Tag Archive for: Oncology

collage of hyperspectral imaging (sHSI) camera and brain surgery

Novel camera + machine learning = hope for more precise neurosurgery

collage of hyperspectral imaging (sHSI) camera and brain surgery

Researchers at Children’s National Hospital developed a compact imaging camera capable of seeing beyond the human visual spectrum to help segment healthy brain tissue from tumors during surgery. The groundbreaking technology will allow neurosurgeons to make more precise, real-time decisions in the operating room, rather than sending samples to pathology labs for biopsies.

In a manuscript published in Bioengineering, the team of engineers and neurosurgeons details how its snapshot hyperspectral imaging (sHSI) camera can be used to capture and process images of brain tissue, using the wide spectrum of light between visible and infrared wavelengths. That additional information — beyond the human eye — has the potential to allow for more accurate and complete tumor removal.

“In the hands of a neurosurgeon, this camera, when combined with machine learning, could dramatically improve outcomes for some of our most vulnerable brain tumor patients,” said Richard Jaepyeong Cha, Ph.D., an optical engineer and principal investigator at the Sheikh Zayed Institute of Pediatric Surgical Innovation. “We are able to attach the camera to a surgical microscope and process a significant amount of information from the patient while in the operating room. Not only could this lead to more complete tumor resection, it will also allow the surgeon to save as much healthy brain tissue as possible and reduce lifelong neurological complications.”

Why we’re excited

Brain tumors are the most common solid tumors in children, accounting for the highest number of pediatric cancer deaths globally each year. To develop a treatment plan, neurosurgeons need to understand the tumor’s features, including its type, grade of malignancy, location and its categorization as a primary or metastatic cancer. This information leads to decisions about how to remove or biopsy a tumor.

Under the current protocols, surgeons evaluate tumor margins in the operating room by examining the appearance of the brain tissue and sending out small samples to the pathology department for biopsies. This can lead to longer surgeries and difficult real-time surgical decisions. For instance, some low-grade tumors are visually indistinguishable from healthy brain tissue.

In four investigational cases approved by the hospital’s institutional research board, the sHSI camera was used in the operating room to help segment healthy pediatric brain tissue from tumors. Unlike the conventional red-green-blue (RGB) imaging cameras, which use only those three colors, HSI captures spectral data at each pixel of the image — a task too complex for the human eye — and sends it instantly for processing by an algorithm designed to assist in tumor segmentation.

What’s ahead

Despite the small dataset, the researchers were able to successfully segment healthy brain tissue from lesions with a high specificity during pediatric brain tumor resection procedures. Significant work remains to refine the technology and the machine learning behind it. Researchers also plan to integrate the sHSI camera into a laparoscope to visualize tumors that are not on the brain’s surface and collect data from more angles.

“As we develop these groundbreaking tools, we plan to continue to expand the dataset and refine the algorithm to make pediatric neurosurgery continually more precise,” said Naomi Kifle, M.S., research and development engineer at Children’s National and first author on the paper. “As our dataset grows, we hope to create a model that can distinguish healthy brain tissue, tumor and skull. This groundbreaking surgical tool shows significant promise.”

Winners of the International Conference on Medical Image Computing and Computer Assisted Intervention

AI team wins international competition to measure pediatric brain tumors

Winners of the International Conference on Medical Image Computing and Computer Assisted Intervention
Children’s National Hospital scientists won first place in a global competition to use artificial intelligence (AI) to analyze pediatric brain tumor volumes, demonstrating the team’s ground-breaking advances in imaging and machine learning.

During the International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI), the Children’s National team demonstrated the most accurate algorithm to study the volume of brain tumors – the most common solid tumors affecting children and adolescents and a leading cause of disease-related death at this young age. The technology could someday help oncologists understand the extent of a patient’s disease, quantify the efficacy of treatments and predict patient outcomes.

“The Brain Tumor Segmentation Challenge inspires leaders in medical imaging and deep learning to try to solve some of the most vexing problems facing radiologists, oncologists, computer engineers and data scientists,” said Marius George Linguraru, D.Phil., M.A., M.Sc., the Connor Family Professor in Research and Innovation and principal investigator in the Sheikh Zayed Institute for Pediatric Surgical Innovation. “I am honored that our team won, and I’m even more thrilled for our clinicians and their patients, who need us to keep moving forward to find new ways to treat pediatric brain tumors.”

Why we’re excited

With roughly 4,000 children diagnosed yearly, pediatric brain tumors are consistently the most common type of pediatric solid tumor, second only to leukemia in pediatric malignancies. At the urging of Linguraru and one of his peers at the Children’s Hospital of Philadelphia, pediatric data was included in the international competition for the first time, helping to ensure that children are represented in medical and technological advances.

The contest required participants to use data from multiple institutions and consortia to test competing methods fairly. The Children’s National team created a method to tap into the power of two types of imaging and machine learning: 3D convolutional neural network and 3D Vision Transformer-based deep learning models. They identified regions of the brain affected by tumors, made shrewd data-processing decisions driven by the team’s experience in AI for pediatric healthcare and achieved state-of-the-art results.

The competition drew 18 teams who are leaders from across the AI and machine learning community. The runner-up teams were from NVIDIA and the University of Electronic Science and Technology of China.

The big picture

“Children’s National has an all-star lineup, and I am thrilled to see our scientists recognized on an international stage,” said interim Executive Vice President and Chief Academic Officer Catherine Bollard, M.D., M.B.Ch.B., director of the Center for Cancer for Immunology Research. “As we work to attack brain tumors from multiple angles, we continue to show our exceptional ability to create new and better tools for diagnosing, imaging and treating these devastating tumors.”

Eugene Hwang

Eugene Hwang, M.D., appointed chief of Oncology

Eugene Hwang

Dr. Hwang has been part of the Children’s National team for 13 years and most recently served as the associate chief of Oncology.

Eugene (Gene) Hwang, M.D., has been appointed to the role of chief of Oncology at Children’s National Hospital.

Dr. Hwang has been part of the Children’s National team for 13 years and most recently served as the associate chief of Oncology.

“I joined the division in 2010, fairly new to the job and hoping to simply learn how to treat pediatric cancer. Thirteen years later, I have learned from an almost overwhelming number of people – colleagues, mentors, patients and their families,” Dr. Hwang said. “Our field constantly reminds us of the urgent need for better treatments; in pursuit of that goal, the program at Children’s National has innovated at a level which has taught me the importance of translational and clinical research, connections within our team and the community, and above all, our commitment to our patients. I am honored and excited to help lead this team to continue in their mission to cure more children of their cancer and with fewer side effects.”

Dr. Hwang received his degree in cell and molecular biology from Rice University and a medical degree from Duke University. He completed a pediatrics residency at Brown University/Hasbro Children’s Hospital and returned to Duke for fellowships in pediatric hematology/oncology and pediatric neuro-oncology.

