desktop computer showing the CNRI Annual Report

Driving pediatric breakthroughs through 2023

desktop computer showing the CNRI Annual ReportThe Children’s National Research Institute released its 2022-2023 Academic Annual Report. In the report, a summary of the past academic year highlights the accomplishments of each of the institute’s research centers, provides research funding figures and exalts some of the institute’s biggest milestones.

The stories in the report are a testament to the hard work and dedication of everyone at the Children’s National Research Institute.

We celebrated five decades of leadership and mentorship of Naomi Luban, M.D., and her incredible accomplishments in the W@TCH program, which have been instrumental in shaping the future of pediatric research.

We also celebrated innovation, highlighting our recent FDA award to lead a pediatric device consortium, which recognizes our commitment to developing innovative medical devices that improve the lives of children.

Breakthroughs at the Research & Innovation Campus continued as our researchers worked tirelessly to develop new treatments and therapies that will transform the lives of children and families around the world.

Taking a look at the breakthroughs happening in our now six research centers, we spotlighted the following stories:

  • Reflecting on decades of progress in the blood, marrow and cell therapy programs at Children’s National. Our researchers have made significant strides in this field, and we are proud to be at the forefront of these life-saving treatments.
  • In genetic medicine, we continue to be a beacon of hope for families facing rare and complex conditions. Our researchers are making incredible breakthroughs that are changing the landscape of pediatric medicine.
  • We are also proud to share the $90 million award received from an anonymous donor to support pediatric brain tumor research. The predominant focus of this award is to develop new treatments that will improve outcomes for children with this devastating disease.
  • This year, we opened a new Center that enhances our research capabilities in the field of Prenatal, Neonatal & Maternal Health Research. We are excited about the possibilities this new center will bring and look forward to the discoveries that will emerge from it.
  • In addition, we are driving future pandemic readiness with the NIH funded Pediatric Pandemic Network. Our researchers are using cutting-edge technology and innovative approaches to prepare for the next pandemic and protect children.
  • We are also exploring the potential of artificial intelligence (AI) in pediatric breakthroughs. Our researchers are using machine learning and other AI techniques to develop new treatments and therapies that will transform the lives of children.
Doctors performing bilateral high intensity focused ultrasound (HIFU) pallidotomy on a patient with dyskinetic cerebral palsy.

Children’s National performs first ever HIFU procedure on patient with cerebral palsy

Doctors performing bilateral high intensity focused ultrasound (HIFU) pallidotomy on a patient with dyskinetic cerebral palsy.

HIFU is a non-invasive therapy that utilizes focused ultrasound waves to thermally ablate a focal area of tissue.

In January, a team of multidisciplinary doctors performed the first case in the world of using bilateral high intensity focused ultrasound (HIFU) pallidotomy on Jesus, a 22-year-old patient with dyskinetic cerebral palsy.

The procedure is part of a clinical trial led by Chima Oluigbo, M.D., pediatric neurosurgeon at Children’s National Hospital.

“The primary objective of the study is to evaluate the safety of ExAblate Transcranial MRgFUS as a tool for creating bilateral or unilateral lesions in the globus pallidus (GPi) in patients with treatment-refractory secondary dystonia due to dyskinetic cerebral palsy,” Dr. Oluigbo explained. “The secondary purpose is to assess the impact of HIFU pallidotomy on dyskinetic cerebral palsy movement disorder in pediatric and young adult patients.”

In addition, the impact of bilateral pallidotomy on motor development, pain perception, speech, memory, attention and cognition in these patients will be assessed.

“We hope that the trial will help us find results that lead to treatments that can reduce the rigidity and stiffness which occurs in cerebral palsy so we can help these children who do not have any effective treatment,” Dr. Oluigbo added.

“This new, first of its kind, non-invasive therapeutic approach – without even a skin incision – will open the door to offering hope for a number of kids with movement disorders who have failed conventional therapy,” said Robert Keating, M.D., chief of neurosurgery at Children’s National. “We are at the beginning of a new era for treating functional disorders in the pediatric patient.”

How it works

HIFU is a non-invasive therapy that utilizes focused ultrasound waves to thermally ablate a focal area of tissue. In the past, Children’s National successfully used HIFU to treat low-grade type tumors located in difficult locations of the brain, such as hypothalamic hamartomas and pilocytic astrocytoma, as well as for epilepsy and other movement disorders.

This most recent procedure was another successful milestone for the hospital, discharging Jesus the following day without any complications.

The team comprised neurosurgeons, MRI techs, anesthesiologists and radiologists, to name a few.

Originally, Jesus came to Children’s National in 2006 when he started working with the Physical Medicine and Rehabilitation team to help him with his muscle hypertonia management as well as equipment, orthoses and therapy concerns.

“As he continued to grow, his muscle hypertonia became more pronounced and caused difficulty with his care, positioning and comfort,” said Olga Morozova, M.D., pediatric rehabilitation specialist at Children’s National. “We have tried multiple oral medications however he has had significant side effects from the majority of the medications.”

Dr. Morozova and Julie Will, M.S.N., F.N.P., the nurse practitioner that worked with Jesus, referred him to Dr. Oluigbo after they learned about HIFU being an option to treat Jesus using a non-invasive approach.

Moving the field forward

This clinical trial highlights the expanding indications for focused ultrasound.

“We are excited about the potential for these innovative treatment strategies in neurosurgery to transform the lives of pediatric patients who suffer from challenging diseases, such as brain tumors, epilepsy, and movement disorders,” said Hasan Syed, M.D., co-director of the Focused Ultrasound Program at Children’s National. “We are redefining what is possible in neurosurgery.”

From low-intensity focused ultrasound (LIFU) treatments for our young DIPG patients to now the groundbreaking research on HIFU for pediatric movement disorders, the dedication to cutting-edge techniques highlights the team’s commitment to patients and transforming pediatric neurosurgical care.

illustration of neurons with electrical impulses

Children’s National at the American Epilepsy Society Annual Meeting

illustration of neurons with electrical impulsesSeveral experts from Children’s National Hospital will be sharing their knowledge at the upcoming American Epilepsy Society Annual Meeting in Orlando, December 1-5. Here’s a sample of what you can expect.

