Telehealth

Dr. Bear Bot

Advances in telemedicine start with new cardiac critical care robot

Dr. Bear Bot

Dr. Bear Bot’s “robot-only” parking space in the Cardiac ICU. Alejandro Lopez-Magallon, M.D., is featured on the robot display screen, where he drives the robot from his location in the command center, in order to visit patient rooms and capture additional medical information and connect with patients, parents, and attending nurses and physicians.

The telemedicine robot at Children’s National arrived in late August 2018 and recently completed a 90-day test period in the tele-cardiac intensive care unit (cardiac ICU) at Children’s National. The bot travels between rooms as a virtual liaison connecting patients and attending nurses and physicians with Ricardo Munoz, M.D., executive director of the telemedicine program and the division chief of critical cardiac care, and Alejandro Lopez-Magallon, M.D., a cardiologist and medical director of the telemedicine program.

Drs. Munoz and Lopez-Magallon use a nine-screen virtual command center to remotely monitor patient vitals, especially for infants and children who are recovering from congenital heart surgery, flown in for an emergency diagnostic procedure, such as a catheterization, or who are in the process of receiving a heart or kidney transplant. Instead of traveling to individual rooms to check in on the status of one patient, the doctors can now monitor multiple patients simultaneously, enhancing their ability to diagnose, care for and intervene during critical events.

If Drs. Munoz or Lopez-Magallon need to take an X-ray or further examine a patient, they drive the robot from its ‘robot-only’ parking space adjacent to the nurse’s station, and connect with attending doctors and nurses in the teaming area. The onsite clinicians accompany one of the telemedicine doctors, both of whom remain in the command center but appear virtually on the robot’s display screen, to the patient’s room to capture additional medical information and to connect with patients and families.

Over time, the telemedicine team will measure models of efficiency in the tele-cardiac ICU, such as through-put, care coordination, and standards of safety, quality and care, measured by quality of life and short- and long-term patient health outcomes. This test run will serve as a model for future command centers offering remote critical care.

Ricardo Munoz and Alejandro Lopez-Magallon

(R) Ricardo Munoz, M.D., executive director of the telemedicine program and the division chief of critical cardiac care, and Alejandro Lopez-Magallon, M.D., a cardiologist and the associate medical director of the telemedicine program in the tele-cardiac ICU command center.

“As technology and medicine advance, so do our models of telemedicine, which we call virtual care,” says Shireen Atabaki, M.D., M.P.H., an emergency medicine physician at Children’s National, who manages an ambulatory virtual health program, which enables patients to use virtual health platforms to connect with doctors, but from the comfort of their home. “We find the patient-centered platforms and this new technology saves families’ time and we’re looking forward to studying internal models to see how this can help our doctors, enabling us to do even more.”

The ongoing virtual connection program that Dr. Atabaki references launched in spring 2016 and has enabled 900 children to connect to a doctor from a computer, tablet or smart phone, which has saved families 1,600 driving hours and more than 41,000 miles over a two-year period. Through this program, virtual care is provided to children in our region by 20 subspecialists, including cardiologists, dermatologists, neurologists, urgent care doctors, geneticists, gastroenterologists and endocrinologists.

To extend the benefits of virtual communication, while saving mileage and time, Dr. Atabaki and the telemedicine team at Children’s National will partner with K-12 school systems, local hospitals and health centers and global health systems.

The Children’s National robot was named Dr. Bear Bot after a 21-day voting period with patients and staff, beating 14 other child-selected names, including SMARTy (Special Medical Access to Remote Technology), Dr. Bot and Rosie. Dr. Bear Bot celebrated with an official reveal party on Valentine’s Day, which was streamed to over 220 patients through the hospital’s closed-circuit television and radio station.

Maureen Monaghan

Using text messages and telemedicine to improve diabetes self-management

Maureen Monaghan

Maureen Monaghan, Ph.D., C.D.E., clinical psychologist and certified diabetes educator in the Childhood and Adolescent Diabetes Program at Children’s National Health System, awarded nearly $1.6 million grant from American Diabetes Association.

Adolescents and young adults ages 17-22 with Type 1 diabetes are at high risk for negative health outcomes. If fact, some studies show that less than 20 percent of patients in this population meet targets for glycemic control, and visits to the Emergency Department for acute complications like diabetic ketoacidosis peak around the same age.

The American Diabetes Association (ADA) awarded Maureen Monaghan, Ph.D., C.D.E., clinical psychologist and certified diabetes educator in the Childhood and Adolescent Diabetes Program at Children’s National Health System, nearly $1.6 million to evaluate an innovative behavioral intervention to improve patient-provider communication, teach and help patients maintain self-care and self-advocacy skills and ultimately prepare young adults for transition into adult diabetes care, limiting the negative adverse outcomes that are commonly seen in adulthood.

