Meetings

screenshot of conversation between Dr. Beers and Simone Biles

Dr. Lee Beers speaks with Olympic gold medalist Simone Biles about mental health

Lee Savio Beers, M.D., F.A.A.P., medical director of Community Health and Advocacy at the Child Health Advocacy Institute (CHAI) at Children’s National Hospital and president of the American Academy of Pediatrics (AAP), delivered the President’s Address to AAP members around the world and held a keynote conversation with Olympic gold medalist Simone Biles about mental health during AAP’s National Conference and Exhibition.

After being introduced by her children, Charlotte and Jonah, Dr. Beers thanked AAP members around the world for their ability to adapt and provide quality care to patients throughout the COVID-19 pandemic. “The COVID-19 pandemic has changed our collective calculus of uncertainty, yet you continue to adapt and adjust to provide quality care in your clinics, emergency departments, ICU’s and exam rooms,” said Dr. Beers.

Dr. Beers continued by reflecting on accomplishments that AAP members and volunteers were able to achieve over the last year including the establishment of community immunization efforts, interim guidance provided on numerous pandemic-related issues and bi-weekly COVID-19 townhalls and educational sessions.

Shortly after her address, Dr. Beers sat down with Simone Biles to discuss the importance of advocating for mental health as an athlete.

During their conversation, Biles discussed the importance of making her mental health a priority by withdrawing from several events during the 2020 Tokyo Olympics. She reflected on the outpouring support she received and how it made her feel.

Biles also offered advice for youth dealing with mental health issues and stressed the importance of reaching out to parents or peers so they can get the help and support they need.

AAP’s National Conference and Exhibition, held from October 8 through October 11, serves as an opportunity to keep pediatric providers abreast of the latest best practices in pediatrics and strives to meet participants’ identified educational needs and support their life-long learning with a goal of improving care for children and families.

Speaker and presentation information can be found here.

screenshot of conversation between Dr. Beers and Simone Biles

Simone Biles discussed the importance of making mental health a priority with Dr. Lee Savio Beers.

Drs. Wernovsky and Martin

Cardiac care leaders recognized for mentorship and innovation at AAP

Two Children’s National Hospital cardiac care leaders received prestigious recognition awards from the American Academy of Pediatrics (AAP) during that organization’s virtual National Conference and Exhibition in October 2021.

  • Gil Wernovsky, M.D., cardiac critical care specialist at Children’s National Hospital, received the 2021 Maria Serratto Master Educator Award from AAP Section on Pediatric Cardiology and Cardiac Surgery, celebrating his 30-plus-years as a clinician, educator, mentor and leader in the field.
  • Gerard Martin, M.D., FAAP, FACC, FAHA, C. Richard Beyda Professor of Cardiology, Children’s National Hospital, received the AAP Section on Advances in Therapeutics and Technology (SOATT) Achievement Award, in recognition of his work to establish the use of pulse oximetry to screen newborn infants for critical congenital heart disease in the first 24 hours of life.

Dr. Wernovsky: 2021 Maria Serratto Master Educator Award, AAP Section on Pediatric Cardiology and Cardiac Surgery

Gil Wernovsky

Gil Wernovsky, M.D., received the 2021 Maria Serratto Master Educator Award from AAP Section on Pediatric Cardiology and Cardiac Surgery.

The Master Educator Award is presented each year to a pediatric cardiologist or cardiothoracic surgeon who exemplifies excellence as an educator, mentor and/or leader in the field.

A practicing cardiac critical care specialist with more than 30 years’ experience in pediatric cardiology, Dr. Wernovsky trained and mentored more than 300 fellows in pediatric cardiology, cardiac surgery, neonatology, critical care medicine and cardiac anesthesia, in addition to countless residents and fellows. He also organizes national and international symposia to share expertise around the world. During the COVID-19 public health emergency, for example, he co-founded the Congenital Heart Academy (CHA). The CHA provides content from an international faculty of cardiac care to more than 26,000 practitioners in 112 countries and includes a thriving YouTube channel.

Dr. Wernovsky is also a founding member of several international societies focused on bringing together clinicians, researchers and students across sub-specialties of pediatric cardiology and cardiac surgery for knowledge exchange and best practice sharing. These include: the Pediatric Cardiac Intensive Care Society, World Society for Pediatric and Congenital Heart Surgery, the International Society of Pediatric Mechanical Circulatory Support and the Cardiac Neurodevelopmental Outcome Collaborative.

Dr. Wernovsky received the award on October 10 at the virtual Scientific Sessions of the 2021 American Academy of Pediatrics National Conference and Exhibition.

Dr. Martin: AAP Section on Advances in Therapeutics and Technology (SOATT) Achievement Award

Gerard Martin

Gerard Martin, M.D., FAAP, FACC, FAHA, C. Richard Beyda Professor of Cardiology, Children’s National Hospital, received the AAP Section on Advances in Therapeutics and Technology (SOATT) Achievement Award.

The Section on Advances in Therapeutics and Technology (SOATT) educates physicians, stimulates research and development and consults on therapeutics and technology-related matters for the AAP. The Achievement Award recognizes someone who has shown leadership in applying innovative approaches to solve pressing problems.

Dr. Martin is the C. Richard Beyda Professor of Cardiology and has cared for children at Children’s National for more than 30 years. As an advocate for congenital heart disease efforts nationally and internationally, he played an integral role in the development of an innovative use of existing hospital technology—the pulse oximeter—to detect critical congenital heart disease in newborn babies.

Today, Dr. Martin and colleagues across the United States and around the world have worked to make this screening method a standard of care for newborns everywhere. It is a part of the Health Resources and Services Administration (HRSA) Recommended Uniform Screening Panel and has become law in every state. They continue to conduct research to refine the recommendations and hone-in on the most effective ways to harness these tools.

Dr. Martin was selected for this award in 2020. He accepted it and offered remarks during the 2021 virtual AAP National Conference and Exhibition on Monday, October 11, 2021.

Charles Berul receives award

Charles Berul, M.D., named Pioneer in Cardiac Pacing and Electrophysiology by Heart Rhythm Society

Charles Berul receives award

Dr. Berul receives the Pioneer in Cardiac Pacing and Electrophysiology from the Heart Rhythm Society at their 2021 meeting.

The Heart Rhythm Society has awarded its 2021 Pioneer in Cardiac Pacing and Electrophysiology Award to Charles Berul, M.D., chief of Cardiology and co-director of the Children’s National Heart Institute at Children’s National Hospital.

The award recognizes an individual who has been active in cardiac pacing and/or cardiac electrophysiology for many years and has made significant contributions to the field. It is typically given to electrophysiologists who treat adults. Dr. Berul is the second pediatric specialist to receive it. Dr. Berul accepted his award at Heart Rhythm 2021, the society’s annual meeting.

“It is wonderful news that Dr. Berul is receiving this award in recognition of his major contributions to this field and to improve the lives of children with heart rhythm challenges,” says David Wessel, M.D., executive vice president, chief medical officer and physician-in-chief at Children’s National Hospital. “We are proud of all he has achieved so far, and are so thankful that he shares his expertise, leadership, mentorship and friendship with us at Children’s National every day. Congratulations to him on this tremendous honor.”

