Pulmonology and Sleep Medicine News

Children’s National Pulmonary Medicine Rockville

Spotlight on Samuel Rosenberg, M.D.

Children’s National Pulmonary Medicine Rockville

Dr. Rosenberg will be seeing patients at Children’s National Pulmonary Medicine Rockville (above) and Children’s National Frederick.

Samuel Rosenberg, M.D., a Maryland native, has been practicing medicine in the Washington, D.C., area since he completed his post-graduate medical training in 1991. For the last 27 years, he has served Montgomery County, Frederick County and the surrounding communities through his private practice in pediatric pulmonology. Now, he has joined the Children’s National Hospital team as a member of our pulmonology faculty.

Growing up, Dr. Rosenberg always knew that his life goal was to help people. Given that he also had a natural affinity for science, medicine seemed to be a perfect fit. After completing a combined internal medicine and pediatrics residency program, Dr. Rosenberg found his calling in pediatrics. “I quickly realized that pediatrics was far more rewarding from a personal perspective,” he recalls. “I also became fascinated with diseases of the pulmonary system during my residency and chose to pursue pediatric pulmonology as a career.”

After completing his medical training, Dr. Rosenberg became a staff pediatric pulmonologist at Inova Children’s Hospital for three years before starting his own solo private practice. After spending 27 years in that practice, he has chosen to join the team at Children’s National. “I wanted to be associated with and have access to a diverse and top-notch health care team for my patients and my practice,” he explains. “I would also like to participate in teaching students and trainees, something that has always been of interest to me.”

In his many years as a pediatric pulmonologist, Dr. Rosenberg has found that serving patients and families remains the most rewarding aspect of his work. “My biggest accomplishment is helping children, and at the same time, enjoying my work. I have many patients who have been in my practice since infancy. They have placed their trust in me over the years, and I appreciate that trust so much,” he explains. “I treasure my relationships with my patients and families. Improving their quality of life has always been my primary focus.”

In his new role with Children’s National, Dr. Rosenberg will continue to provide quality care to his patients and families. “I am committed to continuing to practice medicine at the highest level, while at the same time preserving a comfortable child and family-friendly environment,” he says. He will be seeing patients at Children’s National Pulmonary Medicine Rockville and Children’s National Frederick.

girl with asthma inhaler

Children’s National becomes part of CAUSE Network

girl with asthma inhaler

Seven clinical sites in six different cities will join forces to perform mechanistic and translational studies examining the basic immunology of pediatric asthma among urban, under-resourced and largely minority children and adolescents.

The National Institute of Allergy and Infectious Diseases (NIAID) allocated $10 million in funding to establish the Childhood Asthma in the Urban Setting (CAUSE) network. The NIAID plans to increase this number by $70 million over seven years to support the network. Children’s National Hospital will be part of the new research network, which is a 7-year consortium comprising of seven clinical sites in six different cities that will join forces to perform mechanistic and translational studies examining the basic immunology of pediatric asthma among urban, under-resourced and largely minority children and adolescents.

Children’s National is the home of Improving Pediatric Asthma Care in the District of Colombia (IMPACT DC). The program focuses on research, care and advocacy to decrease asthma morbidity experienced by at-risk youth in the region while serving as a model program for the nation. NIAID gave an initial $3 million to IMPACT DC to conduct its own pilot study of anti-IgE therapy to prevent asthma exacerbations. Additional support for this and other studies will come from subcontracts from the CAUSE Coordinating Center at the University of Wisconsin in Madison.

“This new award allows IMPACT DC to remain part of one of the nation’s most prestigious pediatric asthma research consortia,” said Stephen Teach, M.D, M.P.H., chair for the Department of Pediatrics at George Washington University School of Medicine and Health Sciences. “It will allow us to both pursue an independent research agenda while collaborating with similar academic centers nationwide.”

Pediatric asthma is the most common chronic disease in children, and it is estimated that about 6.1 million children under 18 years suffer from this condition. It disproportionately affects urban, minority and under-resourced children and adolescents.

“It is essential to develop an understanding of the basic immunology of the disease and therapeutic options to ameliorating these disparities,” said Dr. Teach.

