Tag Archive for: brain development

Review: New insights into brain development and behavior

The cover of Trends in Neurosciences

A recent review by researchers at Children’s National, published in Trends in Neurosciences, offers a new and in-depth understanding of how the amygdala is formed during fetal developmental.

The medial amygdala (MeA) is a central structure of the brain for regulation of social and emotional behaviors. Amygdala dysfunction is associated with a host of developmental conditions including autism spectrum disorders (ASD), post-traumatic stress disorder (PTSD) and the consequences of early life stress. To date, there has been a lack of comprehensive understanding of how the amygdala forms developmentally.

A recent review by researchers at Children’s National Hospital, published in Trends in Neurosciences, offers a new and in-depth understanding of how this complex structure is formed during fetal developmental and the role it plays in social behavior.

“This extensive review conveys the latest findings on how the amygdala is formed from development across preclinical models and humans,” says Joshua Corbin, PhD, interim director of the Center for Neuroscience Research at Children’s National and lead author of the review. “Past and present work in our lab has contributed critical knowledge of how this important structure forms from development and implications for human conditions.”

Moving the field forward

Malformation of the amygdala is a hallmark feature of disorders of social cognition such as ASD. Additionally, amygdala development is highly susceptible to early life stress and influences altered fear and anxiety responses in individuals who have been faced with early life stress.

“Despite our growing understanding of MeA development and its role in behavior, many critical questions remain. However, with cutting-edge tools like transcriptomic profiling, subcircuit-level circuit mapping, CRISPR mutagenesis and targeted gene delivery, we’re on the brink of uncovering different neurons in the amygdala form and shape social behaviors,” says Dr. Corbin.

Children’s National leads the way

Dr. Corbin’s team is among only a handful of groups in the world focused on understanding amygdala development. Investigators within the Center for Neuroscience Research at Children’s National have a shared goal of understanding the biological underpinnings of neurodevelopmental disorders.

You can read the full review published in Trends in Neurosciences. 

Honor bestowed on Adré Jacques du Plessis, M.B.Ch.B.

Adre Jacques duPlessis

Dr. du Plessis joins a distinguished group of Children’s National physicians and scientists who hold an endowed chair.

Children’s National Hospital named Adré Jacques du Plessis, M.B.Ch.B., as The People of the United Arab Emirates Distinguished Professor of Prenatal Pediatrics.

Dr. du Plessis serves as director of the Zickler Family Prenatal Pediatrics Institute, division chief of Prenatal and Transitional Pediatrics and director of the Prenatal-Neonatal Neuroscience Program at Children’s National. In addition, Dr. du Plessis is a professor of pediatrics and neurology at George Washington University School of Medicine.

The big picture

Dr. du Plessis joins a distinguished group of Children’s National physicians and scientists who hold an endowed chair. Children’s National is grateful to generous donors who altogether have funded 49 professorships.

Professorships support groundbreaking work on behalf of children and their families and foster new discoveries and innovations in pediatric medicine. These prestigious appointments reflect the recipient’s achievements and a donor’s commitment to advancing and sustaining knowledge.

Why it matters

Dr. du Plessis is a leading international expert in the normal and abnormal development of the brain, as well as the mechanisms of injury to the immature brain. Under his leadership, the Zickler Family Prenatal Pediatrics Institute provides personalized specialty care to patients before, during and after their baby’s birth. His career-long research focus has been on the nervous system of the fetus and newborn, and the hazards for, and mechanisms of, brain injury and its prevention.

Moving the field forward

The Government of the United Arab Emirates (UAE) has established this distinguished professorship as part of its recent philanthropic commitment to Children’s National, which is set to further life-changing research breakthroughs and care for children worldwide. The UAE’s visionary generosity enables Dr. du Plessis and future holders of this professorship to launch bold new initiatives. The professorship will offer a platform to advance the field of prenatal, neonatal and maternal research and care while elevating our leadership and improving outcomes for children who need neonatal care.

Children’s National has been honored to treat patients from the UAE for more than 30 years, with more than 100 Emirati families traveling between the Emirates and Children’s National each year for advanced pediatric care and life-saving treatments.

The UAE’s long-standing philanthropic partnership with Children’s National has resulted in the 2009 establishment of the Sheikh Zayed Institute for Pediatric Surgical Innovation (SZI), the 2021 launch of the Children’s National Research and Innovation Campus, 82 U.S. patents and countless medical breakthroughs for kids and their families. Through this transformational partnership, the UAE and Children’s National are unlocking new possibilities for pediatric medicine and accomplishing what once was thought impossible. Children’s National remains deeply grateful to the UAE for its extraordinary support.

The best of 2024 from Innovation District

2024 with a lightbulb instead of a zero2024 marked another groundbreaking year for Children’s National Hospital, showcasing remarkable advances across the spectrum of pediatric medicine, research and healthcare innovation. From pioneering surgical procedures to breakthrough artificial intelligence applications, the institution continued to push the boundaries of what’s possible in children’s healthcare. Read on for our list of the most popular articles we published on Innovation District in 2024.

1. Prenatal COVID exposure associated with changes in newborn brain

A study led by researchers at Children’s National Hospital showed that babies born during the COVID-19 pandemic have differences in the size of certain structures in the brain, compared to infants born before the pandemic. The findings suggest that exposure to the coronavirus and being pregnant during the pandemic could play a role in shaping infant brain development.
(3 min. read)

2. Children’s National Hospital again ranked among the best in the nation by U.S. News & World Report

Children’s National Hospital was ranked as a top hospital in the nation by the U.S. News & World Report 2024-25 Best Children’s Hospitals annual rankings. This marks the eighth straight year Children’s National has made the Honor Roll list. The Honor Roll is a distinction awarded to only 10 children’s hospitals nationwide.
(2 min. read)

3. Children’s National performs first ever HIFU procedure on patient with cerebral palsy

In January 2023, a team of multidisciplinary doctors performed the first case in the world of using bilateral high intensity focused ultrasound (HIFU) pallidotomy on Jesus, a 22-year-old patient with dyskinetic cerebral palsy. The procedure is part of a clinical trial led by Chima Oluigbo, M.D., pediatric neurosurgeon at Children’s National Hospital.
(3 min. read)

4. Novel ultrasound device gets FDA breakthrough designation with Children’s National support

A novel ultrasound device developed by Bloom Standard received the Food and Drug Administration’s valued breakthrough device designation with the help of Children’s National Hospital. The device that enables autonomous, hands-free ultrasound scans to be performed anywhere, by any user.
(2 min. read)

5. First-of-its-kind pilot study on the impacts of Lyme disease in pregnancy and infant development

Understanding the effects of Lyme disease on the developing fetal brain is essential to ensure timely prenatal and postnatal treatments to protect the fetus and newborn. In response to this need, Children’s National Hospital is leading a pilot study to establish the groundwork needed for a larger study to determine the effect of in utero exposure to Lyme disease on pregnancy and early childhood neurodevelopmental outcomes.
(3 min. read)

6. Earliest hybrid HLHS heart surgery kids thrive 5 years later

Five years ago, Cayden was born 6 weeks early weighing less than four pounds and at risk of dying from her critical congenital heart disease. Today, she’s a happy five-year-old. Early diagnosis of her hypoplastic right ventricle, double inlet left ventricle and critical coarctation of the aorta allowed for the team at Children’s National Hospital to create a careful plan for safe delivery and to offer an innovative hybrid HLHS surgical approach at the hospital within 24 hours after she was born.
(1 min. read)

7. Wayne J. Franklin, M.D., F.A.C.C., named senior vice president of the Children’s National Heart Center

Children’s National Hospital appointed Wayne J. Franklin, M.D., F.A.C.C., as the new senior vice president (SVP) of the Children’s National Heart Center. In this role, Dr. Franklin oversees the full spectrum of heart care services including cardiac imaging and diagnostics, interventional cardiology, electrophysiology, cardiac anesthesia, cardiac surgery and cardiac intensive care.
(2 min. read)

