Tag Archive for: genetics

Andrea L. Gropman

Andrea L. Gropman, M.D., FAAP, FACMG, FANA, named as the Margaret O’Malley Professor of Genetic Medicine

Andrea L. GropmanChildren’s National Hospital named Andrea L. Gropman, M.D., FAAP, FACMG, FANA, as the Margaret O’Malley Professor of Genetic Medicine at Children’s National Hospital.

Dr. Gropman serves as Chief of the Division of Neurogenetics and Developmental Pediatrics at Children’s National Hospital. She is also a Professor of Pediatrics and Professor of Neurology at George Washington School of Medicine and Health Sciences.

About the award

Dr. Gropman joins a distinguished group of Children’s National physicians and scientists who hold an endowed chair. The Margaret O’Malley Professor of Genetic Medicine is one of 47 endowed chairs at Children’s National.

Professorships support groundbreaking work on behalf of children and their families and foster new discoveries and innovations in pediatric medicine. These appointments carry prestige and honor that reflect the recipient’s achievements and donor’s forethought to advance and sustain knowledge.

Dr. Gropman’s research focuses on neuroimaging, inborn errors of metabolism such as urea cycle disorders and mitochondrial disorders, and neurogenetics. She is the principal investigator of the Urea Cycle Disorders Consortium (UCDC) and the UCDC imaging consortium. She is the deputy clinical director of the Mito EpiGen Program.

Thomas and Mary Alice O’Malley, through their vision and generosity, are ensuring that Dr. Gropman and future holders of this professorship will launch bold, new initiatives to rapidly advance the field of pediatric genetic medicine, elevate our leadership and improve the lifetimes of children with genetic diseases.

About the donors

Tom and Mary Alice O’Malley have partnered with Children’s National to improve the lives of patients with urea cycles disorders for more than two decades. In 2003, their transformational philanthropy helped launch the Urea Cycle Disorders Consortium. This pioneering network grew to include 16-sites worldwide. It garnered 20 years of funding from the NIH’s Rare Diseases Clinical Research Network — the only center to sustain continuous funding over this period. This consortium’s research has yielded multiple effective treatment strategies, including government approval of three lifesaving therapies.

“The O’Malley family’s steadfast generosity helped us grow into the robust community of investigators and families we are today,” says Dr. Gropman. “They transformed care for UCD patients everywhere.”

Germ cell tumor of testicle under microscopy

New research: Genes that drive testicular cancer identified

In the largest sequencing study to date on testicular cancer, researchers at Children’s National Hospital have identified genes that contribute to testicular germ cell tumors (TGCT), the most common cancer among young, white men.

The findings, published in European Urology, provide direction for future screening and treatment of this disease, which can strike during the teen years and often runs in families. While treatable when identified early, testicular cancer leads to infertility, mental health issues and sometimes death, making its identification crucial for young adults.

“Testicular cancer is really a young person’s disease,” said Louisa Pyle, M.D., Ph.D. , a pediatrician, medical geneticist and research geneticist at the Children’s National Rare Disease Institute. “Most folks who have testicular cancer are between the ages of 15 and 45. Even though testicular cancer is relatively rare in the cancer world, it results in the greatest number of years lost among all adult cancers.”

What we hope to discover

Dr. Pyle led a research team that included experts at the National Cancer Institute and the University of Pennsylvania to study families with multiple members diagnosed with testicular cancer. They used whole exome sequencing to identify variants in many genes that predisposed patients to TGCT. Their work suggests that multiple variants – inherited together – increased the risk for the disease and provides potential routes for drugs that could be used for prevention and treatment.

“We found many genes that help us understand how testicular cancer happens,” Dr. Pyle said. “Our hope is that we can use that to try to come up with better treatments or better ways to preserve fertility for people with testicular cancer or gonadal differences.”

The patient benefit

Testicular cancer most often strikes men of European ancestry. It is also more common among intersex patients and those with differences in sex development, which is a clinical and research focus for Dr. Pyle. Medically, these are children who have a change in the biological characteristics of sex, including their chromosomes, hormones, gonads or physical body parts.

By studying a more common version of testicular cancer, the team learned about the underlying genetics in a way that will benefit intersex patients.

“One of the things we do in medicine is study a common version of the rare thing,” Dr. Pyle said.  “Through this research, we learned that the same genes that cause intersex traits in some patients are also changed in subtle ways for people with testicular cancer. This is a way to study something that could improve care for those kids, by studying a group that has greater numbers.”

colorful strands of DNA

Paving the way to activate a single gene in Angelman syndrome

colorful strands of DNA

Angelman syndrome (AS) is a rare disorder that causes neurodevelopmental issues such as intellectual disability, impaired speech and motor skills, epilepsy and sleep disruptions. This single gene disorder is caused by mutations or deletions in the maternal copy of the UBE3A gene.

Angelman syndrome (AS) is a rare disorder that causes neurodevelopmental issues such as intellectual disability, impaired speech and motor skills, epilepsy and sleep disruptions. This single gene disorder is caused by mutations or deletions in the maternal copy of the UBE3A gene. To date, there is no treatment for AS.

It is easier to treat this syndrome when the disrupted gene is present but repressed. If experts can figure out how to activate it in clinical trials, they believe patients could receive a treatment that tackles the root of the problem. Children’s National Hospital experts support this vision and the AS community by helping establish appropriate biomarkers for current and future clinical trials.

While the field is trying to figure out the best scientific method to quantify progress in clinical trials for AS, the Sidorov Laboratory found that overnight sleep testing is not necessary for detecting Angelman syndrome electroencephalography (EEG) biomarkers, according to the study published in Autism Research. The data further suggests that while sleep EEGs do not provide additional benefit for detecting delta EEG rhythms, sleep itself represents a valuable AS biomarker.

What this means

“It is encouraging to see that wake EEGs are sufficient, and perhaps ideal, for detecting delta waves in a clinical trial setting,” said Michael S. Sidorov, Ph.D., principal investigator with the Center for Neuroscience Research at Children’s National. “With this biomarker, researchers can measure how AS severity changes in children over the course of a clinical trial. This enables trials to test the efficacy of exciting new treatments.”

The hold-up in the field

In the past decade, the research community has focused on activating the dormant paternal copy of the UBE3A gene in pre-clinical models. Presently, there are three ongoing phase I clinical trials for AS in the U.S. These trials use antisense oligonucleotides (ASOs), which can modify gene expression to treat genetic disorders, and have been FDA approved for other disorders. These new compounds specifically target the gene activation to unleash the existing copy of UBE3A. However, there is a need for better and more accurate ways to know if the drug is working or not. The field has not reached a consensus yet on the appropriate biomarkers that can correctly measure success.

There are also challenges associated with performing overnight EEG studies in children with AS due to the severe sleeping problems, difficulty in tolerating the process and sample recruitment.

The patient benefit

Elizabeth R. Jalazo, M.D., assistant professor of pediatrics at the University of North Carolina in Chapel Hill, chief medical officer at the Angelman Syndrome Foundation, is also the parent of a child with Angelman syndrome. Dr. Jalazo, who was not part of the study, mentioned that her experience with a daughter with a rare disorder had brought challenges to their family over the last seven years. But, alas, she said the joy Evelyn has brought to their lives far outweighs the day-to-day challenges of special needs parenting.

“As a parent I’m thrilled that we can potentially capture as much meaningful EEG data in a short daytime EEG rather than subjecting our children to overnight EEG studies,” said Dr. Jalazo. “As a clinician this is equally exciting from a clinical trial feasibility standpoint.”

One of the greatest challenges facing Angelman syndrome and other neurodevelopmental disorder therapeutic development is the lack of appropriate endpoints to assess the efficacy of our interventions.

“I worry very much that without objective measures specific to Angelman syndrome, potentially beneficial therapeutics may fail to meet the mark and ultimately not reach the community,” she added.

The scientific community has transitioned from the hope of clinical trials to lessen those day-to-day challenges to witnessing first-in-human trials of potentially transformative therapeutics in just the last few years.

“It is a biomarker work like this that is critical as we delve into the exciting landscape of clinical trial design and advance therapeutics for Angelman syndrome,” said Dr. Jalazo.

You can read the full study “Evaluation of electroencephalography biomarkers for Angelman syndrome during overnight sleep” in Autism Research.

 

Could whole-exome sequencing become a standard part of state newborn screening?

smiling baby boy

There are concerns about implementing whole-exome sequencing since it takes away the child’s right to decide if they want to know — or not — about their specific inherited disease.

It is still premature to standardize an innovative methodology known as whole-exome sequencing (WES) as part of state newborn screening programs, argues Beth A. Tarini, M.D., M.S., associate director for the Center of Translational Research at Children’s National Hospital, in a new editorial published in JAMA Pediatrics.

About 4 million infants are born annually in the United States. Newborn screening is a mandatory state-run public health program that screens infants for inherited diseases in the first days of life so they can receive treatment before irreversible damage occurs. Several of these screening tests are done on blood drawn from an infant’s heel.

WES holds the potential to screen infants for thousands of disorders and traits, including those that appear in adulthood. But there are concerns about implementing WES since it takes away the child’s right to decide if they want to know — or not — about their specific inherited disease. There is also the unknown effect that it could have on their ability to obtain health insurance.

