detailed physical exams take place in person. There are some cases where eye-to-eye contact and sitting in the exam room together is important,” says Dr. Shur. “Virtual visits should never replace in-person care. It’s just a forward way of thinking about: How do we use our time best?”

Case study 1: Saving families time and miles

Dr. Shur notes that for some patients, distance is a deciding factor for scheduling care. One mother’s five-hour round-trip commute to the children’s hospital, without traffic, is now five minutes. As an air-traffic controller, her schedule changes. She values the flexibility of the new program. To connect with Dr. Shur, she logs into the app on her computer or smart phone and brings her 2-year-old son into the video. He has cardiofaciocutaneous syndrome (CFC), a condition that affects 200 to 300 people in the world. As a result of a MAP2K1 gene variant, one of four genes – BRAF, MAP2K1, MAP2K2 and KRAS – associated with CFC, he experiences feeding problems, reflux, constipation and developmental delays.

By scheduling more frequent, but shorter check-ins, Dr. Shur assesses how he responds to treatment and makes recommendations to the mother in real time, such as trying prune juice for digestive health. They talk about rearranging feeding measurements and intervals, including his 2 a.m. dose of a peptide formula, which the mom blends at home to support her son’s growth. This modification equates to more sleep for everyone.

If follow-up tests, such as an X-ray or a blood test are needed, Dr. Shur coordinates these exams with the family at the hospital or at a nearby medical center. Depending on the condition, Dr. Shur may refer the family to an ophthalmologist, cardiologist, neurologist or learning and development specialist.

As a parent, Dr. Shur appreciates the direct approach virtual visits deliver.

“As a mom, if I’m taking my child to the doctor for two hours, I want to know why I’m there,” Dr. Shur says. “What are all the options?”

Case study 2: Observing children at home

Chin, who was also featured in Dr. Shur’s CME presentation, appreciates virtual visits for their convenience and efficiency, but her favorite feature is letting doctors observe her children at home.

“Children act differently outside the home,” says Chin.

For example, instead of describing Rueben’s rapid, rhythmic arm movements, a flinging of the arms, Chin showed neurologists at a scheduled virtual home visit. For Marc DiFazio, M.D., a pediatric neurologist, it was evident that Reuben had a movement disorder commonly seen in children with ASD, which is responsive to medication. In five minutes, her son had a diagnosis. The involuntarily movement wasn’t a behavioral issue, as previously thought, but a movement disorder.

“The regular in-person visit has a beautiful role and it’s very important, but virtual visits bring a different focus,” says Dr. Shur. “We get to see what the child’s life is like, what the home setting is like and what their schedule is like. How can we make their day-to-day life easier?”

Phenylketonuria (PKU), a rare condition that prevents the body from breaking down phenylalanine (Phe), an amino acid in protein, is another condition that pairs well with virtual visits. PKU affects 1 in 10,000 to 15,000 newborns in the U.S. People with PKU often require medication, food-based formulas and a protein-restricted diet to help their body process or regulate Phe.

If a patient with PKU connects through a virtual visit, they (or their parents) can open the refrigerator, talk about low-protein foods, discuss potential barriers to following a low-Phe diet, show the team new supplements or over-the-counter medications they are taking, discuss reactions to new therapies and, for adults, discuss an injectable drug recently approved by the FDA that has side effects but may ultimately allow them to follow a regular diet. These observations may not warrant a traditional trip to the doctor but are important for geneticists and patients to discuss. The goal of these visits is to identify and work around potential health barriers, while preventing adverse health outcomes.

To support this model, a 60-minute in-person visit scheduled every six months to a year can be broken into 15-minute video appointments at more frequent intervals. The result, based on the same amount of clinical time, is a targeted and detailed assessment to support personalized treatment and to help the patient adapt to a low-Phe meal plan.

During the video call, Dr. Shur and the team may prescribe a different medication, order a diagnostic procedure or schedule a follow-up appointment, if necessary. Depending on the situation, the patient will still likely come in for in-person annual visits.