Since Dr. Hwang joined Children’s National in 2010, he has risen to international prominence for his expertise in pediatric brain tumors. Dr. Hwang holds study leadership roles in several research consortia, including the Children’s Oncology Group (COG), Pediatric Brain Tumor Consortium (PBTC), Collaborative Network for Neuro-Oncology Clinical Trials (CONNECT), Pediatric Neuro-Oncology Consortium (PNOC) and the Collaborative Ependymoma Research Network (CERN).

At Children’s National, he serves as principal investigator for two investigator-initiated studies and is the recipient of a Department of Defense IMPACT grant, the collaborative awardee on multiple NIH grants, and numerous foundation grants.  He has served on several of our clinical and scientific committees, such as director of neuro-oncology fellowship program and vice chair of Children’s National Brain Tumor Institute. In addition, Dr. Hwang was recently installed as the inaugural William Seamus Hughes Professor of Neuro-oncology and Immunology.

“The division already has established itself as one of the premier pediatric oncology programs in the world,” Dr. Hwang added. “Being able to offer an even more cutting-edge therapy so that every child treated at Children’s National has the ability to access world-class treatment is a primary goal of our division and I hope to see our team extend its reach of transformative treatments for more children with cancer.”

Jeffrey Dome

Jeffrey Dome, M.D.: Making strides in the fight against pediatric cancer

Jeffrey DomeJeffrey Dome, M.D., Ph.D., senior vice president of the Center for Cancer and Blood Disorders and chief of the Division of Oncology (ranked number 6 in the nation by U.S. News & World Report 2022-23 Best Children’s Hospitals annual rankings) at Children’s National Hospital in Washington, D.C., is an internationally recognized expert on pediatric solid tumors, with an emphasis on kidney tumors and sarcomas. He chaired the Children’s Oncology Group (COG) Renal Tumor Committee, which oversees clinical research on kidney tumors at more than 200 children’s hospitals around the world for more than 10 years. Dr. Dome is currently the Continental President of North America for the International Society of Paediatric Oncology (SIOP) and serves on several medical advisory boards for cancer centers and foundations.

“This is a remarkably exciting time to be in the field of pediatric oncology, with an explosion of knowledge on cancer biology and genetics and the availability of new treatment modalities including molecularly targeted therapy, immunotherapy and devices to improve drug delivery and local control,” says Dome. “I am proud of the multidisciplinary and cross-center collaborations at Children’s National to deliver the latest innovative therapies.”

The team at Children’s National is making strides across all programs to benefit patients with pediatric cancer. A few highlights include:

  • The Brain Tumor lnstitute is one of the most active clinical and translational research programs in the country. Collaborating with other leading institutions, the Brain Tumor Institute is supported by a robust brain tumor bench research program with focused laboratories in medulloblastoma, high-grade glioma, midline diffuse glioma, diffuse intrinsic pontine glioma, low-grade glioma and immunotherapy. The Brain Tumor Institute is leading two national studies, both funded through the Moon Shot lnitiative. In addition, it works closely with the Virginia Tech brain tumor laboratories on the new Children’s National Research & Innovation Campus.
  • Children’s National is the first children’s hospital in the United States with a Focused Ultrasound Program. This pediatric dedicated program includes high-intensity (HIFU) and low-intensity focused ultrasound (LIFU), offering minimally invasive surgical options for children with extra-cranial solid tumors, low-grade brain tumors and novel, potentially life-saving therapy with LIFU-mediated blood-brain barrier disruptions for diffuse intrinsic pontine gliomas.
  • Children’s National has developed multi-antigen specific T cells that have shown success in early phase clinical trials for leukemias, solid tumors and brain tumors. This promising area of research earned a major boost in the form of a $25 million dollar grant from Cancer Grand Challenges, founded in 2020 by Cancer Research UK and the National Cancer Institute in the U.S. This award supported the foundation of NexTGen, a team of scientists and clinicians with expertise in immunology, proteomics, mathematics and more, across eight institutions in the U.S., U.K. and France. The Center for Cancer and Immunology Research at Children’s National is one of the leaders of this effort.
  • The Blood and Marrow Transplantation team, one of the only dedicated pediatric bone marrow transplant programs in the greater Washington, D.C., region, is celebrating its 35th anniversary, with a history of clinical and research accomplishments for both malignant and non-malignant disorders. This program has seen tremendous success in their day 100 transplant-related mortality (TRM). Recently, for the first time, the day 100 TRM average was 0%, meaning that the program did not lose a patient due to transplant complications in the first 100 days – a remarkable achievement in the world of transplantation.
  • The Cancer Genetics Program has grown tremendously in the past few years, reflecting recognition that approximately 10% of childhood cancers have an underlying cancer predisposition. Despite COVID-19, during the past fiscal year, there were 282 patient visits which is a 40% increase from the prior year. The team has developed a collaboration with researchers in the Rare Disease Institute and now can offer studies for patients with Beckwith-Wiedemann syndrome, children with previously undiagnosed developmental delay and children with undiagnosed syndromes. Further, the team was awarded a grant from the Children’s Cancer Foundation to allow testing for those without insurance coverage.
Catherine Bollard

In the news: Novel research to stop pediatric brain tumors

“The team is really bringing in very new ideas from mathematical modeling, engineering, all the way to cell therapy, immunotherapy and immunology…This is what really excites and energizes us to be part of this great team, to address the Cancer Grand Challenge, to better target pediatric solid tumors.”

The Cancer Letter connected with Catherine Bollard, M.D., M.B.Ch.B., director of the Center for Cancer and Immunology Research at Children’s National Hospital, for a conversation about her work as a leader of the Cancer Grand Challenges NexTGen team. The $25 million effort is funded by Cancer Research U.K. and the National Institute of Health’s National Cancer Institute and the Mark Foundation for Cancer Research. Its ambitious goal: find novel therapies to break the stalemate in the treatment of pediatric solid brain tumors in the next 10 years. Bollard shared her work plan and the “secret sauce” that gives the team its edge with The Cancer Letter. Find out more about the hope behind this effort in the full interview here.

Catherine Bollard at People V. Cancer summit

In the news: People v. pediatric cancer

“I just want to hammer home the fact that, if you have a child with a pediatric solid tumor who relapses, most likely the chemotherapy that will be treating that child will be the same chemotherapy that a child diagnosed 20 years ago would have received. This is how little progress has been made…. This is what we are trying to change.”