8. Artificial – and accelerated – intelligence: endless applications to expand health equity

By pioneering artificial intelligence (AI) innovation programs at Children’s National Hospital, Marius George Linguraru, D.Phil., M.A., M.Sc., and the AI experts he leads are ensuring patients and families benefit from a coming wave of technological advances. The team is teaching AI to interpret complex data that could otherwise overwhelm clinicians.
(4 min. read)

9. Evidence review: Maternal mental conditions drive climbing death rate in U.S.

Painting a sobering picture, a research team led by Children’s National Hospital culled years of data demonstrating that maternal mental illness is an under-recognized contributor to the death of new mothers. They called for urgent action to address this public health crisis.
(3 min. read)

10. Nathan Kuppermann, M.D., M.P.H., named chief academic officer and chair of Pediatrics

Children’s National Hospital appointed Nathan Kuppermann, M.D., M.P.H., as its new executive vice president, chief academic officer and chair of Pediatrics. In this role, Dr. Kuppermann oversees research, education and innovation for the Children’s National Research Institute as well as academic and administrative leadership in the Department of Pediatrics at George Washington University School of Medicine & Health Services.
(2 min. read)

11. First global clinical trial achieves promising results for hypochondroplasia

Researchers from Children’s National Hospital presented findings from the first clinical trial of the medication vosoritide for children with hypochondroplasia – a rare genetic growth disorder. During the phase 2 trial, researchers found vosoritide increased the growth rate in children with hypochondroplasia, allowing them to grow on average an extra 1.8 cm per year.
(2 min. read)

12. Pioneering research center aims to revolutionize prenatal and neonatal health

Since its establishment in July 2023, the Center for Prenatal, Neonatal & Maternal Health Research at Children’s National Hospital has gained recognition through high-impact scientific publications, featuring noteworthy studies exploring the early phases of human development.
(3 min. read)

Pandemic stress in pregnant mothers may affect anxiety regions of babies’ brains

stressed pregnant woman

The research from Children’s National Hospital provides mounting evidence that children of the pandemic, even those far too young to understand it, need ongoing assessments of developmental or mental health support later in life.

A critical part of the brain linked to risks for anxiety later in life – the left amygdala – was significantly smaller by volume in babies of mothers who reported stress during the COVID-19 pandemic, according to a new manuscript published in JAMA Network Open.

The right hippocampus, which governs spatial, visual and verbal memories, and the white matter were also reduced in children whose mothers reported stress.

The research from Children’s National Hospital provides mounting evidence that children of the pandemic, even those far too young to understand it, need ongoing assessments of developmental or mental health support later in life.

“Looking ahead, we want to use this information – and studies with similar findings – to empower pregnant mothers to request support to mitigate their stress, especially in the event of another global health crisis,” said Nickie Andescavage, M.D., a neonatologist and principal investigator at the Center for Prenatal, Neonatal & Maternal Health Research. “We also want to make sure babies born during COVID-19 get the services that they need in life if they develop anxiety or other mental health disorders.”

The fine print

Researchers at the center used magnetic resonance imaging (MRI) to compare the brains of 103 babies born between 2014 and 2019 prior to the pandemic to 59 born between 2020 and 2022. Mothers who had COVID-19 or other complications in their pregnancies were excluded. The babies underwent MRI imaging while in utero and again soon after delivery.

The mothers were evaluated for stress and anxiety, using the Spielberger State-Train Anxiety Inventory and other evidence-based scoring measures. Pre-pandemic, 21% of mothers reported elevated symptoms of anxiety; in the pandemic cohort, that number jumped to nearly 62%.

Their babies’ brains were also changed, as regions widely understood to control emotion and anxiety displayed smaller volumes on MRI imaging. Given the global impact of the pandemic and universal reports of mental distress worldwide, the potential impact of these findings may impact an entire generation of children born during the pandemic. The team is just beginning to unravel the medical significance.

What’s next

Catherine Limperopoulos, Ph.D., director of the Center for Prenatal, Neonatal & Maternal Health Research, said understanding the impact of stress is vital in supporting the healthy development of young children. Current studies are underway at her center to tease apart the role of stress in prenatal development and examine its long-term impact on development, including cognition, behavior and mental health.

“We all know that being pregnant can be quite stressful, and there are certain times of collective stress that can provide us windows to understand how the body and mind manage it,” Dr. Limperopoulos said. “At our center, we care deeply about the health of mothers and babies, and our researchers plan to continue investigating the role of stress in development to continue building data to show that mental health must be a greater priority.”

This study – “Prenatal maternal psychological distress during the COVID-19 pandemic and newborn brain development” – was supported by the National Institutes of Health, the Intellectual and Developmental Disabilities Research Center, and the A. James & Alice B. Clark Foundation. You can read the full study in JAMA Network Open.

Imaging reveals altered brain chemistry of babies with CHD

Researchers at Children’s National Hospital used magnetic resonance spectroscopy to find new biomarkers that reveal how congenital heart disease (CHD) changes an unborn baby’s brain chemistry, providing early clues that could someday guide treatment decisions for babies facing lifelong health challenges.

Published in the Journal of the American College of Cardiology, the findings detail the ways that heart defects disrupt metabolic processes in the developing brain, especially during the third trimester of pregnancy when babies grow exponentially.

“Over the past decade, our team has been at the forefront of developing safe and sophisticated ways to measure and monitor fetal brain health in the womb,” said Catherine Limperopoulos, Ph.D., director of the Center for Prenatal, Neonatal and Maternal Health Research at Children’s National. “By tapping into the power of advanced imaging, we were able to measure certain maturational components of the brain to find early biomarkers for newborns who are going to struggle immediately after birth.”

The fine print

In one of the largest cohorts of CHD patients assembled to date, researchers at Children’s National studied the developing brains of 221 healthy unborn babies and 112 with CHD using magnetic resonance spectroscopy, a noninvasive diagnostic test that can examine chemical changes in the brain. They found:

  • Those with CHD had higher levels of choline and lower levels of N-Acetyl aspartate-to-choline ratios compared to healthy babies, potentially representing disrupted brain development.
  • Babies with more complex CHD also had higher levels of cerebral lactate compared to babies with two ventricle CHD. Lactate, in particular, is a worrying signal of oxygen deprivation.

Specifically, elevated lactate levels were notably increased in babies with two types of heart defects: transposition of the great arteries, a birth defect in which the two main arteries carrying blood from the heart are switched in position, and single ventricle CHD, a birth defect causing one chamber to be smaller, underdeveloped or missing a valve. These critical heart defects generally require babies to undergo heart surgery not long after birth. The elevated lactate levels also were associated with an increased risk of death, highlighting the urgency needed for timely and effective interventions.

The research suggests that this type of imaging can provide a roadmap for further investigation and hope that medicine will someday be able to better plan for the care of these children immediately after their delivery. “With important clues about how a fetus is growing and developing, we can provide better care to help these children not only survive, but thrive, in the newborn period and beyond,” said Nickie Andescavage, M.D., Children’s National neonatologist and first author on the paper.

The big picture

CHD is the most common birth defect in the United States, affecting about 1% of all children born or roughly 40,000 babies each year. While these defects can be fatal, babies who survive are known to be at significantly higher risk of lifelong neurological deficits, including lower cognitive function, poor social interaction, inattention and impulsivity. The impact can also be felt in other organ systems because their hearts did not pump blood efficiently to support development.

Yet researchers are only beginning to pinpoint the biomarkers that can provide information about which babies are going to struggle most and require higher levels of care. The National Institutes of Health (NIH) and the District of Columbia Intellectual and Developmental Disabilities Research Center supported the research at Children’s National to improve this understanding.

“For many years we have known that the brains of children with severe heart problems do not always develop normally, but new research shows that abnormal function occurs already in the fetus,” said Kathleen N. Fenton, M.D., M.S., chief of the Advanced Technologies and Surgery Branch in the Division of Cardiovascular Sciences at the National Heart, Lung, and Blood Institute (NHLBI). “Understanding how the development and function of the brain is already different before a baby with a heart defect is born will help us to intervene with personal treatment as early as possible, perhaps even prenatally, and improve outcomes.”