The Heart Rhythm Society notes that Dr. Berul has mentored dozens of trainees who have gone on to successful careers and particularly advocates for young investigators and clinician-scientists. He is known for his collaborative style and promotion of faculty physicians in academic medicine. His scientific work began with cellular electrophysiology and clinical genetics of inherited arrhythmia disorders.

He is known for his development of innovative electrophysiologic studies for phenotypic evaluations of genetically manipulated pre-clinical models. Over the past two decades, his research focus and passion have been to develop novel minimally invasive approaches to the heart and improving methods for pediatric pacing and defibrillation.

Dr. Berul is an active member of the Heart Rhythm Society. He has served on multiple society committees, task forces, and writing groups, and is currently an associate editor for the society’s journal, Heart Rhythm. He is also actively involved in other key organizations such as Mended Little Hearts and the Pediatric and Congenital Electrophysiology Society (PACES).

He has more than 300 publications and is an invited speaker nationally and internationally in the areas of pediatric cardiac electrophysiology and miniaturized device development.

pediatric cardiac and vascular MRI coil

Overcoming real and perceived barriers to pediatric device innovation

pediatric cardiac and vascular MRI coil

A working group of innovators, engineers and clinicians from Children’s National Hospital and other institutions came together to address the real and perceived barriers to the creation of pediatric devices, such as this pediatric cardiac and vascular MRI coil developed by Inkspace Imaging.

A working group of innovators, engineers and clinicians from Children’s National Hospital, Children’s Hospital of Orange County and other institutions came together to address the real and perceived barriers to pediatric device innovation through opportunities that may change the return-on-investment in this market and improve health outcomes.

The new report, published in the Journal of Translational Engineering in Health and Medicine, mentions barriers that impede the advancement of pediatric devices, including excessive limitations for testing and validation, lack of incentives, inadequate research models and inconsistent pediatric-related knowledge among companies, regulatory experts, ethic review panels and government reviewers.

To remove the real and perceived barriers fostering excessive limitations, the researchers suggest reducing the perceived risk by establishing guidelines that standardize the review process and ethical research models, incentivizing small companies to participate in pediatric device innovation.

To increase incentives, the researchers call for the development of pediatric versions of adult devices with or without enforcement of regulations, develop incentives for small, medium and large-size companies, extend patent protection and more.

Since science corroborates the device’s effectiveness and safety, tailored pediatric research models are needed to help advance pediatric device innovation. While randomized trials in well-defined cohorts are commonly used in the scientific quest, they do not reflect the clinical practice in the pediatric devices field.

“Overcoming this barrier will require greater opportunity for creativity in the design of clinical trials, including delayed entry, intent-to-treat analysis, personalized outcome measures, and post-hoc subgroup analysis,” said Terence et al. “Effective research for pediatric device innovation will require greater ability to rely on ‘real-world’ data from post-market use of the proposed device or similar devices.”

On the education side, stakeholders, such as device sponsors and researchers, must receive an improved education on pediatric devices, according to the authors. Pediatricians should also be added to the regulatory review panels and advisory boards, so decision-makers can receive the pediatric perspective and fold it into their considerations.

“The consensus outcome of this meeting is that there are multiple opportunities, and a flexible combination of new programs and regulatory changes can be created to benefit the multiple stakeholders in pediatric device development,” said Terence et al. “An essential component will be building a cadre of experts with the development, regulatory, and clinical expertise to support all innovators.”

Kolaleh Eskandanian, Ph.D., M.B.A., P.M.P., vice president and chief innovation officer at Children’s National Hospital adds that supporting and expanding pediatric innovation is a key focus of the new Children’s National Research & Innovation Campus, the first-of-its-kind focused on pediatric health care innovation, with the first phase currently open on the former Walter Reed Army Medical Center campus in Washington, D.C. With its proximity to federal research institutions and agencies, universities, academic research centers, the campus provides a rich ecosystem of public and private partners which will help bolster pediatric innovation and commercialization.

Authors from Children’s Hospital Orange County include Terence Sanger, M.D., Nadine Afari, M.S., Anthony Chang, M.D., William Feaster, M.D., Sharief Taraman, M.D., Debra Beauregard, Brent Dethlefs, Tiffani Ghere, R.D., C.S.P., Mustafa Kabeer, M.D., and George Tolomiczenko.

Screenshot of Drs. Northam, Newman and Batshaw

4th Annual Children’s National Hospital-NIAID Virtual Symposium

Screenshot of Drs. Northam, Newman and Batshaw

Keynote speaker Virginia Governor and pediatric neurologist, Ralph Northam, joined Dr. Kurt Newman, president and CEO of Children’s National Hospital, and Dr. Mark Batshaw, executive vice president, physician-in-chief and chief academic officer at Children’s National Hospital, during the 4th Annual Children’s National Hospital-NIAID Virtual Symposium.

Children’s National Hospital and the National Institute of Allergy and Infectious Diseases (NIAID) hosted their 4th annual symposium, attracting nationwide researchers, trainees and health care professionals to share updates on the COVID-19-related condition known as Multisystem Inflammatory Syndrome (MIS-C) in Children, allergy and immunology in the pediatric population.

“Children’s National relationship with the NIAID is a strategic and novel alliance that benefits children everywhere,” said Kurt Newman, M.D., President and CEO of Children’s National Hospital. “I’m so proud of our unique partnership and how it has enriched the high-quality research being conducted at Children’s National and enabled us to interact on pressing health issues. With the opening of our new Children’s National Research & Innovation Campus on the grounds of the former Walter Reed Army Medical Center, the sky is the limit to how we can work together with the NIAID to innovate for kids so that we help them grow up stronger.”

The discussions at the symposium centered around various topics, including clinical manifestations of SARS-CoV-2 in children, comparative disease biology manifestation in children and adults, therapies and vaccines in the pediatric setting, intersectionality of allergy, immunology and COVID-19, modulating biologic factors in immune regulation and treatments that invoke tolerance in allergy.

Keynote speaker Virginia Governor and pediatric neurologist, Ralph Northam, spoke about the COVID-19 pandemic and strategies to reintroduce children into schools and sports.

“Schools provide stability and structure. We know that children need to be in school for educational achievements and their mental health, but it has taken time to make school staff and families more comfortable with a greater time of in-person learning,” said Dr. Northam. “Our goal is to have all in-person learning this fall. That is where our children need to be because it is the safest place for children.”

During the keynote session, Dr. Northam also addressed the mental health issues related to the pandemic where pediatricians have seen an increase in depression and suicide rates.

“As we move forward to a back more normal life, we need to keep an eye on these children and make sure that they continue to get the support and treatment that they need,” said Dr. Northam.

Below are the speakers and the focus of their presentations.