Catherine Bollard, M.D., M.B.Ch.B., director of the Center for Cancer and Immunology Research at Children’s National Hospital, pulled the curtain back on her work fighting pediatric brain tumors at The Atlantic’s People V. Cancer summit. This annual event brings together leading voices from the front lines for in-depth conversations about how to stop this complex and lethal disease. Dr. Bollard discussed the unique importance of collaboration among pediatric oncologists and the optimism she has for using a patient’s immune system to go after solid tumors with CAR T therapies.

illustration of the brain

LIFU successfully delivers targeted therapies past the blood-brain barrier

illustration of the brain

LIFU offers doctors the first opportunity to open the blood-brain barrier and treat the entire malignant brain tumor.

Children’s National Hospital will leverage low-intensity focused ultrasound (LIFU) to deliver therapy directly to a child’s high-grade glioma. The approach offers doctors the first opportunity to open the blood-brain barrier and treat the entire malignant brain tumor.

Children’s National will be the first hospital in the U.S. to treat high-grade pediatric brain tumors with LIFU to disrupt the blood-brain barrier. Crossing it has been a major hurdle for effective therapy. The barrier, a network of blood vessels and tissue, prevents harmful substances from reaching the brain but also stops molecular targeted therapy and immunotherapy from getting into the tumor site and staying there.

“LIFU gives us a way to potentially transiently open up the barrier, so we can deliver novel therapy directly to the tumor and improve the likelihood of survival,” said Roger Packer, M.D., senior vice president of the Center for Neurosciences and Behavioral Medicine at Children’s National. “It is the greatest breakthrough we’ve potentially had in the past 50 years or more for the management of these tumors. We made great strides in our understanding of molecular genetics and the molecular drivers of tumors, but we have not yet translated that knowledge into better therapies; this may be our most effective mechanism to overcome the barrier.”

In 2020, Children’s National was recognized as the first worldwide Center of Excellence by the Focused Ultrasound Foundation.

Focused ultrasound (FUS) is a non-invasive therapeutic technology with the potential to transform the treatment of many medical disorders by using ultrasonic thermal energy to specifically target tissue deep in the body. The technology can treat without incisions or the need of radiation.

How it works

Doctors at Children’s National will be using LIFU in two different types of procedures:

  • 5-ALA: Doctors will give the patient 5-aminolevulinic acid (5-ALA) with the LIFU treatment. 5-ALA enters rapidly dividing cells and is activated by the ultrasound to a state where it kills the dividing cells of the tumor. The surrounding normal brain cells around the tumor are not dividing, so they do not take up the 5-ALA and are left unharmed after ultrasound therapy.
  • Microbubbles: While receiving different doses of LIFU over a one- to two-hour period, the patient is given “microbubbles,” which are widely used in medical imaging and as carriers for targeted drug delivery. These microbubbles bounce around against the walls like seltzer, opening the blood vessels and transiently opening that space.

Both studies are the first in the world for pediatric gliomas of the brain stem, allowing experts to treat patients 4-6 weeks after radiotherapy. The patient then receives medication orally or intravenously as it passes through the bloodstream. It does not go at high levels anywhere within the brain except where the blood-brain-barrier was opened, allowing oral medication or immune therapies to rush into the tumor.

The launch of this program comes a few months after the hospital successfully performed the first-ever high-intensity focused ultrasound surgery on a pediatric patient with neurofibromatosis.

Watch this video to learn more.

mother and daughter embracing

Understanding end-of-life treatment preferences for adolescents

mother and daughter embracing

FACE-TC effectively increases communication between adolescents with cancer and their families about the patients’ preferences.

Talking about death and dying is taboo. Some families believe it is their role alone to make end-of-life healthcare decisions or they may believe pediatric advance care planning is against their religion.

In a recent trial, Maureen Lyon, Ph.D., a clinical health psychologist at Children’s National Hospital and lead author of the study, analyzed the value of high-quality pediatric advance care planning and how this enabled families to know their adolescents’ end-of-life treatment preferences.

This is the first fully powered randomized controlled trial to focus on adolescents with cancer and their engagement with their families in pediatric advance care planning conversations.

What this means

Some physicians believe it is not their role to discuss the “what ifs.” Others report that they do not have the training or time to do so. As a result, in clinical practice, adolescents living with a serious illness rarely have documented advance care plans. The default is to provide intensive treatments that potentially increase suffering.

“Despite cancer being the leading cause of disease-related death in adolescents, conversations about goals of care and documentation of end-of-life care and treatment preferences for adolescents with cancer are not a routine and standard part of care,” Dr. Lyon said.

Why it matters

Family-centered advance care planning for teens with cancer (FACE-TC) effectively increases communication between adolescents with cancer and their families about the patients’ end-of-life preferences. This meets the first challenge of pediatric advance care planning – knowledge of patient’s preferences.

This low-tech intervention commits to more deeply respecting adolescents with cancer, integrating them into health care decision-making and giving them some control in a low control situation.

The patient and family benefits

“FACE-TC strengthens communication between adolescents with cancer and their families about adolescents’ understanding of their illness, their hopes and fears, their goals of care and their end-of-life treatment preferences,” Dr. Lyon added. “With increased access to palliative care services and pediatric advance care planning, families may better understand that stopping intensive medical interventions when their child is dying is not giving up, but rather choosing how best to spend the final days of one’s life.”

Dr. Lyon and the team at Children’s National have pioneered this effort to give seriously ill adolescents a voice and help families break the ice so they know what their child would want if the worst were to happen. The team also aims to provide an extra level of support for busy clinicians so the first conversation about goals of end-of-life care does not happen in the intensive care unit.

You can read the full trial, An Intervention in Congruence for End-of-Life Treatment Preference: A Randomized Trial, in Pediatrics.

You can also read the last manuscript from this clinical trial, Effect of the Family-Centered Advance Care Planning for Teens with Cancer Intervention on Sustainability of Congruence About End-of-Life Treatment Preferences, in JAMA Network.

illustration of brain tumor

International initiative aims to find rare brain tumor treatments

illustration of brain tumor

Rare brain tumors are not as well characterized due to the paucity of biological and clinical data available.

Certain brain tumors can be hard to diagnose. And as such, that makes it complicated to find a treatment.

In an effort to identify and tailor treatments to patients with rare brain tumors, Children’s National is launching a rare brain tumor initiative. The hospital is collaborating with other hospitals in North America, South America and Europe to compile a registry of children diagnosed with rare brain tumors. The registry will collect biospecimens, clinical and radiological data from patients diagnosed with certain rare brain tumors.

The goal is to find a correlation between the molecular findings and the clinical findings to categorize them. This will help doctors get different prognosticators or different treatment approaches.

Here, Adriana Fonseca Sheridan, M.D., pediatric neuro-oncologist at Children’s National Hospital, tells us more about this international initiative.

What’s been the hold-up in the field?