  • Chima Oluigbo, M.D., a pediatric neurosurgeon, will be on panel with other surgeons discussing different surgical techniques and approaches related to epilepsy surgery followed by hands-on practice at teaching stations. He will focus on extra-temporal epilepsy scenarios and will be presenting on Nuances of Temporal Lobe Surgery in the Pediatric Population at the Neurosurgery Symposium highlighting Surgical Controversies in Temporal Lobe Epilepsies.
  • Ersida Buraniqi, M.D., a child neurologist, will be part of a special interest group on critical care and discuss advances in electroencephalography (EEG) and multimodal neuro-monitoring for seizures in the intensive care unit (ICU). Dr. Buranigui will be doing a special presentation on EEG features to predict electrographic seizures and mortality in the pediatric intensive care unit (PICU).
  • Dana Harrar, M.D., director of Pediatric Stroke Program and co-director of Critical Care Neurology, is presenting at an invitation-only resident EEG course, providing an interactive structured curriculum on pediatric and adult EEG. Dr. Harrar will be focusing on doing an ICU-EEG nomenclature overview.
  • Madison Berl, Ph.D., director of Neuropathy Research and of the Intellectual and Developmental Disabilities Research Center Program, will be presenting during the AES Annual Course. The topic “It’s About Time” will focus on the critical importance the timing in epilepsy care plays in patient outcome. Dr. Berl will be presenting on neuropsych outcomes.
  • Leigh Sepeta, Ph.D., director of Inpatient Neuropsychology, is the vice-chair of the special interest group on neuropsychology. Additionally, Freya Prentice, M.Sc., will be doing a presentation during this session on functional mapping of the cognitive memory circuit in pediatric epilepsy.
Date Time Presenter(s) Title
12/2/23 8:00 am Chima Oluigbo, M.D., FRCSC, FAANS Skills Workshop | Epilepsy Surgery Workshop: Techniques and Clinical Scenarios
12/2/23 5:30 pm Chima Oluigbo, M.D., FRCSC, FAANS SIG | Epilepsy Surgery: Homunculus Revisited: Managing Central Lobe Epilepsies
12/2/23 5:30 pm Ersida Buraniqi, M.D. SIG | Critical Care: Advances in EEG and Multimodal Neuro-monitoring for Seizures in the ICU
12/2/23 7:00am Dana Harrar M.D. Resident EEG Course
12/3/23 9:00 am Chima Oluigbo, M.D., FRCSC, FAANS Neurosurgery Symposium | Surgical Controversies in Temporal Lobe Epilepsies
12/3/23 8:45 am Madison Berl, Ph.D. Annual Course | It’s About Time: Timing in Epilepsy Evaluation and Treatment
12/4/23 7:00 am Leigh Sepeta, M.D. SIG | Neuropsychology: Mapping Cognition in Epilepsy: From the Lab to the Clinic
12/4/23 7:00 am Freya Prentice, M.D. SIG | Neuropsychology: Mapping Cognition in Epilepsy: From the Lab to the Clinic
12/5/23 7:00 am Dana Harrar M.D. SIG | Epilepsy Education: Epilepsy Education Throughout the Training Pipeline

 

Catherine Limperopoulos

Imaging reveals altered brain chemistry of babies with CHD

Researchers at Children’s National Hospital used magnetic resonance spectroscopy to find new biomarkers that reveal how congenital heart disease (CHD) changes an unborn baby’s brain chemistry, providing early clues that could someday guide treatment decisions for babies facing lifelong health challenges.

Published in the Journal of the American College of Cardiology, the findings detail the ways that heart defects disrupt metabolic processes in the developing brain, especially during the third trimester of pregnancy when babies grow exponentially.

“Over the past decade, our team has been at the forefront of developing safe and sophisticated ways to measure and monitor fetal brain health in the womb,” said Catherine Limperopoulos, Ph.D., director of the Center for Prenatal, Neonatal and Maternal Health Research at Children’s National. “By tapping into the power of advanced imaging, we were able to measure certain maturational components of the brain to find early biomarkers for newborns who are going to struggle immediately after birth.”

The fine print

In one of the largest cohorts of CHD patients assembled to date, researchers at Children’s National studied the developing brains of 221 healthy unborn babies and 112 with CHD using magnetic resonance spectroscopy, a noninvasive diagnostic test that can examine chemical changes in the brain. They found:

  • Those with CHD had higher levels of choline and lower levels of N-Acetyl aspartate-to-choline ratios compared to healthy babies, potentially representing disrupted brain development.
  • Babies with more complex CHD also had higher levels of cerebral lactate compared to babies with two ventricle CHD. Lactate, in particular, is a worrying signal of oxygen deprivation.

Specifically, elevated lactate levels were notably increased in babies with two types of heart defects: transposition of the great arteries, a birth defect in which the two main arteries carrying blood from the heart are switched in position, and single ventricle CHD, a birth defect causing one chamber to be smaller, underdeveloped or missing a valve. These critical heart defects generally require babies to undergo heart surgery not long after birth. The elevated lactate levels also were associated with an increased risk of death, highlighting the urgency needed for timely and effective interventions.

The research suggests that this type of imaging can provide a roadmap for further investigation and hope that medicine will someday be able to better plan for the care of these children immediately after their delivery. “With important clues about how a fetus is growing and developing, we can provide better care to help these children not only survive, but thrive, in the newborn period and beyond,” said Nickie Andescavage, M.D., Children’s National neonatologist and first author on the paper.

The big picture

CHD is the most common birth defect in the United States, affecting about 1% of all children born or roughly 40,000 babies each year. While these defects can be fatal, babies who survive are known to be at significantly higher risk of lifelong neurological deficits, including lower cognitive function, poor social interaction, inattention and impulsivity. The impact can also be felt in other organ systems because their hearts did not pump blood efficiently to support development.

Yet researchers are only beginning to pinpoint the biomarkers that can provide information about which babies are going to struggle most and require higher levels of care. The National Institutes of Health (NIH) and the District of Columbia Intellectual and Developmental Disabilities Research Center supported the research at Children’s National to improve this understanding.

“For many years we have known that the brains of children with severe heart problems do not always develop normally, but new research shows that abnormal function occurs already in the fetus,” said Kathleen N. Fenton, M.D., M.S., chief of the Advanced Technologies and Surgery Branch in the Division of Cardiovascular Sciences at the National Heart, Lung, and Blood Institute (NHLBI). “Understanding how the development and function of the brain is already different before a baby with a heart defect is born will help us to intervene with personal treatment as early as possible, perhaps even prenatally, and improve outcomes.”

Note: This research and content are solely the responsibility of the authors and do not necessarily represent the official views of the NIH. The NIH provided support for this research through NHLBI grant R01HL116585 and the Eunice Kennedy Shriver National Institute of Child Health and Human Development grant P50HD105328.

Drs. Robert Keating, Brian Rood and Catherine Bollard

Children’s National announces new professorships

Drs. Robert Keating, Brian Rood and Catherine Bollard

Robert Keating, M.D., Brian Rood, M.D., and Catherine Bollard, M.D., M.B.Ch.B.

Children’s National Hospital named Robert Keating, M.D., as the McCullough Distinguished Professor of Neurosurgery. He serves as the chief of neurosurgery and co-director of the high-intensity focused ultrasound (HIFU) program at Children’s National.