  • Post-COVID cardiac manifestations in children: Anita Krishnan, M.D., Children’s National
  • Immunomodulation and Cytokine Profiling in MIS-C: Hemalatha Srinivasalu, M.D., Children’s National
  • The MUSIC study: Long-TerM OUtcomes After the Multisystem Inflammatory Syndrome in Children: Jane Newburger, M.D., Boston Children’s Hospital
  • MIS-C in Typical Cases and Down Syndrome: Dusan Bogunovic, M.D., Mount Sinai
  • Age-Related Virus-Specific T-Cell Responses to SARS-CoV-2: Susan Conway, M.D., Children’s National
  • Systems Immunology of COVID-19: Integrating Patient and Single Cell Variations: John Tsang, Ph.D., NIAID
  • Therapeutics for Children with COVID-19: Trying to be Data Driven in the Absence of Pediatric Trials: Andy Pavia, M.D., University of Utah
  • SARS-CoV-2 Vaccine Clinical Research: Alicia Widge, M.D., NIAID
  • Implementation and Public Health Aspects: Cara Biddle, M.D., M.P.H., Children’s National
  • COVID-19 and Pediatric Asthma: William Sheehan, M.D., Children’s National
  • The COVID-19 Pandemic and Immunodeficiency: The Burden and Emerging Evidence: Jessica Durkee-Shock, M.D., NIAID
  • SARS-CoV-2 Infection in Children with Cancer: The MSK Experience: Andy Kung, M.D., Memorial Sloan Kettering
  • Adaptive and Maladaptive Immunity to the Microbiota: Implication for Inflammatory Disorders: Yasmine Belkaid, M.D., NIAID
  • Deep Immune Profiling of Peanut Reactive CD4+ T-Cells Reveals Distinct Immunotypes Link to Clinical Outcome: Erik Wambre, M.D., Benaroya Research Institute
  • B Cells and Food Allergy: Not Just for Making IgE: Adora Lin, M.D., Ph.D., Children’s National
  • Emerging Biologic Therapies for Food Allergy: Hemant Sharma, M.D., Children’s National
  • The Promise and Limits of Allergen Immunotherapy: Carla Davis, M.D., Texas Children’s
  • Maternal Fetal Interactions in Food Tolerance: Michiko Oyoshi, M.D., Harvard Medical School

The Clinical and Translational Science Institute at Children’s National (CTSI-CN) and the NIAID organized the 4th annual symposium and wished to showcase some of the critical research being done on this worldwide infectious disease, particularly amongst the pediatric population and those affected with allergic and immunologic disease. By sharing this work, they hope it will help continue to drive the advancement of pediatric research in relation to this disease.

The research partnership between Children’s National and the National Institute of Allergy and Infectious Diseases (NIAID) is devoted to protecting and advancing the health of children with allergic, immunologic, autoinflammatory and infectious diseases through collaborative research and education. The partnership co-hosts an annual symposium to disseminate new information about science related to the partnership.

To view all the presentations from the symposium, click here.

For questions about the symposium or projects there, contact: CN-NIAIDPartnership@childrensnational.org.

NIAID Symposium banner

PAS Logo

Children’s National Hospital at the 2021 Pediatric Academic Societies Meeting

Attending the 2021 Pediatric Academic Societies meeting this week? There will be over 20 Children’s National Hospital-affiliated participants at this year’s meeting. We have compiled their sessions into a mini schedule:

Name Program/Department Session and role Date Time
Taeun Chang, M.D.  Neonatal Neurology and Neurocritical Care Program PAS Postgraduate Course: Neonatal Neurology: HIE-focused Project-Based (Chair) Friday, 30 April

 

9:00 AM –
4:00 PM
CT
Taeun Chang, M.D. Neonatal Neurology and Neurocritical Care Program PAS Postgraduate Course: Neonatal Neurology: HIE-focused Project-Based (Presenter) Friday, 30 April 9:30 AM – 10:00 AM
CT
Yuan-Chiao Lu, Ph.D. Developing Brain Research Laboratory Cardiology Poster: Care of the Fetus and Newborn with CHD (Presenter) Saturday, May 1 4:30 PM – 4:45 PM
CT
Chidiogo Anyigbo, M.D., M.P.H. General and Community Pediatrics Poster: Health Services Research I (Presenter)

 

Saturday, May 1 5:15 PM – 5:30 PM
CT
Panagiotis Kratimenos, M.D. Neonatology Platform (moderator) Saturday, May 1 4:30 PM – 6:00 PM
CT
Sudeepta Basu, MBBS, MS Neonatology Hot Topic Symposia: The Neurological Implications of Abnormal Glycemia in Neonatal Encephalopathy and Prematurity (Chair) Sunday, May 2 9:00 AM – 12:00 PM
CT
Sudeepta Basu, MBBS, MS Neonatology Hot Topic Symposia: The Neurological Implications of Abnormal Glycemia in Neonatal Encephalopathy and Prematurity (Presenter) Sunday, May 2 9:55 AM – 10:15 AM
CT
Ashraf Harahsheh, M.D., F.A.C.C., F.A.A.P.

 

Cardiology Cardiology: Heart Disease in the Older Child Sunday, May 2 10:00 AM – 12:00 PM
CT
Rana F. Hamdy, M.D., MPH, MSCE Infectious Diseases

 

Expanding Outpatient Antibiotic Stewardship: Practical Strategies, Novel Settings, and Sociobehavioral Influences (Presenter) Sunday, May 2 10:15 AM – 10:30 AM
CT
Rana F. Hamdy, M.D., MPH, MSCE Infectious Diseases

 

Hot Topic Debates: Antibiotic Use in Hospitalized Children (Chair) Sunday, May 2 1:00 PM – 3:00 PM
CT
John Idso, M.D. Critical Care Poster: Resuscitation and Potpourri (presenter) Sunday, May 2 2:20 PM – 2:30 PM
CT
Michael Shoykhet, M.D., Ph.D. Critical Care Medicine

 

Critical Care Poster: Resuscitation and Potpourri (presenter) Sunday, May 2 2:20 PM – 2:30 PM
CT
Panagiotis Kratimenos, M.D. Neonatology Neonatal Neurology: Basic & Translational I (moderator) Sunday, May 2

 

4:30 PM – 6:00 PM
CT
Monika Goyal, M.D. Emergency Medicine and Trauma Services Injury Prevention (moderator) Sunday, May 2 10:00 AM – 12:00 PM
CT
Ioannis Koutroulis, M.D., Ph.D., M.B.A. Genetic Medicine Research

 

Emergency Medicine III (moderator) Tuesday, May 4 2:00 PM – 4:00 PM
CT
Sudeepta Basu, MBBS, MS Neonatology Neonatal Neurology: Clinical: HIE and Other Insults (moderator) Tuesday, May 4 4:30 PM – 6:00 PM
CT
Josepheen De Asis-Cruz, M.D., Ph.D. Center for the Developing Brain Neonatal Neurology: Clinical: HIE and Other Insults (presenter) Tuesday, May 4 4:30 PM – 4:45 PM
CT
Asad Bandealy, M.D., MPH
Priti Bhansali, M.D. Monika Goyal, M.D.
Sabah Iqbal, M.D. Kavita Parikh, M.D. Shilpa Patel, M.D.
Workshop. ThisIsSTILLOurLane: Protect Kids, Not Guns Monday, May 10 9:00 AM – 11:00 AM
CT
Cara Lichtenstein, M.D. General and Community Pediatrics APA Injury Control/Advocacy Training Combined SIG (SIG Chair) Monday, May 10 1:00 PM – 3:00 PM
CT
Terry Kind, M.D., MPH General and Community Pediatrics

 

APA Women in Medicine / Qualitative Research Combined SIG (SIG Chair) Wednesday, May 12 9:00 AM – 11:00 AM
CT

Phase I: April-30-May 4 and Phase II: May 10-June 4

PAS 2021 Virtual Schedule

happy children running with kite

Spurring innovation to support pediatric preparedness

happy children running with kite

There are many lessons to be learned from the response to the COVID-19 pandemic, but one that is at the forefront is to be prepared for anything and to strengthen readiness even in the unlikeliest circumstances.