Dr. Monaghan is the first psychologist funded through the ADA’s Pathway to Stop Diabetes program, which awards six annual research grants designed to spur breakthroughs in fundamental diabetes science, technology, diabetes care and potential cures. Dr. Monaghan received the Accelerator Award, given to diabetes researchers early in their careers, which will assist her in leading a behavioral science project titled, “Improving Health Communication During the Transition from Pediatric to Adult Diabetes Care.”

“Behavior is such a key component in diabetes care, and it’s wonderful that the American Diabetes Association is invested in promoting healthy behaviors,” says Dr. Monaghan. “I’m excited to address psychosocial complications of diabetes and take a closer look at how supporting positive health behavior during adolescence and young adulthood can lead to a reduction in medical complications down the road.”

During the five year study, Dr. Monaghan will recruit patients ages 17-22 and follow their care at Children’s National through their first visit with an adult endocrinologist. Her team will assess participants’ ability to communicate with providers, including their willingness to disclose diabetes-related concerns, share potentially risky behaviors like drinking alcohol and take proactive steps to monitor and regularly review glucose data.

“The period of transition from pediatric to adult diabetes care represents a particularly risky time. Patients are going through major life changes, such as starting new jobs, attending college, moving out of their parents’ homes and ultimately managing care more independently,” says Dr. Monaghan. “Behavioral intervention can be effective at any age, but we are hopeful that we can substantially help youth during this time of transition when they are losing many of their safety nets.”

Study leaders will help participants download glucose device management tools onto their smartphones and explain how to upload information from patients’ diabetes devices into the system. Participants will then learn how to review the data and quickly spot issues for intervention or follow-up with their health care provider.

Patients also will participate in behavioral telemedicine visits from the convenience of their own homes, and receive text messages giving them reminders about self-care and educational information, such as “Going out with your friends tonight? Make sure you check your glucose level before you drive.”

At the study’s conclusion, Dr. Monaghan anticipates seeing improvements in psychosocial indicators, mood and transition readiness, as well as improved diabetes self-management and engagement in adult medicine.

Taking telemedicine to heart

For seven years, a Children’s National team has worked on new technologies to blunt the severity of rheumatic heart disease around the world, vastly improving patients’ chances of avoiding serious complications.

Rheumatic heart disease (RHD) is caused by repeated infections from the same bacteria that cause strep throat, which progressively lead to worsening inflammation of the heart’s valves with each successive infection. Over time, these valves thicken with scar tissue and prevent the heart from effectively pumping life-sustaining, oxygenated blood. The devastating condition, which was endemic in the United States before 1950, is now so rare that few outside the medical community have even heard of it. But in the developing world, explains Craig Sable, M.D., director of echocardiography and pediatric cardiology fellowship training and medical director of telemedicine at Children’s National Health System, RHD is nearly as common as HIV.

“RHD is the world’s forgotten disease,” Dr. Sable says. An estimated 32.9 million people worldwide have this condition, most of whom reside in low- to middle-income countries — places that often lack the resources to effectively diagnose and treat it.

Dr. Sable, Andrea Z. Beaton, M.D., and international colleagues plan to overturn this paradigm. For the last seven years, the team has worked on developing new technologies that could blunt the severity of RHD, vastly improving patients’ chances of avoiding its most serious complications.

At the heart of their approach is telemedicine — the use of telecommunications and information technology to provide clinical support for doctors and other care providers who often practice a substantial distance away. Telemedicine already has proven extremely useful within resource-rich countries, such as the United States, according to Dr. Sable. He and Children’s National colleagues have taken advantage of it for years to diagnose and treat pediatric disease from a distance, ranging from diabetes to asthma to autism. In the developing world, he says, it could be a game-changer, offering a chance to equalize healthcare between low- and high-resource settings.

In one ongoing project, a team led by Drs. Sable and Beaton is using telemedicine to screen children for RHD, a critical step to making sure that kids whose hearts already have been damaged receive the antibiotics and follow-up necessary to prevent further injury. After five years of working in Africa, the team recently expanded their project to Brazil, a country riddled with the poverty and overcrowding known to contribute to RHD.

Starting in 2014, the researchers began training four non-physicians, including medical technicians and nurses, to use handheld ultrasound machines to gather the precise series of heart images required for RHD diagnosis. They deployed these healthcare workers to schools in Minas Gerais, the second-most populous state in Brazil, to screen children between the ages of 7 and 18, the population most likely to be affected. With each worker scanning up to 30 children per day at 21 area schools, the researchers eventually amassed nearly 6,000 studies in 2014 and 2015.