Children’s National Hospital named Brian Rood, M.D., as the Kurt D. Newman, M.D., Professor of Neuro-Oncology. He serves as director of clinical neuro-oncology and medical director of the Brain Tumor Institute at Children’s National.

Children’s National Hospital elevated Catherine Bollard, M.D., M.B.Ch.B., to the Dr. Robert J. and Florence T. Bosworth Distinguished Professor of Cancer and Transplantation Biology Research. She is the Interim Executive Vice President and Chief Academic Officer and Interim Director, Children’s National Research Institute. She also serves as the director of the Center for Cancer and Immunology Research and director of the Program for Cell Enhancement and Technologies for Immunotherapy at Children’s National.

About the awards

Professorships at Children’s National support groundbreaking work on behalf of children and their families and foster new discoveries and innovations in pediatric medicine. These appointments carry prestige and honor that reflect the recipient’s achievements and donor’s forethought to advance and sustain knowledge. Children’s National is grateful for its generous donors, who have funded 47 professorships.

Dr. Keating is a longstanding leader in neurosurgery research and care. His areas of expertise include brain tumors, traumatic brain injuries, craniofacial anomalies, Chiari malformations and spinal dysraphism. With Dr. Keating’s leadership, the neurosurgery department is pioneering innovations such as HIFU, a non-invasive therapy using focused ultrasound waves to ablate a focal area of tissue. It can treat tumors located in difficult locations of the brain, movement disorders and epilepsy. Children’s National was one of the first pediatric hospitals in the nation to use HIFU for neuro-oncology patients.

“Our goal is to elevate our top-ranked program to even greater heights,” says Dr. Keating. “We will continue to use cutting-edge technology and non-invasive approaches to make the knife obsolete in pediatric neurosurgery and improve outcomes for children.”

Dr. Rood studies the biology of pediatric brain tumors. He focuses on protein signatures and biomarkers specific to different types of brain cancers. His study of neoantigens is informing the development of T-cell immunotherapies to target a tumor’s unique proteins.

“Immunotherapy is revolutionizing how we treat childhood brain tumors — safely, effectively and with the precision made possible by using a patient’s own cells,” says Dr. Rood. “This professorship enables our team to advance this revolution, which will save lives and improve lifetimes.”

Dr. Bollard received the Dr. Robert J. and Florence T. Bosworth Professor of Cancer and Transplantation Biology Research in 2018 to support her work to develop cell and gene therapies for patients with cancer and underlying immune deficiencies. Her professorship has been elevated to a distinguished professorship to amplify her research and celebrate her accomplishments in the field of immunotherapy.

About the donor

These appointments were made possible through an extraordinary $96 million investment from an anonymous donor family for rare pediatric brain tumor research and care. It is one of the hospital’s largest donations and will transform the hospital’s ability to give patients with rare brain cancer a better chance at healthy lifetimes.

The anonymous family brings a depth of compassion for children facing rare and often challenging diagnoses. Their partnership will immediately advance every aspect of our globally recognized leadership to create new, more effective treatments.

Their investment also endowed the Professorship in Molecular Neuropathology. We look forward to bestowing that honor on a Children’s National pediatric leader.

Andrea L. Gropman

Andrea L. Gropman, M.D., FAAP, FACMG, FANA, named as the Margaret O’Malley Professor of Genetic Medicine

Andrea L. GropmanChildren’s National Hospital named Andrea L. Gropman, M.D., FAAP, FACMG, FANA, as the Margaret O’Malley Professor of Genetic Medicine at Children’s National Hospital.

Dr. Gropman serves as Chief of the Division of Neurogenetics and Developmental Pediatrics at Children’s National Hospital. She is also a Professor of Pediatrics and Professor of Neurology at George Washington School of Medicine and Health Sciences.

About the award

Dr. Gropman joins a distinguished group of Children’s National physicians and scientists who hold an endowed chair. The Margaret O’Malley Professor of Genetic Medicine is one of 47 endowed chairs at Children’s National.

Professorships support groundbreaking work on behalf of children and their families and foster new discoveries and innovations in pediatric medicine. These appointments carry prestige and honor that reflect the recipient’s achievements and donor’s forethought to advance and sustain knowledge.

Dr. Gropman’s research focuses on neuroimaging, inborn errors of metabolism such as urea cycle disorders and mitochondrial disorders, and neurogenetics. She is the principal investigator of the Urea Cycle Disorders Consortium (UCDC) and the UCDC imaging consortium. She is the deputy clinical director of the Mito EpiGen Program.

Thomas and Mary Alice O’Malley, through their vision and generosity, are ensuring that Dr. Gropman and future holders of this professorship will launch bold, new initiatives to rapidly advance the field of pediatric genetic medicine, elevate our leadership and improve the lifetimes of children with genetic diseases.

About the donors

Tom and Mary Alice O’Malley have partnered with Children’s National to improve the lives of patients with urea cycles disorders for more than two decades. In 2003, their transformational philanthropy helped launch the Urea Cycle Disorders Consortium. This pioneering network grew to include 16-sites worldwide. It garnered 20 years of funding from the NIH’s Rare Diseases Clinical Research Network — the only center to sustain continuous funding over this period. This consortium’s research has yielded multiple effective treatment strategies, including government approval of three lifesaving therapies.

“The O’Malley family’s steadfast generosity helped us grow into the robust community of investigators and families we are today,” says Dr. Gropman. “They transformed care for UCD patients everywhere.”

Bone Marrow–Derived MSC Treatment Mitigates Structural Abnormalities Resulting From CPB

Cell therapy mitigates neurological impacts of cardiac surgery in pre-clinical model

Differences of cortical fractional anisotropy between cardiopulmonary bypass and control (left), cardiopulmonary bypass + mesenchymal stromal cells and cardiopulmonary bypass (center), and 3 groups (right).

A pre-clinical study in the journal JACC: Basic to Translational Science shows that infusing bone marrow-derived mesenchymal stromal cells (BM-MSCs) during cardiac surgery provides both cellular-level neuroprotection for the developing brain and improvements in behavior alterations after (or resulting from) surgery.

What this means

According to lead author Nobuyuki Ishibashi, M.D., Oxidative and inflammatory stresses that are thought to be related to cardiopulmonary bypass cause prolonged microglia activation and cortical dysmaturation in the neonatal and infant brain. These issues are a known contributor to neurodevelopmental impairments in children with congenital heart disease.

This study found that, in a pre-clinical model, the innovative use of cardiopulmonary bypass to deliver these mesenchymal stromal cells minimizes microglial activation and neuronal apoptosis (cell death), with subsequent improvement of cortical dysmaturation and behavioral alteration after neonatal cardiac surgery.

Additionally, the authors note that further transcriptomic analyses provided a possible mechanism for the success: Exosome-derived miRNAs such as miR-21-5p, which may be key drivers of the suppressed apoptosis and STAT3-mediated microglial activation observed following BM-MSC infusion.