“As caretakers for their children, parents have the challenge of deciding what kind of information, including genetic, will be valuable for their child,” says Dr. Tarini. “As a society, we have the responsibility of deciding where the healthcare dollars get the best return – especially when it comes to children. We need to start that conversation for universal genomic sequencing of newborns sooner rather than later.”

The Pereira et al. study, appearing in the new edition of JAMA Pediatrics and referenced in Dr. Tarini’s editorial, is the first to demonstrate no significant harm in the initial 10 months of life after performing WES under the best conditions of access to resources and a controlled environment.

While the Pereira et al. study has limited data on the effects of WES on families from underrepresented backgrounds, Dr. Tarini notes that it does provide a critical first step in this area of pediatric genomic research and for policy decision-making about the widespread implementation of WES in newborns.

“Moving forward, the U.S. will have to make a collective decision about the value of WES for newborns,” says Dr. Tarini. That value calculus cannot be made without consideration of the general state of healthcare for infants. As she points out, “This is not an easy question to answer in a country whose infant mortality ranks 34th according to the Organization for Economic Co-operation and Development (OECD).”

Dr. Tarini’s research identifies ways to optimize the delivery of genetic services to families and children, particularly newborn screening. She has also chaired state newborn screening committees and served on several federal newborn screening committees.

Dr. Eric Vilain and researcher in a lab

Children’s National Hospital joins the Mendelian Genomics Research Consortium, receiving $12.8 million

Dr. Eric Vilain and researcher in a lab

Dr. Eric Vilain accompanied by a fellow researcher at the new Research & Innovation Campus.

Children’s National Hospital announces a $12.8 million award from the National Institutes of Health’s National Human Genome Research Institute (NHGRI) to establish the only Pediatric Mendelian Genomics Research Center (PMGRC) as part of a new Mendelian Genomics Research Consortium. Researchers at Children’s National and Invitae — a leading medical genetics company — will identify novel causes of rare inherited diseases, investigate the mechanisms of undiagnosed conditions, enhance data sharing, and generally interrogate Mendelian phenotypes, which are conditions that run in families.

“Our overall approach provides an efficient and direct path for pediatric patients affected with undiagnosed inherited conditions through a combination of innovative approaches, allowing individuals, families and health care providers to improve the management of the disease,” says Eric Vilain, M.D., Ph.D., director of the Center for Genetic Medicine Research at Children’s National.

To accelerate gene discovery for Mendelian phenotypes and the clinical implementation of diagnosis, the consortium will leverage the broad pediatric clinical and research expertise of the Children’s National Research Institute and laboratories in partnership with Invitae. The Molecular Diagnostics Laboratory at Children’s National will provide genetic testing for patients in the Washington, D.C., metropolitan area. Invitae will provide genetic testing for patients from elsewhere in the U.S., giving the project a national reach and allowing researchers to leverage more robust data. Integrative analyses will be performed jointly with scientists at Children’s National and Invitae.

“Some patients have genetic test results that are ‘negative,’ meaning the results do not explain their condition. When a patient receives a negative result, it is challenging for parents and doctors to know what to do next,” says Meghan Delaney, D.O., M.P.H., chief of the Division of Pathology and Laboratory Medicine and Molecular Diagnostics Laboratory at Children’s National. “The project will provide an avenue to possibly find an explanation of their child’s condition. Besides filling an important clinical gap, the results will add new knowledge for future patients and the scientific community.”

“Too often parents of children suffering from a rare condition find themselves in a protracted diagnostic odyssey when early intervention could mean better overall outcomes,” says Robert Nussbaum, M.D., chief medical officer of Invitae. “We are proud to partner with Children’s National Research Institute on this important effort to identify the genetic cause of these rare conditions earlier and improve the chances that children with such conditions can receive the appropriate treatments and live healthier lives.”

Deciphering Mendelian conditions will help diagnose more of the estimated 7,000 rare inherited diseases and predict the tremendous variability of clinical presentations in both rare and common conditions caused by the same gene.

There is also a need to establish a new standard of care to bridge the gap in the use of genomic information from diagnosis to improved outcomes. The consortium will establish best practices for obtaining a genetic diagnosis, offering an explanation for the condition to affected patients, and is likely to provide additional explanations for basic biological mechanisms, increasing the knowledge of physiopathology and possibly leading to better condition management.

The PMGRC will enroll an average of 2,600 participants per year with suspected Mendelian phenotypes and previously non-diagnostic tests and their family members. The integration of multiple genomic technologies, including short and long read genome sequencing, optical genome mapping and RNA-sequencing, will enable these discoveries. To disambiguate uncertain variants and candidate genes, the PMGRC will use whole transcriptome analysis, RNA-sequencing, CRE-sequencing and functional modeling.

Since many Mendelian conditions first appear prenatally or during infancy, Children’s National will have a unique bed-to-bench-to-bed symbiosis. Patients eligible for the study will come from across the multiple specialty divisions of Children’s National, including the Children’s National Rare Disease Institute, and nationally through the partnership with Invitae. From there, experts from the Children’s National Center for Genetic Medicine Research will enroll patients and integrate the initial clinical test results with broad-based genomic interrogation, leading to new diagnoses and novel discoveries. Finally, the results will be verified and returned to clinicians, which will help inform targeted therapies.

Typically, the patients eligible for this study jump from specialist to specialist without an answer, have a condition that appears in other family members or they have symptoms involving more than one affected organ, which suggests a complex developmental condition. The PMGRC at Children’s National will help find answers to the causes of many puzzling pediatric conditions, providing faster clinical diagnoses and opening up pathways to potentially better treatments.

Dr. Vilain’s work will be based at the Children’s National Research & Innovation Campus on the grounds of the former Walter Reed Army Medical Center in Washington, D.C. The campus is also home to the Children’s National Rare Disease institute — one of the largest clinical genetics program in the United State that provides care to more than 8,500 rare disease patients.

facial recognition of noonan syndrome

Commercialization of novel facial analysis technology can improve diagnosis of rare disorders in pediatric patients

facial recognition of noonan syndrome

Children’s National Hospital has entered into a licensing agreement with MGeneRx Inc. for its patented pediatric medical device technology using objective digital biometric analysis software for the early and non-invasive screening of dysmorphic genetic diseases such as Noonan syndrome.

Children’s National Hospital has entered into a licensing agreement with life sciences technology company MGeneRx Inc. for its patented pediatric medical device technology using objective digital biometric analysis software for the early and non-invasive screening of dysmorphic genetic diseases. The technology, developed by a multidisciplinary Children’s National team led by Marius George Linguraru, D.Phil, M.A., M.Sc., of the Sheikh Zayed Institute for Pediatric Surgical Innovation and Marshall Summar, M.D., director of the Children’s National Rare Disease Institute (CNRDI), can provide a more advanced diagnostic tool for regions of the world with limited access to geneticists or genetic testing.

The application utilizes artificial intelligence (AI) and machine learning to analyze biometric data and identify facial markers that are indicative of genetic disorders. Physicians can capture biometric data points of a child’s face in real time within the platform, where it scans facial biometric features to determine the potential presence of a genetic disease, which can often be life-threatening without early intervention. Research studies conducted in conjunction with the National Human Genome Research Institute at the National Institutes of Health further enhanced the development of the application in recent years, showing the potential to detect, with a 90 percent accuracy, early diagnosis of 128 genetic diseases across pediatric subjects in 28 countries. These diseases include DiGeorge syndrome (22q11.2 deletion syndrome), Down syndrome, Noonan syndrome and Williams-Beuren syndrome.

“We are delighted to enter into this licensing agreement through Innovation Ventures, the commercialization arm of Children’s National Hospital, which seeks to move inventions and discoveries from Children’s National to the marketplace to benefit the health and well-being of children. Our mission is to add the ‘D’ in development to the ‘R’ in research to accelerate the commercialization of our intellectual property,” says Kolaleh Eskandanian, Ph.D., M.B.A., P.M.P., vice president and chief innovation officer at Children’s National and managing director of Innovation Ventures. “It is through partnerships with startups and the industry that we can achieve this goal and thus we highly value this new partnership with MGeneRx Inc. The acceleration and commercialization of this objective digital biometric analysis technology will not only help diagnose rare genetic disorders – it will also allow for earlier interventions that improve the quality of life for the children living with these conditions.”

Eskandanian adds that the social impact of this technology is especially profound in lower income nations around the world, where there is a high prevalence of rare genetic conditions but a severe lack in the specialty care required to diagnose and treat them. Additional data collected through the expanded use of the technology will help to further develop the application and expand its capabilities to identify and diagnose additional rare genetic conditions.

The licensing agreement was arranged by the Children’s National Office of Innovation Ventures, which is focused on the commercialization of impactful new pediatric medical device technologies and therapies to advance children’s health care. Created to catalyze the ongoing translational research of the Children’s National Research Institute (CNRI) as well as inventions by hospital’s clinicians, Innovation Ventures focuses on four core pillars to advance pediatric medical technologies including a Biodesign program, partnerships and alliances to augment internal capacity, seed funding to de-risk technologies and validate market and clinical relevance, and back-office operations to manage intellectual property and licensing activities. Since 2017, Children’s National intellectual property has served as the basis for over 15 licensing or option agreements with commercial partners.