The recent incorporation of molecular features as part of the diagnostic criteria and classification of brain tumors highlighted a high biological and molecular heterogeneity within previously histologically defined entities. The improvement in our diagnostic capabilities have been incredibly useful to stratify patients into different disease-specific risk groups and tailor therapeutic approaches accordingly in the most common brain tumors. In contrast, rare brain tumors are not as well characterized due to the paucity of biological and clinical data available. Additionally, newly molecularly defined entities lack specific clinical and therapeutic data and represent a major challenge to patients and doctors alike.

How does this work move the field forward?

The overarching objective of the international rare brain tumor registry is to deepen our understanding of the biological underpinnings of rare brain tumors. The registry also seeks to create infrastructure that allows for development of rational and personalized treatment strategies for children with rare entities.

What are you hoping to discover?

We hope to characterize the clinicopathological features and identify risk factors for survival and optimal therapeutic approaches of:

  • CNS sarcomas
  • BCOR-ITD tumors
  • Astroblastoma/MN1 altered tumors
  • Histologically ambiguous/unclassifiable brain tumors

How unique is this work?

Children’s National will spearhead the development of this initiative and lead an effort to prospectively collect biological specimens, radiological and clinical data that allow us to better understand the biologic mechanisms and therapeutic susceptibilities of these rare diseases.

We know that the best way to lead the advancement of the field in rare diseases is through collaboration. Therefore, we will synchronize efforts and collaborate with our European colleagues. They will be running a similar initiative. Our goal is to generate meaningful and robust data that will allow us to better understand how to successfully treat patients with these rare brain tumors across the globe.

Illustration of white blood cells attacking a cancer cell

Alpha/beta T cell depletion lifts barriers to transplantation

Illustration of white blood cells attacking a cancer cell

Removal of A/B T cells from the infused cell product significantly minimizes the risk of GvHD and eliminates the need for immunosuppressive medications after transplant.

Alpha/beta T cell depletion (A/B TCD) is a cutting-edge hematopoietic stem cell transplant (HSCT) technique by which donor derived immune cells, called A/B T cells, can be removed by selectively using magnetic beads before the donor cells are infused into the recipient’s body. A/B T cells have the potential to cause life threatening inflammation in the recipient’s body, called graft-versus-host disease (GVHD). GVHD is a major complication after transplant, especially when the donor is not fully matched. Therefore, removal of A/B T cells from the infused cell product (graft) significantly minimizes the risk of GVHD and eliminates the need for immunosuppressive medications after transplant.

Unlike previous methodologies that completely remove all immune cells, the novel A/B TCD approach preserves beneficial immune cells (like gamma delta T cells, natural killer cells, monocytes and dendritic cells) in the graft to preserve the capability to fight viral infections and residual cancer. Therefore, this innovative transplant approach can cure leukemia while decreasing the risk of life threatening infections and relapse after transplant.

In this Q&A, Anant Vatsayan, M.D., blood and marrow transplant specialist at Children’s National Hospital, tells us more about this new exciting technique.

Q: What is the specific research question that you are hoping to answer?

A: Children’s National Hospital is participating in the largest multicenter pediatric trial of A/B TCD hematopoietic stem cell transplant in the United States. The primary objective of this research is to assess whether disease-free survival at one-year after-HCT for children with high-risk leukemia and myelodysplastic syndrome can be improved with A/B TCD hematopoietic stem cell transplant.

Patients with other types of blood disorders may also be eligible to undergo A/B TCD hematopoietic stem cell transplant in this study based on the discretion of the principal investigator. The study will also assess the overall survival and rates of acute and chronic GVHD. Another objective is to compare the cost of transplantation using half-matched (haploidentical) donors versus other stem cell sources (for example, matched unrelated adult donors or cord blood donors) at participating centers.

Q: Why is this work exciting?

A: A/B TCD hematopoietic stem cell transplant has several benefits:

  • One of the remarkable benefits of this technique is the possibility of using haploidentical related donors for transplant if a fully matched related or unrelated donor is not available. This is a common scenario for patients of certain races (African American) and ethnicities (Hispanic) where it is difficult to identify a fully matched unrelated donor. Therefore, A/B TCD hematopoietic stem cell transplant expands the pool of donor options and ensures more equitable donor availability across every race and ethnicity.
  • A/B TCD significantly decreases the risk of severe GVHD and post-transplant infections. It eliminates the need for post-transplant immunosuppressive medications (like cyclosporine, tacrolimus or sirolimus) that can have numerous side effects and require frequent monitoring of drug levels in the blood.
  • The A/B TCD technique also promotes faster recovery of blood counts (engraftment) after transplant. Therefore, patients take fewer medications, have shorter durations of hospitalization for transplant and need less frequent blood tests and clinic visits after transplant. Hence, this patient friendly and family centric transplantation strategy will ensure that patients can spend more time with their family and have a better quality of life.

Q: How do you hope this will benefit patients?

A: Alpha/beta T cell depleted HSCT using half matched (haploidentical) donors will ensure donor availability for almost every patient regardless of race/ethnicity and probability of finding a matched related/unrelated donor. This methodology has tremendous prospects for wider applications, including the use of matched related and unrelated donors with the intent to eliminate the need for post-transplant immunosuppressive medications. This could be especially beneficial for patients with Fanconi anemia or other patients who are at risk of developing severe side effects from the use of immunosuppressive medications.

Q: How unique is this work?

A: The Shirley and William Howard Cellular Therapy Laboratory Stem Cell Processing program processes stem cells and performs cutting edge clinical trials while providing innovative care for patients. This work benefits from access to CliniMACS Plus Cell Selection Device, along with a multidisciplinary team with laboratory and clinical expertise to perform A/B TCD hematopoietic stem cell transplant. Access to our state of the art Cellular Therapy Laboratory allows us to further complement this transplantation strategy with other cellular therapies after transplant, such as virus specific and leukemia targeting T cells, which further mitigate the risk of post-transplant viral infections and leukemia relapse.

Dr. Javad Nazarian

Q&A with Dr. Javad Nazarian on his upcoming work on low-grade gliomas

Dr. Javad Nazarian

Supported by the Gilbert Family Foundation, Dr. Nazarian’s return is part of a special research program within the Gilbert Family Neurofibromatosis Institute that focuses on NF1 research.

Javad Nazarian, Ph.D., M.Sc., associate professor of Pediatrics at George Washington University and professor at the University of Zurich, has expanded his research group at Children’s National to focus on Neurofibromatosis type 1 (NF1) transformed low-grade gliomas (LGGs). Dr. Nazarian will apply his expertise from establishing a successful DIPG (diffuse intrinsic pontine glioma) and DMG (diffuse midline glioma) program in Zurich Switzerland and previously at Children’s National.

In addition to his continued research in Zurich, as a principal investigator at the Department of Genomics and Precision Medicine at Children’s National Dr. Nazarian plans on aggregating his knowledge to the new research and work spearheaded at Children’s National. As one of the first research teams to move to the Children’s National Research & Innovation Campus, Dr. Nazarian’s group is excited to use the opportunity to establish cutting-edge and clinically translational platforms.

