Infectious Disease

Drs. DeBiasi and du Plessis

Zika virus, one year later

Drs. DeBiasi and du Plessis

A multidisciplinary team at Children’s National has consulted on 66 Zika-affected pregnancies and births since May 2016.

The first pregnant patient with worries about a possible Zika virus infection arrived at the Children’s National Health System Fetal Medicine Institute on Jan. 26, 2016, shortly after returning from international travel.

Sixteen months ago, the world was just beginning to learn how devastating the mosquito-borne illness could be to fetuses developing in utero. As the epidemic spread, a growing number of sun-splashed regions that harbor mosquitoes that efficiently spread the virus experienced a ballooning number of Zika-affected pregnancies and began to record sobering birth defects.

The Washington, D.C. patient’s concerns were well-founded. Exposure to Zika virus early in her pregnancy led to significant fetal brain abnormalities, and Zika virus lingered in the woman’s bloodstream months after the initial exposure — longer than the Centers for Disease Control and Prevention (CDC) then thought was possible.

The research paper describing the woman’s lengthy Zika infection, published by The New England Journal of Medicine, was selected as one of the most impactful research papers written by Children’s National authors in 2016.

In the intervening months, a multidisciplinary team at Children National has consulted on 66 pregnancies and infants with confirmed or suspected Zika exposure. Thirty-five of the Zika-related evaluations were prenatal, and 31 postnatal evaluations assessed the impact of in utero Zika exposure after the babies were born.

The continuum of Zika-related injuries includes tragedies, such as a 28-year-old pregnant woman who was referred to Children’s National after imaging hinted at microcephaly. Follow-up with sharper magnetic resonance imaging (MRI) identified severe diffuse thinning of the cerebral cortical mantle, evidence of parenchymal cysts in the white matter and multiple contractures of upper and lower extremities with muscular atrophy.

According to a registry of Zika-affected pregnancies maintained by the CDC, one in 10 pregnancies across the United States with laboratory-confirmed Zika virus infection has resulted in birth defects in the fetus or infant.

“More surprising than that percentage is the fact that just 25 percent of infants underwent neuroimaging after birth – despite the CDC’s recommendation that all Zika-exposed infants undergo postnatal imaging,” says Roberta L. DeBiasi, M.D., M.S., chief of the Division of Pediatric Infectious Diseases and co-director of the Congenital Zika Virus Program at Children’s National. “Clinicians should follow the CDC’s guidance to the letter, asking women about possible exposure to Zika and providing multidisciplinary care to babies after birth. Imaging is an essential tool to accurately monitor the growing baby’s brain development.”

Adré du Plessis, M.B.Ch.B., M.P.H., director of the Fetal Medicine Institute and Congenital Zika Virus Program co-leader, explains the challenges: ”When it comes to understanding the long-term consequences for fetuses exposed to the Zika virus, we are still on the steepest part of the learning curve. Identifying those children at risk for adverse outcomes will require a sustained and concerted multidisciplinary effort from conception well beyond childhood.”

In addition to counseling families in the greater Washington, D.C. region, the Children’s research team is collaborating with international colleagues to conduct a clinical trial that has been recruiting Zika-infected women and their babies in Colombia. Pediatric Resident Youssef A. Kousa, D.O., Ph.D., M.S., and Neurologist Sarah B. Mulkey, M.D., Ph.D., will present preliminary findings during Research and Education Week 2017.

In Colombia as well as the District of Columbia, a growing challenge continues to be assessing Zika’s more subtle effects on pregnancies, developing fetuses and infants, says Radiologist Dorothy Bulas, M.D., another member of Children’s multidisciplinary Congenital Zika Virus Program.

The most severe cases from Brazil were characterized by interrupted fetal brain development, smaller-than-normal infant head circumference, brain calcifications, enlarged ventricles, seizures and limbs folded at odd angles. In the United States and many other Zika-affected regions, Zika-affected cases with such severe birth defects are outnumbered by infants who were exposed to Zika in utero but have imaging that appears normal.

In a darkened room, Dr. Bulas pores over magnified images of the brains of Zika-infected babies, looking for subtle differences in structure that may portend future problems.

“There are some questions we have answered in the past year, but a number of questions remain unanswered,” Dr. Bulas says. “For neonates, that whole area needs assessment. As the fetal brain is developing, the Zika virus seems to affect the progenitor cells. They’re getting hit quite early on. While we may not detect brain damage during the prenatal period, it may appear in postnatal images. And mild side effects that may not be as obvious early on still have the potential to be devastating.”

test tubes

2016: A banner year for innovation

test tubes

In 2016, clinicians and research scientists working at Children’s National Health System published more than 1,100 articles in high-impact journals about a wide array of topics. A Children’s Research Institute review group selected the top articles for the calendar year considering, among other factors, work published in top-tier journals with impact factors of 9.5 and higher.

“Conducting world-class research and publishing the results in prestigious journals represents the pinnacle of many research scientists’ careers. I am pleased to see Children’s National staff continue this essential tradition,” says Mark L. Batshaw, M.D., Physician-in-Chief and Chief Academic Officer at Children’s National. “While it was difficult for us to winnow the field of worthy contenders to this select group, these papers not only inform the field broadly, they epitomize the multidisciplinary nature of our research,” Dr. Batshaw adds.