Program assessment: Evaluating visits for each patient

Despite the popularity of virtual visits, Dr. Shur mentions this program isn’t a good fit for everyone – depending on a patient’s preferences. There are also limitations to consider. If a parent is hesitant to try this platform or if the comprehensive physical examination is the first key step, they should schedule in-person visits. The goal is to give parents who are requesting or curious about virtual visits a chance to try the platform. Having a secure area, preferably a private space at home, is important. A Wi-Fi connection and a digital device are required, which may create barriers for some patients.

However, Dr. Shur finds the program can alleviate hurdles – such as transportation challenges. One patient lives two hours away and couldn’t make it in for routine medical visits due to car problems. Now she makes every virtual appointment. For the first time in her life, she can manage medical care for herself and for her children.

Most insurance companies Dr. Shur works with cover virtual visits. The key is to have the virtual connection, or video, so Dr. Shur can still physically see the patient. Otherwise, the visit doesn’t count. A grant from CareFirst covers the costs of visits for patients who are using Medicaid or who don’t have medical insurance.

Parallel trends are happening across the country and for other conditions. Officials at the Federal Communications Commission (FCC) are reviewing a three-year pilot to expand the use of connected care services, like virtual visits, for low-income Americans living in rural areas. The Rural Health Care Program, funded by the FCC, supports hospitals that implement telehealth programs.

The American Academy of Pediatrics (AAP) released a statement in 2015 about telemedicine technologies, noting that if these technologies are applied in a synergistic model under one health care system or are guided by a family doctor, they can transform pediatric health care.

The key is to avoid a fragmented virtual health system.

The AAP applauds virtual connections that support collaborations among pediatric physicians, subspecialists and surgeons, reduce travel burdens for families, alleviate physician shortages, improve the efficiency of health care and enhance the quality of care and quality of life for children with special health care needs.

Planning for the future, investing in physician-patient partnerships

A poster at the Future of Pediatrics conference

The American Academy of Pediatrics supports telemedicine technologies that enhance the quality of care and the quality of life for children with special health care needs.

“The feedback has been phenomenal,” Dr. Shur says about the future of virtual visits for genetics. “Virtual visits will never replace in-person visits. They will be used in conjunction with in-person visits to maximize care.”

Dr. Regier and Jamie Frasier, M.D., Ph.D., medical geneticists at Children’s National, are introducing virtual visits to their patients, and many providers plan to do so as the program expands.

Sarah Viall, PPCNP, a nurse practitioner and newborn screening specialist, works with Dr. Shur and the geneticists during some visits to explain non-urgent newborn screening results to parents through virtual connections. Some parents find it’s easier to dial in during lunch or while they are together at home.

To improve education for patients and families, the education and technology committees at the RDI – led by geneticists and genetic counselors in partnership with the Clinical and Translational Science Institute at Children’s National – launched a new smartphone app called BearGenes. Families can watch 15 videos about genetics on the pin-protected app or view them online. The interactive guide serves as a gene glossary for terms patients may hear in a clinical setting. Topics range from genetics 101, describing how DNA is encrypted in the body through four letters – A, T, C and G – to different types of genetic tests, such as whole exome sequencing, to look for differences in the spelling of genes, which the genetic counselors explain are genetic mutations.

“As we unite patients with virtual health platforms and new forms of technology, we want to see what works and what doesn’t. We want their feedback,” Dr. Shur reemphasizes. “Virtual visits are a dynamic process. These visits only work through patient partnership and feedback.”

As Chin navigates atypical 22q11.2 deletion syndrome and ASD, she continues to appreciate the virtual waiting room and the ease of access virtual visits provides.

Sharing screens during virtual visits enables Chin to examine and better understand her children’s abdomen and kidney sonograms, cardiology reports and hearing exams. It forces everyone in the visit to focus on one topic or image at a time, strengthening the connection.