Supported by the Gilbert Family Foundation, Dr. Nazarian’s return is part of a special research program within the Gilbert Family Neurofibromatosis Institute that focuses on NF1 research. This research includes associated gliomas with a special emphasis on NF1-associated transformed anaplastic LGGs. His team will develop new avenues of research into childhood and young adult NF-associated LGGs with a special emphasis on transformed high-grade gliomas.

Dr. Nazarian is excited for what’s to come and his goals are clear and set. Here, Dr. Nazarian tells us more about his main objectives and what it means for the future of pediatric neuro-oncology care at Children’s National.

  1. What excites you most about being back at Children’s National?

I have received most of my training at Children’s National, so this is home for me. Being one of the nation’s top children’s hospitals gives a unique advantage and ability to advocate for childhood diseases and cancers. It is always exciting to play a part in the vision of Children’s National.

  1. What are some of the lessons learned during your time working in Zurich? And how do you think these will compliment your work at Children’s National?

We developed a focused group with basic research activities intertwined with clinical needs.  The result was the launch of two clinical trials. I also helped in developing the Diffuse Midline Glioma-Adaptive Combinatory Trial (DMG-ACT) working group that spans across the world with over 18-member institutions that will help to design the next generation clinical trials. I will continue leading the research component of these efforts, which will have a positive impact on our research activities at Children’s National.

  1. How does your work focusing on low-grade gliomas formulating into high-grade gliomas expand and place Children’s National as a leader in the field?

Scientifically speaking, transformed LLGs are very intriguing. I became interested in the field because these tumors share molecular signatures similar to high-grade gliomas (HGGs). Our team has done a great job at Children’s National to develop tools – including biorepositories, avatar models, drug screening platforms, focused working groups, etc. – for HGGs. We will apply the same model to transformed LGGs with the goal of developing biology-derived clinical therapeutics for this patient population.

  1. How will this work support families and patients seeking specific neuro-oncology care?

We will develop new and high thruput tools so that we can better study cancer formation or transformation. These tools and platforms will allow us to screen candidate drugs that will be clinically effective. The main focus is to accelerate discovery, push drugs to the clinic, feed information back to the lab from clinical and subsequently design better therapies.

  1. You are one of the first scientists to move to the Children’s National Research & Innovation Campus. What are some of the valuable changes or advancements you hope to see as a result of the move?

The campus will provide high-end facilities, including cutting-edge preclinical space, and allow for team expansion. The close proximity to Virginia Tech will also provide an environment for cross-discipline interactions.

  1. Anything else you think peers in your field should know about you, the field or our program?

The team at Children’s National includes Drs. Roger Packer and Miriam Bornhorst. Both have provided constant clinical support, innovation and clinical translation of our findings. I look forward to working with them.

Jeffrey Dome

Q&A with Dr. Jeffrey Dome on his new role as Continental President of SIOP-North America

Jeffrey Dome

In March 2021, Jeffrey Dome, M.D., Ph.D., senior vice president of the Center for Cancer and Blood Disorders at Children’s National Hospital, was elected as the International Society of Paediatric Oncology’s (SIOP) Continental President of North America.

In March 2021, Jeffrey Dome, M.D., Ph.D., senior vice president of the Center for Cancer and Blood Disorders at Children’s National Hospital, was elected as the International Society of Paediatric Oncology’s (SIOP) Continental President of North America.

On October 21-24, the society will hold its 53rd SIOP Annual Congress virtually. During the congress, Dr. Dome will begin his 3-year term as SIOP continental president of North America and will also chair and speak at an educational symposium on current approaches to the treatment of recurrent Wilms tumor.

Dr. Dome attended his very first SIOP meeting in 2005 and was captivated by how regional context influences pediatric cancer treatment. In 2017, he was chair of the local organizing committee for the 49th annual congress in Washington, D.C., and served on the SIOP Board of Directors.  After 15 years of involvement and attending many of the annual meetings, Dr. Dome shares what he looks forward to while serving as continental president of SIOP North America and the legacy he hopes to leave behind.

  1. What does it mean to you to be elected SIOP continental president of North America?

I’m very excited about this role. There are several important societies and organizations in North America that have made a mark on the field of pediatric oncology, but SIOP is unique in its sole focus on childhood cancer and global approach to improving outcomes, as encapsulated by its vision statement: No child should die of cancer: cure for more, care for all.

  1. What excites you most about this role?

In an eye-opening statistic, North America has only about 10% of the global burden of childhood cancer and less than 2% of worldwide childhood cancer deaths.  Although we relentlessly strive to improve childhood cancer outcomes in the United States, what we experience here is just the tip of the iceberg of the worldwide problem. SIOP seeks to make a difference on the international level by improving education, research and access to care for children with cancer around the world. And I’m excited to have a platform to lead North American ambassadors to do that.

Even though North America has a relatively small fraction of the overall childhood cancer cases, we are one of the most well-resourced continents. The question is, how can we use our knowledge, technology and resources to help the rest of the world.  A big part of this role is to make connections and liaisons to move the needle on improving outcomes.

The other thing we’ve learned from a research standpoint is that pediatric cancers are relatively uncommon and are becoming even rarer through molecular classification, which divides cancers into small genetically defined subgroups.  While these advances are tremendously exciting, they require international collaboration to amass a sufficient number of patients to evaluate novel treatment strategies.  My vision for SIOP North America is to be a convener of researchers and connect people around the world to facilitate that work.

  1. What are some of your goals while serving as continental president?

We recently sent a survey to more than 450 SIOP North America members and had a nearly 45% response rate, which I’m told is superb.  This speaks to an excellent level of engagement in SIOP’s mission, with many members volunteering to participate in committees related to research, advocacy and global health. The majority of the respondents to the survey were physicians but improving childhood cancer treatment takes a holistic approach.  One of my main goals is to increase SIOP North American membership to grow the number of nurses, pharmacists, scientists, psychologists, other behavioral health specialists and clinical research coordinators onboard.

I’d like to also identify two to three very specific projects that will impact pediatric cancer care on a global level. There are different ways to do that. We could improve education in different areas around the world (nursing education that we provide to areas that are lacking nursing support, for example). It could be research education and database education for regions of the world that would like to develop more robust research programs. It can also be medical support and developing medical guidelines for oncologists around the world that are adjusted to different levels of resources that are available.

The other goal would be to enhance supportive care and education for cancer care delivery on the global level.

  1. Why is this work important for you?

One of my mentors from when I was a junior faculty member advised me that to be a well-rounded oncologist, one must be familiar with how childhood cancer is treated around the world because different regions have different approaches. There is something to be learned from everyone.  I took that advice to heart and have tried to look beyond the North American approaches.  I think it’s very important to have a global exchange of ideas and serving as continental president of SIOP-North America will enable more to facilitate this dialogue.