The published papers explain research that includes discoveries made at the genetic and cellular levels, clinical insights and a robotic innovation that promises to revolutionize surgery:

  • Outcomes from supervised autonomous procedures are superior to surgery performed by expert surgeons
  • The Zika virus can cause substantial fetal brain abnormalities in utero, without microcephaly or intracranial calcifications
  • Mortality among injured adolescents was lower among patients treated at pediatric trauma centers, compared with adolescents treated at other trauma center types
  • Hydroxycarbamide can substitute for chronic transfusions to maintain transcranial Doppler flow velocities for high-risk children with sickle cell anemia
  • There is convincing evidence of the efficacy of in vivo genome editing in an authentic animal model of a lethal human metabolic disease
  • Sirt1 is an essential regulator of oligodendrocyte progenitor cell proliferation and oligodendrocyte regeneration after neonatal brain injury

Read the complete list.

Dr. Batshaw’s announcement comes on the eve of Research and Education Week 2017 at Children’s National, a weeklong event that begins April 24. This year’s theme, “Collaboration Leads to Innovation,” underscores the cross-cutting nature of Children’s research that aims to transform pediatric care.

vaccination

How to talk with parents who are vaccine hesitant

vaccination

The single most important factor in parents deciding to accept vaccines is one-on-one contact with an informed, caring and concerned pediatrician.

When facing vaccine-hesitant parents, the key for me is to be collaborative and not to dismiss their questions or concerns.  That’s why the American Academy of Pediatrics advises pediatricians to talk with parents to determine their individual concerns so we can address them. The decision whether to immunize a child ultimately rests with the parents. It’s understandable for parents to be worried – but it also critical that they get the facts.

The conversation can begin simply.

Here’s what I say to vaccine-hesitant parents: You work hard to protect your child every day. Vaccines are as important as feeding your child healthy foods, using a car seat or seat belt and installing a smoke detector.

Here’s what I ask vaccine-hesitant parents: What information can I provide to help you make an informed decision, or to help you feel comfortable with vaccinating your child?  As with most of what we pediatricians do, my goal is to partner with the parent so that we help their child to attain optimal health as a team.

I am a parent. Although my husband and I did not hesitate in vaccinating our daughter, I understand why parents want to feel comfortable about the choices they make for their children.

I also am a pediatrician. I have seen children die from the flu or develop a life-threatening brain infection from chickenpox.  Thanks to the herd immunity that results from decades of vaccination, many of these diseases are now rare in the United States, but there are still episodic outbreaks throughout the country that remind us why we vaccinate children.

Vaccinating is the norm.  Only about 1 percent of children in the United States receive no vaccinations. Most parents who are hesitant about vaccines are not opposed to immunizing their children; they are unsure or have unanswered questions. Fortunately, most vaccine-hesitant parents are responsive to receiving information about vaccines, consider vaccinating their children and do not oppose all vaccines.

When it comes to vaccine-hesitant parents, one-on-one counseling is effective. The single most important factor in parents deciding to accept vaccines is one-on-one contact with an informed, caring and concerned pediatrician.

About the Author

Lanre Omojokun FalusiLanre Omojokun Falusi, M.D., F.A.A.P.
General pediatrician and Associate Medical Director for Municipal and Regional Affairs at Child Health Advocacy Institute

Sarah B. Mulkey

Researchers tackle Zika’s unanswered questions

Youssef A. Kousa

Youssef A. Kousa, D.O., Ph.D., M.S., is examining whether interplays between certain genes make some women more vulnerable to symptomatic Zika infections.

A Maryland woman traveled to the Dominican Republic early in her pregnancy, spending three weeks with family. She felt dizzy and tired and, at first, attributed the lethargy to jet lag. Then, she experienced a rash that lasted about four days. She never saw a bite or slapped a mosquito while in the Dominican Republic but, having heard about the Zika virus, asked to be tested.

Her blood tested positive for Zika.

Why was this pregnant woman infected by Zika while others who live year-round in Zika hot zones remain free of the infectious disease? And why was she among the slim minority of Zika-positive people to show symptoms?

Youssef A. Kousa, D.O., Ph.D., M.S., a pediatric resident in the child neurology track at Children’s National Health System, is working on a research study that will examine whether interplays between certain genes make some women more vulnerable to symptomatic Zika infections during pregnancy, leaving  some fetuses at higher risk of developing microcephaly.

Dr. Kousa will present preliminary findings during Research and Education Week 2017 at Children’s National.

At sites in Puerto Rico, Colombia and Washington D.C., Dr. Kousa and his research collaborators are actively recruiting study participants and drawing blood from women whose Zika infections were confirmed in the first or second trimester of pregnancy. The blood is stored in test tubes with purple caps, a visual cue that the tube contains an additive that binds DNA, preventing it from being cut up. Additional research sites are currently being developed.

When the blood arrives at Children’s National, Dr. Kousa will use a centrifuge located in a sample preparation room to spin the samples at high speed for 11 minutes. The sample emerges from the centrifuge in three discrete layers, separated by weight. The rose-colored section that rises to the top is plasma. Plasma contains tell-tale signs of the immune system’s past battles with viruses and will be analyzed by Roberta L. DeBiasi, M.D., M.S., Chief of the Division of Pediatric Infectious Diseases at Children’s National, and Dr. Kousa’s mentor.