Why it matters

Significant neurological delay is emerging as one of the most important current challenges for children with congenital heart disease, yet few treatment options are currently available.

Applications of BM-MSC treatment will provide a new therapeutic paradigm for potential MSC-based therapies as a form of neuroprotection in children with congenital heart disease.

Children’s National Hospital leads the way

The Ishibashi lab is the first research team to demonstrate the safety, efficacy and utility of using cardiopulmonary bypass to deliver BM-MSCs with the goal of improving neurological impairments in children undergoing surgery for congenital heart disease. In addition to this pre-clinical research, a phase 1 clinical trial, MeDCaP, is underway at Children’s National.

Recent additional funding from the NIH will allow the team to identify molecular signatures of BM-MSC treatment and mine specific BM-MSC exosomes for unique cardiopulmonary bypass pathology to further increase understanding of precisely how and why this cell-based treatment shows success.

x-ray of child with congenital heart disease

Cell therapy research for neuroprotection in congenital heart disease receives another $3.3 million from NIH

x-ray of child with congenital heart disease

Significant neurological delay is emerging as one of the most important current challenges for children with congenital heart disease, yet few treatment options are currently available.

The research lab of Nobuyuki Ishibashi, M.D., at Children’s National Hospital, recently received $3.3 million in additional funding for research into cell therapy for neuroprotection in children with congenital heart disease. The new support comes from the National Heart, Lung and Blood Institute (NHLBI) of the National Institutes of Health.

The research goal

The overarching goal of the award is to establish detailed molecular signatures from critical cell populations for tissue repair and regeneration at single cell resolution after bone marrow-derived mesenchymal stromal cell (BM-MSC) delivery. The team has shown cellular, structural and behavioral improvements in pre-clinical models after delivery of BM-MSCs through cardiopulmonary bypass for children with congenital heart disease. However, the mechanisms underlying the therapeutic action of BM-MSCs still remain largely unknown. This R01 renewal will address the key knowledge gap.

Why it matters

Significant neurological delay is emerging as one of the most important current challenges for children with congenital heart disease, yet few treatment options are currently available.

The Ishibashi lab has demonstrated the efficacy and utility of using cardiopulmonary bypass to deliver BM-MSCs  to improve neurological impairments in children undergoing surgery for congenital heart disease. Most notably, this included development of a phase 1 clinical trial, MeDCaP, at Children’s National.

The big picture

Together with the ongoing clinical trial established from the previous award, identifying molecular signatures of BM-MSC treatment and mining specific BM-MSC exosomes for unique cardiopulmonary bypass pathology will significantly improve understanding of this cell-based treatment. This work will also provide a new therapeutic paradigm for potential cell-free MSC-based therapies for neuroprotection in children with congenital heart disease.

child in hospital bed

$96 million philanthropic investment will transform rare pediatric brain tumor research and care

child in hospital bedChildren’s National Hospital announced a $96 million investment from an anonymous donor family to transform rare childhood brain tumor research and care. The donation, which strengthens our globally recognized leadership in the field, is one of the largest in the hospital’s history.

Children’s National will harness the investment to recruit more top talent and advance the most promising research. This will produce safer, more effective treatments. It also will elevate standards of care to help children with rare brain tumors thrive for a lifetime.

The big picture

Brain tumors are the most common solid tumors affecting children. They are especially challenging in kids because their brains are still developing. The disease and current treatments can put them at risk for lifelong complications.

The anonymous family’s investment provides new hope for patients who face rare and often challenging brain tumor diagnoses — in the Washington, D.C., community and around the world.

“This incredible partnership will lift up one of the nation’s top pediatric brain tumor programs into the stratosphere,” said Kurt Newman, M.D., president and CEO of Children’s National. “It will immediately propel our best-in-class research and care, allowing us to bring new therapies to children with brain tumors. This fundamentally changes the healthcare journey and long-term outcomes for children and their families.”

Why it’s important

This transformational investment will have a far-reaching impact on our ability to save and improve the lives of children with brain tumors. Funds will fuel collaborative breakthroughs across a range of scientific and psychosocial approaches.

The partnership will supercharge highly individualized and promising treatments for children with brain tumors. We will radically transform the research landscape with a focus on:

  • Low intensity focused ultrasound (LIFU) – Advancing laboratory research and a clinical program designed to treat childhood brain tumors with LIFU therapy
  • Cellular immunotherapy – Testing new gene-engineered immune cell products and accelerating their integration into standards of care
  • Rare Brain Tumor Program – Propelling new clinical trials through the hospital’s national and global leadership in pediatric brain tumor consortia. Already, Children’s National is leading a new collaborative with hospitals in North America, South America and Europe to better understand and find novel treatments for these rare diseases
  • Neurosurgery innovation – Exploring multiple ways to perform safer, more effective neurosurgery and developing new methods to enhance drug/agent delivery
  • Precision medicine – Recruiting leading scientists to advance biology-informed therapies that can be targeted for children across a spectrum of brain tumors
  • Good Manufacturing Practices (GMP) facility – Expanding our GMP, one of the first standalone facilities at a children’s hospital in the country, to translate new discoveries into clinical trials more rapidly
  • Additional priorities including expansion of clinical research infrastructure and growth of bioinformatics, brain tumor repository and molecular diagnostics initiatives

The partnership also transforms how we approach care. It will power our pursuit of psychosocial, behavioral health and neuroscientific initiatives to help kids live well and cope with the unique circumstances of their diagnosis. We will focus on:

  • Lifetime health and wellness – Building a world-class research and clinical care program to shape a new paradigm for supporting a child’s physical and emotional health during and long after cancer treatment
  • Child Mental Health & Behavioral Brain Tumor Lab – Establishing a robust neuro-oncology mental health program that delivers timely interventions and specialized psychiatric care for patient well-being
  • Additional priorities including a new Neuroscience Nursing Excellence Program and growth of psychosocial support activities that bring comfort and encouragement to children during their treatment journey

Children’s National is proud to lead the way to a better future for pediatric rare brain tumor patients and expand our internationally recognized capabilities for neuro-oncology care.

Screen grab of Dr. Terry Dean and Dr. Vittorio Gallo webinar

In the News: Regenerative brain cells and the circadian clock

Screen grab of Dr. Terry Dean and Dr. Vittorio Gallo webinar

“I am a pediatric intensivist, and I am very interested in some of the pathologies and conditions that I come across in the ICU. We hatched this question that revolved around the idea: what can we do for TBI (traumatic brain injury) patients to enhance their cellular regeneration? …  We looked at NG2-glia in particular, otherwise known as oligodendrocyte precursor cells. They are about 2-8% of the brain…. Do these cells respond to sleep and circadian rhythm? Is it a factor? Does it help? Does it hurt?”