Note: This research and content are solely the responsibility of the authors and do not necessarily represent the official views of the NIH. The NIH provided support for this research through NHLBI grant R01HL116585 and the Eunice Kennedy Shriver National Institute of Child Health and Human Development grant P50HD105328.

Pandemic-related stressors in pregnant women affect fetal brain development

Dr. Limperopoulos talks to a mom

Dr. Catherine Limperopoulos walking with a mom.

Prolonged levels of stress and depression during the COVID-19 pandemic contributed to altering key features of fetal brain development — even if the mother was not infected by the virus. This is what a study published in Communications Medicine suggests after following more than 200 pregnant women. The study, led by Children’s National Hospital experts, emphasized the need for more scientific inquiry to shed light on the long-term neurodevelopmental consequences of their findings and COVID-19 exposures on fetal brain development.

“Understanding how contemporary stressors may influence fetal brain development during pregnancy has major implications for basic science and informing public policy initiatives,” said Catherine Limperopoulos, Ph.D., chief and director of the Developing Brain Institute at Children’s National and senior author of the study. “With this work, we are able to show there’s a problem, it’s happening prenatally, and we can use this model to start exploring how we can reduce stress in moms and support unborn babies.”

To better understand the effects of environmental exposures on the fetus during pregnancy, further confirmation of the team’s latest findings is needed by ruling out other possibilities, such as maternal nutrition, financial security and genetic factors.

The psychosocial impact of COVID-19 on fetal brain development remains vastly understudied. The neurologic underpinnings of fetal development that turn into psycho-behavioral disorders later in life, including bipolar disorder, mood disorder or anxiety disorder, remain complex and difficult to explain.

Among the 202 participants from the Washington D.C. metropolitan area, 137 were part of the pre-pandemic cohort and 65 were part of the pandemic cohort.

Through advanced MRI imaging techniques and reconstruction of high-resolution 3D brain models, the researchers found a reduction of fetal white matter, hippocampal and cerebellar volumes and delayed brain gyrification in COVID-19 pandemic-era pregnancies. Validated maternal stress, anxiety and depression scales were also used to compare the scores between the two cohorts.

This study builds upon previous work from the Developing Brain Institute led by Limperopoulos, which discovered that anxiety in pregnant women appears to affect the brain development of their babies. Her team also found that maternal mental health, even in high socioeconomic status, alters the structure and biochemistry of the developing fetal brain, emphasizing the importance of mental health support for pregnant women.

“We’re looking at modifiable conditions,” said Limperopoulos. “What’s clear is the next frontier is intervening early to see how we can prevent or reduce stress in the mom’s current setting.”

Study finds delayed oligodendrocyte progenitor maturation in Down syndrome

girl with down syndrome

People with Down syndrome (DS) can have moderate to severe intellectual disability, which is thought to be associated with changes in early brain development.

People with Down syndrome (DS) can have moderate to severe intellectual disability, which is thought to be associated with changes in early brain development. Children’s National Hospital experts discovered delayed maturation in oligodendrocyte progenitors in DS. Oligodendrocytes produce the white matter which insulates neural pathways and ensures speedy electrical communication in the brain. The researchers identified these delays by measuring gene expression at key steps in cell development, according to a new study published in Frontiers in Cellular Neuroscience.

The findings further suggest that brain and spinal cord oligodendrocytes differ in their developmental trajectories and that “brain-like” oligodendrocyte progenitors were most different from control cells, indicating that oligodendrocytes in the brains of people with DS are not equally affected by the trisomy 21.

“This is one of the critical steps towards identifying the key stages and molecular players in the DS white matter deficits,” said Tarik Haydar, Ph.D., director of the Center for Neuroscience Research. “With this knowledge, and with further work in this direction, we envision future therapies that may improve nerve cell communication in the brains of people with Down syndrome.”

The hold-up in the field

The mechanisms that lead to the reduction of white matter in the brains of people with DS are unknown. To better understand early neural precursors, they used isogenic pluripotent stem cell lines derived from two individuals with Down syndrome to study the brain development and spinal cord oligodendrocytes.

“I was excited that we discovered another example of how important it is not to generalize when studying DS brain development,” said Haydar. “This is one of several papers, from our group and others, that demonstrate how important it is to be very specific about the brain area and the developmental stage when investigating the causes of DS brain dysfunction.”

What’s next

Dysmaturation of oligodendrocyte cells are a relatively new discovery by the Haydar Lab, one of the preeminent labs in DS research. These results isolate specific steps that are affected in human cells with trisomy 21. They are using these results to develop a drug screening platform that may prevent altered generation of oligodendrocytes in the future.

You can read the full study “Sonic Hedgehog Pathway Modulation Normalizes Expression of Olig2 in Rostrally Patterned NPCs With Trisomy 21” in Frontiers in Cellular Neuroscience.

Cardiopulmonary bypass may cause significant changes to developing brain and nerve cells

brain network illustration

Cardiopulmonary bypass, more commonly known as heart-and-lung bypass, has some unique impacts on the creation and growth of brain cells in the area of a child’s brain called the subventricular zone (SVZ), according to a study in the Annals of Neurology. The SVZ is a critical area for the growth and migration of neurons and nerve cells called neuroblasts, both of which ultimately contribute to the proper development of key brain structures and functions during the early years of life.

The findings, from a study conducted in the Cardiac Surgery Research Laboratory at Children’s National Hospital, provide new insight into the cellular impacts of the cardiopulmonary bypass machine on brain growth and development for newborn infants with congenital heart disease. They will have an important role in the refinement of strategies to help protect the fragile brains of children who require lifesaving cardiac surgery with cardiopulmonary bypass immediately after birth.

Specifically, the research team found that during cardiopulmonary bypass:

  • Creation of neurons (neurogenesis) in the neonatal and infant subventricular zone is altered.
  • Migration of nerve cells, called neuroblasts, to the frontal lobe is potentially disrupted.
  • Changes to the growth and movement of neurons in the SVZ are prolonged.
  • Cortical development and expansion is impaired.
  • Specific types of neurons found only in the brain and spinal cord, called interneurons, are also affected.

The study uses an innovative pre-clinical model of the developing brain that is more anatomically and physiologically similar to human neonates and infants than those used in prior studies and in most neurological laboratory-based research.

Cardiopulmonary bypass is one of several key factors thought to cause children with congenital heart disease to sometimes demonstrate delays in the development of cognitive and motor skills. These disabilities often persist into adolescence and adulthood and can ultimately represent long-term neurocognitive disabilities. It is also believed that genetic factors, abnormal blood flow to the brain while in utero or low cardiac output after surgical procedures on the heart may contribute to these challenges.

“Unraveling cellular and molecular events during surgery using this preclinical model will allow us to design therapeutic approaches that can be restorative or reparative to the neurogenic potential of the neuronal stem precursor cells found in the subventricular zone of the neonatal or infant brain,” says Nobuyuki Ishibashi. M.D., Foglia-Hills Professor of Pediatric Cardiac Research, director of the Cardiac Surgery Research Laboratory at Children’s National and senior author on the study. “In particular, previous studies in our laboratory have shown improvement in the neurogenic activities of these precursor cells when they are treated with mesenchymal stromal cells (MSCs).”

The findings from this study further support the work already underway in the NIH-funded MeDCaP clinical trial for neonates and infants undergoing cardiac surgery using the cardiopulmonary bypass machine. That trial uses the heart and lung machine itself to deliver MSCs directly into the main arteries that carry blood to the brain.

Researchers awarded $3.5 million to study brain and cranium development in children

x-ray of human skull

Currently, studies on typical brain and cranium development are limited. One reason for this is that imaging techniques are optimized to best visualize either bone or soft tissue, but not both.