A slender line at the middle indicates white blood cells. The dark red layer is heavier red blood cells that sink to the bottom. This bottom half of the test tube, where the DNA resides, is where Dr. Kousa will perform his genetic research.

For years, Dr. Kousa has worked to identify genetic risk factors that influence which fetuses develop cleft lip and palate. In addition to genetic variances that drive disease, he looks at environmental overlays that can trigger genes to respond in ways that cause pediatric disease. When Zika infections raced across the globe, he says it was important to apply the same genetic analyses to the emerging disease. Genes make proteins that carry out instructions, but viral infection disrupts how genes interact, he says. Cells die. Other cells do not fully mature.

While certain poverty-stricken regions of Brazil have recorded the highest spikes in rates of microcephaly, more is at play than socioeconomics, he says. “It didn’t feel like all of the answers lie in the neighborhood. One woman with a Zika-affected child can live just down the street from a child who is more or less severely affected by Zika.”

As a father, Dr. Kousa is particularly concerned about how Zika stunts growth of the fetal brain at a time when it should expand exponentially. “I have three kids. You see them as they achieve milestones over time. It makes you happy and proud as a parent,” he says.

Sarah B. Mulkey

Sarah B. Mulkey, M.D., Ph.D., is studying whether infants exposed to Zika in utero achieve the same developmental milestones as uninfected infants.

While Dr. Kousa concentrates on Zika’s most devastating side effects, his colleague Sarah B. Mulkey, M.D., Ph.D., is exploring more subtle damage Zika can cause to fetuses exposed in utero. In the cohort of Colombian patients that Dr. Mulkey is researching, just 8 percent had abnormal fetal brain magnetic resonance images (MRIs). At first glance, the uncomplicated MRIs appear to be reassuring news for the vast majority of pregnant women.

Dr. Mulkey also will present preliminary findings during Research and Education Week 2017 at Children’s National.

In the fetus, the Zika virus makes a beeline to the developing brain where it replicates with ease and can linger after birth. “We need to be cautious about saying the fetal MRI is ‘normal’ and the infant is going to be ‘normal,’ ” Dr. Mulkey says. “We know with congenital cytomegalovirus that infected infants may not show symptoms at birth yet suffer long-term consequences, such as hearing deficits and vision loss.”

Among Zika-affected pregnancies in Colombia in which late-gestational age fetal MRIs were normal, Dr. Mulkey will use two different evaluation tools at 6 months and 1 year of age to gauge whether the babies accomplish the same milestones as peers. One evaluation tool is a questionnaire that has been validated in Spanish.

At 6 months and 1 year of age, the infants’ motor skills will be assessed, such as their ability to roll over in both directions, sit up, draw their feet toward their waist, stand, take steps independently and purposefully move their hands. Videotapes of the infants performing the motor skills will be scored by Dr. Mulkey and her mentor, Adre du Plessis, M.B.Ch.B., Chief of the Division of Fetal and Transitional Medicine at Children’s National. The Thrasher Research Fund is funding the project, “Neurologic outcomes of apparently normal newborns from Zika virus-positive pregnancies,” as part of its Early Career Award Program.

Both research projects are extensions of a larger multinational study co-led by Drs. du Plessis and DeBiasi that explores the impact of prolonged Zika viremia in pregnant women, fetuses and infants; the feasibility of using fetal MRI to describe the continuum of neurological impacts in Zika-affected pregnancies; and long-term developmental issues experienced by Zika-affected infants.

Taking telemedicine to heart

For seven years, a Children’s National team has worked on new technologies to blunt the severity of rheumatic heart disease around the world, vastly improving patients’ chances of avoiding serious complications.

Rheumatic heart disease (RHD) is caused by repeated infections from the same bacteria that cause strep throat, which progressively lead to worsening inflammation of the heart’s valves with each successive infection. Over time, these valves thicken with scar tissue and prevent the heart from effectively pumping life-sustaining, oxygenated blood. The devastating condition, which was endemic in the United States before 1950, is now so rare that few outside the medical community have even heard of it. But in the developing world, explains Craig Sable, M.D., director of echocardiography and pediatric cardiology fellowship training and medical director of telemedicine at Children’s National Health System, RHD is nearly as common as HIV.

“RHD is the world’s forgotten disease,” Dr. Sable says. An estimated 32.9 million people worldwide have this condition, most of whom reside in low- to middle-income countries — places that often lack the resources to effectively diagnose and treat it.

Dr. Sable, Andrea Z. Beaton, M.D., and international colleagues plan to overturn this paradigm. For the last seven years, the team has worked on developing new technologies that could blunt the severity of RHD, vastly improving patients’ chances of avoiding its most serious complications.

At the heart of their approach is telemedicine — the use of telecommunications and information technology to provide clinical support for doctors and other care providers who often practice a substantial distance away. Telemedicine already has proven extremely useful within resource-rich countries, such as the United States, according to Dr. Sable. He and Children’s National colleagues have taken advantage of it for years to diagnose and treat pediatric disease from a distance, ranging from diabetes to asthma to autism. In the developing world, he says, it could be a game-changer, offering a chance to equalize healthcare between low- and high-resource settings.

In one ongoing project, a team led by Drs. Sable and Beaton is using telemedicine to screen children for RHD, a critical step to making sure that kids whose hearts already have been damaged receive the antibiotics and follow-up necessary to prevent further injury. After five years of working in Africa, the team recently expanded their project to Brazil, a country riddled with the poverty and overcrowding known to contribute to RHD.