Chin still has questions about her children’s DNA, but she’s getting close to having more answers. She’s eager to see Caleb’s genetic test results and to work with Hillary Porter, M.S., CGC, the family’s genetic counselor, to interpret the data.

“We’re all learning together,” Dr. Shur says about the new pilot program, which applies to genomics at large.

As research about 22q11.2 deletion syndrome advances, geneticists, pediatric subspecialists and pediatricians are unifying efforts to work as one diagnostic and treatment team. Virtual visits enable faster consultations and can shorten diagnostic odysseys, some of which may take up to five years for children with rare disorders.

Attendees at the Future of Pediatrics conference

Nearly 400 pediatricians attend the Children’s National Future of Pediatrics CME symposium to learn about the future of pediatrics and about ways to work together as a diagnostic and treatment team.

For Chin, by better understanding how a tiny fragment of a missing chromosome may influence her children’s growth and development, she is already making long-term plans and coordinating multidisciplinary medical treatment for each child.

She hopes that by sharing her story and knowledge about 22q11.2 deletion syndrome, she can help other parents navigate similar situations. Heradvice to parents is to follow up on lingering questions by bringing them up with your medical team.

Chin is optimistic and happy she did. She’s grateful for the virtual visits program, which simplifies complex care for her family. And she’s still waiting, but she hopes to learn more about her middle child’s DNA, unraveling another medical mystery.

Read more about the virtual visits pilot program at Becker’s Hospital Review and listen to an interview with Dr. Shur and Shannon Chin on WTOP.

INSAR 2019 logo

Autism’s heterogeneity on display at INSAR 2019

INSAR 2019 logo

At the INSAR Annual Meeting, presentations from around the world share a common goal: finding better ways to support and care for people with autism.

There are countless aspects of autism spectrum disorder (ASD) to study, as evidenced by the 1,800-plus abstracts accepted at the 2019 International Society for Autism Research’s (INSAR) annual meeting. Presentations from investigators around the world ranged from pre-clinical studies of the genetic and biological underpinnings to community-based studies of diagnosis, assessment and treatment.

Along that broad spectrum of autism research, the work at Children’s National emphasizes better understanding of the clinical implications and community experiences of autism, with a particular focus on:

  • How well diagnostic and assessment tools capture the many differences between subpopulations of children with autism, whether based on sex/gender identity, cultural background or age
  • Understanding what children and adolescents with autism, and their parents, really need to help them thrive, and how to target supports to their unique needs
  • Finding the best ways to deliver vital information to autistic youth and their families in clear and accessible ways.

Researchers from Children’s Center for Autism Spectrum Disorders (CASD) presented nearly 20 scientific panels, oral presentations and posters at INSAR highlighting their most recent findings in these areas.

In addition to their own research, the CASD team attended sessions from INSAR’s global community of researchers, clinicians, and others with vested interest in the study of ASD. Lauren Kenworthy, Ph.D., CASD’s director, shared some of her key takeaways from the meeting with the ASD-focused publication Spectrum.

“At many levels of analyses, we are learning that a diagnostic label may not always be the best construct for identifying, treating or probing the biology underlying a person’s problems,” she said. “The keynote by Jason Lerch, professor at Oxford University, for example, was an elegant synthesis of imaging and genetic findings that made a strong case for the importance of exploring subtypes within autism and across developmental and psychiatric problems.”

“We also received another powerful reminder of our field’s complex heterogeneity,” Dr. Kenworthy noted. “Katherine Gotham, assistant professor at Vanderbilt University, was able to divide groups of autistic individuals in a study according to different criteria than the study’s initial design and effectively erase what appeared to be clear, statistically significant differences between typically developing and autistic participants. Her presentation demonstrated once more the importance of looking deeply at our data from many angles before drawing conclusions based on study outcomes.”

These studies, both at Children’s and elsewhere, all share one common theme: the importance of asking these questions and exploring the answers, with the goal of finding better ways to support and care for the millions of people around the world with autism and their families, no matter what autism looks like for them.