Providing access to an array of experts and resources for pediatric innovators is one of the aims of the Children’s National Research & Innovation Campus, a first-of-its-kind focused on pediatric health care innovation, with the first phase currently open on the former Walter Reed Army Medical Center campus in Washington, D.C. With its proximity to federal research institutions and agencies, universities, academic research centers, as well as on-site incubator Johnson and Johnson Innovation – JLABS, the campus provides a rich ecosystem of public and private partners, which will help bolster pediatric innovation and commercialization.

The Children's National Research & Innovation Campus

Children’s National Research & Innovation Campus welcomes Rare Disease Institute as first occupant

The Children's National Research & Innovation Campus

The Rare Disease Institute, which includes the largest clinical group of pediatric geneticists in the nation, focuses on developing the clinical care field of the more than 8,000 rare diseases currently recognized and advancing the best possible treatments for children with these diseases.

The Children’s National Research & Innovation Campus (RIC), the first-of-its-kind pediatric research and innovation hub located in Washington, D.C., now has its first occupant – the Rare Disease Institute (RDI).

The institute, which includes the largest clinical group of pediatric geneticists in the nation, focuses on developing the clinical care field of the more than 8,000 rare diseases currently recognized and advancing the best possible treatments for children with these diseases.

With the advent of advanced DNA sequencing, databanks, informatics, new technology, pediatric consortiums and global partnerships, clinical researchers have never been in a better position to diagnose and treat rare diseases. As this field of medicine continues to rapidly evolve, the benefits provided to patients, families, clinicians and researchers through its new home at the RIC will further accelerate the trajectory of rare disease from an academic specialty into a mainstream medical field.

Marshall Summar, M.D., director of the RDI and chief of the Division of Genetics and Metabolism at Children’s National, is well-known for pioneering work in caring for children diagnosed with rare diseases. He developed and launched the world’s first RDI at Children’s National in 2017, and it became the first Clinical Center of Excellence designated by the National Organization for Rare Diseases (NORD). Dr. Summar discusses how this move will positively impact treatment, services and discovery on a national level.

Q: What are the patient benefits of the move to the RIC?

A: Patients with genetic conditions spend a lot of time visiting the hospital. By creating an easy access environment that is designed around their needs, we can provide world-class care to the families we work with. We designed extensive telemedicine capacity into the clinic so we can continue to expand our digital reach to wider areas. The parking facility is also a huge plus for our families with mobility impairments. The garage is only steps away from the clinic entrance. The architectural team worked closely with the clinical team to create a patient-centric facility for a safe and positive experience.

Q: What are the research benefits of being on the RIC?

A: One of our core goals at the RIC was to create research “neighborhoods.” A focus of the first phase of the RIC occupancy is genetics and the RDI is the clinical manifestation of that focus. Having the clinical service that sees patients with genetic disease, sharing space and campus with the Center for Genetic Medicine Research team and the molecular genetics laboratory creates that thematic neighborhood. Some of the best basic science ideas and projects come from the clinical world. Close interaction between the clinicians and the scientists will enhance those “spark” encounters. In addition, the physicians in the RDI who do bench research are also part of the genetic medicine program which furthers these interactions.

Marshall Summar

Marshall Summar, M.D., director of the RDI and chief of the Division of Genetics and Metabolism at Children’s National.

Q: What would you say has been the most significant change to your field in the past decade?

A: The ability to access next-generation genetic sequencing for more and more of our patients. The percentage of patients who can get a meaningful diagnosis with these technologies increases every year. With these techniques, we are finding new links between genes and disease at the rate of 5-10 per week.

Q: What excites you most about the future of medical genetics and rare diseases?

A: Two things are really exciting to me. The first is the ability to diagnose more patients than at any time in history. The second is the rate at which new genetic/rare disease therapies are being developed (around 50% of the FDA new drug approvals per year).

As the largest clinical program in North America and with our new location on this dedicated research and innovation campus in Washington, D.C., Children’s National and the RDI are uniquely poised to dramatically change the field of rare disease medicine. Our clinical models have started spreading to other centers across the country and will help shape the field for years to come. We are evolving rare disease into a true mainstream medical field, and the ability to make this type of change to a field is very unique to Children’s National.

Learn more about the Children’s National Research & Innovation Campus.

person with brain tumor

Update on pediatric brain tumors

person with brain tumor

Over the last five years, there has been tremendous growth in the field of pediatric neuro-oncology with increasing understanding of the genetic and epigenetic heterogeneity of central nervous system (CNS) tumors. Attempts are underway to translate these insights into tumor-specific treatments. A recent review article in Current Neurology and Neuroscience Reports by Roger Packer, M.D., senior vice president of the Center for Neurosciences and Behavioral Medicine at Children’s National Hospital, provided an update on the current landscape of pediatric brain tumors and the impact of novel molecular insights on classification, diagnostics and therapeutics.

sick child in palliative care hospital bed

Children’s National Research Institute receives NIH grant for palliative care study

sick child in palliative care hospital bed

A new NIH grant will support the first study that examines palliative care needs in pediatric rare disease community.

The National Institute of Health (NIH) has awarded $500,875 to the Children’s National Research Institute (CNRI), the academic arm of Children’s National Hospital, to support a new study examining the palliative care needs of children living with rare genetic diseases.

This is the first study of families of children with genetic and metabolic conditions, termed collectively as rare diseases, that is designed to intervene to support the well-being of family caregivers and create advance care plans for future medical decision making. In the United States, a rare disease is defined as a particular condition affecting fewer than 200,000 people. Pediatric patients with rare diseases experience high mortality rates, with 30 percent not living to see their fifth birthday.

“Children with ultra-rare or complex rare disorders are routinely excluded from research studies because of their conditions, creating a significant health disparity. Surveys show that families of children with rare diseases are adversely impacted by lack of easy access to peer and psychological support,” says Maureen Lyon, Ph.D., Clinical Health Psychologist and Professor of Pediatrics at the CNRI and principal investigator on the project. “This study will examine the palliative care needs of family caregivers of children with rare genetic disorders and advance care planning intervention, which will ultimately help facilitate discussions about future medical care choices that families are likely to be asked to make for their child.”

Although greatly needed, there are few empirically validated interventions to address these issues Currently, there is only one intervention described for families of children with rare diseases — a Swedish residential, competence program — which focuses on active coping. However, this intervention does not address pediatric advance care planning, a critical aspect of palliative care.

Lyon adds that the major benefit of this proposed project will be filling the gap in knowledge about what family caregivers of medically fragile children with rare diseases want with respect to palliative care. In the United States, these families are expected to provide a level of care that, until a few decades ago, was reserved for hospitals.

Maureen E Lyon

Maureen Lyon, Ph.D., Clinical Health Psychologist and Professor of Pediatrics at the CNRI and principal investigator on the project.

“Our hope is that this study will provide a structured model for facilitating family decisions about end-of-life care, for those families who do not have the good fortune to have children who have the capacity to share in decision-making,” Lyon says.

In addition to bridging the knowledge gap regarding palliative care in rare disease patients, the study will also help inform current clinical, ethical and policy discussions, as well as the legal issues in a variety of areas, such as the debate surrounding advocacy, particularly for those children with impairments in physical function.

“We look forward to the results of this study,” said Marshall Summar, M.D., director of the Rare Disease Institute and division chief, Genetics and Metabolism at Children’s National Hospital. “As a leader in rare disease care, we continually examine how we can improve care and support for our patient families at our clinic and want to share our findings with others engaged in caring for rare disease patients. Because rare diseases can be life limiting in some cases, we need to learn all we can about how best to care and support a patient and family as they prepare for a potential transition to palliative care.”

All research at Children’s National Hospital is conducted through the CNRI, including translational, clinical and community studies. The CNRI also oversees the educational activities and academic affairs of the hospital and the Department of Pediatrics at the George Washington University School of Medicine and Health Sciences, frequently partnering with many other research institutions regionally and nationally. CNRI conducts and promotes translational and clinical medical research and education programs within Children’s National Hospital that lead to improved understanding, prevention, treatment and care of childhood diseases.

Andrew Dauber

Andrew Dauber, M.D., MMSc, caps off research success with award and reception

Andrew Dauber

Unfortunately, we’ve been notified that the ENDO2020 conference has been canceled due to concerns of COVID-19. Because of this, we will not be hosting our reception in honor of Andrew Dauber, M.D., on Sunday, March 29.

We hope to see you at a future Endocrinology or Pediatric Endocrinology event.

Children’s National Hospital is incredibly proud of the work Dr. Dauber has done in the endocrinology community.

Andrew Dauber, M.D., MMSc, division chief of Endocrinology at Children’s National Hospital, will be awarded the 2020 Richard E. Weitzman Outstanding Early Career Investigator Award at ENDO 2020. The prestigious award will be presented at the annual meeting of the Endocrine Society in recognition of Dauber’s work in understanding the regulation of growth and puberty, and applying innovative genetic technologies to studying pediatric endocrinology. Dauber credits many collaborators throughout the world, as well as the team at Children’s National for the award.

With a five-year grant from the National Institutes of Health (NIH), Dauber and colleagues from the Cincinnati Children’s Hospital Medical Center, Boston Children’s Hospital and the Children’s Hospital of Philadelphia are using electronic health records to identify children who likely have rare genetic growth disorders. Using cutting-edge DNA sequencing technologies, including whole exome sequencing, the researchers are aiming to identify novel genetic causes of severe growth disorders. The first paper describing genetic findings in patients with high IGF-1 levels was published in Hormone Research in Paediatrics in December 2019.