Find out more about what Terry Dean, M.D., Ph.D., says he has learned about these and other questions through his recent research with interim Chief Academic Officer Vittorio Gallo, Ph.D. They join the Society for Neuroscience in a webinar on the circadian rhythms of these important brain cells and how their regeneration may be used someday to promote healing after brain injuries.

glial cells

Future TBI treatments may hinge on understanding a new cell type

glial cells

Only recently have investigators begun to understand how a cell type – the NG2-glia – may respond to injuries, offering clues into the brain’s healing and regeneration.

Traumatic brain injury (TBI) afflicts 69 million people, including 630,000 children, worldwide each year. Yet only recently have investigators begun to understand how a cell type – the NG2-glia – may respond to injuries, offering clues into the brain’s healing and regeneration.

In a new paper published in GLIA, investigators from Children’s National Hospital reviewed 25 years of neuroscience research to lay out what’s known about the molecular response of these NG2-glia cells after TBI. Researchers said they see “a seductive possibility” that tapping into the regenerative potential of NG2-glia cells after neurotrauma could lead to therapies in the future. The impact could be profound, given that TBI is the leading cause of death among all people ages 1-44 and the global cost of this ‘silent epidemic’ is estimated to top $102 billion annually.

What they’re saying

“Our review lays out what’s known about these fascinating cells,” said Terry Dean, M.D., Ph.D., critical care specialist at Children’s National and investigator at the Center for Neuroscience Research (CNR). “NG2-glia are found throughout the brain, and we know that these cells undergo several dynamic changes in the hours, days and weeks after TBI. They are unique, and we want to understand their molecular characteristics to eventually enhance patients’ cellular recovery after TBI.”

Although only encompassing 4% to 8% of brain cells, these NG2-glia cells make up the largest population of regenerative cells in the adult central nervous system. In their article, Dean and Vittorio Gallo, Ph.D., Children’s National Research Institute interim director, lay out a number of unique features of these cells:

  • They proliferate, or multiply, and can form different cell types, especially after brain injuries.
  • They are structurally dynamic and can move and migrate throughout the cortex, including toward injury sites.
  • They appear to play a role in cell-to-cell signaling, which may prove vital after injuries.

The big picture

“As we study the brain after injuries, we hope our work will reveal the role these NG2-glia cells play in recovery, driving us to possible therapies,” Gallo said. “We believe the big answers will come through understanding the brain on a molecular level. This type of deep investigation is the foundation of our bench-to-bedside approach and positions researchers like Dr. Dean to find answers for our patients.”

Moving the field forward

Researchers have only begun to unlock how NG2-glia respond to injury, making this a fruitful area for research. Gallo, Dean and others at CNR hope to build on their knowledge about what happens to the brain immediately after an injury to learn more about what happens months after a debilitating impact. They are also considering new types of research models to expand their knowledge about cellular destruction, immune interaction and blood vessel compromise after different types of brain injuries.

“We look forward to the day when we have a truly targeted therapy for TBI patients,” Dean said. “Imagine the relief this could provide patients suffering from the persistent physical, cognitive and psychological disabilities that often accompany these brain injuries.”

Illustration of brain and brainwaves

Effective treatment for children with hemimegalencephaly

Illustration of brain and brainwaves

Anatomic or functional hemispherectomy are established neurosurgical treatment options and are recommended for effective seizure control and improved neurodevelopmental outcome in patients with HME.

Endovascular hemispherectomy can be safely used to provide definitive treatment of hemimegalencephaly (HME) related epilepsy in neonates and young infants when intraprocedural events are managed effectively, a new study finds.

The authors of the study, which published in the Journal of NeuroInterventional Surgery, add that this less invasive novel approach should be considered a feasible early alternative to surgical hemispherectomy.

Why it matters

Anatomic or functional hemispherectomy are established neurosurgical treatment options and are recommended for effective seizure control and improved neurodevelopmental outcome in patients with HME. Hemispherectomy in the neonate, however, is associated with high surgical risks and most neurosurgeons defer surgical hemispherectomy until the patient is at least 8 weeks old. This delay comes at a significant neurocognitive cost as the uncontrolled seizures during this time of deferred surgery have a deleterious effect on future neurocognitive outcome.

Why we’re excited

“The procedure we have developed, endovascular hemispherectomy by transarterial embolization, acutely stops seizures and this cessation of seizures has been sustained in each of the treated patients,” says Monica Pearl, M.D., director of the Neurointerventional Radiology Program at Children’s National Hospital and the study’s lead author.

This treatment option – performed early in life – provides hope and a better quality of life for these patients post procedure.

What’s been the hold-up in the field?

Currently, the only effective treatment option is hemispherectomy. With the patient population of neonates and young infants, hemispherectomy has a very high mortality and complication rate resulting in most neurosurgeons deferring treatment until at least 8 weeks. This leaves neonates and young infants without effective treatment options and on multiple antiseizure medications in an effort to control the seizures

How does this work move the field forward?

“Embolization provides a highly effective treatment option that acutely stops seizures during a time period of critical neurodevelopment and one in which traditional open neurosurgical procedures are not viable options,” Dr. Pearl says. “Specifically, we can consider and perform embolization in children as young as one or two weeks of age rather than waiting until at least 8 weeks of age. The impact of earlier intervention – acutely stopping the seizures, reducing the dose and number of antiseizure medications and avoiding more invasive surgical procedures (hemispherectomy, shunt placement) – appears to be dramatic in our recent series. We are conducting long term studies to assess this effect on neurodevelopmental outcome.”

How is Children’s National leading in this space?

Dr. Pearl and the late Taeung Chang, M.D., neurologist at Children’s National, pioneered this concept and treatment pathway. The multidisciplinary team is led by Dr. Pearl, who has performed all the embolization procedures (transarterial embolization/endovascular hemispherectomy) and Tayyba Anwar, M.D., Co-Director, Hemimegalencephaly Program at Children’s National Hospital. Our epilepsy team, neonatology team and neurosurgery team work collaboratively managing the patients before and after each procedure.

Sarah Mulkey

Exposure to Zika in utero may produce neurodevelopmental differences

Sarah Mulkey

“There are still many unanswered questions about the long-term impacts of Zika on children exposed in utero,” says Sarah Mulkey, M.D., Ph.D., a prenatal-neonatal neurologist in the Prenatal Pediatrics Institute at Children’s National Hospital.

Children who are exposed to the Zika virus while in the womb, but who are not subsequently diagnosed with Zika-related birth defects and congenital Zika syndrome (CZS), may still display differences in some aspects of cognitive development, mood and mobility compared to unexposed children, reports a study published in Pediatric Research. These findings suggest that Zika-exposed children may need some additional support and monitoring as they get older.