Each night, the team on the ground transmitted their data to a cloud server, from which Children’s cardiologists, experts in RHD, and a regional hospital, Universidade Federal de Minas Gerais, accessed and interpreted the images.

“There was almost zero downtime,” Dr. Sable remembers. “The studies were transferred efficiently, they were read efficiently, and the cloud server allowed for easy sharing of information if there was concern about any questionable findings.”

In a study published online on November 4, 2016 in the Journal of Telemedicine and Telecare, Dr. Sable and colleagues reported the project’s success. Together, the team diagnosed latent heart disease in 251 children — about 4.2 percent of the subjects screened — allowing these patients to receive the regular antibiotics necessary to prevent further valve damage, and for those with hearts already badly injured to receive corrective surgery.

The researchers continued to collect data after the manuscript was submitted for publication. The team, which includes Drs. Bruno R. Nascimento, Adriana C. Diamantino, Antonio L.P. Ribeiro and Maria do Carmo P. Nunes, has screened a total of roughly 12,000 Brazilian schoolchildren to date.

Dr. Sable notes there is plenty of room for improvement in the model. For example, he says, the research team has not found a low-bandwidth solution to directly transmit the vast amount of data from each screening in real time, which has caused a slight slowdown of information to the hospital teams. The team eventually hopes to incorporate RHD screenings into annual health exams at local health clinics, sidestepping potential drawbacks of school day screenings.

Overall, being able to diagnose RHD using non-physicians and portable ultrasounds could eventually help Minas Gerais and additional low- to middle-income areas of the world where this disease remains endemic reach the same status as the United States and other resource-heavy countries.

“We’re putting ultrasound technology in the hands of people who otherwise wouldn’t have it,” says Dr. Sable, “and it could have a huge impact on their overall health.”

This work was supported by a grant from the Verizon Foundation and in-kind donations from General Electric and ViTelNet.

Diabetes telemedicine program launches study survey and retrospective chart review

img_1782

Telemedicine isn’t new. And diabetes telemedicine isn’t new either. But the Diabetes Program at Children’s National Health System is doing more than just providing education and support groups via telemedicine. The largest pediatric diabetes program in the Mid-Atlantic region is evaluating just how successful its telemedicine program is with a six-month survey and retrospective chart review. “This is our opportunity to prove [the success] not anecdotally but with evidence,” says Colleen Meehan, M.D., M.P.H., a third-year resident at Children’s and one of the co-investigators for the project.

According to published literature, the Children’s National cohort is one of the largest of any other diabetes telemedicine program and extends the time period of care.

History of the program

Around the world, there isn’t enough endocrinology care, says Fran Cogen, M.D., C.D.E. Dr. Cogen and others at Children’s National have recognized the need right in their region—and worldwide—to deliver specialty care to patients who live too far from Washington, DC.

Many of the patients Dr. Cogen sees at Children’s National live on Maryland’s Eastern Shore, including the island of Tangiers, and in Delaware. That’s a two-and-a-half-hour drive over the Chesapeake Bay Bridge and an obstacle to scheduling follow-up appointments. To solve this issue, Children’s National partnered with Peninsula Regional Medical Center, in Salisbury, Md., three years ago to improve patients’ quality of life while getting them the care they needed.

How the program works

A nurse practitioner at Peninsula Regional sees patients for blood glucose checks and more frequently. Once a month, or depending on the severity of the diabetes, Dr. Cogen will observe—on a large TV screen from Children’s National—physical examinations, and then review insulin regimens and dosing, download the glucose meters in real time, discuss concerns, and develop treatment plans. There’s diabetes-specific software that patients can see at Peninsula Regional.

What the study can reveal

A 2014 pilot survey showed caregivers had great satisfaction with the program. Now, the team wants to formally study caregiver satisfaction and patient quality of life, as measured by a validated diabetes-specific Pediatric Quality of Life survey. With the largest cohort in diabetes telemedicine (75, type 1), it will also look at frequency of blood glucose monitoring, HbA1c, incidence of ER visits and hospitalizations for DKA or hypoglycemia, and percentage of missed clinic appointments. The team believes that this will show the diabetes telemedicine program is as effective as traditional face-to-face visits.

Other specialties at Children’s National are planning to provide telemedicine services, and some already do. The Diabetes Telemedicine Program is looking to expand coverage in Delaware, Maryland, and Virginia, to other rural areas that lack pediatric endocrinology or diabetes specialists.

“We can deliver quality care and develop a personal relationship without actually being physically present in the exam room,” Dr. Cogen says.