Dauber and researchers at Cincinnati Children’s Hospital Medical Center are exploring how to treat patients with mutations in the PAPPA2 gene. In 2016, the group described the first patients with mutations in this gene who had decreased the bioavailability of IGF-1, stunting their growth and development. In their current phase of research, findings are emphasizing the importance of this gene in regulating IGF-1 bioavailability throughout childhood. The ultimate aim is to create therapies to increase IGF-1 bioavailability, thereby supporting healthy growth and development in children. Their first study to track PAPPA2 and intact IBGBP-3 concentrations throughout childhood was published in the European Journal of Endocrinology in January 2020.

Dauber is particularly interested in studying children with dominantly inherited forms of short stature. Along with collaborators in Cincinnati, he currently has an ongoing treatment trial using growth hormone in patients with Aggrecan gene mutations.  Dauber hopes to announce soon a new clinical trial for children with all forms of dominantly inherited short stature.

Study upon study has shown us that there are many factors that affect an individual’s height and growth. As these studies and the conversation around how to identify and address genomic anomalies become more prevalent, the team at Children’s National is increasingly interested in engaging with other centers around the country. In the coming months, the Children’s National Research & Innovation Campus will open on the grounds of the former Walter Reed Army Medical Center, which will serve as a one-of-a-kind pediatric research and innovation hub. A critical component to this campus is the co-location of Children’s National research with key partners and incubator space.

Nadia Merchant

Working to improve the management of endocrine related conditions

Nadia Merchant

This past fall, Nadia Merchant, M.D., joined Children’s National Hospital as an endocrinologist in the Endocrinology and Diabetes Department. Dr. Merchant received her undergraduate and medical education at Weill Cornell Medical College in Qatar. She completed her pediatric residency at Wright State Boonshoft School of Medicine. She then completed her genetics residency and pediatric endocrine fellowship at Baylor College of Medicine/Texas Children’s Hospital.

Dr. Merchant was born with acromesomelic dysplasia, a rare genetic disorder, but that hasn’t stopped her from pursuing her medical career. While at Baylor College of Medicine, Dr. Merchant was very active in quality improvement projects, research and organizations that raise awareness of endocrine related conditions. For several years, she was a moderator at Baylor College of Medicine for “From Stress to Strength,” at a course for parents of children with genetic disorders and autism. Dr. Merchant also served as an endocrine fellow representative on the American Academy of Pediatrics Section on Endocrinology (SOEn) for the last two years and also served on the committee for a Bone and Mineral special interest group within the Pediatric Endocrine Society (PES). During medical school, she worked with Positive Exposure, an organization that uses visual arts to celebrate human diversity for individuals living with genetic, physical, behavioral and intellectual differences.

During the 2019 Endocrine Society Annual Meeting, Dr. Merchant won the Presidential Poster Award for her poster presentation: Assessing Metacarpal Cortical Thickness as a Tool to Evaluate Bone Density Compared to DXA in Osteogenesis Imperfecta a research project assessing whether hand film is an additional tool to detect low bone mineral density in children.

Dr. Nadia Merchant is currently one of the endocrinologists in the multidisciplinary bone health clinic at Children’s National, a clinic dedicated to addressing and improving bone health in children. Dr. Merchant also manages endocrine manifestations in children with rare genetic disorders.

The Endocrinology department at Children’s National is ranked among the best in the nation by “U.S. News & World Report”.

pastel colored DNA strands

Germline microsatellite genotypes differentiate children with medulloblastoma

pastel colored DNA strands

A new study suggests that medulloblastoma-specific germline microsatellite variations mark those at-risk for medulloblastoma development.

Brian Rood, M.D., oncologist and medical director at the Brain Tumor Institute, and Harold “Skip” Garner, Ph.D., associate vice provost for research development at Edward Via College of Osteopathic Medicine, published a report in the Society for Neuro-Oncology’s Neuro-Oncology Journal about using a novel approach to identify specific markers in germline (non-tumor) DNA called microsatellites that can differentiate children who have the brain tumor medulloblastoma (MB) from those who don’t.

“Ultimately, the best way to save children from brain tumors and prevent them from bearing long-term side effects from treatment is to prevent those tumors from occurring in the first place,” says Dr. Rood. “New advancements hold the potential to finally realize the dream of cancer prevention, but we must first identify those children at-risk.”

While analyzing germline sequencing data from a training set of 120 MB subjects and 425 controls, the doctors identified 139 individual microsatellites whose genotypes differ significantly between the groups. Using a genetic algorithm, they were able to construct a subset of 43 microsatellites that distinguish MB subjects from controls with a sensitivity and specificity of 92% and 88% respectively.

“We made discoveries in an untapped part of the human genome, enabled by unique bioinformatics data mining approaches combined with clinical insight,” said Dr. Garner. “Our findings establish new genomic directions that can lead to high accuracy diagnostics for predicting susceptibility to medulloblastoma.”

What the doctors discovered and demonstrated in the study was that MB-specific germline microsatellite variations mark those at risk for MB development and suggest that other mechanisms of cancer predisposition beyond heritable mutations exist for MB.

“This work is the first to demonstrate the ability of specific DNA sequences to differentiate children with cancer from their healthy counterparts,” added Dr. Rood.

Contributing Authors to this research study included:  Brian R. Rood, M.D., Harold R. Garner, Ph.D., Samuel Rivero-Hinojosa, Ph.D., and Nicholas Kinney, Ph.D.

Andrew Dauber

Andrew Dauber, M.D., MMSc, awarded prestigious laureate award

Andrew Dauber

Unfortunately, we’ve been notified that the ENDO2020 conference has been canceled due to concerns of COVID-19. Because of this, we will not be hosting our reception in honor of Andrew Dauber, M.D., on Sunday, March 29.

We hope to see you at a future Endocrinology or Pediatric Endocrinology event.

Children’s National Hospital is incredibly proud of the work Dr. Dauber has done in the endocrinology community.

Andrew Dauber, M.D., MMSc, division chief of Endocrinology at Children’s National Hospital, will receive the 2020 Richard E. Weitzman Outstanding Early Career Investigator Award from The Endocrine Society. Given annually, the award was established in 1982 and honors the memory of the late Richard E. Weitzman, who had a brief but outstanding career studying neurohypophyseal hormone and cardiovascular-endocrine physiology – two seminal areas of modern endocrinology.

Dr. Dauber was selected as a recipient for the prestigious award for his contributions to understanding the regulation of growth and puberty, and his success at applying innovative genetic technologies to studying pediatric endocrinology.

“I feel extremely honored and humbled to be the recipient of the Richard E. Weitzman Outstanding Early Career Investigator Award from the Endocrine Society,” says Dr. Dauber. “I am so grateful to my many collaborators throughout the world as well as to my entire research team whose hard work and friendship are the basis for this award. I am excited to continue our work at Children’s National, an institution dedicated to innovation and team science.”

Dr. Dauber joined Children’s National in 2018 and specializes in studying and treating growth disorders. He has published over 75 studies examining genetic clues to endocrine disorders, with a focus on short stature and growth disorders.

The award will be presented at ENDO 2020, The Endocrine Society’s annual meeting, March 28-31, 2020, in San Francisco, California.

Dr. Natasha Shur shares “Genetics and Telemedicine: Extending Our Reach” at the Future of Pediatrics CME

Virtual visits: A new house call for rare disease treatment

Dr. Natasha Shur shares “Genetics and Telemedicine: Extending Our Reach” at the Future of Pediatrics CME

Natasha Shur, M.D., an attending clinical geneticist at Children’s National Health System, shares “Genetics and Telemedicine: Extending Our Reach” at the Future of Pediatrics CME symposium in Bethesda, Maryland, on June 20.

“For the first time it wasn’t autism, autism, autism,” Shannon Chin says after learning the reason her newborn daughter, Sariyah, who turned 3 in August, couldn’t feed like normal infants was due to a tiny deletion of chromosome 22. This atypical deletion, a variation of a genetic condition known as 22q11.2 deletion syndrome, left Sariyah unable to suck and obtain nourishment as an infant. She was born premature and relied on assisted feeding tubes, inserted through her nose, to help her grow.

At 22-weeks-old, Sariyah received the diagnosis, which affects 1 in 4,000 children born each year. Sariyah’s genetic tests encouraged Chin to follow up with a nagging question: What if her two sons, Rueben and Caleb, both of whom were diagnosed with autism spectrum disorder (ASD), had something else?

Debra Regier, M.D., a medical geneticist at Children’s National Health System, encouraged Chin to follow up with a genetic test to answer these questions and to confirm 22q11.2 deletion syndrome symptoms she observed in Rueben.

A microarray analysis recently revealed Rueben, 17, has atypical  22q11.2 deletion syndrome. Caleb, 5, took the test and has developmental delay and ASD, which is more likely to occur in children with 22q11.2 deletion syndrome. He tested negative for the same deletion as his siblings. Additional tests are underway.