This was the focus of a recent panel discussion featuring Lee Beers, M.D., F.A.A.P, medical director of Community Health and Advocacy within the Goldberg Center for Community Pediatric Health and Child Health Advocacy Institute at Children’s National Hospital. Dr. Beers is also president of the American Academy of Pediatrics.

The webinar entitled, “Protecting Our Future: Spurring Innovation to Support Pediatric Preparedness,” was hosted by Johnson & Johnson Innovation – JLABS (JLABS) as a product of BLUE KNIGHT™, a collaboration between JLABS and the Biomedical Advanced Research and Development Authority (BARDA), a component of the Office of the Assistant Secretary for Preparedness and Response within the U.S. Department of Health and Human Services.

This event focused on what innovators can do to develop therapeutics, diagnostics, vaccines and other technologies that may protect our future, our children. Experts shared what has been done to develop groundbreaking medical countermeasures that aim to prepare and protect pediatric populations from the health threats of today and those of tomorrow. The main discussions were on ecosystems readiness, adaptations for the pediatric population and the way forward in 2021.

“One size does not fit all for pediatrics when it comes to treatments and personal protective equipment,” said Dr. Beers “We need to know the need and how to do the roll-out.” Fellow panelists agreed.

Dr. Beers went on to say that mental health is the pandemic within the pandemic for our nation’s youth. There are increased cases and severity now for children who struggle to cope with the lockdowns. “We cannot have our children bear the burdens of our challenges.”

After robust questions and answers from everything from the role of artificial intelligence in preparing for future pandemics to the inclusion of families in research and decisions, the panelists walked away with a good feeling about the future with the unprecedented speed of vaccines aimed to counter the effects of the 2020 virus crisis.

The consensus priorities of 2021 should be to develop specifics for children and not just adaptations from adults, with the aim to advance equity, diversity and inclusion in treatment goals, and to build on the success of telemedicine.

Nationally, funding for pediatric research continues to trail efforts targeted for adults. That’s why Children’s National is creating a one-of-a-kind pediatric research and innovation hub. The Children’s National Research & Innovation Campus is set to open in 2021, located on a nearly 12-acre portion of the former Walter Reed Army Medical Center campus. The campus will combine the strengths of Children’s National with those of public and private partners who share the vision of accelerating new discoveries that save and improve the lives of children. At the new campus, breakthrough innovations can more quickly be translated into new treatments and technologies benefitting kids.

Sally Allain, Head of Johnson & Johnson Innovation – JLABS @ Washington, D.C., highlighted the opening of a 32,000 square-foot facility on the Research & Innovation Campus with a residency capacity for up to 50 companies. This will be the first JLABS site anchored with a children’s hospital and research institute working to bring recognition to the need for more early-stage research and innovation in pediatrics for our smallest patients.

The new site will serve as an incubator for pharmaceutical, medical device, consumer and health technology companies, and serve as the hub for BLUE KNIGHT™. BLUE KNIGHT™ aims to stimulate innovation and incubation of technologies that improve health security and response through companies focused on public health threats and emerging infectious diseases. At JLABS @ Washington, DC, companies selected for BLUE KNIGHT™ will have access to the JLABS ecosystem and being a part of the Research & Innovation Campus, as well as fee assistance for certain costs associated with access, mentorship for BARDA, and dedicated equipment for BLUE KNIGHT™ companies.

global connectedness concept illustration

Research partnerships and capacity building in the time of COVID-19

global connectedness concept illustration

“COVID infection anywhere in the world is COVID infection everywhere in the world,” said John Nkengasong, M.Sc., Ph.D., director of the Africa Centers for Disease Control (Africa CDC), during his remarks on the importance of shared science, innovation and diplomacy. Leading experts in global health met virtually on November 13, 2020, to discuss updates in the COVID-19 crisis and lessons learned in Africa. Children’s National Hospital, along with the George Washington University (GW) Institute for Africa Studies and the CNRS-EpiDaPo Lab, sponsored the half-day conference that captured the interest of international attendees committed to examining how best to expand strong and enduring partnerships between U.S. and African scientists, health professionals and research institutes to meet global challenges.

Trust, transparency and communication were common themes of expert panelists that included Elizabeth Bukusi, Ph.D., M.P.H., Kenya Medical Research Institute; Maryam DeLoffre, Ph.D., GW Humanitarian Action Initiative; Peter Kilmarx, M.D., National Institutes of Health (NIH) Fogarty International Center; Enock Motavu, Ph.D., Makerere University in Uganda; Jennifer Troyer, Ph.D., Human Health and Heredity in Africa Program (H3Africa) at NIH; Désiré Tshala-Katumbay, M.D., Ph.D., National Institute of Biomedical Research in Kinshasa; Eric Vilain, M.D., Ph.D., Center for Genetic Medicine Research at Children’s National, with Institute for African Studies Director Jennifer Cooke, and Jonathan LoTempio Jr and D’Andre Spencer of Children’s National as moderators and co-conveners. Read more about the panelists.

The keynote speaker, Nkengasong, updated the group on the massive efforts in bending the COVID-19 disease curve on the African continent which at present has two million cases and 46,000 deaths. This is fewer than many other regions, and Nkengasong attributes this in part to health systems strengthening and capacity building that already occurred with past pandemics like Ebola. He stressed the importance of focusing on the “4 Ps” — population, pathogen, politics and policy — in fighting the pandemic, and the need to ensure that citizens trust their leaders and the public health measures they advance. New endeavors by the Africa CDC include the Pathogen Genomic Initiative, which will help inform research and responses to COVID-19 and other emergent disease threats, and the African COVID-19 Vaccine Development and Access Strategy, which aims to ensure widespread access, delivery and uptake of effective vaccines across Africa. Africa CDC is surging to hotspots as lockdowns ease or shift, and is empowering universities to invest in proactive and, which has helped with the active response success. “Rising tides raise all boats in the sea,” said Nkengasong. He went on to say that there is great power in coordination and cooperation, and science diplomacy and technology are critical to winning the novel coronavirus war.

In a panel on research partnerships, speakers Motavu, Tshala-Katumbay, and Vilain emphasized the global benefits of scientific collaborations in Africa. Africa contains more human genetic variation than any other region of the world, and capturing that diversity in global understanding of the human genome — which is still heavily skewed toward individuals of European ancestry — will be a major factor in global medical advances of the future. And research into relatively localized diseases can lead to breakthroughs in broader understanding on connections between climate variation, environment, nutrition and child health. “The simplistic, localized, nationalist, way of doing science is over,” said Tshala-Katumbay, “and there is no way to go back.” The discipline of science diplomacy will take time for people to grasp, he added, “but it will be crucial for the future generation of scientists to go back.”

A recurring conference theme was that collaboration between countries is crucial for development of better care. Kilmarx told the event participants that in 2019, the National Institutes of Health supported some 1,668 collaborations with African research institutions. Investments in capacity building have yielded impressive results, and today some of Africa’s foremost leaders in science research and public health have received NIH training and support, stating: “If you plant acorns over the decades, you have some mighty oaks.” Bukusi, once such NIH trainee, now is engaged in training a new generation of African researchers and U.S. researchers based in Africa and expanding research partnerships at the Kenya Medical Research Institute.