Starting in 2014, the researchers began training four non-physicians, including medical technicians and nurses, to use handheld ultrasound machines to gather the precise series of heart images required for RHD diagnosis. They deployed these healthcare workers to schools in Minas Gerais, the second-most populous state in Brazil, to screen children between the ages of 7 and 18, the population most likely to be affected. With each worker scanning up to 30 children per day at 21 area schools, the researchers eventually amassed nearly 6,000 studies in 2014 and 2015.

Each night, the team on the ground transmitted their data to a cloud server, from which Children’s cardiologists, experts in RHD, and a regional hospital, Universidade Federal de Minas Gerais, accessed and interpreted the images.

“There was almost zero downtime,” Dr. Sable remembers. “The studies were transferred efficiently, they were read efficiently, and the cloud server allowed for easy sharing of information if there was concern about any questionable findings.”

In a study published online on November 4, 2016 in the Journal of Telemedicine and Telecare, Dr. Sable and colleagues reported the project’s success. Together, the team diagnosed latent heart disease in 251 children — about 4.2 percent of the subjects screened — allowing these patients to receive the regular antibiotics necessary to prevent further valve damage, and for those with hearts already badly injured to receive corrective surgery.

The researchers continued to collect data after the manuscript was submitted for publication. The team, which includes Drs. Bruno R. Nascimento, Adriana C. Diamantino, Antonio L.P. Ribeiro and Maria do Carmo P. Nunes, has screened a total of roughly 12,000 Brazilian schoolchildren to date.

Dr. Sable notes there is plenty of room for improvement in the model. For example, he says, the research team has not found a low-bandwidth solution to directly transmit the vast amount of data from each screening in real time, which has caused a slight slowdown of information to the hospital teams. The team eventually hopes to incorporate RHD screenings into annual health exams at local health clinics, sidestepping potential drawbacks of school day screenings.

Overall, being able to diagnose RHD using non-physicians and portable ultrasounds could eventually help Minas Gerais and additional low- to middle-income areas of the world where this disease remains endemic reach the same status as the United States and other resource-heavy countries.

“We’re putting ultrasound technology in the hands of people who otherwise wouldn’t have it,” says Dr. Sable, “and it could have a huge impact on their overall health.”

This work was supported by a grant from the Verizon Foundation and in-kind donations from General Electric and ViTelNet.

Thrasher Research Fund supports Zika virus neurologic outcomes study

The Thrasher Research Fund will fund a Children’s National project, “Neurologic Outcomes of Apparently Normal Newborns From Zika Virus-Positive Pregnancies,” as part of its Early Career Award Program, an initiative designed to support the successful training and mentoring of the next generation of pediatric researchers.

The project was submitted by Sarah B. Mulkey, M.D., Ph.D., a fetal-neonatal neurologist who is a member of the Congenital Zika Virus Program at Children’s National. During the award period, Dr. Mulkey will be mentored by Adre du Plessis, M.B.Ch.B., director of the Fetal Medicine Institute, and Roberta L. DeBiasi, M.D., M.S., chief of the Division of Pediatric Infectious Diseases. Drs. du Plessis and DeBiasi co-direct the multidisciplinary Zika program, one of the nation’s first.

In the award letter, the fund mentioned Children’s institutional support for Dr. Mulkey, as demonstrated by the mentors’ letter of support, as “an important consideration throughout the funding process.”

Doctors working together to find treatments for autoimmune encephalitis

Children’s and Regeneron partner in exome sequencing study

Children’s National, in partnership with the Regeneron Genetics Center (RGC, a subsidiary of Regeneron Pharmaceuticals, Inc.), has announced the launch of a major three-year research study that will examine the links between undiagnosed disease and an individual’s genetic profile.

The program, directed by Children’s National Geneticist Carlos Ferreira Lopez, M.D., and coordinated by Genetic Counselor Lindsay Kehoe, hopes to include as many as 3,000 patients in its initial year and even greater numbers in the following two years.

During the course of the study, RGC will conduct whole exome sequencing (WES) to examine the entire protein-coding DNA in a patient’s genome. Children’s National geneticists will analyze and screen for certain findings that are known to be potentially causative or diagnostic of disease. Children’s National scientists and providers will confirm preliminary research findings in a lab certified for Clinical Laboratory Improvement Amendments (CLIA), per federal standards for clinical testing, and refer any confirmatory CLIA-certified cases to appropriate clinicians at Children’s National for further care.

According to Marshall Summar, M.D., Chief of Genetics and Metabolism at Children’s National, the WES study could finally provide patients and their families with the medical answers they have been looking for, allowing for treatment appropriate to their specific genetic condition.

Because pediatric diseases can often elude diagnosis, they can pose a number of detrimental effects to patients and their families, including treatment delays, multiple time- and cost-intensive tests, and stress from lingering uncertainty regarding the illness. With this genomic data, Regeneron will be able to utilize findings to continue its efforts to improve drug development.

Since its inception in 2014, the RGC has strategically partnered with leading medical institutions to utilize human genetics data to speed the development and discovery of new and improved therapies for patients in need.