CAUSE researchers will explore the mechanisms of immune tolerance to allergens, the role of early environmental exposures in the pathogenesis of asthma, the pathogenesis and mechanisms of non-atopic asthma, the role of the respiratory epithelium in asthma and more.

The CAUSE network comprises of seven clinical research centers, including Children’s National led by principal investigator, Dr. Teach, and the following research centers:

  • Boston Children’s Hospital. Principal investigators: Wanda Phipatanakul, M.D., and Talal Chatila, M.D.
  • Cincinnati Children’s Hospital Medical Center. Principal investigator: Gurjit Khurana Hershey, M.D., Ph.D.
  • Columbia University Health Sciences, New York. Principal investigator: Meyer Kattan, M.D.
  • Icahn School of Medicine at Mount Sinai, New York. Principal investigators: Paula Busse, M.D., Supinda Bunyavanich, M.D., and Juan Wisnivesky, M.D.
  • Lurie Children’s Hospital of Chicago. Principal investigators: Rajesh Kumar, M.D., and Jacqueline Pongracic, M.D.
  • University of Colorado Denver. Principal investigator: Andrew Liu, M.D.
Francis Collins

Francis S. Collins, M.D., Ph.D. from NIH: The future of genomic medicine and research funding opportunities

Kurt Newman and Francis Collins

Genomic medicine, diversity, equity and inclusion (DEI), a world post-COVID-19 and pediatric research funding were among the topics discussed during the “Special Fireside Chat” keynote lecture at the 2021 Children’s National Hospital Research, Education and Innovation Week.

Francis S. Collins, M.D., Ph.D., director at the National Institutes of Health (NIH), is well known for his landmark discoveries of disease genes and his leadership of the international Human Genome Project, which culminated in April 2003 with the completion of a finished sequence of the human DNA instruction book.

The President and CEO of Children’s National, Kurt Newman, M.D., joined Dr. Collins during the “Special Fireside Chat” keynote lecture. Dr. Newman posed several health care-related questions to Dr. Collins over the course of 30 minutes. Dr. Collins’s responses shed light on what it takes to advance various research fields focused on improving child health and develop frameworks that advocate for DEI in order to foster a more just society.

Q: You have been involved with genomic medicine since its inception. You discovered the gene causing cystic fibrosis and led the Human Genome project. What do you see as the future of genomic medicine, especially as it relates to improving child health?

A: Thank you for the question, Kurt. First, I wanted to say congratulations on your 150th anniversary. Children’s National Hospital has been such a critical component for pediatric research and care in the Washington, D.C., area, and at the national and international levels. We at the NIH consider it a great privilege to be your partner in many of the things that we can and are doing together.

Genomic medicine has certainly come a long way. The word genomics was invented in 1980, so we have not been at this for that long. Yet, the success of the Human Genome Project and the access to cost-effective tools for rapid DNA sequencing have made many things possible. It took a lot of effort, time and money to discover the gene that causes cystic fibrosis. Kurt, if you look at what we did, while it was rewarding, it was a challenging problem that occupied the hearts of the scientific community in 1980. Now, a graduate student at Children’s National that has access to DNA samples, a thermal cycler, a DNA sequencer and the internet could do in about a week what it took us a decade and with 50 people.

We have been able to rocket forward as far as identifying the genetic causes of 6,500 diseases, where we know precisely the molecular glitch responsible for those conditions. While most of those are rare diseases, it leads to the opportunity for immediate diagnosis, which used to be a long and troubled journey.

DNA sequencing has increasingly become an essential tool in newborns, especially when trying to sort out puzzling diagnosis for specific syndromes or phenotypes that are not immediately clear. Additionally, DNA sequencing significantly impacted clinical care in cancer because it made it possible to look at the mutations driving the malignancy and its genetic information that can lead to interventions. This approach is going forward in the next few years in ways that we can see now. Although I am a little reluctant to make predictions because I have to be careful about that, it may be possible to obtain complete genome sequences that can be yours for life and place them into the medical record to make predictions about future risks and choices about appropriate drugs. This path costs less than any imaging tests.