  1. What’s the legacy or impact you hope to leave behind?

SIOP North America has a strong and devoted membership but has largely functioned at the level of the individual members.  I hope to bring more structure to the organization to tackle the global challenges of childhood cancer treatment.

Once this structure is in place, I hope to complete two or three SIOP-North America initiatives that have a measurable impact on improving childhood cancer care delivery or outcomes.  The specific projects have yet to be defined but will likely be in the categories of enhancing education, supportive care and facilitating research infrastructure. There’s so much to tackle that if you just look at the overall problem of childhood cancer, it’s overwhelming.  We’re not going to be able to solve everything in three years, but if we could have a few victories and be able to move the needle in some areas, I think that would be a huge success.

little girl with cancer

Pediatric advance care planning linked to families’ positive caregiving appraisals

little girl with cancer

In a first-of-its-kind clinical trial, experts directly measured families’ appraisals of caregiving as one potential benefit to pediatric advance care planning.

Little is known about how families respond to pediatric advance care planning. Physicians often are concerned that initiating pediatric advance care planning conversations with families is too distressing for them.

But a first-of-its-kind clinical trial led by Maureen E. Lyon, Ph.D., F.A.B.P.P., principal investigator, and Jessica Thompkins, B.S.N, R.N., C.P.N., research nurse coordinator, both at Children’s National Hospital, directly measured families’ appraisals of caregiving as one potential benefit to pediatric advance care planning.

The clinical trial, summarized in a video abstract,  shows that compared to controls, families’ participation in Family-Centered Advance Care Planning for Teens with Cancer (FACE®-TC) resulted in positive appraisals of their caregiving for their child with cancer while not significantly burdening them with distress or strain.

“Clinicians can be assured of the benefit and tolerability of this person-centered/family-supported model of pediatric advance care planning,” Thompkins says.

Families randomized to the FACE®-TC pediatric advance care planning intervention showed significantly greater positive family appraisals of caregiving and overwhelmingly, families reported the experience as worthwhile without adding undue distress or strain, compared to controls.

“This evidence meets practice guidelines for an intervention that could be extended to other adolescents living with serious illnesses and their families,” Dr. Lyon adds.

The clinical trial’s results also showed that FACE®-TC families significantly increased positive caregiving appraisals at three months post-intervention compared to controls. No significant differences were found between groups for strain or distress.

Wilm's Tumor

PRAME-specific T cell product may facilitate rapid treatment in cancer settings

Wilms Tumor

PRAME is a cancer-testis antigen that plays a role in cancer cell proliferation and survival and is overexpressed in many human malignancies, including Wilms tumor. “Wilms Tumor (Nephroblastoma)” by euthman is licensed under CC BY 2.0.

Generated preferentially expressed antigen in melanoma (PRAME)-specific T cells from healthy donors can kill PRAME-expressing tumor cells in vitro, researchers at Children’s National Hospital found. Several novel epitopes, which are antigens that are recognized by the immune system, were also identified for enhanced matching, making this a potential therapeutic option for a broader patient group, according to a study published in Cytotherapy.

PRAME is a cancer-testis antigen that plays a role in cancer cell proliferation and survival and is overexpressed in many human malignancies, including melanoma, leukemia, sarcoma, renal cell cancer and Wilms tumor. PRAME also acts as a foreign substance in the body that can trigger the immune system by activating T cells, making it a good target for anticancer immunotherapy — especially for immunocompromised patients.

“The development of an effective off-the-shelf adoptive T-cell therapy for patients with relapsed or refractory cancers expressing PRAME antigen requires the identification of epitopes essential to the adaptive immune response, which are presented by major histocompatibility complex (MHC) class I and II, and are then recognized by the manufactured PRAME-specific T cell product,” said Amy Hont, M.D., oncologist for the Center for Cancer and Immunology Research at Children’s National Hospital. “We, therefore, set out to extend the repertoire of HLA-restricted PRAME peptide epitopes beyond the few already characterized and demonstrate the cytotoxic activity of PRAME-specific T cells to tumor cells known to express PRAME.”

Immunotherapy options for pediatric patients with high-risk malignancies, especially solid tumors, are few. Tumor-associated antigen-specific T cells (TAA-T) offer a therapeutic option for these patients, and Children’s National is building upon the success of the ongoing clinical trials to optimize this therapy and improve the treatment of our patients.

“These findings will also benefit patients because it better informs the pre-clinical studies of third party TAA-T to treat high-risk malignancies, so that we can move more quickly and safely to clinical trials,” said Dr. Hont.

Stanojevic et al. describes that the T-cell products killed partially HLA-matched tumors, and that this enhanced disintegration of tumor cells compared with non-specific T cells suggests an anti-tumor potential for a clinical trial evaluation to determine the safety and efficacy. Further research about the PRAME-specific T cells will help inform a treatment alternative for patients with solid tumors in the future.

The researchers generated a PRAME-specific T cell bank from healthy donor cells and demonstrated anti-tumor cytolytic activity against tumor lines partially HLA-matched to the T cells and known to express PRAME. By using epitope mapping, they identified several novel epitopes restricted to MHC class I or MHC class II to further inform HLA matching.

“Defining PRAME-specific T cells beyond HLA epitopes could be useful when developing T-cell therapies for worldwide application,” Stanojevic et al. write. “Moreover, creating off-the-shelf products has many potential advantages since such products are readily available for the treatment of patients with aggressive disease or patients for whom an autologous product cannot be manufactured.”

Additional authors from Children’s National are Maja Stanojevic, M.D., Ashley Geiger, M.S., Samuel O’Brien, Robert Ulrey, M.S., Melanie Grant, Ph.D., Anushree Datar, M.S., Ping-Hsien Lee, Ph.D., Haili Lang, M.D., Conrad R.Y. Cruz, M.D., Ph.D.,  Patrick J. Hanley, Ph.D., A. John Barrett, M.D, Michael D. Keller, M.D., and Catherine M. Bollard, M.D., M.B.Ch.B.

Sickle-Cell-Blood-Cells

Treating neurocognitive difficulties in children with sickle cell disease

Sickle-Cell-Blood-Cells

An adaptive cognitive training program could help treat attention and working memory difficulties in children with sickle cell disease (SCD), a new study published in the of Journal of Pediatric Psychology shows.

An adaptive cognitive training program could help treat attention and working memory difficulties in children with sickle cell disease (SCD), a new study published in the of Journal of Pediatric Psychology shows.

These neurocognitive difficulties have practical implications for the 100,000 individuals in the U.S. with SCD, as 20-40% of youth with SCD repeat a grade in school and fewer than half of adults with SCD are employed. Interventions to prevent and treat neurocognitive difficulties caused by SCD have the potential to significantly improve academic outcomes, vocational attainment and quality of life.