As Chin juggles complex care for her children, she realizes the partial deletion of chromosome 22 presents differently in every child. Sariyah and Rueben share short stature; they fit into tiny clothes. That’s where the phenotypical clues stop. They don’t have a cleft palate or dysmorphic facial features, distinctive of typical cases of 22q11.2 deletion syndrome. Sariyah has physical symptoms. Her intestines merged together, which gastrointestinal surgery fixed. Rueben experiences behavioral and neurological symptoms, including picky eating, aggression and uncontrolled body movements, which led the Chin family to Dr. Regier. Sariyah, Rueben and Caleb all have neurodevelopmental delays that impact their speech and development.

Coordinating multiple visits with geneticists, specialists, surgeons, genetic counselors and pediatricians, while navigating insurance, is a lot for any parent, but especially for those, like Chin, who have special considerations. Her children are non-verbal, so she pays close attention to their physical cues. Simplifying this process is one reason why Natasha Shur, M.D., a medical geneticist at Children’s National, introduced virtual visits to her patients, including Rueben, who had challenges with in-person visits. She thought: How can we make medical care easier for patients and families?

In January, Dr. Shur expanded virtual visits into a pilot program for 50 to 60 patients, including Sariyah and Caleb, with the support of a grant from the Health Resources and Services Administration (HRSA), the division of telemedicine at Children’s National and the Rare Disease Institute (RDI), the medical home to thousands of pediatric patients living with rare or genetic conditions. This program lets patients with concern for or already diagnosed genetic conditions in Maryland, the District of Columbia and Virginia, where Dr. Shur is licensed to practice medicine, test out virtual visits. Patients can download the HIPAA-compliant app or click through a secure link on a digital device to connect with Dr. Shur or a pediatric subspecialist.

Dr. Shur shares the preliminary findings of a new virtual visits pilot program,

Dr. Shur shares the preliminary findings of a virtual visits pilot program, which 50-60 local patients have tested in conjunction with in-person visits as a flexible way to manage medical care for genetic conditions.

On June 20, Dr. Shur shared a presentation about the program, “Genetics and Telemedicine: Extending Our Reach,” with pediatricians attending the Children’s National Future of Pediatrics continuing medical education (CME) symposium in Bethesda, Maryland.

Instead of a formal pilot program launch and end date with data, Dr. Shur mentions she conducts quality improvement assessments with each patient. She asks what they like about virtual visits. Do they feel comfortable with the software and technology? What types of visits do they prefer to do at home? What works best at the hospital? Do they want to keep using this program?

For Chin and most participants, the answer is yes. These families appreciate saving time, mileage, and being in close access to pediatric subspecialists from the comfort of home.

Parents can conference call from separate locations and share screens with the doctors, which works well if one parent is at work and another is at home – or if they live apart. Children can maintain their normal routine, such as finishing breakfast, homework, playing or staying in bed if they don’t feel well, though it is important to see the child in the virtual visit.

Families can obtain virtual assessments about urgent conditions without taking time off from work or school. Currently, only 10 to 30% of virtual visit patients with concerns about genetic conditions need an in-person, follow-up appointment. Fortunately, many conditions are less urgent than thought at the time of referral. Dr. Shur and specialists also benefit from observing children in their natural environment.

At the symposium, Dr. Shur translates this into clinical terms: reduced no-show visits, the ability to schedule shorter, more flexible visits, the ability to quickly and accurately diagnose conditions and provide care, and the ability to keep children with compromised immune function out of public areas, including waiting rooms. She discussed building rapport with patients, almost all of whom like these flexible care models.

“The idea is that we’re trying to understand what is best done using virtual technology and what is better for those in-person connections. More detailed physical exams take place in person. There are some cases where eye-to-eye contact and sitting in the exam room together is important,” says Dr. Shur. “Virtual visits should never replace in-person care. It’s just a forward way of thinking about: How do we use our time best?”

Case study 1: Saving families time and miles

Dr. Shur notes that for some patients, distance is a deciding factor for scheduling care. One mother’s five-hour round-trip commute to the children’s hospital, without traffic, is now five minutes. As an air-traffic controller, her schedule changes. She values the flexibility of the new program. To connect with Dr. Shur, she logs into the app on her computer or smart phone and brings her 2-year-old son into the video. He has cardiofaciocutaneous syndrome (CFC), a condition that affects 200 to 300 people in the world. As a result of a MAP2K1 gene variant, one of four genes – BRAF, MAP2K1, MAP2K2 and KRAS – associated with CFC, he experiences feeding problems, reflux, constipation and developmental delays.

By scheduling more frequent, but shorter check-ins, Dr. Shur assesses how he responds to treatment and makes recommendations to the mother in real time, such as trying prune juice for digestive health. They talk about rearranging feeding measurements and intervals, including his 2 a.m. dose of a peptide formula, which the mom blends at home to support her son’s growth. This modification equates to more sleep for everyone.

If follow-up tests, such as an X-ray or a blood test are needed, Dr. Shur coordinates these exams with the family at the hospital or at a nearby medical center. Depending on the condition, Dr. Shur may refer the family to an ophthalmologist, cardiologist, neurologist or learning and development specialist.

As a parent, Dr. Shur appreciates the direct approach virtual visits deliver.

“As a mom, if I’m taking my child to the doctor for two hours, I want to know why I’m there,” Dr. Shur says. “What are all the options?”

Case study 2: Observing children at home

Chin, who was also featured in Dr. Shur’s CME presentation, appreciates virtual visits for their convenience and efficiency, but her favorite feature is letting doctors observe her children at home.

“Children act differently outside the home,” says Chin.

For example, instead of describing Rueben’s rapid, rhythmic arm movements, a flinging of the arms, Chin showed neurologists at a scheduled virtual home visit. For Marc DiFazio, M.D., a pediatric neurologist, it was evident that Reuben had a movement disorder commonly seen in children with ASD, which is responsive to medication. In five minutes, her son had a diagnosis. The involuntarily movement wasn’t a behavioral issue, as previously thought, but a movement disorder.

“The regular in-person visit has a beautiful role and it’s very important, but virtual visits bring a different focus,” says Dr. Shur. “We get to see what the child’s life is like, what the home setting is like and what their schedule is like. How can we make their day-to-day life easier?”

Phenylketonuria (PKU), a rare condition that prevents the body from breaking down phenylalanine (Phe), an amino acid in protein, is another condition that pairs well with virtual visits. PKU affects 1 in 10,000 to 15,000 newborns in the U.S. People with PKU often require medication, food-based formulas and a protein-restricted diet to help their body process or regulate Phe.

If a patient with PKU connects through a virtual visit, they (or their parents) can open the refrigerator, talk about low-protein foods, discuss potential barriers to following a low-Phe diet, show the team new supplements or over-the-counter medications they are taking, discuss reactions to new therapies and, for adults, discuss an injectable drug recently approved by the FDA that has side effects but may ultimately allow them to follow a regular diet. These observations may not warrant a traditional trip to the doctor but are important for geneticists and patients to discuss. The goal of these visits is to identify and work around potential health barriers, while preventing adverse health outcomes.

To support this model, a 60-minute in-person visit scheduled every six months to a year can be broken into 15-minute video appointments at more frequent intervals. The result, based on the same amount of clinical time, is a targeted and detailed assessment to support personalized treatment and to help the patient adapt to a low-Phe meal plan.

During the video call, Dr. Shur and the team may prescribe a different medication, order a diagnostic procedure or schedule a follow-up appointment, if necessary. Depending on the situation, the patient will still likely come in for in-person annual visits.

Program assessment: Evaluating visits for each patient

Despite the popularity of virtual visits, Dr. Shur mentions this program isn’t a good fit for everyone – depending on a patient’s preferences. There are also limitations to consider. If a parent is hesitant to try this platform or if the comprehensive physical examination is the first key step, they should schedule in-person visits. The goal is to give parents who are requesting or curious about virtual visits a chance to try the platform. Having a secure area, preferably a private space at home, is important. A Wi-Fi connection and a digital device are required, which may create barriers for some patients.

However, Dr. Shur finds the program can alleviate hurdles – such as transportation challenges. One patient lives two hours away and couldn’t make it in for routine medical visits due to car problems. Now she makes every virtual appointment. For the first time in her life, she can manage medical care for herself and for her children.

Most insurance companies Dr. Shur works with cover virtual visits. The key is to have the virtual connection, or video, so Dr. Shur can still physically see the patient. Otherwise, the visit doesn’t count. A grant from CareFirst covers the costs of visits for patients who are using Medicaid or who don’t have medical insurance.

Parallel trends are happening across the country and for other conditions. Officials at the Federal Communications Commission (FCC) are reviewing a three-year pilot to expand the use of connected care services, like virtual visits, for low-income Americans living in rural areas. The Rural Health Care Program, funded by the FCC, supports hospitals that implement telehealth programs.

The American Academy of Pediatrics (AAP) released a statement in 2015 about telemedicine technologies, noting that if these technologies are applied in a synergistic model under one health care system or are guided by a family doctor, they can transform pediatric health care.

The key is to avoid a fragmented virtual health system.

The AAP applauds virtual connections that support collaborations among pediatric physicians, subspecialists and surgeons, reduce travel burdens for families, alleviate physician shortages, improve the efficiency of health care and enhance the quality of care and quality of life for children with special health care needs.

Planning for the future, investing in physician-patient partnerships

A poster at the Future of Pediatrics conference

The American Academy of Pediatrics supports telemedicine technologies that enhance the quality of care and the quality of life for children with special health care needs.