Q: The racial justice movement that was brought back to the forefront this past year has, once again, reaffirmed that this country has so much more work to do in order to end systemic racism. You have been at the forefront of promoting diversity, equity and inclusion in research and at the NIH. What do you and the NIH plan to do further DEI efforts in research and in general so that we can be a more just and equitable society?

A: I appreciate you raising this, Kurt. Diversity, equity and inclusion (DEI) is an issue where everyone should be spending a lot of time, energy and passion. You are right. 2020 will be remembered for COVID-19. I also think it will be remembered for the things that occurred around the killing of George Floyd, and the recognition of the very foundation that is still infected by this terribly difficult circumstance of structural racism. I convened a group of about 75 deep thinkers about these issues, many of them are people of color from across the NIH’s different areas of activities. I asked the group to come forward with a bold set of proposals. This effort is how the program UNITE came together to work hard on this, which is now making recommendations that I intend to follow. We are determined to close that gap and pursue additional programs that will allow us to be more successful in recruiting and retaining minority groups, for example. We need to do something with our health disparity and research portfolio as well to ensure that we are not just looking around the edges of the causes for racial inequities. We are digging deeper into what the structural racism underpinnings are and what we can do about it. I am particularly interested in supporting research projects that test intervention and not just catalog the factors involved. We have been, at times, accused and maybe rightly so of being more academic about this, and, less kindly, we have been accused of admiring the problem of health disparities as opposed to acting on it. We are ready to act.

Q: COVID has affected us all in so many ways. Could you tell us what this past year has been like for you? Also, how is the NIH preparing for a soon-to-be post-COVID pandemic?

A: This is the time to contemplate the lessons learned as everyone knows that the last worst pandemic happened over a century ago. One thing that maybe will vex us going forward, which we already started to invest in a big way, is this whole long COVID syndrome, also referred to post-acute sequelae, to understand precisely the consequences and mechanisms like Multisystem Inflammatory Syndrome in Children (MIS-C). Before moving to the next pandemic, we must think about how we will help understand those who suffer from long COVID syndrome. As far as the broader lessons learn, Kurt, we must expect that there will be other pandemics because humans are interacting more with animals, so zoonosis is likely to emerge. We need to have a clear sense of preparation for the next one. For instance, we are working on this right now, but we need to have a stronger effort to develop small molecules of anti-viral drugs aimed at the major viral classes, so we do not have to start from scratch. We also need clinical trial networks warm all the time, ready to go and to learn how valuable public partnerships can be to get things done in a hurry.

Editor’s Note: The responses in this Q+A have been modified to fit the word count.

Andrea Hahn

Pediatric Research names Andrea Hahn, M.D., M.S., early career investigator

Andrea Hahn

“I am honored to be recognized by Pediatric Research and the Society of Pediatric Research (SPR) at large,” said Dr. Hahn. “SPR is an amazing organization filled with excellent scientists, and to be highlighted by them for my work is truly affirming.”

For her work on the impact of bacterial functional and metabolic activity on acute episodes of cystic fibrosis, the journal Pediatric Research recognized Andrea Hahn, M.D., M.S., as Pediatric Research’s Early Career Investigator.

Cystic fibrosis is an autosomal recessive genetic disease, affecting more than 70,000 people worldwide. The condition’s morbidity and mortality are recurrent and result in a progressive decline of lung function.

“I am honored to be recognized by Pediatric Research and the Society of Pediatric Research (SPR) at large,” said Dr. Hahn. “SPR is an amazing organization filled with excellent scientists, and to be highlighted by them for my work is truly affirming.”

The exact mechanisms of the bacteria that chronically infect the airway triggering acute cystic fibrosis episodes, also known as pulmonary exacerbations, remain unclear. Dr. Hahn’s research is one of the few to explore this gap and found an association with long-chain fatty acid production in cystic fibrosis inflammation.

“As a physician-scientist, there are many competing priorities between developing and executing good science — including writing manuscripts and grants — and providing excellent patient care both directly and through hospital-wide quality improvement initiatives,” said Dr. Hahn. “It is often easier to have successes and feel both effective and appreciated on the clinical side. This recognition of my scientific contributions to the medical community is motivating me to continue pushing forward despite the setbacks that often come up on the research side.”

