Center for Neuroscience Research investigators join CIFASD
Kazue Hashimoto-Torii, Ph.D., Masaaki Torii, Ph.D., and the research teams they lead have joined a national research consortium for Fetal Alcohol Spectrum Disorders that is supported by the National Institutes of Health (NIH).
The Collaborative Initiative on Fetal Alcohol Spectrum Disorders (CIFASD) aims to leverage multidisciplinary approaches to develop effective interventions and treatments for Fetal Alcohol Spectrum Disorders.
“Both of our labs have been fortunate in receiving multiple R series research grants from the NIH. I am deeply honored that we now join this prestigious national consortium, which opens additional opportunities to collaborate with other labs with neurobehavioral, genetics and facial dysmorphology expertise as well as other specialized disciplines,” says Hashimoto-Torii, principal investigator in the Center for Neuroscience Research at Children’s National Health System.
Fetal Alcohol Spectrum Disorders are a constellation of conditions that result from exposure to alcohol in the womb that reflect the vastly different ways fetuses respond to that in utero insult. While early intervention is crucial, one challenge that continues to bedevil the field is trying to determine which pregnancies are most at risk.
“It is crucial to develop early and precise biomarkers for predicting children’s risk for cognitive and behavioral problems,” Hashimoto-Torii says. “Our labs will work on developing a novel approach for identifying such biomarkers.”
The Children’s researchers will examine epigenetic changes at the single cell level that may provide the earliest hint of cognitive and learning difficulties – long before children show any symptoms of such problems. Hashimoto-Torii’s lab will perform single-cell droplet digital polymerase chain reaction (PCR) based biomarker analysis of blood samples from experimental models and humans. Meanwhile, the lab run by Torii – also a principal investigator in the Center for Neuroscience Research – will collect blood samples from experimental models, perform comprehensive behavioral analysis, and evaluate potential correlations between behaviors seen in the experimental models and their drop-PCR results.
“Under the auspices of CIFASD, we ultimately hope to link these biomarkers from our lab with results that our colleagues are seeing in children in order to validate their ability to accurately predict outcomes from prenatal alcohol exposure,” she says.