“The feedback has been phenomenal,” Dr. Shur says about the future of virtual visits for genetics. “Virtual visits will never replace in-person visits. They will be used in conjunction with in-person visits to maximize care.”

Dr. Regier and Jamie Frasier, M.D., Ph.D., medical geneticists at Children’s National, are introducing virtual visits to their patients, and many providers plan to do so as the program expands.

Sarah Viall, PPCNP, a nurse practitioner and newborn screening specialist, works with Dr. Shur and the geneticists during some visits to explain non-urgent newborn screening results to parents through virtual connections. Some parents find it’s easier to dial in during lunch or while they are together at home.

To improve education for patients and families, the education and technology committees at the RDI – led by geneticists and genetic counselors in partnership with the Clinical and Translational Science Institute at Children’s National – launched a new smartphone app called BearGenes. Families can watch 15 videos about genetics on the pin-protected app or view them online. The interactive guide serves as a gene glossary for terms patients may hear in a clinical setting. Topics range from genetics 101, describing how DNA is encrypted in the body through four letters – A, T, C and G – to different types of genetic tests, such as whole exome sequencing, to look for differences in the spelling of genes, which the genetic counselors explain are genetic mutations.

“As we unite patients with virtual health platforms and new forms of technology, we want to see what works and what doesn’t. We want their feedback,” Dr. Shur reemphasizes. “Virtual visits are a dynamic process. These visits only work through patient partnership and feedback.”

As Chin navigates atypical 22q11.2 deletion syndrome and ASD, she continues to appreciate the virtual waiting room and the ease of access virtual visits provides.

Sharing screens during virtual visits enables Chin to examine and better understand her children’s abdomen and kidney sonograms, cardiology reports and hearing exams. It forces everyone in the visit to focus on one topic or image at a time, strengthening the connection.

Chin still has questions about her children’s DNA, but she’s getting close to having more answers. She’s eager to see Caleb’s genetic test results and to work with Hillary Porter, M.S., CGC, the family’s genetic counselor, to interpret the data.

“We’re all learning together,” Dr. Shur says about the new pilot program, which applies to genomics at large.

As research about 22q11.2 deletion syndrome advances, geneticists, pediatric subspecialists and pediatricians are unifying efforts to work as one diagnostic and treatment team. Virtual visits enable faster consultations and can shorten diagnostic odysseys, some of which may take up to five years for children with rare disorders.

Attendees at the Future of Pediatrics conference

Nearly 400 pediatricians attend the Children’s National Future of Pediatrics CME symposium to learn about the future of pediatrics and about ways to work together as a diagnostic and treatment team.

For Chin, by better understanding how a tiny fragment of a missing chromosome may influence her children’s growth and development, she is already making long-term plans and coordinating multidisciplinary medical treatment for each child.

She hopes that by sharing her story and knowledge about 22q11.2 deletion syndrome, she can help other parents navigate similar situations. Heradvice to parents is to follow up on lingering questions by bringing them up with your medical team.

Chin is optimistic and happy she did. She’s grateful for the virtual visits program, which simplifies complex care for her family. And she’s still waiting, but she hopes to learn more about her middle child’s DNA, unraveling another medical mystery.

Read more about the virtual visits pilot program at Becker’s Hospital Review and listen to an interview with Dr. Shur and Shannon Chin on WTOP.

The Rare Disease Institute staff on Rare Disease Day

Genetics 101: Rare diseases aren’t rare

The Rare Disease Institute staff on Rare Disease Day

Children’s National Health System is home to the Rare Disease Institute, the National Organization for Rare Disease’s first Center of Excellence, the largest clinical genetics program in the United States.

With the advent of DNA databanks, informatics, new technology, pediatric consortiums and global partnerships, clinical researchers have never been in a better position to diagnose and treat rare diseases. A rare disease is categorically defined as a condition that affects less than 200,000 people. However, 25 to 30 million Americans, about one in 10, have a rare disease.

Accelerations in genetic research and diagnostic criteria remain one of the most significant accomplishments in medicine, but these breakthroughs invite new challenges: How will researchers provide ongoing care and treatment for patients navigating a rare disease? How can doctors and researchers multiply themselves to ensure everyone has the latest information and resources they need? How can researchers use existing trials to augment other fields? How can we diagnose, catalogue and treat hundreds of new rare diseases each year, while accelerating the research and care of 7,000 existing rare conditions?

If these questions intrigue you, excite you and make you want to collaborate with scientific peers, welcome to the field of genetics. A common theme researchers and families talk about is that rare diseases affect a small proportion of the population, but have a huge impact.

On April 10, 1,200 international researchers, lawmakers, scientists and drug developers from 50 countries will meet in Oxon Hill, Md., 10 miles south of Washington, for a three-day summit, the World Orphan Drug Congress USA, to discuss how to unify efforts to enhance and maximize care for rare disease patients.

Here are eight themes to keep in mind:

    1. Rare diseases are chronic diseases. The human genome project has enabled the molecular mapping of 8,000 diseases with genetic underpinnings. Of these diseases, 600 diseases have therapies. A child born with a urea cycle disorder had a 5% chance of surviving the disease 40 years ago. Now the survival rate is 95%. Helping children survive is essential, but we need to think about the best treatments and standards for long-term care.
    2. Rare diseases are expensive. In Western Australia, according to the 2010 Western Australia Population Cohort, rare diseases account for less than 5% of hospital visits but for 10% of hospital costs. Similar data from Cleveland finds one-third of pediatric hospital visits have a genetic link but account for half of hospital costs.
    3. Rare diseases share common links. We’ve diagnosed 7,000 rare diseases but there are more to unravel. For example, breast cancer has over 30 molecular subtypes – some of which turn into rare diseases. By better understanding these molecular pathways, we may be able to inform common fields of medicine.
Marshall Summar's Rare Disease 101 presentation

Dr. Marshall Summar, a medical geneticist, speaks about the future of rare disease research and treatment at a Rare Disease 101 lecture hosted by the Rare Disease Congressional Caucus on Capitol Hill on Feb. 27. To sustain discoveries, Dr. Summar mentions a digital-first, flexible mindset is essential. Standard language and scalable, universal reference structures are required.

  1. Global partnerships create research repositories. Gold-standard research models – double blind, controlled studies with numerous participants – aren’t possible if five people in the world share the same disease. To increase the number of study participants, global partnerships and longitudinal registries are essential.
  2. Standard language helps. To avoid replicating existing research and to help teams quickly reference findings, we need to adopt standardized language to quantify measurements. Researchers from Berlin and Brazil may help inform the etiology of and future treatments for PKU, but they need to manage, store, access and share their collective findings, while remaining flexible.
  3. The science is here. The FDA is approving more drugs for rare diseases than ever before including gene therapy and micro organs, or Rare Diseases-on-chip models. The challenge with treating so many rare diseases isn’t developing new research, but creating therapies and studies to accommodate this patient volume. About 250 rare disease discoveries happen each year. At the current rate, it will take 2,000 years to treat them all.
  4. Progress is here. The Orphan Drug Act fast-tracked approval for rare disease treatments and therapies, and nearly half of all drugs coming in for FDA approval are for rare diseases. However, only 5% of rare diseases have FDA-approved drugs.
  5. We need to replicate geneticists. To provide optimal care, doctors need to standardize education models and use new forms of technology, such as artificial intelligence and deep learning, to share resources faster via patient education portals, resources for families, CME courses and virtual connections with pediatricians or families.

If you would like to learn more or get involved, watch this international summit, the Rare Disease Day Policy Event, which took place at the United Nations Headquarters in New York on Feb. 21. (Some of these issues are covered in video 4.)

If you live in Washington, D.C., follow the genetics team and consider working with us as we move into a new home, the Children’s National Research and Innovation Campus, in 2020.

DNA

International collaboration discovers new cause for dwarfism

DNA

An international collaboration resulted in the identification of a new cause of dwarfism: mutations in a gene known as DNMT3A.

Beyond diabetes, short stature is the most common reason for children in the U.S. to visit an endocrinologist. For the vast majority of children with short stature, the cause remains unknown – even though many of these conditions stem from an as-yet unidentified genetic cause, says Andrew Dauber, M.D., M.M.Sc., division chief of Endocrinology at Children’s National Health System.

“Parents are concerned about why their child isn’t growing and if there are other complications or health problems they’ll need to watch out for,” he says. “Without a diagnosis, it’s very hard to answer those questions.”

Dauber’s research focuses on using cutting-edge genetic techniques to unravel the minute differences in DNA that limit growth. This research recently led him and his colleagues to identify a new cause of dwarfism: mutations in a gene known as DNMT3A. The discovery, which the team published in the January 2019 Nature Genetics, didn’t happen in isolation – it required a rich collaboration of labs spread across the world in Scotland, Spain, France and New Zealand, in addition to Dauber’s lab in the U.S.

The journey that brought Dauber into this group effort got its start with a young patient in Spain. The boy, then four years old, was at less than 0.1 percentile on the growth curve for height with a very small head circumference and severe developmental delays. This condition, known as microcephalic dwarfism, is incredibly rare and could stem from one of several different genetic causes. But his doctors didn’t know the reason for this child’s specific syndrome.