CASD presentations at INSAR 2019

Panel presentation: Clinical Presentation of ASD and Access to Care Among Girls

Allison Ratto, Ph.D., chaired a panel focused on the differences in performance on standard diagnostic tools based on the sex of autistic youth. The panel included presentations such as:

  • Sex Differences in Youth with ASD: Language Phenotype and Relation to Autism Behaviors from the ACE GENDAAR Network, presented by Sara Jane Webb of the University of Washington
  • Social Strengths of Autistic Girls: Sex Differences in Clinician-Rated and Parent-Reported Autistic Traits, presented by Dr. Ratto
  • Gender and Psychiatric Symptoms among Youth with ASD and ADHD, Alyssa Verbalis, Ph.D.
  • Evidence for Undertreatment of ADHD in Girls with ASD in the National Survey of Children’s Health, Kelly Register-Brown, M.D., MSc.

Oral and poster presentations

Oral session: Comparing Online and in-Person Parent Trainings to Support Executive Function and Self-Regulation: Feasibility, Acceptability, and Outcomes, presented by Lauren Kenworthy, Ph.D.

Poster sessions:

  • Executive Function and School-Based Interventions
    • Self-Report and Parent-Report Reveal Similar Patterns of Executive Function Problems in Autistic Adolescents, presented by Rachael Clinton and Charlotte Jeppsen
    • What Services Are Families of Children with Executive Function Challenges Getting? What Do Parents Say They Want?
    • A Mixed Methods Approach to Evaluation of Student Acceptability of the School-Based Interventions Unstuck and on Target and Parents and Teachers Supporting Students
    • A New Way to Help Parents? Exploring the Impact of School-Based Interventions on Parenting Outcomes
    • Executive Function and Academic Achievement in Autism Spectrum Disorder
    • Development of an Interactive, E-Learning Tool to Support Parent Implementation of an Executive Function Intervention
    • The Moderating Effects of Implementation Factors on Improvement in Classroom Behaviors in Unstuck and on Target and Contingency Behavior Management
  • Youth with ASD making the transition to adulthood
    • Preliminary Outcomes of a New Executive Function Treatment for Transition-Age Youth with ASD, presented by Cara Pugliese, Ph.D.
    • Self-determination in transition-aged individuals with autism spectrum disorder.
  • ASD population subgroups, including gender and ethnically diverse:
    • Parent-Teacher Discrepancy in Ratings of Executive Functioning in Black and White Children with ASD, presented by Serene Habayeb
    • Capturing the Autistic Experience: Self-Advocates Develop Self-Assessment Tools to Inform Autism Diagnosis and Validate Neuroimaging Findings across the Gender Spectrum
    • Comparing Parent-Report of Non-Intellectually Disabled Asian-American Youth with ASD and ADHD to Their White Peers
    • Autistic Traits in Transgender Youth: Dysphoria, Stigma, and Barriers to Care
    • Higher Rates of Gender Diversity in Children with ASD Based on Self-Report, Not Parent Report
nurse checking boy's blood sugar levels

Improving glycemic control in diabetic children

nurse checking boy's blood sugar levels

A 10-week pilot study at Children’s National Health System integrated weekly caregiver coaching, personalized glucose monitoring and incentives into standard treatment for 25 pediatric patients with type 1 diabetes, lowering A1c by .5%

The life of a type 1 diabetes patient – taking daily insulin shots or wearing an insulin pump, monitoring blood sugar, prioritizing healthful food choices and fitting in daily exercise – can be challenging at age 5 or 15, especially as holidays, field trips and sleepovers can disrupt diabetes care routines, creating challenges with compliance. This is why endocrinologists from Children’s National Health System experimented with using health coaches over a 10-week period to help families navigate care for children with type 1 diabetes.

By assembling a team of diabetes educators, dietitians, social workers, psychologists and health care providers, Fran Cogen, M.D., C.D.E., director of diabetes care at Children’s National, helped pediatric patients with type 1 diabetes manage their glycemic status, or blood-sugar control.