Troyer showed the successes of the Human Heredity and Health in Africa Initiative, a large consortium that supports a pan-continental network of laboratories that aims to determine disease susceptibility and drug responses. Finally, DeLoffre underscored the need for long-term investments and the value of building local capacities to respond to current crises and anticipate future challenges.

Overall, there was optimism that innovative coalitions are a long-term strength in fighting pandemics and promoting reciprocal learning that will last after the crisis. Science can be a neutral platform that, combined with diplomacy and technology, builds bridges between peoples.

a telehealth video visit with a patient family

Steady rates of patient satisfaction, reimbursement for cardiac telehealth during COVID-19

a telehealth video visit with a patient family

In the first two weeks of COVID-19’s major impact on the U.S., Children’s National Hospital moved most of its subspecialty in-person day-to-day clinics to virtual care. Children’s National Heart Institute was one of the first divisions to offer telehealth visits — in part because the team was an early adopter of telehealth in cardiology for both physician-to-physician consultations and direct-to-patient care, and stood poised to widely implement it.

A poster presentation at the American Heart Association Scientific Sessions 2020 quantified how the rapid transition to direct-to-consumer telehealth services impacted families with children who have congenital heart disease. The findings were presented by first author Kristine Mehrtens, M.S., B.S.N., R.N., C.P.N., clinical manager for the Heart Institute’s Ambulatory Services.

The team found that though in-person cardiology visits decreased during the COVID-19 pandemic, direct-to-patient telehealth visits were able to partially compensate for the sudden drop.

Additionally, payer reimbursement rates for these direct-to-consumer telehealth visits were similar to in-person clinic visits.

”This is exciting as prior to COVID-19  we have seen a lower reimbursement rates for these cardiology direct-to-consumer telehealth visits compared to in-person cardiology clinic visits,” said Ashraf S. Harahsheh, M.D., a pediatric cardiologist at Children’s National Hospital who has utilized direct-to-consumer telehealth visits since 2016 and is a senior author on the new study.

Patient satisfaction scores for care providers, including the likelihood of recommending a care provider from Children’s National Hospital, was the same for telehealth follow-up visits as it was for in-person clinic visits before the pandemic.

“As a multidisciplinary team, we agreed that diagnostic studies such as echocardiograms were important to include with follow-up visits,” says Mehrtens. “Together we developed a strategy to ensure we could meet the needs of the patients and also safely conduct in-person visits when necessary.”

Why is this important?

The pandemic and the resulting temporary halt to in-person, non-urgent/emergent visits earlier this year put the most vulnerable people with congenital heart disease at high risk for complications or worsening of their existing heart disease because they are unable to follow the recommended schedule for follow-ups.

The readiness of the Children’s Heart Institute team to quickly move to a telehealth platform successfully bridged the gap between in-person visits for some patients, allowing cardiology surveillance to continue safely.

“I am proud of our team of physicians and advanced care providers,” Harahsheh concludes. “We went from three providers (8%) pre-COVID 19 to 31 (79%) providers offering direct-to-consumer telehealth visits during the pandemic.”

What’s next?

Building on previous, smaller studies of telehealth before the pandemic began, the team will continue to conduct research to assess the safety and efficacy of these telehealth visits over time. The increase in patients who are continuing to see their providers for routine follow-ups via telehealth will allow a larger sample for effective study of this care model.

American Heart Association Scientific Sessions 2020
Impact of Telemedicine on Pediatric Cardiac Center’s Ambulatory Response to the 2019 Novel Coronavirus Disease (covid-19) Pandemic
P1692
9:00am – 10:00am
Fri, Nov 13  (CST)

Read additional news stories about cardiology telehealth:

newborn in ICU

Cardiac technology advances show promise for kids but only if right-sized

newborn in ICU

“Smaller patients, and those with congenital heart disease, can benefit from minimally-invasive methods of delivering pacemakers and defibrillators without the need for open-chest surgery,” says Charles Berul, M.D.

How to address the growing need for child-sized pacemakers and defibrillators, and finding better surgical techniques to place them, is the topic of an invited session called The Future is Now (or Coming Soon): Updates on New Technologies in Congenital Heart Care at the 2020 American Heart Association Scientific Sessions.

“Smaller patients, and those with congenital heart disease, can benefit from minimally-invasive methods of delivering pacemakers and defibrillators without the need for open-chest surgery,” says Charles Berul, M.D., co-director of the Children’s National Heart Institute and chief of Cardiology at Children’s National Hospital, who presented at the session.

“This unmet need can only be met by innovative pediatric research, geared towards miniaturization technologies for use in the smallest of children,” he says.

His presentation focused on the devices and approaches that have caught the attention of pediatric cardiology, such as pacemakers and subcutaneous defibrillators designed without lead wires, as well as less-invasive surgical approaches that may reduce recovery time for children with congenital heart disease who require these assist devices.

Using them in kids comes with added challenges, however. Often pediatric cardiologists have to be creative in how to make them work for smaller patients, Dr. Berul notes. This reiterates the important point that simply applying an adult technology to a child isn’t the right approach. The subcutaneous defibrillator, for example, is still pretty large for a child’s body. Some studies also show these devices may not be as accurate in children as in adults.

Investigators in the Sheikh Zayed Institute working together with the cardiologists at Children’s National Hospital are focused on product development and commercialization of tools and techniques to allow percutaneous minimally-invasive placement of devices, taking advantage of the newest devices and surgical techniques as they develop.

In his presentation, Dr. Berul stressed that as the technology for adults advances, it creates an opportunity for pediatric cardiology, but only if the devices, and the techniques to place them, are specifically redesigned for pediatric application.

American Heart Association Scientific Sessions 2020
The Future is Now (or Coming Soon): Updates on New Technologies in Congenital Heart Care – On Demand Session
CH.CVS.715
9:00am – 10:00am
Fri, Nov 13  (CST)

coronavirus

Single institution study finds high rates of cardiac complications in MIS-C

coronavirus

At this year’s AHA Scientific Sessions, cardiologists from Children’s National Hospital presented a poster about an interesting finding in children with MIS-C.

During the height of the pandemic, researchers at Children’s National Hospital discovered that as many as one half of children diagnosed with multisystem inflammatory disease in children (MIS-C) at the hospital developed cardiac complications including coronary artery abnormalities, even when diagnosed and treated promptly.

The data was shared as part of a poster presentation at the American Heart Association Scientific Sessions in November 2020. Though analysis was limited to the data from one institution’s confirmed MIS-C cases, the findings are significant enough to warrant further study.

Interestingly, the authors noted that the high rate of cardiac complications far exceeds the rate of similar issues in children with Kawasaki disease — another pediatric inflammatory syndrome that shares many common symptoms with MIS-C. The two are so similar that immunomodulation therapies successfully deployed in children with MIS-C were based on those developed to treat Kawasaki disease.

Knowledge of common cardiac complications in Kawasaki disease also flagged the need for routine echocardiograms in patients with MIS-C, which helped identify the higher rates of cardiac complications seen in the MIS-C patient population.

“This finding, however, is another data point that shows how MIS-C and Kawasaki disease have some specific differences needing further study,” says Ashraf Harahsheh, M.D., a pediatric cardiologist at Children’s National Hospital who studies Kawasaki disease and the first author on the new study.