‘Trojan horse’ macrophage TNF-alpha opens door for HIV-1 to enter kidney epithelial cells, causing nephropathy

macrophage

Like a Trojan horse, the macrophage sits atop the epithelial cell with HIV hidden inside, opening a doorway into the kidney cell for high levels of HIV-1 to enter.

When nephrologist Patricio Ray, M.D., began investigating human immunodeficiency virus (HIV) as a renal fellow, children infected with the virus had a life expectancy of no more than seven years, and kids of African descent curiously were developing a type of HIV-related kidney disease.

HIV-associated nephropathy (HIVAN) is a progressive kidney disease seen in people who are both HIV-positive and of African ancestry. Kids who carry a modified protein that protects them against sleeping sickness are 80 times more likely to develop this type of kidney disease. Due to the kidney damage, they can have abnormal amounts of protein in their urine, focal segmental glomerulosclerosis, and microcystic tubular dilation, which can lead to enlarged kidneys and chronic kidney failure.

“No one understood how HIV could affect kidney cells that lack the receptors expressed in T cells and white cells,” recalls Dr. Ray, Robert Parrott Professor of Pediatrics at Children’s National Health System. Virologists said kidney epithelial cells that lacked CD4, a major receptor where HIV attaches, could not be infected with the virus. Nephrologists, meanwhile, were seeing that HIV infection was damaging these cells.

It’s taken two decades to unravel the medical mystery, aided by urine samples he coaxed kids to donate by offering them the latest music from New Kids on the Block in exchange for each urine bottle. Many of the kids died years ago, but their immortalized cells were essential in determining, through a process of elimination, which renal cell types were capable of being infected by HIV-1.

The paper represents the capstone of Dr. Ray’s career.

“This is how difficult it is to get an important contribution in science,” he says. “It’s 20 years of work involving the excellent contributions of many people, but that’s why research is called research. In the end, it’s all a learning process. But, it’s amazing how the puzzle pieces begin to fit. When the puzzle fits, it’s good.”

Dr. Ray, in collaboration with lead author Jinliang Li, Ph.D., and four additional Children’s National co-authors, published a paper November 3 in the Journal of the American Society of Nephrology that establishes a new role for transmembrane TNF-alpha, that of a facilitator that makes it easier for the HIV virus to enter certain cell types and replicate there.  Like a Trojan horse, the macrophage sits atop the epithelial cell with HIV hidden inside, opening a doorway into the kidney cell for high levels of HIV-1 to enter.

As a starting point, the research team cultured podocytes from the urine of kids with HIVAN. Through a number of steps, they isolated the unique contributions of the HIV envelope, heparan sulfate proteoglycans as attachment receptors – the glue that binds HIV to podocytes – and the essential role played by TNF-a, a 212-amino acid long type 2 transmembrane protein, in regulating at least two processes, including viral entry and fusion. They used a fluorescent marker to tag HIV-1 viruses, so it lit up bright green. Thus primed with transmembrane TNF-a, the podocytes were susceptible to HIV-1 infection when exposed to high viral loads.

Additional research is needed, such as in vitro work to help understand how HIV traffics within the cell, Dr. Ray says. Those insights could winnow the list of existing therapies that could block key steps, such as attachment to the viral envelope, which could help all people of African descent carrying the genetic mutation, including underserved kids in sub-Saharan Africa.

Another open research question is that certain cells located in the placenta and cervix express TNF-a, and may be more likely to be infected by HIV. Blocking that process could help prevent pregnant HIV-positive mothers from transmitting illness to their offspring.

Efficacy of family-centered advanced care planning for adolescents with HIV and their families

Led by experts at Children’s National Health System and the Adolescent Palliative Care Consortium, a new study published in Pediatrics reports that pediatric advanced care planning (pACP) can provide a positive environment for adolescents with Human Immunodeficiency Virus (HIV) and their families to discuss end of life care. Being born with HIV increases an adolescent’s risk of dying from an opportunistic infection or chronic illness, underscoring the need for pACP and the significance of this research.

Read more here.

Learning platform teaches clinicians how to spot and treat malaria

Children’s National experts are outlining a novel approach to helping healthcare providers learn how to diagnose and manage malaria; the online tool provides real-time feedback about their decision making.

Children’s National experts are outlining a novel approach to helping healthcare providers learn how to diagnose and manage malaria; the online tool provides real-time feedback about their decision making.

Next-generation medical education looks like this: A white-coat wearing avatar with the voice, face, and know-how of one of the nation’s leading infectious disease experts walks you through the twists and turns of how to diagnose malaria, making stops in a variety of hospital settings. If you make the right diagnostic and treatment decisions, you get instantaneous gold stars. If your choices are off-the-mark, at each decision point you get a clear explanation of why your answer was incorrect.

“This is the future of medical education,” says Barbara Jantausch, M.D., F.A.A.P., F.I.D.S.A., an infectious disease specialist at Children’s National Health System. She’s the female avatar with the John Travolta dance moves and expertise about malaria’s epidemiology, diagnosis, and treatment.

Dr. Jantausch will present a poster, “The Hot Zone: An Online Decision-Centered Vignette Player for Teaching Clinical Diagnostic Reasoning Skills,” during IDWeek 2016, the annual meeting of the Infectious Diseases Society of America. “It’s case-based, interactive e-learning where you choose your own adventure. The beauty of this module is the training can be self-directed,” Dr. Jantausch adds.