On Saturday, June 8, 2019, Dr. Cogen will share results of the pilot program as poster 1260-P, entitled “A Clinical Care Improvement Pilot Program: Individualized Health Coaching and Use of Incentives for Youth with Type 1 Diabetes and their Caregivers,” at the American Diabetes Association’s 79th Scientific Sessions, which takes place June 7-11 at the Moscone Center in San Francisco.

Dr. Cogen’s study was offered at no cost to caregivers of 179 patients at Children’s National seeking treatment for type 1 diabetes. The pilot program included two components: 1) Weekly phone calls or emails from a health coach to a caregiver with personalized insulin adjustments, based on patient blood sugars submitted through continuous glucose monitoring apps; and 2) Incentives for patients to participate in the program and reach health targets.

Twenty-five participants, ages 4-18, with a mean age of 11.6 and A1c ranges between 8.6 – 10% joined the study. The average A1c was 9.4% at the beginning of the program and dropped by an average of .5% at the end of the trial. Twenty of the 25 participants, 80%, improved A1c levels by .5%. Seventeen participants, 68%, improved A1c levels by more than .5%, while seven participants, 28%, improved A1c levels by more than 1%.

“Chronic disease is like a marathon,” says Dr. Cogen. “You need to have constant reinforcement and coaching to get people to do their best. Sometimes what drives people is to have people on the other end say, ‘Keep it up, you’re doing a good job, keep sending us information so that we can make changes to improve your child’s blood sugar management,’ which gives these new apps and continuous glucose monitoring devices a human touch.”

Instead of waiting three months between appointments to talk about ways a family can make changes to support a child’s insulin control and function, caregivers received feedback from coaches each week. Health coaches benefitted, too: They reported feeling greater empathy for patients, while becoming more engaged in personalizing care plans.

Families who participated received a gift card to a local grocery store, supporting a child’s dietary goals. Children who participated were also entered into an iPad raffle. Improvements in A1c levels generated extra raffle tickets per child, which motivated participants, especially teens.

“These incentives are helpful in order to get kids engaged in their health and in an immediate way,” says Dr. Cogen. “Teenagers aren’t always interested in long-term health outcomes, but they are interested in what’s happening right now. Fluctuating blood sugars can cause depression and problems with learning, while increasing risk for future complications, including eye problems, kidney problems and circulation problems. As health care providers, we know the choices children make today can influence their future health outcomes, which is why we designed this study.”

Moving forward, Dr. Cogen and the endocrinologists at Children’s National would like to study the impact of using this model over several months, especially for high-risk patients, while  asynchronously targeting information to drive behavior change – accommodating the needs of families, while delivering dose-specific recommendations from health care providers.

Dr. Cogen adds, “We’re moving away from office-centric research models and creating interventions where they matter: at home and with families in real time.”

Read more about the study at Healio.com and dLife.

Additional study authors, all of whom work within the division of diabetes and endocrinology at Children’s National, include Lauren Clary, Ph.D., Sue-Ann Airborne, C.D.E., Andrew Dauber, M.D., Meredith Dillon, R.D., L.D.N., C.D.E., Beakel Eshete, B.S.N., R.N., C.D.E., Shaina Hatchell, B.S.N., R.N., Shari Jones, R.N., C.D.E., and Priya Vaidyanathan, M.D.

Robert J. Freishtat working in the lab

Detecting early signs of type 2 diabetes through microRNA

Robert J. Freishtat working in the lab

Obesity is a major risk factor for insulin resistance and type 2 diabetes. Now researchers understand the pathogenesis better among teens with mid-level obesity, thanks to clues released from circulating adipocyte-derived exosomes.

Researchers know that exosomes, tiny nanoparticles released from fat cells, travel through the bloodstream and body, regulating a variety of processes, from growth and development to metabolism. The exosomes are important in lean, healthy individuals in maintaining homeostasis, but when fat gets ‘sick’ – the most common reason for this is too much weight gain – it can change its phenotype, becoming inflammatory, and disrupts how our organs function, from how our skeletal muscle and liver metabolize sugar to how our blood vessels process cholesterol.