“Previous clinical advancements made in Kawasaki disease set the stage for our response to MIS-C early on,” he said. ”Now we also need to understand MIS-C as its own syndrome so we can better address what we are seeing in this patient population,” he says.

While most of the cardiac findings resolved during follow up, long-term studies are needed to determine if the cardiac abnormalities are associated with major cardiac events later.

“This work will help inform the community of the importance of diagnosing children with MIS-C promptly and following clinical guidelines for necessary tests and treatments once MIS-C is diagnosed,” Harahsheh concludes.

Next, the research team plans to take a deep dive into patient demographics as well as findings from clinical, laboratory and electrocardiogram data for children who developed cardiac complications with MIS-C. The goal will be to refine treatment algorithms and potentially identify a subgroup of patients who may require different or more intense therapy to prevent cardiac complications.

American Heart Association Scientific Sessions 2020 Poster Session
Cardiac Complications of SARS CoV-2 Associated Multi-System Inflammatory Syndrome in Children (MIS-C)
P1306
9:00am – 10:00am
Fri, Nov 13 (CST)

Dr. Laura Tosi talks to a patient

Refining criteria for childhood skeletal fragility and osteoporosis

Dr. Laura Tosi talks to a patient

Orthopaedic surgeon Laura Tosi, M.D., presented information about bone fractures and skeletal fragility in children at this year’s POSNA Annual Meeting.

It’s true that broken bones are often a typical part of childhood, says international bone health expert Laura Tosi, M.D., an orthopaedic surgeon at Children’s National Hospital. But for some children, a single bone fracture under the right circumstances may be a signal that a child needs a closer look to rule out underlying skeletal fragility.

Dr. Tosi presented on this topic as part of the Pediatric Orthopaedic Society of North America’s (POSNA) 2020 Annual Meeting. The presentations were conducted virtually this year due to COVID-19.

“We know that between 27 and 40% of girls, and 42 to 51 percent of boys will have at least one fracture during childhood,” she says. “What we have also seen over time is that almost 40 percent of children who have one fracture will have more. How do we tell which children with a fracture may need our help to avoid future ones?”

During her session, Dr. Tosi discussed how adding more nuance to clinical evaluation criteria for childhood fractures can help identify which children should be evaluated for conditions affecting bone density.

To widen the scope and make sure an underlying bone density issue is detected and treated as early as possible, Dr. Tosi says there are some specific findings that should suggest the need for further exploration:

  • Does the child have an a priori risk for a fragility fracture due to a genetic bone disorder(such as osteogenesis imperfects (aka brittle bone disease) or immobility caused by a disorder such as spina bifida, cerebral palsy or muscular dystrophy?
  • Is there a mismatch between the fracture severity and level of trauma that led to the injury?
  • Does the child’s history include any of four factors known to be associated with increased fracture risk: early age at the time of the first fracture, intolerance to cow’s milk, low dietary calcium intake or high BMI values.
  • Does the child have a vertebral compression fracture?
  • Is there a family history of frequent fractures (which may indicate a previously unidentified genetic condition)

Dr. Tosi also laid out specific evaluation steps for a skeletal fragility condition when a child’s fracture meets criteria, including:

  • Family, nutrition and exercise histories
  • A detailed physical exam
  • Complete radiograph review, including previously existing films and bone densitometry
  • Rule out rickets and child abuse
  • A complete lab work up

“It can be extremely challenging to identify if a child’s first bone fracture is a result of typical childhood activity or something else,” says Dr. Tosi. “But the risks of waiting to evaluate a fracture that meets some of the criteria above may mean we are delaying a treatment that might improve bone density and prevent a future fracture altogether — which is always what we’d hope to do.”

In the past, bone health experts felt that the word “osteoporosis” should not be used in children and pushed for the term “low bone density for age.”  That perspective has begun to change thanks to important advances in our understanding of the genetic basis of bone fragility, the important role of chronic conditions and how the use of bone-active medications can significantly reduce fracture risk and improve function in certain conditions.

She then spoke about the benefits of early detection for conditions causing skeletal fragility by presenting compelling evidence of the resiliency of a child’s bones when they are managed appropriately.

She noted that she’s seen significant bone remodeling in patients with serious bone degeneration due to osteogenesis imperfecta and leukemia, for example, thanks to early detection and treatment.

“Our knowledge of bone density and bone health is improving, but is still imperfect,” she concluded. “But as we learn more, and are able to appropriately identify and treat kids with skeletal fragility or osteoporosis earlier, we can continue to refine how we evaluate and care for all of them.”

coronavirus

COVID-19 Pandemic: 3rd Annual CN – NIAID Virtual Symposium

The CN-NIAID Virtual Symposium highlighted work being done to fight the COVID-19 pandemic globally.

Matt Oetgen and patient

Periop procedures improve scoliosis surgery infection rates

Matt Oetgen and patient

Matthew Oetgen, M.D., MBA, chief of orthopaedics and sports medicine at Children’s National Hospital, presented findings from a study aimed at improving quality and safety for pediatric spinal fusion procedures by reducing surgical site infection rates.

Pediatric orthopaedic surgery as a field is focused on improving quality and value in pediatric spine surgery, especially when it comes to eliminating surgical site infections (SSI). Many studies have documented how and why surgical site infections occur in pediatric spinal fusion patients, however, there is very little data about what approaches are most effective at reducing SSIs for these patients in a sustainable way.

At the Pediatric Orthopaedic Society of North America’s 2020 Annual Meeting, Matthew Oetgen, M.D., MBA, chief of orthopaedic surgery and sports medicine at Children’s National Hospital, presented findings from a long-term single institution study of acute SSI prevention measures.

“These findings give us specific insight into the tactics that are truly preventing, and in our case sometimes even eliminating, SSIs for pediatric scoliosis surgery,” says Dr. Oetgen, who also served on the annual meeting program committee. “By analyzing patient records across more than a decade, we were able to see that some strategies are quite effective, and others, that we thought would move the needle, just don’t.”

The team reviewed medical records and radiographs dating back to 2008 for 1,195 patients who had spinal fusion for scoliosis, including idiopathic scoliosis as well as other forms such as neuromuscular or syndromic scoliosis. Over that period of time, the division of orthopaedics and sports medicine at Children’s National was collaborating with the hospital’s infection control team to achieve several programmatic implementation milestones, including:

  • January 2012: Standardized infection surveillance program
  • July 2013: Standardized perioperative infection control protocols including those for pre-operative surgical site wash, surgical site preparation and administration of antibiotics before and after surgery
  • March 2015: Standardized comprehensive spinal care pathway including protocols for patient temperature control, fluid and blood management, and drain and catheter management

Over the study time period, the team found that SSIs did decrease, but interestingly, the rate did not progressively decrease with each subsequent intervention.

“Instead, we found that the rate went down and was even eliminated for some subgroups when the perioperative infection control protocols were implemented in 2013 and sustained through the study period end,” says Dr. Oetgen. “The other programmatic efforts that started in 2012 and 2015 had no impact on infection rates.”

He also notes that the study’s findings have identified a crucial component in the process for infection control in pediatric spinal surgery—perioperative protocols. “A relatively uncomplicated perioperative infection control protocol did the best job decreasing SSI in spinal fusion. Future efforts to optimize this particular protocol may help improve the rates even further.”

telemedicine control room

Telehealth connects pediatric heart experts about critical COVID-19 details

telemedicine control room

Telehealth is more than a doctor-to-patient tool during COVID-19. Experts in congenital heart disease meet weekly to share details about how it affects their vulnerable patients.