“At Children’s National, we’re pioneering the effort to build discovery-based learning platforms,” says Jeff Sestokas, Director of eLearning. In the vignette player, he’s the male avatar named Dr. Bear. Malaria is the first infectious disease training module but others are planned for the global health series, including Chagas disease and Zika virus, Sestokas says.

Identifying the illness

According to the Centers for Disease Control & Prevention (CDC), in 2015 an estimated 214 million people around the world had malaria, a mosquito-borne illness, and 438,000 of them died. Because of the lengthy incubation period, many international travelers do not show malaria symptoms until they return to the United States and experience flu-like symptoms including high fevers, shaking chills, and dehydration. Their lab results may include metabolic acidosis, hypoglycemia, normocytic anemia, or thrombocytopenia. At Children’s, 25 percent of children admitted with travel-related malaria are admitted to the intensive care unit.

“This started as a way to offer people in areas that do not see as many patients with malaria an opportunity to learn the same critical thinking skills,” she adds.

People who click through the vignettes play the role of a clinician working in the emergency department whose patients include a 10-year-old girl who has just returned from vacation two weeks prior. The exhausted girl lies on a bed amid weeping parents and grandparents. She suffers from a headache and muscle pain and has a 39.8 C fever, though it spiked higher before her arrival at the ED.

“Because symptoms for malaria can mimic other infectious diseases, clinicians need to be able to recognize it in order to ask the most appropriate questions,” she says.

Making real-time decisions

In the vignette, participants are asked to type additional questions to help with diagnosis. Then, they select one of three geographic regions to explore in the 20-minute module in order to gain a better appreciation of the epidemiology of malaria, including the Plasmodium species that cause disease in those regions; to recognize a patient with symptoms of malaria; and to manage their care in keeping with the CDC’s guidance.

Within a few clicks, participants select the degree of the girl’s parasitemia, view slides from thick and thin blood smears, choose the medicine best suited for the parasite causing illness and geographic region the family visited, and decide on follow-up care.

“The timed sections force decision-making in real-world situations,” Sestokas adds. “Behind the scenes, we can look at how well clinicians recognize the subtleties prior to making their decisions and we provide feedback in real-time. Ultimately, our goal is to stimulate deliberate, reflective practices.”

Rheumatic heart disease is a family affair

Parasternal long axis echocardiographic still frames in early systole in black and white and color Doppler of RHD-positive index case, sibling, and mother.

Parasternal long axis echocardiographic still frames in early systole in black and white and color Doppler of RHD-positive index case, sibling, and mother.

Siblings of children in Northern Uganda with latent rheumatic heart disease (RHD) are more likely to have the disease and would benefit from targeted echocardiographic screening to detect RHD before it causes permanent damage to their heart valves, according to an unprecedented family screening study.

RHD results from a cascade of health conditions that begin with untreated group A β-hemolytic streptococcal infection. In 3 percent to 6 percent of cases, repeat strep throat can lead to acute rheumatic fever. Almost half of children who experience acute rheumatic fever later develop chronic scarring of the heart valves, RHD.  RHD affects around 33 million people and occurs most commonly in low-resource environments, thriving in conditions of poverty, poor sanitation, and limited primary healthcare. Treating streptococcal infections can prevent a large percentage of children from developing RHD, but these infections are difficult to diagnose in low-resource settings.

Right now, kids with RHD often are not identified until they reach adolescence, when the damage to their heart valves is advanced and severe cardiac symptoms or complications develop. In such countries, cardiac specialists are rare, and intervention at an advanced stage is typically too expensive or unavailable.  Echocardiographic screening can “see” RHD before symptoms develop and allow for earlier, more affordable, and more practical intervention. A team led by Children’s National Health System clinicians and researchers conducted the first-ever family echocardiographic screening study over three months to help identify optimal strategies to pinpoint the families in Northern Uganda at highest RHD risk.

“Echocardiographic screening has the potential to be a powerful public health strategy to lower the burden of RHD around the world,” says Andrea Beaton, M.D., a cardiologist at Children’s National and the study’s senior author. “Finding the 1 percent of vulnerable children who live in regions where RHD is endemic is a challenge. But detecting these silent illnesses would open the possibility of providing these children monthly penicillin shots – which cost pennies and prevent recurrent streptococcal infections, rheumatic fever, and further valve damage.”

The research team leveraged existing school-based screening data in Northern Uganda’s Gulu District and recruited 60 RHD-positive children and matched them with 67 kids attending the same schools who were similar in age and gender but did not have RHD. After screening more than 1,000 parents, guardians, and first-degree family members, they found that children with RHD were 4.5 times as likely to have a sibling who definitely had RHD.

“Definite RHD was more likely to be found in mothers, with 9.3 percent (10/107 screened) having echocardiographic evidence of definite RHD, compared to fathers 0 percent (0/48 screened, p = 0.03), and siblings 3.3 percent (10/300 screened, p = 0.02),” writes lead author Twalib Aliku, School of Medicine, Gulu University, and colleagues. “There was no increased familial, or sibling risk of RHD in the first-degree relatives of RHD-positive cases (borderline & definite RHD) versus RHD-negative cases. However, RHD-positive cases had a 4.5 times greater chance of having a sibling with definite RHD (p = 0.05) and this risk increased to 5.6 times greater chance if you limited the comparison to RHD-positive cases with definite RHD (n = 30, p = 0.03.”