To better understand this condition, Dauber used a technique known as whole exome sequencing, a method that sequences all the protein-coding regions in an individual’s entire genome. He found a mutation in DNMT3A – a change known as a de novo missense mutation, meaning that the mutation happened in a single letter of the boy’s genetic code in a way that hadn’t been inherited from his parents. But although this mutation was clear, its meaning wasn’t. The only clue that Dauber had as to DNMT3A’s function was that he’d read about overgrowth syndromes in which the function of this gene is lost, leading to large individuals with large heads, the exact opposite of this patient’s condition.

To gather more information, Dauber reached out to Andrew Jackson, Ph.D., a researcher who studies human genes for growth at the University of Edinburgh in Scotland. Coincidentally, Jackson had already started studying this gene after two patients with a shared mutation in a neighboring letter in the genetic code – who also had short stature and other related problems – were referred to him.

Dauber and his colleagues sent the results from their genetic analysis back across the Atlantic to Jackson’s Edinburgh lab, and the doctors from Spain sent more information to Jackson’s lab, including the patient’s clinical information, blood samples and skin biopsy samples. Then the whole team of collaborators from around the globe set to work to discover the processes influencing short stature in each of these three patients.

Their results showed that these mutations appear to cause a gain of function in DNMT3A. This gene codes for a type of enzyme known as a methyltransferase, which places methyl groups on other genes and on the protein spools called histones that DNA wraps around. Each of these functions changes how cells read the instructions encoded in DNA. While the mutations that cause the overgrowth syndromes appear to allow stem cells to keep dividing long past when they should taper off and differentiate into different cell types – both normal processes in development – the gain of function that appears to be happening in these three patients prompts the opposite situation: Stem cells that should be dividing for a long time during development stop dividing and differentiate earlier, leading to smaller individuals with far fewer cells overall.

The researchers confirmed their findings by inserting one of the gain-of-function human DNMT3A mutations into a mouse, leading to short animals with small heads.

Eventually, says Dauber, these findings could help lead to new treatments for this and other types of dwarfism that act on these genetic pathways and steer them toward normal growth. These and other scientific discoveries hinge on the type of international collaboration that he and his colleagues engaged in here, he adds – particularly for the types of rare genetic syndromes that affect the patients that he and his colleagues study. With only a handful of individuals carrying mutations in certain genes, it’s increasingly necessary to combine the power of many labs to better understand the effects of these differences and how doctors might eventually intervene.

“The expertise for all aspects of any single research project is rarely centered in one institution, one city, or even one country,” Dauber says. “Often, you really need to reach out to people with different areas of expertise around the world to make these types of new discoveries that can have pivotal impacts on human health.”

E coli bacteria

Urinary bacteria in spinal cord injury cases may tip balance toward UTIs

E coli bacteria

Patients with spinal cord injuries nearly universally have bacteria present in their urine regardless of whether they have a urinary tract infection.

The fallout from spinal cord injury doesn’t end with loss of mobility: Patients can have a range of other issues resulting from this complex problem, including loss of bladder control that can lead to urine retention. One of the most serious implications is urinary tract infections (UTIs), the most common cause of repeat hospitalization in people with spinal cord injuries, explains Hans G. Pohl, M.D., associate chief in the division of Urology at Children’s National Health System.

Diagnosing UTIs in people with spinal cord injuries is trickier than in people who are otherwise healthy, Dr. Pohl explains. Patients with spinal cord injuries nearly universally have bacteria present in their urine regardless of whether they have a UTI. It’s unclear whether these bacteria are innocent bystanders or precursors to UTIs in patients who don’t yet show symptoms. And although antibiotics can wipe out this bacterial population, these drugs can have undesirable side effects and frequent use can promote development of antibiotic-resistant bacteria.

Although clinical dogma has long promoted the idea that “healthy” urine is sterile, Dr. Pohl and colleagues have shown that a variety of bacteria live in urine, even in people without symptoms. These microorganisms, like the intestinal microbiome, live in harmony with their hosts and may even help promote health. However, it’s unclear what this urinary microbiome might look like for patients with spinal cord injury before, during and after UTIs.

To start investigating this question, Dr. Pohl and co-authors recently reported a case study they published online Sept. 21, 2018, in Spinal Cord Series and Cases. The case report about a 55-year-old man who had injured the thoracic segment of his spinal cord—about the level of the bottom of his shoulder blades—in a skiing accident when he was 19 was selected as “Editor’s Choice” for the journal’s October 2018 issue.  The patient had a neurogenic bladder, which doesn’t function normally due to impaired communication with the spinal cord. To compensate for this loss of function, this patient needed to have urine removed every four to six hours by catheterization.

Over eight months Dr. Pohl, the study’s senior author, and colleagues collected 12 urine samples from this patient:

  • One was collected at a time the patient didn’t show any symptoms of a UTI
  • Nine were collected when the patient had UTI symptoms, such as bladder spasticity
  • Two samples were collected when the patient had finished antibiotic treatment for the UTI.

The researchers split each sample in half. One part was put through a standard urinalysis and culture, much like what patients with a suspected UTI would receive at the doctor’s office. The other part was analyzed using a technique that searched for genetic material to identify bacteria that might be present and to estimate their abundance.

The researchers found a variety of different bacteria present in these urine samples. Regardless of the patient’s health status and symptoms, the majority of these bacterial species are known to be pathogenic or potentially pathogenic. By contrast, this patient’s urine microbiome appeared to largely lack bacterial species known to be either neutral or with potentially probiotic properties, such as Lactobacillus.

All of the bacteria that grew in culture also were identified by their genetic material in the samples. However, genetic sequencing also identified a possible novel uropathogenic species called Burkholderia fungorum that didn’t grow in the lab in five of the samples. This bacterium is ubiquitous in the environment and has been identified in soil- and plant-based samples. It also has been discovered in the respiratory secretions of patients with cystic fibrosis, in patients with a heart condition called infectious endocarditis, in the vaginal microbiota of patients with bacterial vaginosis, and in the gut of patients with HIV who have low T-cell counts. Dr. Pohl says it’s unclear whether this species played an infectious role in this patient’s UTI or whether it’s just part of his normal urine flora.

“Consistent with our previous work, this case report demonstrates that rather than healthy urine being sterile, there is a diverse urine bacterial ecosystem during various states of health and disease,” Dr. Pohl says. “Rather than UTIs resulting from the growth or overgrowth of a single organism, it’s more likely that a change in the healthy balance of the urine ecosystem might cause these infections.”

By monitoring the relative abundance of different bacteria types present in the urine of patients with spinal cord injury and combining this information with a patient’s symptoms, Dr. Pohl says doctors may be able to make more accurate UTI diagnoses in this unique population.

In addition to Dr. Pohl, study co-authors include Marcos Pérez-Losada, Ljubica Caldovic, Ph.D., Bruce Sprague and Michael H. Hsieh, M.D., Children’s National; Emma Nally, Suzanne L. Groah and Inger Ljungberg, MedStar National Rehabilitation Hospital; and Neel J. Chandel, Montefiore Medical Center.

little girl in hosptial corridor

A growing list of factors that impact CKD severity for kids

little girl in hosptial corridor

Myriad biological and societal factors can impact the occurrence and accelerate progression of chronic kidney disease for children of African descent – including preterm birth, exposure to toxins during gestation and lower socioeconomic status – and can complicate these children’s access to effective treatments.

Myriad biological and societal factors can impact the occurrence and accelerate progression of chronic kidney disease (CKD) for children of African descent – including preterm birth, exposure to toxins during gestation and lower socioeconomic status – and can complicate these children’s access to effective treatments, according to an invited commentary published in the November 2018 edition of American Journal of Kidney Diseases.

Clinicians caring for “these vulnerable children should be mindful of these multiple competing and compounding issues as treatment options are being considered along the continuum from CKD to kidney failure to transplantation,” writes Marva Moxey-Mims, M.D., chief of the Division of Nephrology at Children’s National Health System.

The supplemental article was informed by lessons learned from The Chronic Kidney Disease in Children (CKiD) longitudinal study and conversations that occurred during the Frank M. Norfleet Forum for Advancement of Health, “African Americans and Kidney Disease in the 21st Century.”

African American children represent 23 percent of the overall population of kids with CKD in the CKiD study. While acquired kidney diseases can get their start during childhood when the diseases betray few symptoms, the full impact of illness may not be felt until adulthood. A number of factors can uniquely affect children of African descent, heightening risk for some kids who already are predisposed to suffering more severe symptoms. These include:

  • Preterm birth. African American children make up 36 percent of patients in CKiD with glomerular disease, which tends to have faster progression to end-stage renal disease. These diseases impair kidney function by weakening glomeruli, which impairs the kidneys’ ability to clean blood. Patients with a high-risk apolipoprotein L1 (APOL1) genotype already are at higher risk for focal segmental glomerulosclerosis (FSGS) and CKD. Researchers hypothesize that preterm birth may represent “a second hit that facilitates the development of glomerular damage resulting from the high-risk genotype.” According to the Centers for Disease Control and Prevention, 1 in 10 U.S. infants in 2016 was born preterm, e.g., prior to 37 weeks gestation.
  • APOL1 genotype. Compared with children who had a low-risk genotype and FSGS, children with a high-risk genotype had higher rates of uncontrolled hypertension, left ventricular hypertrophy, elevated C-reactive protein levels and obesity.
  • Human immunodeficiency viral (HIV) status. About 65 percent of U.S. children with HIV-1/AIDS are African American. In a recent nested case-control study of children infected with HIV in the womb, infants with high-risk APOL1 genotypes were 3.5 times more likely to develop CKD with viral infection serving as “a likely second hit.”
  • Access to kidney transplant. African American adults experience a faster transition to end-stage renal disease and are less likely to receive kidney transplants. African American children with CKD from nonglomerular diseases begin renal replacement therapy 1.6 years earlier than children of other races, after adjusting for socioeconomic status. Their wait for dialysis therapy was 37.5 percent shorter. However, these African American children waited 53.7 percent longer for transplants. Although donor blood types, genetic characteristics and other biological factors each play contributing roles, “these findings may reflect sociocultural and institutional differences not captured by socioeconomic status,” Dr. Moxey-Mims writes.