During the COVID-19 pandemic, telehealth has been crucial in allowing doctors to maintain safe contact with patients who require ongoing medical care without an office visit. Just as important is the role that telehealth is playing to connect care providers with each other to ensure that everyone around the world has the information they need to provide the best care possible for this swift-moving disease.

One good example of this specialist-to-specialist thought leadership connection is the ongoing weekly meeting hosted by the Children’s National Hospital cardiac critical care specialists. Since early in the spread of COVID-19, the Cardiac-ICU team, led by cardiovascular specialists including Ricardo Munoz, M.D., chief of cardiac critical care medicine and executive director of telehealth at Children’s National, have connected pediatric clinicians around the world to discuss how best to care for particularly vulnerable patients with pre-existing heart diseases, and to discuss breaking news in epidemiology of the disease and the effectiveness of various treatment approaches.

The video conference attracts hundreds of physicians and nurses who specialize in pediatric cardiac care from countries all over the world. In the last week of April, the meeting featured a late-breaking session to discuss new pediatric intensive care observations of inflammatory symptoms similar to Kawasaki disease, which were being detected in the United Kingdom, Paris and the United States. While more information is needed about this discovery, the ability of these experts to gather and compare disease phenotypes from country to country facilitates both the additional classification of pediatric-related symptoms and improves how all centers, no matter their location, can prepare to treat children who present locally with these symptoms.

In recent weeks, cardiac physicians and nurses from some of the world’s hardest hit regions, including Italy and Spain, have shared detailed information about their on-the-ground experiences to help colleagues in the U.S. and elsewhere better prepare for new developments.

“This new disease is a moving target, especially when it comes to understanding how it might impact children and adults with existing cardiac disease, particularly those with congenital heart disease,” says Dr. Munoz. “It is extremely important that we learn from each other, especially when we are able to connect with our colleagues in the epicenters of the most serious outbreaks of COVID-19. We are happy to host this important weekly meeting with the goal of helping every specialist keep as many patients with cardiac diseases as safe as possible throughout the global health emergency.”

If you would like to join these weekly telehealth meetings, please send your request to COVIDMultiCICUResponse@childrensnational.org.

bacterial extracellular vesicle

Once overlooked cellular messengers could combat antibiotic resistance

bacterial extracellular vesicle

Children’s National Hospital researchers for the first time have isolated bacterial extracellular vesicles from the blood of healthy donors. The team theorizes that the solar eclipse lookalikes contain important signaling proteins and chromatin, DNA from the human host.

Children’s National Hospital researchers for the first time have isolated bacterial extracellular vesicles from the blood of healthy donors, a critical step to better understanding the way gut bacteria communicate with the rest of the body via the bloodstream.

For decades, researchers considered circulating bacterial extracellular vesicles as bothersome flotsam to be jettisoned as they sought to tease out how bacteria that reside in the gut whisper messages to the brain.

There is a growing appreciation that extracellular vesicles – particles that cells naturally release – actually facilitate intracellular communication.

“In the past, we thought they were garbage or noise,” says Robert J. Freishtat, M.D., MPH, associate director, Center for Genetic Medicine Research at Children’s National Research Institute. “It turns out what we throw away is not trash.”

Kylie Krohmaly, a graduate student in Dr. Freishtat’s laboratory, has isolated from blood, extracellular vesicles from Escherichia coli and Haemophilus influenzae, common bacteria that colonize the gut, and validated the results via electron microscopy.

“The images are interesting because they look like they have a bit of a halo around them or penumbra,” Krohmaly says.

The team theorizes that the solar eclipse lookalikes contain important signaling proteins and chromatin, DNA from the human host.

“It’s the first time anyone has pulled them out of blood. Detecting them is one thing. Pulling them out is a critical step to understanding the language the microbiome uses as it speaks with its human host,” Dr. Freishtat adds.

Krohmaly’s technique is so promising that the Children’s National team filed a provisional patent.

The Children’s research team has devised a way to gum up the cellular works so that bacteria no longer become antibiotic resistant. Targeted bacteria retain the ability to make antibiotic-resistance RNA, but like a relay runner dropping rather than passing a baton, the bacteria are thwarted from advancing beyond that step. And, because that gene is turned off, the bacteria are newly sensitive to antibiotics – instead of resistant bacteria multiplying like clockwork these bacteria get killed.

“Our plan is to hijack this process in order to turn off antibiotic-resistance genes in bacteria,” Dr. Freishtat says. “Ultimately, if a child who has an ear infection can no longer take amoxicillin, the antibiotic would be given in tandem with the bacteria-derived booster to turn off bacteria’s ability to become antibiotic resistant. This one-two punch could become a novel way of addressing the antibiotic resistance process.”

ISEV2020 Annual Meeting presentation
(Timing may be subject to change due to COVID-19 safety precautions)
Oral with poster session 3: Neurological & ID
Saturday May 23, 2020, 5 p.m. to 5:05 p.m. (ET)
“Detection of bacterial extracellular vesicles in blood from healthy volunteers”
Kylie Krohmaly, lead author; Claire Hoptay, co-author; Andrea Hahn, M.D., MS, infectious disease specialist and co-author; Robert J. Freishtat, M.D., MPH, associate director, Center for Genetic Medicine Research at Children’s National Research Institute and senior author.

Andrew Dauber

Andrew Dauber, M.D., MMSc, caps off research success with award and reception

Andrew Dauber

Unfortunately, we’ve been notified that the ENDO2020 conference has been canceled due to concerns of COVID-19. Because of this, we will not be hosting our reception in honor of Andrew Dauber, M.D., on Sunday, March 29.

We hope to see you at a future Endocrinology or Pediatric Endocrinology event.

Children’s National Hospital is incredibly proud of the work Dr. Dauber has done in the endocrinology community.

Andrew Dauber, M.D., MMSc, division chief of Endocrinology at Children’s National Hospital, will be awarded the 2020 Richard E. Weitzman Outstanding Early Career Investigator Award at ENDO 2020. The prestigious award will be presented at the annual meeting of the Endocrine Society in recognition of Dauber’s work in understanding the regulation of growth and puberty, and applying innovative genetic technologies to studying pediatric endocrinology. Dauber credits many collaborators throughout the world, as well as the team at Children’s National for the award.

With a five-year grant from the National Institutes of Health (NIH), Dauber and colleagues from the Cincinnati Children’s Hospital Medical Center, Boston Children’s Hospital and the Children’s Hospital of Philadelphia are using electronic health records to identify children who likely have rare genetic growth disorders. Using cutting-edge DNA sequencing technologies, including whole exome sequencing, the researchers are aiming to identify novel genetic causes of severe growth disorders. The first paper describing genetic findings in patients with high IGF-1 levels was published in Hormone Research in Paediatrics in December 2019.

Dauber and researchers at Cincinnati Children’s Hospital Medical Center are exploring how to treat patients with mutations in the PAPPA2 gene. In 2016, the group described the first patients with mutations in this gene who had decreased the bioavailability of IGF-1, stunting their growth and development. In their current phase of research, findings are emphasizing the importance of this gene in regulating IGF-1 bioavailability throughout childhood. The ultimate aim is to create therapies to increase IGF-1 bioavailability, thereby supporting healthy growth and development in children. Their first study to track PAPPA2 and intact IBGBP-3 concentrations throughout childhood was published in the European Journal of Endocrinology in January 2020.