“There are still many unanswered questions about the long-term impacts of Zika on children exposed in utero,” says Sarah Mulkey, M.D., Ph.D., a prenatal-neonatal neurologist in the Prenatal Pediatrics Institute at Children’s National Hospital and the study’s first author. “These findings are another piece of the puzzle that provides insight into the long-term neurodevelopment of children with prenatal Zika virus exposure. Further evaluation is needed as these children get older.”

It has not been clear how children who were exposed to the Zika virus in the womb during the 2015–2017 epidemic, but who did not develop CZS and serious neurological complications, will develop as they get older.

Dr. Mulkey and colleagues examined the neurodevelopment of 55 children aged 3-5 years who were exposed to Zika in the womb in Sabanalarga, Colombia, and compared them to 70 control children aged 4-5 years who had not been exposed to Zika. Assessments occurred between December 2020 and February 2021. Health professionals tested the children’s motor skills (such as manual dexterity, aiming and catching, and balance) and their readiness for school (including knowledge of colors, letters, numbers and shapes). Parents completed three questionnaires providing information about their child’s cognitive function (such as memory and emotional control), behavioral and physical conditions (such as responsibility and mobility), and their parenting experience (including whether they felt distress).

Parents of Zika-exposed children reported significantly lower levels of mobility and responsibility compared to control children, although differences in cognitive function scores were not significant. Additionally, parents of 6 (11%) Zika-exposed children reported mood problems compared to 1 (1%) of control children, and Zika-exposed parents were significantly more likely to report parental distress.

Professional testing revealed no significant differences in the Zika-exposed children’s manual dexterity, such as their ability to catch an object or post a coin through a slot, compared to the control children. Both Zika-exposed and control children also scored lowly on readiness for school.

The authors highlight that parental responses may have been influenced by the Zika-exposed children’s parents’ perceptions or increased worry about the development of their child. Some differences in results may also have been caused by the age – and therefore developmental – differences between the groups of children.

The authors conclude that while these Zika-exposed children are making progress as they develop, they may need additional support as they prepare to start school.

Dr. Mulkey is committed to studying the long-term neurodevelopmental impacts that viruses like Zika and SARS-CoV-2 have on infants born to mothers who were infected during pregnancy through research with the Congenital Infection Program at Children’s National and in collaboration with colleagues in Colombia.

DNA molecule

NIH awards $1m grant to study visual system

DNA molecule

The team will focus its work on FXS, a genetic condition that causes changes in a gene called Fragile X Messenger Ribonucleoprotein 1 (FMR1).

Researchers at Children’s National Hospital received a $1 million grant from the National Institutes of Health (NIH) to study the neural mechanisms behind visual deficits in fragile X syndrome (FXS). The work will provide new insights into how the visual system develops.

With the award from the National Eye Institute, the Children’s National team – led by Jason Triplett, Ph.D., principal investigator at the Center for Neuroscience Research – will work to unravel the poorly understood relationship between sensory deficits and neurodevelopmental disorders (NDDs). The findings are expected to provide clues into possible non-invasive therapeutics that could someday be used to resolve visual deficits in children with FXS and other disorders.

“Deficits in sensory processing, including vision, are common in many NDDs, but how these deficits arise is poorly understood, hampering the development of therapies,” Triplett said. “Using a powerful combination of molecular, anatomic and electrophysiologic techniques, we are hoping to get a comprehensive understanding of visual circuit development – and its disruption in fragile X syndrome.”

The big picture

The team will focus its work on FXS, a genetic condition that causes changes in a gene called Fragile X Messenger Ribonucleoprotein 1 (FMR1). The gene normally makes a protein needed for brain development, including the highly complex visual system. However, people with FXS do not properly make the protein, leading to a spectrum of developmental and cognitive delays.

Triplett’s team theorizes that ameliorating sensory deficits could improve other features of the disorder. Research has shown that sensory processing is critical for communication and learning, which are central components of the behavioral therapies aimed at treating intellectual delays and social anxiety.

Yet little is known regarding the neural basis of sensory deficits in FXS. Understanding how neuronal circuits are disorganized and dysfunctional in the context of the disorder will be a critical first step to developing therapeutics. In addition, given the prevalence of sensory dysfunction across NDDs, the work could have broader applications.

Children’s National Hospital leads the way

This NIH-supported work builds on prior research in the Triplett Laboratory. The collaborative nature among investigators in the Center for Neuroscience Research combined with the technical resources supported by the DC-Intellectual and Developmental Disabilities Research Center create an environment that maximizes the experimental capabilities of the Triplett Lab.

“We are so excited to continue this work,” Triplett said. “It highlights the importance of supporting fundamental research at the bench. We started with basic biological questions about how circuits wire up, and now we are embarking on research that could set the stage for potentially life-changing therapies.”

Paper cutouts of silhouette

Successful autism and ADHD tools go digital

Paper cutouts of silhouette

A team is working to implement a successful, evidence-based online training and tele-support system for the Unstuck and On Target (UOT) program.

A team from Children’s National Hospital, Children’s Hospital Colorado and The Institute for Innovation and Implementation at the University of Maryland, Baltimore is working to implement a successful, evidence-based online training and tele-support system for the Unstuck and On Target (UOT) program. The program is now available for free to any parent or educator who needs it.

What is it?

Since 2020, this team has piloted UOT video training with 293 school-based staff across 230 elementary schools in Colorado and Virginia. The work follows a related PCORI-funded research project, Improving Classroom Behaviors Among Students with Symptoms of Autism Spectrum Disorder or Attention Deficit Hyperactivity Disorder, led by Children’s National and Children’s Colorado researchers. That project demonstrated the effectiveness of UOT at improving the executive functioning – or self-regulation skills including flexible thinking, planning and emotional-control – of school-aged children in Title 1 schools. The training focuses on the executive function of elementary school-aged children with autism spectrum disorder (ASD) or attention deficit hyperactivity disorder (ADHD).

In addition to creating more accessible training for educators, the team created short, free videos highlighting executive functioning tips and tricks that parents can employ at home. These videos, evaluated by 100 parents and revised based on their input, are now available to parents nationwide.

The availability of this training is possible due to a $2 million contract awarded to Children’s Hospital Colorado’s (Children’s Colorado) Pediatric Mental Health Institute and Children’s National by the Patient-Centered Outcomes Research Institute (PCORI) in 2020.

Why it matters

There are many children, including those in low-income or rural settings, that don’t have access to clinics that offer services to support executive functioning skills, such as planning and flexibility, that they need. But all children have access to a school. Now, UOT training is online and accessible so any school with internet access can offer UOT where school staff (including special educators, teachers, paraprofessionals and counselors) can actively teach students how to plan, set goals and be flexible. The team’s next goal is to create a comparable video training for the high school version of UOT.