With prevalence of developmental disorders on the rise, the need to understand brain development has never been more critical. Development of the brain is strongly influenced by the cranium, but this relationship has not been adequately studied because of limitations in imaging technology. Now, researchers from Children’s Hospital Los Angeles and Children’s National Hospital are working together to develop techniques that will provide greater insight into this relationship. Their studies will be funded by The National Institute of Dental and Craniofacial Research, which has awarded them $3.5 million.

Natasha Leporé, Ph.D., of Children’s Hospital Los Angeles, studies methods to interpret brain imaging data. “There’s a lot of interaction between the skull and the brain,” she says, “and we want to better understand how they grow together.”

Currently, studies on typical brain and cranium development are limited. One reason for this is that imaging techniques are optimized to best visualize either bone or soft tissue, but not both.

The brain — mostly composed of water, protein and fat — doesn’t show up well on computerized tomography (CT) scans, which use X-ray images. In addition, radiation exposure limits the amount of CT scan data available in children. On the other hand, magnetic resonance imaging (MRI) scans are excellent for brain images but are not optimal for surrounding bone.

This presents researchers with a dilemma if they want to see the brain and the skull together in one image. Fortunately, research barriers like these are often overcome by collaboration.

Leporé will work with Marius George Linguraru, D.Phil, M.A., MS.c., principal investigator in the Sheikh Zayed Institute for Pediatric Surgical Innovation at Children’s National Hospital.

Linguraru works on a set of tools for cranial phenotyping, using existing CT images from typically developing children. In their collaboration, Leporé and Linguraru will extend the tools to MRI scans, allowing the team to analyze the brain and cranium simultaneously. The pair has received a $3.5 million award over 5 years.

“The tools we develop together will help us to better understand the healthy growth of children,” says Linguraru. “We will have the ability to analyze the joint cranial and brain development from large medical image datasets of pediatric patients.”

This, the team says, will be invaluable to the medical community.

“These tools will help clinicians to better assess, diagnose and plan treatment for infants with cranial deformities,” says Linguraru.

Collaborations like this allow expertise to be shared across specialties, ultimately benefiting children in need. Exceptional pediatric care is a result of teamwork; not only doctors, nurses and clinical staff, but also biomedical research, which arms clinicians with the information they depend on.

“We need to have a clear idea of what is expected in normal development,” says Leporé. “This allows doctors to detect and better understand differences in development.”

Other members of the research team include: Vidya Rajagopalan, Ph.D.; Marvin Nelson, M.D.; Alexis Johns, Ph.D.; Niharika Gajawelli, Ph.D. (from Children’s Hospital Los Angeles and University of Southern California); Robert Keating, M.D. (Children’s National Hospital); Yalin Wang, Ph.D. (Arizona State University); Antonio Porras, Ph.D. (University of Colorado); Sean Deoni, Ph.D. (Rhode Island Hospital and Brown University).

A version of this story appeared on the Children’s Hospital Los Angeles newsroom.

Yuan Zhu, Ph.D., receives Outstanding Scientist Award

Yuan Zhu

The George Washington University (GW) Cancer Center recently announced the selection of the 2021 GW Cancer Center Awards, recognizing excellence in research, mentorship and early career contributions.

The GW Cancer Center Outstanding Scientist Award was presented to Yuan Zhu, Ph.D., professor of pediatrics at the GW School of Medicine and Health Sciences (SMHS) and Children’s National Hospital. The award is presented to faculty members who make a noteworthy contribution in the areas of basic science, clinical science, translational science or population science.

In his nomination, Dr. Zhu was cited for his contributions to the understanding of the mechanisms underlying the development of tumors and altered brain development arising in the setting of the inherited condition neurofibromatosis type 1 (NF1). “Throughout his career, Dr. Zhu has had a remarkable consistency of focus in his scholarly work, where he has sought to advance new molecular and mechanistic insights to understand the biological basis of NF1 and the cancers arising in individuals affected by this genetic disease.”

You can find a full list of award winners here.

Low parental socioeconomic status alters brain development in unborn babies

doctor examining pregnant woman

A first-of-its-kind study with 144 pregnant women finds that socioeconomic status (SES) has an impact in the womb, altering several key regions in the developing fetal brain as well as cortical features.

Maternal socioeconomic status impacts babies even before birth, emphasizing the need for policy interventions to support the wellbeing of pregnant women, according to newly published research from Children’s National Hospital.

A first-of-its-kind study with 144 pregnant women finds that socioeconomic status (SES) has an impact in the womb, altering several key regions in the developing fetal brain as well as cortical features. Parental occupation and education levels encompassing populations with lower SES hinder early brain development, potentially affecting neural, social-emotional and cognitive function later in the infant’s life.

Having a clear understanding of early brain development can also help policymakers identify intervention approaches such as educational assistance and occupational training to support and optimize the well-being of people with low SES since they face multiple psychological and physical stressors that can influence childhood brain development, Lu et al. note in the study published in JAMA Network Open.

“While there has been extensive research about the interplay between socioeconomic status and brain development, until now little has been known about the exact time when brain development is altered in people at high-risk for poor developmental outcomes,” said Catherine Limperopoulos, Ph.D., director of the Developing Brain Institute and senior author. “There are many reasons why these children can be vulnerable, including high rates of maternal prenatal depression and anxiety. Later in life, these children may experience conduct disorders and impaired neurocognitive functions needed to acquire knowledge, which is the base to thrive in school, work or life.”

The findings suggest that fetuses carried by women with low socioeconomic backgrounds had decreased regional brain growth and accelerated brain gyrification and surface folding patterns on the brain. This observation in lower SES populations may in part be explained by elevated parental stress and may be associated with neuropsychiatric disorders and mental illness later in life.

In contrast, fetuses carried by women with higher education levels, occupation and SES scores showed an increased white matter, cerebellar and brainstem volume during the prenatal period, and lower gyrification index and sulcal depth in the parietal, temporal and occipital lobes of the brain. These critical prenatal brain growth and development processes lay the foundation for normal brain function, which ready the infant for life outside the womb, enabling them to attain key developmental milestones after birth, including walking, talking, learning and social skills.

There is also a knowledge gap in the association between socioeconomic status and fetal cortical folding — when the brain undergoes structural changes to create sulcal and gyral regions. The study’s findings of accelerated gyrification in low SES adds to the scientific record, helping inform future research, Limperopoulos added.

The Children’s National research team gathered data from 144 healthy women at 24 to 40 weeks gestation with uncomplicated pregnancies. To establish the parameters for socioeconomic status, which included occupation and education in lieu of family income, parents completed a questionnaire at the time of each brain magnetic resonance imaging (MRI) visit. The researchers used MRI to measure fetal brain volumes, including cortical gray matter, white matter, deep gray matter, cerebellum and brain stem. Out of the 144 participants, the scientists scanned 40 brain fetuses twice during the pregnancy, and the rest were scanned once. The 3-dimensional computational brain models among healthy fetuses helped determine fetal brain cortical folding.

Potential proximal risk factors like maternal distress were also measured in the study using a questionnaire accounting for 60% of the participants but, according to the limited data available, there was no significant association with low and high socioeconomic status nor brain volume and cortical features.

Authors in the study from Children’s National include: Yuan-Chiao Lu, Ph.D., Kushal Kapse, M.S., Nicole Andersen, B.A., Jessica Quistorff, M.P.H., Catherine Lopez, M.S., Andrea Fry, B.S., Jenhao Cheng, Ph.D., Nickie Andescavage, M.D., Yao Wu, Ph.D., Kristina Espinosa, Psy.D., Gilbert Vezina, M.D., Adre du Plessis, M.D., and Catherine Limperopoulos, Ph.D.

New research provides glimpse into landscape of the developing brain

illustration of the brain

Stem and progenitor cells exhibit diversity in early brain development that likely contributes to later neural complexity in the adult cerebral cortex, this according to a new study in Science Advances. This research expands on existing ideas about brain development, and could significantly impact the clinical care of neurodevelopmental diseases in the future.