Dauber is particularly interested in studying children with dominantly inherited forms of short stature. Along with collaborators in Cincinnati, he currently has an ongoing treatment trial using growth hormone in patients with Aggrecan gene mutations.  Dauber hopes to announce soon a new clinical trial for children with all forms of dominantly inherited short stature.

Study upon study has shown us that there are many factors that affect an individual’s height and growth. As these studies and the conversation around how to identify and address genomic anomalies become more prevalent, the team at Children’s National is increasingly interested in engaging with other centers around the country. In the coming months, the Children’s National Research & Innovation Campus will open on the grounds of the former Walter Reed Army Medical Center, which will serve as a one-of-a-kind pediatric research and innovation hub. A critical component to this campus is the co-location of Children’s National research with key partners and incubator space.

Nadia Merchant

Working to improve the management of endocrine related conditions

Nadia Merchant

This past fall, Nadia Merchant, M.D., joined Children’s National Hospital as an endocrinologist in the Endocrinology and Diabetes Department. Dr. Merchant received her undergraduate and medical education at Weill Cornell Medical College in Qatar. She completed her pediatric residency at Wright State Boonshoft School of Medicine. She then completed her genetics residency and pediatric endocrine fellowship at Baylor College of Medicine/Texas Children’s Hospital.

Dr. Merchant was born with acromesomelic dysplasia, a rare genetic disorder, but that hasn’t stopped her from pursuing her medical career. While at Baylor College of Medicine, Dr. Merchant was very active in quality improvement projects, research and organizations that raise awareness of endocrine related conditions. For several years, she was a moderator at Baylor College of Medicine for “From Stress to Strength,” at a course for parents of children with genetic disorders and autism. Dr. Merchant also served as an endocrine fellow representative on the American Academy of Pediatrics Section on Endocrinology (SOEn) for the last two years and also served on the committee for a Bone and Mineral special interest group within the Pediatric Endocrine Society (PES). During medical school, she worked with Positive Exposure, an organization that uses visual arts to celebrate human diversity for individuals living with genetic, physical, behavioral and intellectual differences.

During the 2019 Endocrine Society Annual Meeting, Dr. Merchant won the Presidential Poster Award for her poster presentation: Assessing Metacarpal Cortical Thickness as a Tool to Evaluate Bone Density Compared to DXA in Osteogenesis Imperfecta a research project assessing whether hand film is an additional tool to detect low bone mineral density in children.

Dr. Nadia Merchant is currently one of the endocrinologists in the multidisciplinary bone health clinic at Children’s National, a clinic dedicated to addressing and improving bone health in children. Dr. Merchant also manages endocrine manifestations in children with rare genetic disorders.

The Endocrinology department at Children’s National is ranked among the best in the nation by “U.S. News & World Report”.

Schistosoma

Parasitic eggs trigger upregulation in genes associated with inflammation

Schistosoma

Of the 200 million people around the globe infected with Schistosomiasis, about 100 million of them were sickened by the parasite Schistosoma haematobium.

Of the 200 million people around the globe infected with Schistosomiasis, about 100 million of them were sickened by the parasite Schistosoma haematobium. As the body reacts to millions of eggs laid by the blood flukes, people can develop fever, cough and abdominal pain, according to the Centers for Disease Control and Prevention. Schistosomiasis triggered by S. haematobium can also include hematuria, bladder calcification and bladder cancer.

Despite the prevalence of this disease, there are few experimental models specifically designed to study it, and some tried-and-true preclinical models don’t display the full array of symptoms seen in humans. It’s also unclear how S. haematobium eggs deposited in the host bladder modulate local tissue gene expression.

To better understand the interplay between the parasite and its human host, a team led by Children’s National Hospital injected 6,000 S. haematobium eggs into the bladder wall of seven-week-old experimental models.

After four days, they isolated RNA for analysis, comparing differences in gene expression in various treatment groups, including those that had received the egg injection and experimental models whose bladders were not exposed to surgical intervention.

Using the Database for Annotation, Visualization and Integrated Discovery (DAVID) – a tool that helps researchers understand the biological meaning of a long list of genes – the team identified commonalities with other pathways, including malaria, rheumatoid arthritis and the p53 signaling pathway, the team recently presented during the American Society of Tropical Medicine and Hygiene 2019 annual meeting. Some 325 genes were differentially expressed, including 34 genes in common with previous microarray data.

“Of particular importance, we found upregulation in genes associated with inflammation and fibrosis. We also now know that the body may send it strongest response on the first day it encounters a bolus of eggs,” says Michael Hsieh, M.D., Ph.D., director of transitional urology at Children’s National, and the research project’s senior author. “Next, we need to repeat these experiments and further narrow the list of candidate genes to key genes associated with immunomodulation and bladder cancer.”

In addition to Dr. Hsieh, presentation co-authors include Lead Author Kenji Ishida, Children’s National; Evaristus Mbanefo and Nirad Banskota, National Institutes of Health; James Cody, Vigene Biosciences; Loc Le, Texas Tech University; and Neil Young, University of Melbourne.

Financial support for research described in this post was provided by the National Institutes of Health under award No. R01-DK113504.

clatharin cage viewed by electron microscopy

IPSE infiltrates nuclei through clathrin-mediated endocytosis

clatharin cage viewed by electron microscopy

IPSE, one of the important proteins excreted by the parasite Schistosoma mansoni, infiltrates human cellular nuclei through clathrin-coated vesicles, like this one.

IPSE, one of the important proteins excreted by the parasite Schistosoma mansoni infiltrates human cellular nuclei through clathrin-mediated endocytosis (a process by which cells absorb metabolites, hormones and proteins), a research team led by Children’s National Hospital reported during the American Society of Tropical Medicine and Hygiene 2019 annual meeting.

Because the public health toll from the disease this parasite causes, Schistosomiasis, is second only to malaria in global impact, research teams have been studying its inner workings to help create the next generation of therapies.

In susceptible host cells – like urothelial cells, which line the urinary tract – IPSE modulates gene expression, increasing cell proliferation and angiogenesis (formation of new blood vessels). On a positive note, neurons appear better able to fend off its nucleus-infiltrating ways.

“We know that IPSE contributes to the severity of symptoms in Schistosomiasis, which leads some patients to develop bladder cancer, which develops from the urothelial lining of the bladder. Our team’s carefully designed experiments reveal IPSE’s function in the urothelium and point to the potential of IPSE playing a therapeutic role outside of the bladder,” says Michael Hsieh, M.D., Ph.D., director of transitional urology at Children’s National and the research project’s senior author.

In addition to Dr. Hsieh, research co-authors include Evaristus Mbanefo, Ph.D.; Kenji Ishida, Ph.D.; Austin Hester, M.D.; Catherine Forster, M.D.; Rebecca Zee, M.D., Ph.D.; and Christina Ho, M.D., all of Children’s National; Franco Falcone, Ph.D., University of Nottingham; and Theodore Jardetzky, Ph.D., and Luke Pennington, M.D., Ph.D., candidate, both of Stanford University.

Financial support for research described in this post was provided by the National Institutes of Health under award No. R01-DK113504.