“These free, accessible and effective tools for improving children’s social-emotional development are building skills that are more important today than ever,” said Lauren Kenworthy, Ph.D., director of the Center for Autism Spectrum Disorders at Children’s National. “The vast majority (96%) of caregivers and educators found these tools useful and relevant. That feedback is a testament to our team’s efforts to make sure these resources were created and validated as usable, approachable and actionable for everyone who needs them.”

More information

For educators – Find resources on Unstuck and On Target, including links to the free trainings, tips and tricks and FAQs. Teachers can also receive continuing education credits (CEUs) for this training.

For parents – Find resources on Unstuck and On Target’s parent training videos

For schools – Add free Unstuck and On Target parent videos to your school district’s relevant websites, landing pages and newsletters.

illustration of the brain

How the circadian clock could help the brain recover after injury

illustration of the brain

A type of brain cell that can renew itself is regulated by circadian rhythms, providing significant insights into how the body’s internal clock may promote healing after traumatic brain injuries (TBI).

A type of brain cell that can renew itself is regulated by circadian rhythms, providing significant insights into how the body’s internal clock may promote healing after traumatic brain injuries (TBI), according to new research from Children’s National Hospital.

Released in the latest issue of eNeuro, the findings open new avenues of investigation for future TBI therapies. These injuries are currently managed only with supportive care and rehabilitation, rather than targeted drug treatment options. The findings also underscore the importance of addressing circadian disturbances to help injured brains heal.

Many of the body’s cells follow a 24-hour rhythm driven by their genes known as the circadian clock. The Children’s National research team found that a relatively newly discovered type of brain cell ­– known as NG2-glia, or oligodendrocyte precursor cells ­– also follow a circadian rhythm. This cell type is one of the few that continually self-renews throughout adulthood and is notably proliferative in the first week after brain injuries.

“We have found evidence for the role of this well-known molecular pathway – the molecular circadian clock – in regulating the ability for these NG2-glia to proliferate, both at rest and after injury,” said Terry Dean, M.D., Ph.D., critical care specialist at Children’s National and the lead author of the paper. “This will serve as a starting point to further investigate the pathways to controlling cellular regeneration and optimize recovery after injury.”

Sometimes called “the silent epidemic,” TBI afflicts an estimated 69 million people worldwide each year, with injuries ranging from mild concussions to severe injuries that cause mortality or lifelong disability. In the United States alone, approximately 2.8 million people sustain TBI annually, including 630,000 children. TBI is the leading cause of death in people under age 45, and those who survive are often left with persistent physical, cognitive and psychological disabilities.

Yet no targeted therapies exist for TBI, creating a critical need to uncover the mechanisms that could unlock the regeneration of these NG2-glia cells, which are the most common type of brain cell known to proliferate and self-renew in adult brains.

“It is essential for researchers to know that cell renewal is coordinated with the time of day,” said Vittorio Gallo, Ph.D., interim chief academic officer and interim director of the Children’s National Research Institute. “With this knowledge, we can dig deeper into the body’s genetic healing process to understand how cells regulate and regenerate themselves.”

Brain illustration

Paving the way toward better understanding and treatment of neonatal brain injuries

Brain illustration

The Gallo Lab’s latest research finds reduced expression of Sirt2 in the white matter of premature human infants and characterizes its role in white matter of the brain in normal conditions and during hypoxia.

Changes in myelination due to diffuse white matter injury are a common consequence of premature birth and hypoxic-ischemic injury due to asphyxia of sick term-born newborns. Hypoxic damage during the neonatal period can lead to motor disabilities and cognitive deficits with long-term consequences, including cerebral palsy, intellectual disability or epilepsy, which are often due to cellular and functional abnormalities.

The Gallo Lab, within the Center for Neuroscience Research at Children’s National Hospital, is focused on studying postnatal neural development and the impact of injury and disease on development and regeneration of neurons and glia. Their latest research, published in Nature Communications, finds reduced expression of Sirt2 in the white matter of premature human infants (born earlier than 32 weeks of gestation) and characterizes its role in white matter of the brain in normal conditions as well as during hypoxia.

What it means

The lab previously identified Sirt1 as important for the proliferative regenerative response of oligodendrocyte progenitor cells in response to chronic neonatal hypoxia. This new study characterizes the function of Sirt2 and finds that it acts as a critical promoter of oligodendrocyte differentiation during both normal brain development and after hypoxia.

It’s likely this reduced expression of Sirt2 contributes to the arrest in oligodendrocyte maturation and myelination failure seen in extremely low gestational age neonates. Therefore, targeting Sirt2 may be an opportunity to capture the early and small window of opportunity for therapeutic intervention.

How this moves the field forward

Sirtuins have been shown to play crucial therapeutic roles in various diseases, including aging, neurodegenerative disorders, cardiovascular disease and cancer. Identifying Sirt2 as a major regulator of white matter development and recovery and increasing the understanding of its protein and genomic interactions opens new avenues for Sirt2 as a therapeutic target for white matter injury in premature babies.

Why we’re excited

Interestingly, the team found that overexpression of Sirt2 in oligodendrocyte progenitor cells, but not mature oligodendrocytes, restores oligodendrocyte populations after hypoxia through enhanced proliferation and protection from apoptosis. This is exciting because:

  • It tells us that Sirt2 expression is very important for the transition from progenitor to differentiated oligodendrocyte.
  • It’s the first report, to the team’s knowledge, of Sirt2 regulating cell survival of oligodendrocytes.

Read more in Nature Communications

illustration of the brain

LIFU successfully delivers targeted therapies past the blood-brain barrier

illustration of the brain

LIFU offers doctors the first opportunity to open the blood-brain barrier and treat the entire malignant brain tumor.

Children’s National Hospital will leverage low-intensity focused ultrasound (LIFU) to deliver therapy directly to a child’s high-grade glioma. The approach offers doctors the first opportunity to open the blood-brain barrier and treat the entire malignant brain tumor.

Children’s National will be the first hospital in the U.S. to treat high-grade pediatric brain tumors with LIFU to disrupt the blood-brain barrier. Crossing it has been a major hurdle for effective therapy. The barrier, a network of blood vessels and tissue, prevents harmful substances from reaching the brain but also stops molecular targeted therapy and immunotherapy from getting into the tumor site and staying there.

“LIFU gives us a way to potentially transiently open up the barrier, so we can deliver novel therapy directly to the tumor and improve the likelihood of survival,” said Roger Packer, M.D., senior vice president of the Center for Neurosciences and Behavioral Medicine at Children’s National. “It is the greatest breakthrough we’ve potentially had in the past 50 years or more for the management of these tumors. We made great strides in our understanding of molecular genetics and the molecular drivers of tumors, but we have not yet translated that knowledge into better therapies; this may be our most effective mechanism to overcome the barrier.”