The study, led by Steven Hardy, Ph.D., director of Psychology and Patient Care Services at the Center for Cancer and Blood Disorders at Children’s National Hospital, examined a promising approach using an adaptive cognitive training program (known as Cogmed Working Memory Training) that patients complete at home on an iPad.

Using a randomized controlled trial design, children were asked to complete Cogmed training sessions 3 to 5 times per week for about 30 minutes at a time until they completed 25 sessions. The Cogmed program involves game-like working memory exercises that adapt to the user’s performance, gradually becoming more challenging over time as performance improves. The team found that patients with sickle cell disease (SCD) who completed the cognitive training intervention showed significant improvement in visual working memory compared to a waitlist group that used Cogmed after the waiting period. Treatment effects were especially notable for patients who completed a training “dose” of 10 sessions.

“Patients who completed at least 10 cognitive training sessions showed improved visual working memory, verbal short-term memory and math fluency,” Dr. Hardy said.

SCD increases risk for neurocognitive difficulties because of cerebrovascular complications (such as overt strokes and silent cerebral infarcts) and underlying disease characteristics (such as chronic anemia). Neurocognitive effects of SCD most commonly involve problems with attention, working memory and other executive functions.

“This study demonstrates that digital working memory training is an effective approach to treating neurocognitive deficits in youth with sickle cell disease,” Dr. Hardy added. “We also found that benefits of the training extend to tasks that involve short-term verbal memory and math performance when patients are able to stick with the program and complete at least 10 training sessions. These benefits could have a real impact on daily living, making it easier to remember and follow directions in school and at home, organize tasks or solve math problems that require remembering information for short periods of time.”

To date, there have been few efforts to test interventions that address the neurocognitive issues experienced by many individuals with SCD. These findings show that abilities are modifiable and that a non-pharmacological treatment exists.

The Comprehensive Sickle Cell Disease Program at Children’s National is a leader in pediatric SCD research and clinical innovation. This study was funded by a grant from the Doris Duke Charitable Foundation, which was the only Innovations in Clinical Research Award ever awarded to a psychologist (out of 31 grants totaling over $15 million), since the award established a focus on sickle cell disease in 2009.

SIOP logo

Jeffrey Dome, M.D., elected SIOP Continental President of North America

Jeffrey Dome

“I’m honored to have been elected as president of a society that is a leader in propelling treatment and advocacy for childhood cancer,” Dr. Dome said. “I look forward to working alongside peers who are committed to efforts to improve outcomes for children with cancer globally.”

Jeffrey Dome, M.D., Ph.D., vice president of the Center for Cancer and Blood Disorders at Children’s National Hospital, has been elected as the International Society of Paediatric Oncology’s (SIOP) Continental President of North America.

“I’m honored to have been elected as president of a society that is a leader in propelling treatment and advocacy for childhood cancer,” Dr. Dome said. “I look forward to working alongside peers who are committed to efforts to improve outcomes for children with cancer globally.”

SIOP is the only global multidisciplinary society devoted to pediatric and adolescent cancer. With over 2,600 members worldwide – including doctors, nurses, other health-care professionals, scientists and researchers – the society is dedicated to increasing knowledge about all aspects of childhood cancer.

SIOP will officially welcome Dr. Dome to the position at its Annual Business Meeting in October.

Roger Packer at lectern

Roger Packer, M.D., presents keynote address at First International Pakistan Neuro-Oncology Symposium

Roger Packer at lectern

During his presentation, he addressed attendees on the topic of the “Modern Management of Medulloblastoma,” discussing results of recently completed clinical trials and the implications of new molecular insights into medulloblastoma, the most common childhood malignant brain tumor.

In late November 2020,  Roger Packer, M.D., senior vice president of the Center for Neurosciences and Behavioral Medicine at Children’s National Hospital, presented as the inaugural keynote speaker for the First International Pakistan Neuro-Oncology Symposium in Karachi, Pakistan.

During his virtual presentation, he addressed attendees on the topic of the “Modern Management of Medulloblastoma,” discussing results of recently completed clinical trials and the implications of new molecular insights into medulloblastoma, the most common childhood malignant brain tumor.

The symposium attracted participants from 57 countries across the globe. There were over 1,000 attendees and as a result of the success of this symposium, there is now a monthly pediatric neuro-oncology lecture series. Dr. Packer agreed to lecture again to the group in mid-January 2021 on “Pediatric Neural Tumors Associated with NF1” as part of an international lecture series hosted by the Aga Khan University in Pakistan.

This is one of multiple national and international activities led by the Brain Tumor Institute at Children’s National Hospital. Directed by Dr. Packer with Eugene Hwang, M.D. as his co-director, and who is associate division chief of oncology at Children’s National Hospital, the multidisciplinary institute holds a monthly tumor board for colleagues at Dmitry Rogachev National Research Center and the Burdenko Neurosurgery Institute in Moscow, Russia, and a monthly brain tumor board coordinated by the Pediatric Oncology Program for colleagues across São Paulo, Brazil.

This also leads to a bi-monthly regional tumor board, which is attended by staff of the National Cancer Institute, the University of Virginia, Inova Children’s Hospital, the University of Maryland Children’s Hospital, Children’s Hospital of Richmond at VCU, Children’s Hospital of The King’s Daughters Health System, Yale University, Geisinger Medical Center, Georgetown University and Carilion Clinic.

Roger Packer with patient

A lifetime of achievements: Roger Packer, M.D.

Roger Packer with patient

Over the years, Dr. Packer and his team in Washington, D.C., have made meaningful contributions to children all around the world diagnosed with childhood brain tumors, including medulloblastoma and gliomas.

Earlier in December, Roger Packer, M.D., senior vice president of the Center for Neurosciences and Behavioral Medicine at Children’s National Hospital, received the 2020 Lifetime Achievement Award from the International Symposium on Pediatric Neuro-Oncology at the meeting organized in Karuizawa, Japan. The prestigious recognition is a testament to the years of commitment and dedication Dr. Packer has devoted to the care of children with brain tumors and as such, have placed him as a top leader.

This award is a recognition of how the field has grown since the first International Symposium on Pediatric Neuro-Oncology Dr. Packer organized in Seattle in 1989. “It grew from a small gathering of investigators to now a multidisciplinary group of over 2,000 investigators,” Dr. Packer says.

Over the years, Dr. Packer and his team in Washington, D.C., have made meaningful contributions to children all around the world diagnosed with childhood brain tumors, including medulloblastoma and gliomas. These findings have contributed to an increase of the survival rate from 50% to over 80% for children with medulloblastoma. In addition, his contributions have led to newer molecular targeted therapies and improved the quality of life of children who are long-term survivors.