To alleviate future health care disparities, she suggests that additional research explore the impact of expanding services to pregnant women to lower their chances of giving birth prematurely; early childhood interventions to help boost children’s educational outcomes, future job prospects and income levels; expanded studies about the impact of environmental toxicities on prenatal and postnatal development; and heightened surveillance of preterm infants as they grow older to spot signs of kidney disease earlier to slow or prevent disease progression.

“Clinicians can now begin to take into account genetics, socioeconomic status and the impact of the built environment, rather than blaming people and assuming that their behavior alone brought on kidney disease,” Dr. Moxey-Mims adds. “Smoking, not eating properly and not exercising can certainly make people vulnerable to disease. However, there are so many factors that go into developing a disease that patients cannot control: You don’t control to whom you’re born, where you live or available resources where you live. These research projects will be useful to help us really get to the bottom of which factors we can impact and which things can’t we prevent but can strive to mitigate.”

The article covered in this post is part of a supplement that arose from the Frank M. Norfleet Forum for Advancement of Health: African Americans and Kidney Disease in the 21st Century, held March 24, 2017, in Memphis, Tennessee. The Forum and the publication of this supplement were funded by the Frank M. Norfleet Forum for Advancement of Health, the Community Foundation of Greater Memphis and the University of Tennessee Health Science Center.

Test tube that says IGF-1 test

PAPPA2: A genetic mystery

Test tube that says IGF-1 test

What would happen if you suddenly stopped growing at age 12 or 13?

Solving genetic growth mysteries and scheduling regular appointments with pediatric endocrinologists is atypical for most parents and pediatricians.

However, for children with growth disorders – a classification that typically describes children below the third or above the 97th percentile of growth charts for their age – receiving a diagnosis is half the battle to reaching average height. Understanding and creating treatment for a growth disorder, which could stem from an underlying medical illness, a genetic mutation or a problem with endocrine function, such as the production or action of growth hormone, is often the next step.

For Andrew Dauber, M.D., MMSc., the chief of endocrinology at Children’s National Health System, a third step is to use these clues to create larger datasets and blueprints to identify risk factors for rare growth disorders. By understanding genetic markers of growth disorders, endocrinologists can identify solutions and create plans for multidisciplinary care to help children reach developmental milestones and receive coordinated care throughout their lifespan.

A case study that Dauber and his research team continue to explore is how to correct for mutations in the PAPPA2 gene, which regulates human growth by releasing a key growth factor called insulin-like growth factor 1 (IGF-1). Dauber and his colleagues recently described a mutation in PAPPA2, observed in two families with multiple children affected with significant short stature. He found that this mutation decreased the bioavailability of IGF-1, stunting the growth and development of the children who carry this mutation.

While the PAPPA2 mutation is rare, endocrinologists, like Dauber, who understand its function and dysregulation can create solutions to support IGF-1 bioavailability, thereby supporting healthy growth and development in children.

Understanding barriers to IGF-1 function can also help researchers gain insight into the relationship between PAPPA2, levels of circulating insulin in the body, which could cause insulin resistance, and other growth hormones. For now, Dauber and his research team are exploring how to use PAPPA2 to increase IGF-1 in circulation among people with height disorders in the hopes of improving their growth.

“The population of children who have PAPPA2 mutations is small and we’re finding out that two children could respond to the same treatment in different ways,” says Dauber. “One medication could work modestly in one child and support short growth spurts, such as growing by 5 or 6 cm a year. It could also create undesirable side effects, such as headaches and migraines in another, and render it ineffective. However, the clues we walk away with enable us to test new solutions, and confirm or dissolve our hunches, about what may be preventing the bioactive release of essential growth hormones.”

To generate controls for healthy patterns of growth and development, Dauber and his research team are analyzing the relationship between PAPPA2, STC2 and IGFBP-3 concentrations among 838 relatively healthy pediatric participants, ages 3-18, with traditional growth patterns.

They are studying PAPPA2, STC2 and intact IGFBP-3 concentrations throughout childhood and the researchers are already surprised to find PAPPA2, a positive modulator of growth and IGF- bioavailability, decreased with age, while STC2, a negative modulator and traditional growth inhibitor, increased with age.

“As pediatric endocrinology researchers and clinicians, we’re looking at the pathology of traditional growth patterns and growth disorders with an open mind,” says Dr. Dauber. “These data sets are invaluable as they confirm or challenge our theories, which enable us to create and test new forms of personalized treatments. We’ll continue to share this knowledge, which informs other researchers and accelerates the field of pediatric endocrinology.”

This research was presented at the annual meeting of the European Society of Pediatric Endocrinology in Athens on Sept. 28, 2018.

Dauber and his research team will present their findings at endocrinology conferences and grand rounds throughout 2018 and 2019.

To view Dr. Dauber’s most recent research and pediatric endocrinology reviews, visit PubMed.

vitamins

Use of dietary supplements in children with Down syndrome

vitamins

There is a widespread practice of parents giving dietary supplements to children with Down syndrome in the hope of improving intelligence or function, according to new research published in The Journal of Pediatrics. The study, conducted by experts at Children’s National Rare Disease Institute (CNRDI), examined the prevalence, perceived impact, cost and other factors related to dietary supplement use in children with Down syndrome.

The survey finds nearly half of 1,167 respondents – 49 percent – have given or currently give dietary supplements to their children in an effort to improve health and development. On average, children receive three of the more than 150 supplements reported, with nearly 30 percent of users beginning supplementation before the child’s first birthday.

Amy Feldman Lewanda, M.D., a medical geneticist at CNRDI and lead author on the study, notes that the results also reveal a troubling trend – nearly 20 percent of parents who report using dietary supplements do not inform their pediatrician.

“While we know supplements are given by parents in hopes of improving developmental outcomes for children with Down syndrome, many of these supplements contain concerning ingredient profiles that can have adverse effects in infants and children that are too young to communicate their symptoms,” says Dr. Lewanda. “Additionally, these supplements have no proven safety or efficacy, so it’s important for families to consult with their pediatrician or primary care provider to help determine any risk, ill effects or conflicts with existing treatment.”

Reasons for not informing pediatricians about supplement use vary, according to the study results. The most common reason reported was that the doctor has never specifically asked about nutritional supplements. While some parents indicate they do not view supplement use as important medical information to divulge, others feel that their pediatrician may not be knowledgeable about these types of supplements or may dismiss the practice entirely, as some reportedly have done in the past.

Amy Feldman Lewanda

Amy Feldman Lewanda, M.D., a medical geneticist at CNRDI and lead author on the study.

The most popular class of products reported by 25.8 percent of respondents taking supplements are antioxidants, such as curcumin, a byproduct of turmeric, and epigallocatechin-3-gallate (ECGC), the polyphenol compound in green tea. Vitamins, both single and multivitamins, rank second, accounting for 18.9 percent of supplement use. B vitamins were the most popular among single vitamin use. The third most popular supplement category, reported by 15.8 active or previous supplement users, contains proprietary products or combination supplements, such as Nutrivene-D or HAP-CAPS (High Achievement Potential Capsules).

According to Dr. Lewanda, chemical analyses of herbal supplements find some contain anabolic steroids or pharmaceuticals that aren’t listed in the ingredients. Hepatoxicity has been cited among 60 herbs, herbal drugs and herbal supplements. The problem, she notes, is that these products aren’t regulated, like pharmaceuticals are, and similarly, they aren’t thoroughly tested for their safety and efficacy.

The study also notes potential concerns about consuming hyper-concentrated forms of fat-soluble vitamins, including vitamin E and vitamin K, which stay in the body until the vitamins are used. One particular supplement, Speak, provides 5,000 percent of the recommended daily value limits of vitamin E. Fat-soluble vitamins and/or herbal supplements pose unknown health risks – including liver damage.

Among study respondents who actively provide supplements to their children, roughly 87 percent feel they are effective. Those who stopped administering supplements to their children cite lack of efficacy and cost – approximately $90.53 per month on average – as leading reasons for discontinuing use. Approximately 17 percent of respondents note side-effects of supplement use, specifically gastrointestinal disturbance, which was the most common side effect among active and previous supplement users.

“This research gives pediatricians a bit of a wake-up call on what’s trending in the Down syndrome community and the dialogue taking place online, in parent support groups and outside of the doctor’s office,” says Marshall Summar, M.D., director of CNRDI and co-author on the study. “The goal is for pediatricians and parents to work as a team in providing the best care possible for every child, so we hope this research provides physicians greater insight and encourages more open dialogue with patient families about supplement use.  Since many of these supplements have active ingredients, it is vitally important that the primary care provider be aware of them.”