Stem and progenitor cells exhibit diversity in early brain development that likely contributes to later neural complexity in the adult cerebral cortex, this according to a study published Nov. 6, 2020, in Science Advances. Researchers from the Center for Neuroscience Research (CNR) at Children’s National Hospital say this research expands on existing ideas about brain development, and could significantly impact the clinical care of neurodevelopmental diseases in the future. The study was done in collaboration with a research team at Yale University led by Nenad Sestan, M.D, Ph.D.

“Our study provides a new glimpse into the landscape of the developing brain. What we are seeing are new complex families of cells very early in development,” says Tarik Haydar, Ph.D., director of CNR at Children’s National, who led this study. “Understanding the role of these cells in forming the cerebral cortex is now possible in a way that wasn’t possible before.”

The cerebral cortex emerges early in development and is the seat of higher-order cognition, social behavior and motor control. While the rich neural diversity of the cerebral cortex and the brain in general is well-documented, how this variation arises is relatively poorly understood.

“We’ve shown in our previous work that neurons generated from different classes of cortical stem and progenitor cells have different functional properties,” says William Tyler, Ph.D., CNR research faculty member and co-first author of the study. “Part of the reason for doing this study was to go back and try to classify all the different progenitors that exist so that eventually we can figure out how each contributes to the diversity of neurons in the adult brain.”

Using a preclinical model, the researchers were able to identify numerous groups of cortical stem and precursor cells with distinct gene expression profiles. The team also found that these cells showed early signs of lineage diversification likely driven by transcriptional priming, a process by which a mother cell produces RNA for the sole purpose of passing it on to its daughter cells for later protein production.

Tarik Haydar

“Our study provides a new glimpse into the landscape of the developing brain. What we are seeing are new complex families of cells very early in development,” says Tarik Haydar, Ph.D., director of CNR at Children’s National, who led this study. “Understanding the role of these cells in forming the cerebral cortex is now possible in a way that wasn’t possible before.”

Using novel trajectory reconstruction methods, the team observed distinct developmental streams linking precursor cell types to particular excitatory neurons. After comparing the dataset of the preclinical model to a human cell database, notable similarities were found, such as the surprising cross-species presence of basal radial glial cells (bRGCs), an important type of progenitor cell previously thought to be found mainly in the primate brain.

“At a very high level, the study is important because we are directly testing a fundamental theory of brain development,” says Zhen Li, Ph.D., CNR research postdoctoral fellow and co-first author of the study. The results add support to the protomap theory, which posits that early stem and progenitor diversity paves the way for later neuronal diversity and cortical complexity. Furthermore, the results also hold exciting translational potential.

“There is evidence showing that neurodevelopmental diseases affect different populations of the neural stem cells differently,” says Dr. Li. “If we can have a better understanding of the complexity of these neural stem cells there is huge implication of disease prevention and treatment in the future.”

“If we can understand how this early landscape is affected in disorders, we can predict the resulting changes to the cortical architecture and then very narrowly define ways that groups of cells behave in these disorders,” adds Dr. Haydar. “If we can understand how the cortex normally achieves its complex architecture, then we have key entry points into improving the clinical course of a given disorder and improving quality of life.”

Future topics the researchers hope to study include the effects of developmental changes on brain function, the origin and operational importance of bRGCs, and the activity, connections and cognitive features enabled by different families of neurons.

Researchers receive $2.5M grant to optimize brain development in babies with CHD

baby cardioilogy patient

Children’s National Health System researchers Richard Jonas, M.D., Catherine Bollard, M.B.Ch.B., M.D., and Nobuyuki Ishibashi, M.D., have been awarded a $2.5 million, three-year grant from the National Institutes of Health (NIH) to conduct a single-center clinical trial at Children’s National. The study will involve collaboration between the Children’s National Heart Institute, the Center for Cancer and Immunology Research, the Center for Neuroscience Research and the Sheikh Zayed Institute for Pediatric Surgical Innovation.

The goal of the study will be to optimize brain development in babies with congenital heart disease (CHD) who sometimes demonstrate delay in the development of cognitive and motor skills. This can be a result of multiple factors including altered prenatal oxygen delivery, brain blood flow and genetic factors associated with surgery including exposure to the heart lung machine.

The award will be used to complete three specific aims of a Phase 1 safety study as described in the NIH grant:

  • Aim 1: To determine the safety and feasibility of delivering allogeneic bone marrow derived mesenchymal stromal cell (BM-MSC) during heart surgery in young infants less than 3 months of age using the heart lung machine. The optimal safe dose will be determined.
  • Aim 2: To determine the impact of MSC infusion on brain structure using advanced neuroimaging and neurodevelopmental outcomes.
  • Aim 3: To determine differences in postoperative inflammatory and patho-physiological variables after MSC delivery in the infant with CHD.

“NIH supported studies in our laboratory have shown that MSC therapy may be extremely helpful in improving brain development in animal models after cardiac surgery,” says Dr. Ishibashi. “MSC infusion can help reduce inflammation including prolonged microglia activation that can occur during surgery that involves the heart lung machine.”

In addition the researchers’ studies have demonstrated that cell-based intervention can promote white matter regeneration through progenitor cells, restoring the neurogenic potential of the brain’s own stem cells that are highly important in early brain development.

The Phase 1 clinical trial is being implemented in two stages beginning with planning, regulatory documentation, training and product development. During the execution phase, the trial will focus on patient enrollment. Staff from the Cellular Therapy Laboratory, led by director Patrick Hanley, Ph.D., manufactured the BM-MSC at the Center for Cancer and Immunology Research, led by Dr. Bollard. The Advanced Pediatric Brain Imaging Laboratory, led by Catherine Limperopoulos, Ph.D., will perform MR imaging.

The phase 1 safety study will set the stage for a phase 2 effectiveness trial of this highly innovative MSC treatment aimed at reducing brain damage, minimizing neurodevelopmental disabilities and improving the postoperative course in children with CHD. The resulting improvement in developmental outcome and lessened behavioral impairment will be of enormous benefit to individuals with CHD.

Research and Education Week honors innovative science

Billie Lou Short and Kurt Newman at Research and Education Week

Billie Lou Short, M.D., received the Ninth Annual Mentorship Award in Clinical Science.

People joke that Billie Lou Short, M.D., chief of Children’s Division of Neonatology, invented extracorporeal membrane oxygenation, known as ECMO for short. While Dr. Short did not invent ECMO, under her leadership Children’s National was the first pediatric hospital to use it. And over decades Children’s staff have perfected its use to save the lives of tiny, vulnerable newborns by temporarily taking over for their struggling hearts and lungs. For two consecutive years, Children’s neonatal intensive care unit has been named the nation’s No. 1 for newborns by U.S. News & World Report. “Despite all of these accomplishments, Dr. Short’s best legacy is what she has done as a mentor to countless trainees, nurses and faculty she’s touched during their careers. She touches every type of clinical staff member who has come through our neonatal intensive care unit,” says An Massaro, M.D., director of residency research.

For these achievements, Dr. Short received the Ninth Annual Mentorship Award in Clinical Science.

Anna Penn, M.D., Ph.D., has provided new insights into the central role that the placental hormone allopregnanolone plays in orderly fetal brain development, and her research team has created novel experimental models that mimic some of the brain injuries often seen in very preterm babies – an essential step that informs future neuroprotective strategies. Dr. Penn, a clinical neonatologist and developmental neuroscientist, “has been a primary adviser for 40 mentees throughout their careers and embodies Children’s core values of Compassion, Commitment and Connection,” says Claire-Marie Vacher, Ph.D.

For these achievements, Dr. Penn was selected to receive the Ninth Annual Mentorship Award in Basic and Translational Science.