The paper, “Targeted Echocardiographic Screening for Latent Rheumatic Heart Disease in Northern Uganda,” was published recently by PLoS and is among a dozen papers published this year about the group’s work in Africa, done under the aegis of the Children’s Research Institute global health initiative.

The World Health Organization previously has prioritized screening household contacts when an index case of tuberculosis (TB) is identified, the authors note. Like TB, RHD has a strong environmental component in that family members are exposed to the same poverty, overcrowding, and circulating streptococcal strains. In a country where the median age is 15.5, it is not practical to screen youths without a detailed plan, Dr. Beaton says. Additional work would need to be done to determine which tasks to shift to nurses, who are more plentiful, and how to best leverage portable, hand-held screening machines.

“Optimal implementation strategies, the who, when, in what setting, and how often to screen, have received little study to date, yet these details are critical to developing cost-effective and sustainable screening programs,” Aliku and co-authors write. “Our study suggests that siblings of children identified with latent RHD are a high-risk group, and should be prioritized for screening.”

Related resources:  Research at a Glance

Targeted echocardiographic screening for latent RHD in Northern Uganda

PDF Version

What’s Known
Echocardiograms use the echoes of sound waves to create “movies” of the beating heart, its valves, and other structures. While rheumatic heart disease (RHD) was prevalent in the United States as late as the 1900s, improved housing conditions and the availability of powerful medicines like antibiotics and penicillin have lowered its incidence to 0.04 to 0.06 cases per 1,000 U.S. children. In regions where streptococcal infections flourish, RHD remains a scourge. Using echocardiographic screening to identify latent RHD— which is apparent on echocardiography before the child has symptoms that can be spotted by clinicians—has the potential to reduce the disease’s global burden.

What’s New
Optimal implementation must account for whom to target, when, in which settings, and how often to screen. The team led by Children’s National Health System researchers and clinicians conducted the first family screening study in Northern Uganda to assess the utility of echocardiographic screening of first-degree relatives of children with latent RHD. They used existing school-based screening data to identify potential participants and invited all first-degree relatives older than 5 years for echocardiography screening. The study recruited 60 RHD-positive schoolchildren and matched them with 67 RHD-negative kids of similar age and gender. Some 1,122 family members were then screened. Children with any RHD were 4.5 times as likely to have a sibling with definite RHD, a risk that increased to 5.6 times if researchers looked solely at index cases with definite RHD. The team, led by Andrea Beaton, MD, a cardiologist at Children’s National, also found that mothers had a 9.3 percent rate of latent RHD—a high rate that was independent of whether their child was RHD-positive.

Questions for Future Research
Q: Many children living in RHD-endemic areas, exposed to the same environmental conditions as RHD-positive kids, are able to fend off disease. Are protective genes to credit for their resilience?
Q: What are the best approaches to train nurses and community workers in how to use lower-cost, handheld echocardiograms to facilitate large-scale screening in countries where healthcare resources are constrained?

Source:  Targeted Echocardiographic Screening for Latent Rheumatic Heart Disease in Northern Uganda: Evaluating Familial Risk Following Identification of an Index Case.” T. Aliku, C. Sable, A. Scheel, A. Tompsett, P. Lwabi, E. Okello, R. McCarter, M. Summar, and A. Beaton. Published online by PLoS June 13, 2016.

Congenital Zika Viral Infection Linked to Significant Fetal Brain Abnormalities

mosquito

PDF Version

What’s Known
According to the Centers for Disease Control and Prevention, Zika viral transmission is occurring extensively throughout Central and South America. Like other mosquito-borne viruses, Zika virus can be passed by pregnant women to developing fetuses. Unlike these other viruses, Zika has been implicated in a growing number of cases of Brazilian infants born with microcephaly, a condition characterized by undersized heads and severe brain damage. The precise strategy that the Zika virus uses to elude the immune system and the reason why fetal brain cells are particularly vulnerable remain unknown.

What’s New
A 33-year-old Finnish woman was 11 weeks pregnant when she and her husband traveled on vacation to Mexico, Guatemala, and Belize in late November 2015. The pair was bitten by mosquitoes during their trip, particularly in Guatemala. One day after returning to their Washington, DC home, the woman got sick, experiencing eye pain, muscle pain, a mild fever, and a rash. A series of early ultrasounds showed no sign of microcephaly or brain calcifications. A fetal ultrasound at the 19th week and a fetal MRI at the 20th week, however, revealed severe brain damage.

The brain of the 21-week-old aborted fetus weighed only 30 grams. Zika RNA, viral particles, and infectious virus were detected, and Zika virus isolated from the fetal brain remained infectious when tested. The concentration of virus was highest in the fetal brain, umbilical cord, and placenta. The mother remained infected with Zika virus at 21 weeks, some 10 weeks after her initial infection.

Questions for Future Research

  • Could serial measurements and blood tests more accurately detect and, ultimately, predict fetal abnormalities following Zika virus infection?
  • Why does the Zika virus replicate with ease within the womb?
  • At which stage of pregnancy are fetuses most vulnerable?
  • Which specific brain cells does Zika target?