“The field, especially in the last decade, rapidly transitioned to a more biologically informed field,” Dr. Packer explains. “We are now utilizing new, exciting discoveries in biology and genetics to inform new approaches to treatment. This kind of transition gives us great hope for the future.”

In his early career, Dr. Packer worked with two neuro-oncology patients who died and would impact his decision to further study this field. At that time, there was minimal understanding of the nature of neuro-oncology diseases or how to best treat them. As a neurologist, he was frustrated by the lack of understanding and as a pediatrician, he was frustrated at the lack of ability to do success management.

“I saw this as a gap in my personal knowledge and found that the field was struggling to come up with new answers and new approaches,” he says. “But at the same time other, advances were being made in child cancer care, such as with leukemia. However, there was no wide focus on pediatric brain tumors.”

Combining his knowledge of neurology with his curiosity and relying on other leaders that surrounded him in the same field, Dr. Packer worked on driving this new work forward. Today, he is still heavily involved in the development of treatment protocols that are increasingly transitional for a variety of brain tumors, including low-grade and high-grade gliomas.

“With the help of our great colleagues at Children’s National, we continue to try to develop new means to treat these tumors, including immunological approaches and the incorporation in the use of novel means, such as low-intensity and high-intensity focused ultrasound,” he says. “We also have an excellent multidisciplinary team at Children’s National that has grown over the last decade some of whom are acknowledged national leaders in the fields of brain tumors, clinical research and clinical care. We also have a robust program focusing on the neurocognitive outcome of children and ways to intervene to ameliorate intellectual compromise and improve quality of life.”

blood cells with sickle cell anemia

Advances in therapy for sickle cell disease and hemophilia

blood cells with sickle cell anemia

Despite having a network of providers and a national database, access to care and treatment burden continue to be issues that affect quality of life in the hemophilia population.

Hemophilia and sickle cell are disorders that are associated with comorbidities and significant treatment burden, discussed Christine Guelcher, PPCNP-BC, lead advanced practice provider for the Center for Cancer and Blood Disorders at Children’s National Hospital, during the virtual 62nd ASH Annual Meeting and Exposition.

During the satellite symposia, Guelcher explained a network of hemophilia treatment centers (HTCs) was developed in the 1970s. The model of multi-disciplinary care in the HTC network has demonstrated improved outcomes. Despite having a network of providers and a national database, access to care and treatment burden continue to be issues that affect quality of life in the hemophilia population.

“While similar programs were developed in sickle cell with similar improvements in care, the funding was not sustained,” Guelcher said. However, efforts are underway to develop multi-disciplinary care and data infrastructure in the sickle cell community.

“The lack of specialized providers, particularly adult hematologists, continues to be an issue for both non-malignant hematologic disorders,” she added.

Advances in care

While hemophilia is rare, it is an expensive disease. Controlling bleeding with medications is expensive and associated with significant treatment burden. Failure to prevent bleeding due to lack of access or adherence can result in debilitating bleeding that impacts on productivity and quality of life. Additionally, clinical trials with gene therapy are ongoing, though questions remain about sustained levels and durability.

“Recent development of drugs that can reduce the frequency of intravenous infusions (extended half-life factor replacement products or subcutaneous novel non-factor prophylaxis) have improved the treatment burden,” Guelcher said. “But access to care continues to be an issue for up to 30% of the patients with bleeding disorders in the U.S.” Sickle cell disease affects mostly Black/African American and Hispanic patients, many of whom already experience health care disparities. While newborn screening, antibiotic prophylaxis and immunizations have decreased life-threatening infections, vaso-occlusive (pain) crisis continues to be a debilitating complication. Furthermore, stroke, pulmonary, cardiac and renal disease are significant comorbidities.

While advances in therapies for sickle cell have provided new treatment options to decrease the frequency of vaso-occlusive crisis, the pathophysiology that results in all of the sequalae is not fully understood. While Bone marrow transplant is potential treatment of the underlying sickle cell disease process, only 20% of patients have a matched sibling donor. Currently, clinical trials are investigating the safety and efficacy of gene therapy. Despite all of these advances, the life expectancy of somebody with sickle cell is 30 years shorter than the general U.S. population.

Access to care

The multi-disciplinary panel presentation at ASH gave participants an opportunity to hear about the challenges facing these patients and families. The overview of new and emerging treatment options gave providers an understanding of treatment options.

“Hopefully, presentations like this will inspire providers to consider a career in non-malignant hematology (particularly adult providers),” Guelcher added.

As one of the nation’s hemophilia and thrombosis treatment centers, Children’s National Hospital provides comprehensive, multi-disciplinary care. Patients can participate in two national registries in order to collect aggregate data that are used to identify trends that impact bleeding disorder patients. Our sickle cell program also offers multi-disciplinary clinics for infants, integrative care for chronic pain and transition, addressing some of the unmet needs that continue to be an issue nationally.

“We also participate in industry sponsored clinical trials to ensure that new therapies, including gene therapy, are safe and effective,” Guelcher explained. “This gives our patients access to state-of-the-art care. Numerous clinical trials to ensure that recently licensed products and gene therapy are safe for use in a pediatric patient with hemophilia and sickle cell are ongoing.”

Roger Packer

Roger Packer, M.D., receives Lifetime Achievement Award

Roger Packer

“I am very honored and humbled to receive this recognition from the International Symposium on Pediatric Neuro-Oncology,” says Roger Packer, M.D. “I am proud of the contributions my team and I have made in this field and we look forward to continue to lead research focused on the advancement of the crucial areas neuro-oncology.”

Roger Packer, M.D., senior vice president of the Center for Neurosciences and Behavioral Medicine at Children’s National Hospital, will receive the 2020 Lifetime Achievement Award from the International Symposium on Pediatric Neuro-Oncology. Dr. Packer was selected as a recipient for the prestigious award for his substantial contributions to pediatric oncology and scientific achievements.

“I am very honored and humbled to receive this recognition from the International Symposium on Pediatric Neuro-Oncology,” says Dr. Packer. “I am proud of the contributions my team and I have made in this field and we look forward to continue to lead research focused on the advancement of the crucial areas neuro-oncology.”

Dr. Packer is also a Gilbert Distinguished Professor of Neurofibromatosis and is Director of both the Gilbert Neurofibromatosis Institute and the Brain Tumor Institute of Children’s National Hospital. Most of the current studies Dr. Packer coordinates are studies evaluating innovative agents aimed at the molecular underpinnings of neurologic disease. He has published over 400 original articles and 350 reviews and chapters.

The award will be presented at ISPNO 2020, the 19th International Symposium on Pediatric Neuro-Oncology, December 13-16, 2020, in Karuizawa, Japan.

Children’s National Hospital is incredibly proud of the work Dr. Packer has done in the neuro-oncology community.