In 2020, Children’s National was recognized as the first worldwide Center of Excellence by the Focused Ultrasound Foundation.

Focused ultrasound (FUS) is a non-invasive therapeutic technology with the potential to transform the treatment of many medical disorders by using ultrasonic thermal energy to specifically target tissue deep in the body. The technology can treat without incisions or the need of radiation.

How it works

Doctors at Children’s National will be using LIFU in two different types of procedures:

  • 5-ALA: Doctors will give the patient 5-aminolevulinic acid (5-ALA) with the LIFU treatment. 5-ALA enters rapidly dividing cells and is activated by the ultrasound to a state where it kills the dividing cells of the tumor. The surrounding normal brain cells around the tumor are not dividing, so they do not take up the 5-ALA and are left unharmed after ultrasound therapy.
  • Microbubbles: While receiving different doses of LIFU over a one- to two-hour period, the patient is given “microbubbles,” which are widely used in medical imaging and as carriers for targeted drug delivery. These microbubbles bounce around against the walls like seltzer, opening the blood vessels and transiently opening that space.

Both studies are the first in the world for pediatric gliomas of the brain stem, allowing experts to treat patients 4-6 weeks after radiotherapy. The patient then receives medication orally or intravenously as it passes through the bloodstream. It does not go at high levels anywhere within the brain except where the blood-brain-barrier was opened, allowing oral medication or immune therapies to rush into the tumor.

The launch of this program comes a few months after the hospital successfully performed the first-ever high-intensity focused ultrasound surgery on a pediatric patient with neurofibromatosis.

Watch this video to learn more.

crawling baby

Gene-targeting may help prevent or recover neonatal brain injuries

crawling baby

The findings of a new pre-clinical study published in The Journal of Neuroscience are helping pave the way toward better understanding, prevention and recovery of neonatal brain injuries.

The findings of a new pre-clinical study published in The Journal of Neuroscience are helping pave the way toward better understanding, prevention and recovery of neonatal brain injuries. During pregnancy, the fetus normally grows in low oxygen conditions. When babies are born preterm, there is an abrupt change into a high oxygen environment which may be higher than the baby can tolerate. These preterm babies often need support to breathe because their lungs are immature. If the oxygen they receive is too high, oxygen-free radicals can form and cause cell death.

Premature infants have underdeveloped antioxidant defenses that prevent or delay some types of cell damage under normal conditions. In a high oxygen environment, these underdeveloped defenses cannot fully protect against oxidative stress, damaging different brain regions without available treatments or preventative measures.

“I am thrilled that we identified a defect in a specific cell population in the hippocampus for memory development,” said Vittorio Gallo, Ph.D., interim chief academic officer and interim director of the Children’s National Research Institute, and principal investigator for the District of Columbia Intellectual and Developmental Disabilities Research Center. “I did not think we would be able to do it at a refined level, identifying cell populations sensitive to oxidative stress and its underlying signaling pathway and molecular mechanism.”

Vittorio Gallo

“I am thrilled that we identified a defect in a specific cell population in the hippocampus for memory development,” said Vittorio Gallo, Ph.D.

Children’s National Hospital experts found that oxidative stress over-activates a glucose metabolism enzyme, GSK3β, altering hippocampal interneuron development and impairing learning and memory, according to the pre-clinical study. The researchers also inhibited GSK3β in hippocampal interneurons, reversing these cellular and cognitive deficits.

The role of oxidative stress in the developing hippocampus, as well as GSK3β involvement in oxidative stress-induced neurodevelopmental disorders and cognitive deficits, have both been unexplored until now. Goldstein et al. suggest the study paves the way for the field as a viable approach to maximize functional recovery after neonatal brain injury.

To better understand the mechanisms underlying neonatal brain injury, the researchers mimicked the brain injury by inducing high oxygen levels in a pre-clinical model for a short time. This quest led to unlocking the underpinnings of the cognitive deficits, including the pathophysiology and molecular mechanisms of oxidative damage in the developing hippocampus.

Once they identified what caused cellular damage, the researchers used a gene-targeted approach to reduce GSK3β levels in POMC-expressing cells or Gad2-expressing interneurons. By regulating the levels of GSK3β in interneurons ⁠— but not in POMC-expressing cells — inhibitory neurotransmission was significantly improved and memory deficits due to high oxygen levels were reversed.

caspase molecule

Caspases may link brain cell degeneration and cardiac surgery

caspase molecule

The review summarizes both the known physiological roles of caspases as well as some of the well-characterized neurotoxic effects of anesthetics in pre-clinical models.

A review article in the journal Cell Press: Trends in Neuroscience outlines the wide variety of cellular signaling roles for caspase proteins — a type of cellular enzyme best known for its documented role in the natural process of cell death (apoptosis). The authors, including Nemanja Saric, Ph.D., Kazue Hashimoto-Torii, Ph.D., and Nobuyuki Ishibashi, M.D., all from Children’s National Research Institute, pay particular attention to what the scientific literature shows about caspases’ non-apoptotic roles in the neurons specifically. They also highlight research showing how, when activated during a cardiac surgery with anesthesia and cardiopulmonary bypass, these enzymes may contribute to the degeneration of brain cells seen in young children who undergo heart surgery for critical congenital heart defects (CHDs).

Why it matters

The review summarizes both the known physiological roles of caspases as well as some of the well-characterized neurotoxic effects of anesthetics in pre-clinical models.

The authors propose that these non-apoptotic activities of caspases may be behind some of the adverse effects on the developing brain related to cardiac surgery and anesthesia. Those adverse effects are known to increase risk of behavioral impairments in children with congenital heart disease who underwent cardiac surgery with both anesthesia and cardiopulmonary bypass at a very young age.

This work is the first to propose a possible link between developmental anesthesia neurotoxicity and caspase-dependent cellular responses.

The patient benefit

Better understanding of the time and dose-dependent effects of general anesthetics on the developing brain, particularly in children who have genetic predispositions to conditions such as CHDs, will help researchers understand their role (if any) in behavioral problems often encountered by these patients after surgery.

If found to be a contributing factor, perhaps new therapies to mitigate this caspase activity might be explored to alleviate some of these adverse effects on the developing brain.

What’s next?

The authors hope to stimulate more in-depth research into caspase signaling events, particularly related to how these signaling events change when an anesthetic is introduced. Deeper understanding of how anesthetics impact caspase activation in the developing brain will allow for better assessments of the risk for children who need major surgery early in life.

Children’s National leads the way

Children’s National Hospital leads studies funded by the U.S. Department of Defense to better understand how these other roles of caspases, which until now have not been well-documented, may contribute to brain cell degeneration when activated by prolonged anesthesia and cardiopulmonary bypass during cardiac surgery for congenital heart disease.