The mentorship awards for Drs. Short and Penn were among dozens of honors given in conjunction with “Frontiers in Innovation,” the Ninth Annual Research and Education Week (REW) at Children’s National. In addition to seven keynote lectures, more than 350 posters were submitted from researchers – from high-school students to full-time faculty – about basic and translational science, clinical research, community-based research, education, training and quality improvement; five poster presenters were showcased via Facebook Live events hosted by Children’s Hospital Foundation.

Two faculty members won twice: Vicki Freedenberg, Ph.D., APRN, for research about mindfulness-based stress reduction and Adeline (Wei Li) Koay, MBBS, MSc, for research related to HIV. So many women at every stage of their research careers took to the stage to accept honors that Naomi L.C. Luban, M.D., Vice Chair of Academic Affairs, quipped that “this day is power to women.”

Here are the 2019 REW award winners:

2019 Elda Y. Arce Teaching Scholars Award
Barbara Jantausch, M.D.
Lowell Frank, M.D.

Suzanne Feetham, Ph.D., FAA, Nursing Research Support Award
Vicki Freedenberg, Ph.D., APRN, for “Psychosocial and biological effects of mindfulness-based stress reduction intervention in adolescents with CHD/CIEDs: a randomized control trial”
Renee’ Roberts Turner for “Peak and nadir experiences of mid-level nurse leaders”

2019-2020 Global Health Initiative Exploration in Global Health Awards
Nathalie Quion, M.D., for “Latino youth and families need assessment,” conducted in Washington
Sonia Voleti for “Handheld ultrasound machine task shifting,” conducted in Micronesia
Tania Ahluwalia, M.D., for “Simulation curriculum for emergency medicine,” conducted in India
Yvonne Yui for “Designated resuscitation teams in NICUs,” conducted in Ghana
Xiaoyan Song, Ph.D., MBBS, MSc, “Prevention of hospital-onset infections in PICUs,” conducted in China

Ninth Annual Research and Education Week Poster Session Awards

Basic and Translational Science
Faculty:
Adeline (Wei Li) Koay, MBBS, MSc, for “Differences in the gut microbiome of HIV-infected versus HIV-exposed, uninfected infants”
Faculty: Hayk Barseghyan, Ph.D., for “Composite de novo Armenian human genome assembly and haplotyping via optical mapping and ultra-long read sequencing”
Staff: Damon K. McCullough, BS, for “Brain slicer: 3D-printed tissue processing tool for pediatric neuroscience research”
Staff: Antonio R. Porras, Ph.D., for “Integrated deep-learning method for genetic syndrome screening using facial photographs”
Post docs/fellows/residents: Lung Lau, M.D., for “A novel, sprayable and bio-absorbable sealant for wound dressings”
Post docs/fellows/residents:
Kelsey F. Sugrue, Ph.D., for “HECTD1 is required for growth of the myocardium secondary to placental insufficiency”
Graduate students:
Erin R. Bonner, BA, for “Comprehensive mutation profiling of pediatric diffuse midline gliomas using liquid biopsy”
High school/undergraduate students: Ali Sarhan for “Parental somato-gonadal mosaic genetic variants are a source of recurrent risk for de novo disorders and parental health concerns: a systematic review of the literature and meta-analysis”

Clinical Research
Faculty:
Amy Hont, M.D., for “Ex vivo expanded multi-tumor antigen specific T-cells for the treatment of solid tumors”
Faculty: Lauren McLaughlin, M.D., for “EBV/LMP-specific T-cells maintain remissions of T- and B-cell EBV lymphomas after allogeneic bone marrow transplantation”

Staff: Iman A. Abdikarim, BA, for “Timing of allergenic food introduction among African American and Caucasian children with food allergy in the FORWARD study”
Staff: Gelina M. Sani, BS, for “Quantifying hematopoietic stem cells towards in utero gene therapy for treatment of sickle cell disease in fetal cord blood”
Post docs/fellows/residents: Amy H. Jones, M.D., for “To trach or not trach: exploration of parental conflict, regret and impacts on quality of life in tracheostomy decision-making”
Graduate students: Alyssa Dewyer, BS, for “Telemedicine support of cardiac care in Northern Uganda: leveraging hand-held echocardiography and task-shifting”
Graduate students: Natalie Pudalov, BA, “Cortical thickness asymmetries in MRI-abnormal pediatric epilepsy patients: a potential metric for surgery outcome”
High school/undergraduate students:
Kia Yoshinaga for “Time to rhythm detection during pediatric cardiac arrest in a pediatric emergency department”

Community-Based Research
Faculty:
Adeline (Wei Li) Koay, MBBS, MSc, for “Recent trends in the prevention of mother-to-child transmission (PMTCT) of HIV in the Washington, D.C., metropolitan area”
Staff: Gia M. Badolato, MPH, for “STI screening in an urban ED based on chief complaint”
Post docs/fellows/residents:
Christina P. Ho, M.D., for “Pediatric urinary tract infection resistance patterns in the Washington, D.C., metropolitan area”
Graduate students:
Noushine Sadeghi, BS, “Racial/ethnic disparities in receipt of sexual health services among adolescent females”

Education, Training and Program Development
Faculty:
Cara Lichtenstein, M.D., MPH, for “Using a community bus trip to increase knowledge of health disparities”
Staff:
Iana Y. Clarence, MPH, for “TEACHing residents to address child poverty: an innovative multimodal curriculum”
Post docs/fellows/residents:
Johanna Kaufman, M.D., for “Inpatient consultation in pediatrics: a learning tool to improve communication”
High school/undergraduate students:
Brett E. Pearson for “Analysis of unanticipated problems in CNMC human subjects research studies and implications for process improvement”

Quality and Performance Improvement
Faculty:
Vicki Freedenberg, Ph.D., APRN, for “Implementing a mindfulness-based stress reduction curriculum in a congenital heart disease program”
Staff:
Caleb Griffith, MPH, for “Assessing the sustainability of point-of-care HIV screening of adolescents in pediatric emergency departments”
Post docs/fellows/residents:
Rebecca S. Zee, M.D., Ph.D., for “Implementation of the Accelerated Care of Torsion (ACT) pathway: a quality improvement initiative for testicular torsion”
Graduate students:
Alysia Wiener, BS, for “Latency period in image-guided needle bone biopsy in children: a single center experience”

View images from the REW2019 award ceremony.

To understand the preterm brain, start with the fetal brain

Nickie Andescavage

“My best advice to future clinician-scientists is to stay curious and open-minded; I doubt I could have predicted my current research interest or described the path between the study of early oligodendrocyte maturation to in vivo placental development, but each experience along the way – both academic and clinical – has led me to where I am today,” Nickie Andescavage, M.D., writes.

Too often, medical institutions erect an artificial boundary between caring for the developing fetus inside the womb and caring for the newborn whose critical brain development continues outside the womb.

“To improve neonatal outcomes, we must transform our current clinical paradigms to begin treatment in the intrauterine period and continue care through the perinatal transition through strong collaborations with obstetricians and fetal-medicine specialists,” writes Nickie Andescavage, M.D., an attending in Neonatal-Perinatal Medicine at Children’s National.

Dr. Andescavage’s commentary was published online March 25, 2019, in Pediatrics Research and accompanies recently published Children’s research about differences in placental development in the setting of placental insufficiency. Her commentary is part of a new effort by Nature Publishing Group to spotlight research contributions from early career investigators.

The placenta, an organ shared by a pregnant woman and the developing fetus, plays a critical but underappreciated role in the infant’s overall health. Under the mentorship of Catherine Limperopoulos, Ph.D., director of MRI Research of the Developing Brain, and Adré J. du Plessis, M.B.Ch.B., MPH, chief of the Division of Fetal and Transitional Medicine, Dr. Andescavage works with interdisciplinary research teams at Children’s National to help expand that evidence base.

While attending Cornell University as an undergraduate, Dr. Andescavage had an early interest in neuroscience and neurobehavior. As she continued her education by attending medical school at Columbia University, she corroborated an early instinct to work in pediatrics.