Robert J. Freishtat, M.D., M.P.H., the chief of emergency medicine at Children’s National Health System and a professor of precision medicine and genomics at the George Washington University School of Medicine and Health Sciences, and Sheela N. Magge M.D., M.S.C.E., who is now the director of pediatric endocrinology and an associate professor of medicine at the Johns Hopkins School of Medicine, were curious about what this process looked like in teens who fell in the mid-range of obesity.

Obesity is a major risk factor for insulin resistance and type 2 diabetes, but Dr. Freishtat and Dr. Magge wanted to know: Why do some teens with obesity develop type 2 diabetes over others? Why are some teens in this mid-range of obesity metabolically healthy while others have metabolic syndrome? Can fat in obese people become sick and drive disease?

To test this, Dr. Freishtat and Dr. Magge worked with 55 obese adolescents, ages 12 to 17, as part of a study at Children’s National. The participants – 32 obese normoglycemic youth and 23 obese hyperglycemic youth – were similar in age, sex, race, pubertal stage, body mass index and overall fat mass. The distinguishing factor: The hyperglycemic study participants, the teens with elevated blood sugar, differed in where they stored fat. They had extra visceral fat (or adipose tissue) storage, the type of fat that surrounds the liver, pancreas and intestines, a known risk factor for type 2 diabetes.

Dr. Magge and Dr. Freishtat predicted that circulating exosomes from the teens with elevated blood sugar are enriched for microRNAs targeting carbohydrate metabolism.

They used three tests to examine study participants’ metabolism, body composition and circulating exosomes. The first test, an oral glucose tolerance test, measures how efficiently the body metabolizes sugar; the second test is the whole body DXA, or dual-energy x-ray absorptiometry, which analyzes body composition, including lean tissue, fat mass and bone mineral density; and the third test, the serum adipocyte-derived exosomal microRNA assays, is an analysis of circulating fat signals in the bloodstream.

They found that teens with elevated blood sugar and increased visceral fat had different circulating adipocyte-derived exosomes. These study participants’ exosomes were enriched for 14 microRNAs, targeting 1,304 mRNAs and corresponding to 179 canonical pathways – many of which are directly associated with carbohydrate metabolism and visceral fat.

Dr. Magge will present this research, entitled “Changes in Adipocyte-Derived Exosomal MicroRNAs May Play a Role in the Progression from Obese Normoglycemia to Hyperglycemia/Diabetes,” as an oral abstract at the American Diabetes Association’s 79th Scientific Sessions on Saturday, June 8.

Dr. Freishtat envisions having this information will be especially helpful for a patient in a mid-range of obesity. Exosomes primarily consist of small non-coding RNAs. In the current study, the altered RNAs affect P13K/AKT and STAT3 signaling, vital pathways for metabolic and immune function.

“Instead of waiting until someone has the biochemical changes associated with type 2 diabetes, such as hyperglycemia, hyperlipidemia and insulin resistance, we’re hoping physicians will use this information to work with patients earlier,” says Dr. Freishtat. “Through earlier detection, clinicians can intervene when fat shows sign of illness, as opposed to when the overt disease has occurred. This could be intervening with diet and lifestyle for an obese individual or intervening with medication earlier. The goal is to work with children and teens when their system is more plastic and responds better to intervention.”

As this research evolves, Dr. Freishtat continues to look at the intergenerational effects of circulating adipocyte-derived exosomes. Through ongoing NIH-funded research in India, he finds these exosomes, similar in size to lipoproteins, can travel across the placenta, affecting development of the fetus in utero.