Source:Zika Virus Infection with Prolonged Maternal Viremia and Fetal Brain Abnormalities.” R.W. Driggers, C.Y. Ho, E.M. Korhonen, S. Kuivanen, A.J. Jääskeläinen, T. Smura, D.A. Hill, R. DeBiasi, G. Vezina, J. Timofeev, F.J. Rodriguez, L. Levanov, J. Razak, P. Iyengar, A. Hennenfent, R. Kennedy, R. Lanciotti, A. du Plessis, and O. Vapalahti. The New England Journal of Medicine. June 2, 2016.

Drs. DeBiasi and du Plessis

Suspected domestic zika virus infection in Florida underscores the importance of ongoing vigilance

Drs. DeBiasi and du Plessis

Federal health officials continue to investigate the first possible cases of domestic Zika virus transmission in Florida. In light of the growing number of Zika infections, the vast majority of which have been associated with foreign travel, vigilance for additional cases is warranted – particularly as summer heat intensifies and mosquito populations grow. The Centers for Disease Control and Prevention (CDC) now advises that all pregnant women in the continental United States and U.S. territories be evaluated for Zika infection at each prenatal care visit. The CDC also recognizes that Zika-exposed infants will require long-term, multidisciplinary care.

In mid-May, Children’s National Health System Fetal Medicine Institute and Division of Pediatric Infectious Disease announced the formation of a Congenital Zika Virus Program to serve as a dedicated resource for referring clinicians and for pregnant women to receive counseling and science-driven answers about the impact of the Zika virus on pregnancies and newborns. Children’s clinicians have consulted on 30 pregnancies or births with potential Zika virus exposure and/or infection. As of Aug. 31, eight were Zika-positive or probable. One of the pregnancies was the subject of an article published by The New England Journal of Medicine.

”While we’re hopeful there are few local cases, the Congenital Zika Virus Program has been developing emergency response plans in collaboration with local departments of health to prepare for any eventuality,” says Roberta DeBiasi, MD, MS, Chief of the Division of Infectious Disease and Congenital Zika Virus Program co-leader.

Over the years, Children’s National has invested in equipment and highly trained personnel, building world-class expertise in infectious diseases, pediatric neurology, pediatric cardiology, genetics, neurodevelopment, and other specialties. Children’s clinicians are recognized leaders in next-generation imaging techniques, such as fetal MRI, which detects more subtle and earlier indications of impaired brain growth. A variety of divisions work together to offer multidisciplinary support and coordinated care to infants born with special needs. As the nation braces for the possible expansion of Zika virus infection to other states, Children’s National is facilitating the multi-step process of testing blood, urine, and tissue with state health departments, helping to ensure timely and precise information. Children’s National specialists guide Zika-affected pregnancies through the fetal period and are able to oversee and coordinate the care of Zika-affected infants after delivery. Care and clinical support is provided by a multidisciplinary team of pediatric neurologists, ophthalmologists, audiologists, physical and occupational therapists, infectious disease experts, and neurodevelopmental physicians.

The Children’s National multidisciplinary team includes:

  • Adre du Plessis, M.B.Ch.B., Director of the Fetal Medicine Institute, Chief of the Fetal and Transitional Medicine Division, and Congenital Zika Virus Program co-leader;
  • Roberta DeBiasi, M.D., M.S., Chief of the Division of Infectious Disease and Congenital Zika Virus Program co-leader;
  • Cara Biddle, M.D., M.P.H., Medical Director, Children’s Health Center, and a bilingual expert on complex care;
  • Dorothy Bulas, M.D., Radiologist in the Division of Diagnostic Imaging and Radiology;
  • Taeun Chang, M.D., Director, Neonatal Neurology Program in the Division of Neurophysiology, Epilepsy and Critical Care Neurology;
  • Sarah Mulkey, M.D., Ph.D., Fetal-Neonatal Neurologist, Fetal Medicine Institute;
  • Lindsay Pesacreta, M.S., F.N.P.-B.C., Board-Certified Family Nurse Practitioner; and
  • Gilbert Vezina, M.D., attending Radiologist in the Division of Diagnostic Imaging and Radiology and Director of the Neuroradiology Program.

[Updated Sept. 13, 2016]

New program provides science-driven answers about zika virus’s impact on pregnancies

Drs. DeBiasi and du Plessis

Each week, as temperatures rise, the likelihood increases that the United States will experience domestic Zika virus transmission. Indeed, such domestic Zika transmission already is occurring in Puerto Rico and the U.S. Virgin Islands. The Children’s National Health System Fetal Medicine Institute and Division of Pediatric Infectious Disease announced the formation of a Congenital Zika Virus Program to serve as a dedicated resource for referring clinicians and for pregnant women to receive counseling and science-driven answers about the impact of the Zika virus on their pregnancies.

Over years, Children’s National has invested in equipment and highly trained personnel, building expertise in infectious diseases, pediatric neurology, pediatric cardiology, genetics, neurodevelopment, and other specialties. Children’s clinicians are recognized as national leaders in next-generation imaging techniques, such as fetal MRI, and a variety of divisions work together to offer multidisciplinary support and coordinated care to infants born with special needs. As the nation prepares for the Zika virus, Children’s National is facilitating the multi-step process of blood testing, helping to ensure timely and precise information. Children’s National specialists are able to guide Zika-affected pregnancies through the fetal period and can oversee the care of Zika-affected infants after delivery. Care and clinical support is provided by a multidisciplinary team of pediatric neurologists, physical therapists, infectious disease experts, and neurodevelopmental physicians.