It wasn’t until the New Jersey native began pediatric residency at Children’s National that those complementary interests coalesced into a focus on brain autoregulation and autonomic function in full-term and preterm infants and imaging the brains of both groups. In normal, healthy babies the autonomic nervous system regulates heart rate, blood pressure, digestion, breathing and other involuntary activities. When these essential controls go awry, babies can struggle to survive and thrive.

“My best advice to future clinician-scientists is to stay curious and open-minded; I doubt I could have predicted my current research interest or described the path between the study of early oligodendrocyte maturation to in vivo placental development, but each experience along the way – both academic and clinical – has led me to where I am today,” Dr. Andescavage writes in the commentary.

Neurodevelopmental disorders: Developing medical treatments

Vittorio Gallo

Vittorio Gallo, Ph.D., Chief Research Officer, participates in the world’s largest general scientific gathering, leading panelists in a timely conversation about progress made so far with neurodevelopmental disorders and challenges that lie ahead.

The human brain is the body’s operating system. Imagine if rogue code worked its way into its hardware and software, delaying some processes, disrupting others, wreaking general havoc.

Neurodevelopmental disorders are like that errant code. They can occur early in life and impact brain development for the rest of the person’s life. Not only can fundamental brain development go awry, processes that refine the brain also can become abnormal, creating a double neural hit.  Adding to those complications, children with neurodevelopmental disorders like autism spectrum disorder (ASD) and Fragile X syndrome often contend with multiple, overlapping cognitive impairments and learning disabilities.

The multiple layers of complexities for these disorders can make developing effective medical treatments particularly challenging, says Vittorio Gallo, Ph.D., Chief Research Officer at Children’s National Health System and recipient of a coveted Senator Jacob Javits Award in the Neurosciences.

During the Feb. 16, 2019, “Neurodevelopmental Disorders: Developing Medical Treatments” symposium, Gallo will guide esteemed panelists in a timely conversation about progress made so far and challenges that lie ahead during the AAAS Annual Meeting in Washington, the world’s largest general scientific gathering.

“This is a very important symposium; we’re going to put all of the open questions on the table,” says Gallo. “We’re going to present a snapshot of where the field is right now: We’ve made incredible advances in developmental neuroscience, neonatology, neurology, diagnostic imaging and other related fields. The essential building blocks are in place. Where are we now in developing therapeutics for these complex disorders?”

For select disorders, many genes have been identified, and each new gene has the potential to become a target for improved therapies. However, for other neurodevelopmental disorders, like ASD, an array of new genes continue to be discovered, leaving an unfinished picture of which genetic networks are of most importance.

Gallo says the assembled experts also plan to explore major research questions that remain unanswered as well as how to learn from past experiences to make future studies more powerful and insightful.

“One topic up for discussion will be new preclinical models that have the potential to help in identifying specific mechanisms that cause these disorders. A combination of genetic, biological, psychosocial and environmental risk factors are being combined in these preclinical models,” Gallo says.

“Our studies of the future need to move beyond describing and observing in order to transform into studies that establish causality between the aberrant developmental processes and these constellations of neurodevelopmental disorders.”

How the environment helps to shape the brain

Vittorio Gallo

“The strength, duration and timing of environmental experience influences plasticity in brain circuitry, which is made up of communication cables called axons that link neurons throughout the brain and are coated by myelin, a fatty substance that helps nerve impulses speed from place to place,” says Vittorio Gallo, Ph.D., Chief Research Officer at Children’s National and senior study author.

Researchers have long known that babies of all kinds need to be exposed to rich, complex environments for optimal brain health and potential. Exposure to new sights, sounds and other sensory experiences appears to be critical for strengthening infants’ developing brains and encouraging smoothly running neural networks. Until recently, little was known about the biological mechanisms behind this phenomenon.

In a review article published online Aug. 22, 2017 in Trends in Neurosciences, Children’s National Health System researchers discuss the role of environmental stimuli on the development of myelin—the fatty insulation that surrounds the extensions that connect cells throughout the nervous system and make up a large part of the brain’s white matter. Positive influences, such as exposure to a large vocabulary and novel objects, can boost the growth of myelin. Conversely, negative influences, such as neglect and social isolation, can harm it, potentially altering the course of brain development.

“The strength, duration and timing of environmental experience influences plasticity in brain circuitry, which is made up of communication cables called axons that link neurons throughout the brain and are coated by myelin, a fatty substance that helps nerve impulses speed from place to place,” says Vittorio Gallo, Ph.D., Chief Research Officer at Children’s National and senior study author. “As it responds to environmental stimuli, the brain continually shores up myelin’s integrity. Just as important, damaged myelin can leave gaps in the neural network which can lead to cognitive, motor and behavioral deficits.”

According to Gallo and study lead author Thomas A. Forbes, a pool of oligodendrocyte progenitor cells (OPCs) specialize in making myelin and do so from childhood into adulthood. The resulting oligodendrocyte cells (OLs) form an important working partnership with axons. From approximately 23 to 37 weeks’ gestation, OLs develop in the fetal brain and they continue to be generated after birth until adolescence.

“This dynamic feedback loop between myelin plasticity and neuronal excitability is crucial,” Forbes says. “It helps to strengthen motor and cognitive function and permits children and adults to learn new skills and to record new memories.”

In utero, genetics plays an outsized role in the initial structure of white matter, which is located in the subcortical region of the brain and takes its white color from myelin, the lipid and protein sheath that electrically insulates nerve cells. Defects in the microstructural organization of white matter are associated with many neurodevelopmental disorders. Once infants are born, environmental experiences also can begin to exert a meaningful role.

“The environment can be viewed as a noninvasive therapeutic approach that can be employed to bolster white matter health, either on its own or working in tandem with pharmacologic therapies,” Gallo adds. “The question is how to design the best environment for infants and children to grow and to achieve the highest cognitive function. An enriched environment not only involves the opportunity to move and participate in physical exercise and physical therapy; it is also an environment where there is novelty, new experiences and continuously active learning. It is equally important to minimize social stressors. It’s all about the balance.”

Among the potential interventions to boost brain power, independent of socioeconomic status:

  • Exposing children to new and different objects with an opportunity for physical activity and interaction with a number of playmates. This type of setting challenges the child to continuously adapt to his or her surroundings in a social, physical and experiential manner. In experimental models, enriched environments supported brain health by increasing the volume and length of myelinated fibers, the volume of myelin sheaths and by boosting total brain volume.
  • Exposure to music helps with cognition, hearing and motor skills for those who play an instrument, tapping multiple areas of the brain to work together collaboratively. Diffusion tensor imaging (DTI) reveals that professional pianists who began playing as children have improved white matter integrity and plasticity, Gallo and Forbes
  • At its heart, active learning requires interacting with and adapting to the environment. Generating new OLs influences learning new motor skills in the very young as well as the very old. And cognitive training and stimulation shapes and preserves white matter integrity in the aging.
  • DTI studies indicate that four weeks of integrative mind-body training alters myelination and improves white matter efficiency with especially pronounced changes in the area of the brain responsible for self-regulation, impulse control and emotion.
  • Voluntary exercise in experimental models is associated with OPCs differentiating into mature OLs. Imaging studies show a positive relationship between physical fitness, white matter health and the brain networks involved in memory.

Conversely, such negative influences as premature birth, poor nutrition, disease, neglect and social isolation can degrade myelin integrity, compromising the person’s ability to carry out basic motor skills and cognitive function. Usually, the pool of OPCs expands as the fetus is about to be born. But brain injury, lack of oxygen and restricted blood supply can delay maturation of certain brain cells and can cause abnormalities in white matter that diminish the brain’s capacity to synthesize myelin. Additional white matter insults can be caused by use of anesthesia and stress, among other variables.

The environmental influence has the potential to be “the Archimedes’ Lever to appropriating WM development among a limited range of only partially efficacious treatment options,” the authors conclude.

Premature birth may alter critical cerebellar development linked to learning and language

 Diffusion tensor imaging teases out subtle injury to cerebral and cerebellar white matter that is not evident with conventional MRI, allowing researchers to quantify brain tissue microstructure and classify white matter integrity.