“What we’re finding in our initial work is that these exosomes, or ‘sick’ fat, cross the placenta and affect fetal development,” Dr. Freishtat says. “Some of the things that we’re seeing are a change in body composition of the fetus to a more adipose phenotype. Some of our work in cell cultures shows changes in stem cell function and differentiation, but what’s even more interesting to us is that if the fetus is a female sex that means her ovaries are developing while she’s in utero, which means a mother’s adipocyte-derived exosomes could theoretically be affecting her grandchild’s phenotype – influencing the health of three generations.”

While this research is underway, Dr. Freishtat is working with JPOD @ Boston, co-located with the Cambridge Innovation Center in Cambridge, Massachusetts, to develop a test to provide analyses of adipocyte-derived exosomal microRNAs.

“It’s important for families to know that these studies are designed to help researchers and doctors better understand the development of disease in its earliest stages, but there’s no need for patients to wait for the completion of our studies,” says Dr. Freishtat. “Reaching and maintaining a healthy body weight and exercising are important things teens and families can do today to reduce their risk for obesity and diabetes.”

Matt Oetgen talks about an x-ray

Nicotine-like anti-inflammatories may protect limbs, testicles from inflammatory damage after injury

Daniel Casella

Daniel Casella, M.D., is teaming up with Matthew Oetgen, M.D., MBA, for a POSNA-funded pre-clinical study of the anti-inflammatories varenicline and cytisine.

A new pre-clinical study will explore the use of anti-inflammatory medications to prevent the body’s inflammatory response from further damaging limbs after an injury restricts blood flow. Varenicline and cytisine, anti-inflammatories with similarities to nicotine, have shown early promise in similar pre-clinical laboratory studies of the testicles and will now be tested in arms and legs.

Matthew Oetgen, M.D., MBA, chief of Orthopaedic Surgery and Sports Medicine at Children’s National and Children’s pediatric urologist Daniel Casella, M.D., will jointly lead the new study entitled, “Modulation of the Injury Associated with Acute Compartment Syndrome,” which builds on Dr. Casella’s previous work with the two anti-inflammatory agents. Drs. Oetgen and Casella recently were awarded the Angela S.M. Kuo Memorial Award Research Grant to fund this research during the Pediatric Orthopaedic Society of North America’s (POSNA) Annual Meeting.

“We are honored that this important research was selected by POSNA for support,” says Dr. Oetgen. “An arm or leg injury can trigger the body’s natural inflammatory response, causing severe swelling that restricts blood flow. Even after blood flow is restored, the inflammatory response can lead to permanent muscle or nerve damage or even loss of limb. This grant will give us the opportunity to truly explore the application of anti-inflammatories after injury and see if this approach can modulate the immune response to protect the limbs.”

If successful in the laboratory, the team hopes to expand this work to human clinical trials.

Matt Oetgen talks about an x-ray

“We are honored that this important research was selected by POSNA for support,” says Dr. Oetgen. “This grant will give us the opportunity to truly explore the application of anti-inflammatories after injury and see if this approach can modulate the immune response to protect the limbs.”

The Angela S.M. Kuo Memorial Award Research Grant is given each year to an outstanding investigator aged 45 or younger based on criteria including the study’s potential significance, impact, originality/innovation, the investigator’s track record and study feasibility. The award totals $30,000.

While at POSNA’s 2019 Annual Meeting, Dr. Oetgen and Children’s pediatric orthopaedic surgery colleagues also participated in podium presentations and poster sessions, including:

  • “Achieving Consensus on the Treatment of Pediatric Femoral Shaft Fractures,” Matthew Oetgen, M.D., MBA
  • “A Prospective, Multi-centered Comparative Study of Non-operative and Operative Containment Treatments in Children Presenting with Late-stage Legg-Calve-Perthes Disease,” Benjamin Martin, M.D.

The Pediatric Orthopaedic Society of North America is an organization of 1,400 surgeons, physicians, and allied health members dedicated to advancing musculoskeletal care for children and adolescents. The annual meeting presents the latest research and expert clinical opinion in pediatric orthopaedics through presentations, posters, and symposia. It was held May 15-18, 2019, in Charlotte, North Carolina.