Diffusion tensor imaging teases out subtle injury to cerebral and cerebellar white matter that is not evident with conventional MRI, allowing researchers to quantify brain tissue microstructure and classify white matter integrity.

Premature birth can interrupt a key period of brain development that occurs in the third trimester, which has the potential to impact a child’s long-term learning, language, and social skills. A recent case-control study published in The Journal of Pediatrics applied diffusion tensor magnetic resonance imaging (DTI) to zoom in on the microstructures comprising the critical cerebellar neural networks related to learning and language, and found significant differences between preterm and full-term newborns.

“The third trimester, during which many premature births occur, is typically when the developing cerebellum undergoes its most dramatic period of growth. Normally, the cerebellar white matter tracts that connect to the deep nuclei are rich in pathways where nerve fibers cross. Those connections permit information to flow from one part of the brain to another. It is possible that premature birth leads to aberrant development of these critical neural networks,” says Catherine Limperopoulos, Ph.D., director of the Developing Brain Research Laboratory at Children’s National Health System and senior study author.

One in 10 American babies is born prematurely. The brain injury that infants born prematurely experience is associated with a range of neurodevelopmental disabilities, including some whose influence isn’t apparent until years later, when the children begin school. Nearly half of extremely preterm infants go on to experience long-term learning, social, and behavioral impairments.

While conventional magnetic resonance imaging (MRI) can detect many brain abnormalities in newborns, a newer technique called DTI can tease out even subtle injury to cerebral and cerebellar white matter that is not evident with conventional MRI. White matter contains axons, which are nerve fibers that transmit messages. With DTI, researchers can quantify brain tissue microstructure and describe the integrity of white matter.

The research team compared imaging from 73 premature infants born before 32 weeks gestation who weighed less than 1,500 grams with 73 healthy newborns born to mothers who delivered at full term after 37 weeks. After the newborns had been fed, swaddled, and fitted with double ear protection, the imaging was performed as they slept. Nurses monitored their heart rates and oxygen saturation. Their brain abnormalities were scored as normal, mild, moderate, or severe.

All of the full-term newborns had normal brain MRIs as did 44 (60.3 percent) of the preemies.

The preemies had significantly higher fractional anisotropy in the cerebellum, the part of the brain that processes incoming information from elsewhere in the brain, permitting coordinated movement as well as modulating learning, language, and social skills. Alterations in cerebellar microarchitecture was associated with markers for illness severe enough to require surgery – such as correcting abnormal blood flow caused by the failure of the ductus arteriosus to close after birth and to remedy a bowel disease known as necrotizing enterocolitis. The risk factors also are associated with compromised cardiorespiratory function and low Apgar score at five minutes, Limperopoulos and co-authors write. The Apgar score is a quick way to gauge, one minute after birth, how well the newborn withstood the rigors of childbirth. It is repeated at five minutes to describe how the newborn is faring outside of the womb.

“In previous studies, we and others have associated cerebellar structural injury in preterm infants with long-term motor, cognitive, and socio-affective impairments. This is one of the first studies to provide a detailed report about these unexpected alterations in cerebellar microstructural organization,” she adds. “We postulate that the combination of premature birth and early exposure of the immature developing cerebellum to the extrauterine environment results in disturbed micro-organization.”

Additional research is warranted in larger groups of patients as well as long-term follow up of this cohort of newborns to determine whether this microstructural disorganization predicts long-term social, behavioral, and learning impairments.

“A large number of these prematurely born newborns had MRI readings in the normal range. Yet, we know that these children are uniquely at risk for developing neurodevelopmental disabilities later in life. With additional study, we hope to identify interventions that could lower those risks,” Limperopoulos says.

Related resources: The Journal of Pediatrics editorial

Every day fetuses remain in utero critical to preserving normal brain development

preemieimage

If it does not jeopardize the health of the pregnant mother or her fetus, pregnancies should be carried as close to full term as possible to avoid vulnerable preemies experiencing a delay in brain development, study results published October 28 in Pediatrics indicate.

Some 15 million infants around the world – and 1 in 10 American babies – are born prematurely. While researchers have known that preemies’ brain growth is disturbed when compared with infants born at full term, it remained unclear when preemies’ brain development begins to veer off course and how that impairment evolves over time, says Catherine Limperopoulos, Ph.D., Director of the Developing Brain Research Laboratory at Children’s National Health System and senior study author.

A look at the research

In order to shine a spotlight on this critical phase of fetal brain development, Limperopoulos and colleagues studied 75 preterm infants born prior to the 32th gestational week who weighed less than 1,500 grams who had no evidence of structural brain injury. These preemies were matched with 130 fetuses between 27 to 39 weeks gestational age.

The healthy fetal counterparts are part of a growing database that the Children’s National Developing Brain Research Laboratory has assembled. The research lab uses three-dimensional magnetic resonance imaging to carefully record week-by-week development of the normal in utero fetal brains as well as week-by-week characterizations of specific regions of the fetal brain.

The availability of time-lapsed images of normally developing brains offers a chance to reframe research questions in order to identify approaches to prevent injuries to the fetal brain, Limperopoulos says.

“Up until now, we have been focused on examining what is it about being born too early? What is it about those first few hours of life that leaves preemies more vulnerable to brain injury?” she says. “What is really unique about these study results is for the very first time we have an opportunity to better understand the ways in which we care for preemies throughout their hospitalization that optimize brain development and place more emphasis those activities.”

When the research team compared third-trimester brain volumes, preemies showed lower volumes in the cerebrum, cerebellum, brainstem, and intracranial cavity. The cerebrum is the largest part of the brain and controls speech, thoughts, emotions, learning, as well as muscle function. The cerebellum plays a role in learning and social-behavioral functions as well as complex motor functions; it also controls the balance needed to stand up and to walk. The brainstem is like a router, ferrying information between the brain, the cerebellum, and the spinal cord.

“What this study shows us is that every day and every week of in utero development is critical. If at all possible, we need to keep fetuses in utero to protect them from the hazards that can occur in the extra uterine environment,” she says.

Exploration of the developing brain

13JUL16CatherineLBlogImage

Common, lifelong health conditions like diabetes and hypertension have footprints that can be traced back to the womb. With advanced fetal MRI we seek to understand as much as possible about brain development during the time in utero. Non-invasive imaging technology helps us to identify signs of abnormal fetal development that may facilitate earlier diagnoses of chronic conditions and intervention.

We’re exploiting both the power and safety of MRI to develop ways to pick up early signs and signals in fetuses whose brain development may be veering off in the wrong direction. Using this advanced technology we can begin to detect varying signals or other signs of distress. These signs of distress may appear in the form of a brain chemical imbalance or a structural brain abnormality that is too subtle to be seen by an ultrasound or other scan. We now have the ability to leverage magnetic resonance imaging to examine the brain in utero for even the most subtle derailments that can lead to lifelong consequences.

The first nine months of life, when a fetus is in the womb, is a time of unparalleled growth and a critical time for fetal brain development. As we examine the maturation of the fetal brain, we know that each and every cortical fold represents future function lost or gained and lays the fundamental background or platform from which critical functions will emerge such as language and social and behavioral development.

We are developing technology that can quickly and reliably pick up early signals of a fetal brain that’s going off route to provide the ability to access therapeutic windows that are currently inaccessible. Earlier identification and intervention can improve the quality of life for children and potentially could even reverse the abnormality.

Early identification of fetal distress is critical. To be able to provide an intervention you must first be able to know that a fetus is getting into trouble, and you must be able to identify the problem early enough, in order to intervene before it has already caused injury to the fetus.

About the Author

Catherine LimperopoulosCatherine Limperopoulos, Ph.D.
Director, MRI Research of the Developing Brain; Director, Diagnostic Imaging and Radiology/Fetal and Transitional Medicine
Research interests:
Fetal neonatal brain injury