The exposure to many programs and institutions gave Dr. Hahn the foundation to create a research program at Children’s National that helps decipher the complexities of antibiotic treatment and how it changes the airway microbiome of people with cystic fibrosis. The program also explores the impacts of antibiotic resistance and beta-lactam pharmacokinetics/pharmacodynamics (PK/PD) — the oldest class of antibiotics used to treat infections.

Dr. Hahn believes that the people and environment at Children’s National Hospital allowed her to grow and thrive as a physician-scientist.

“I was initially funded through an internal K12 mechanism, which was followed up by Foundation support, which was only possible because of the strong mentorship teams I have been able to build here at Children’s National,” said Dr. Hahn. “My division chief has also been very supportive, providing me with both protected time as well as additional resources to build my research lab.”

She is particularly appreciative of Robert Freishtat, M.D., M.P.H, senior investigator at the Center for Genetic Medicine Research, and Mary Callaghan Rose (1943-2016).

“Robert Freishtat has been a great advocate for me, and I am indebted to him for my success thus far in my career,” said Dr. Hahn. “Likewise, I want to specifically recognize Mary Rose. She was a great scientist at Children’s National until her death in 2016. She gave me the initial opportunity and support to begin a career studying cystic fibrosis, and she is missed dearly.”

You can learn more about Dr. Hahn’s research in this Pediatric Research article.

girl with cystic fibrosis getting breathing treatment

The role of long-chain fatty acids in cystic fibrosis inflammation

girl with cystic fibrosis getting breathing treatment

A recent study sheds light on the microbiologic triggers for lung inflammation and pulmonary exacerbations in cystic fibrosis.

Cystic fibrosis is an autosomal recessive disease that affects more than 70,000 people worldwide and results in a progressive decline of lung function. Patients with cystic fibrosis experience intermittent episodes of acute worsening of symptoms, commonly referred to as pulmonary exacerbations. While Staphylococcus aureus and Pseudomonas aeruginosa are thought to contribute to both lung inflammation and pulmonary exacerbations, the microbiologic trigger for these events remains unknown. Andrea Hahn, M.D., M.S., and her colleagues at Children’s National Hospital recently shed light on this matter by studying the changes in bacterial metabolic pathways associated with clinical status and intravenous (IV) antibiotic exposure in cystic fibrosis patients.

The researchers found increased levels of long-chain fatty acids (LCFAs) after IV antibiotic treatment in patients with cystic fibrosis. LCFAs have previously been associated with increased lung inflammation in asthma, but this is the first report of LCFAs in the airway of people with cystic fibrosis. This research indicates that bacterial production of LCFAs may be a contributor to inflammation in people with cystic fibrosis and suggests that future studies should evaluate LCFAs as predictors of pulmonary exacerbations.

Additional authors from Children’s National include: Hollis Chaney, M.D., Iman Sami Zakhari, M.D., Anastassios Koumbourlis, M.D., M.P.H. and Robert Freishtat, M.D., M.P.H.

Read the full study in Pediatric Research.

illustration of lungs with coronavirus inside

Pediatric asthma exacerbations during the COVID-19 pandemic

illustration of lungs with coronavirus inside

The authors found that in 2020, the District of Columbia did not experience the typical “September asthma epidemic” of exacerbations seen in past years.

In the United States, pediatric asthma exacerbations typically peak in the fall due to seasonal factors such as increased spread of common respiratory viruses, increased exposure to indoor aeroallergens, changing outdoor aeroallergen exposures and colder weather. In early 2020, measures enacted to reduce spread of the coronavirus (COVID-19) — such as social distancing, quarantines and school closures — also reduced pediatric respiratory illnesses and asthma morbidity. Children’s National Hospital immunologist and allergist William J. Sheehan, M.D., and colleagues sought to determine if these measures also affected the 2020 fall seasonal asthma exacerbation peak in Washington, D.C.

The authors found that in 2020, the District of Columbia did not experience the typical “September asthma epidemic” of exacerbations seen in past years. Emergency department visits, hospitalizations and intensive care unit admissions for asthma during the 2020 fall season were significantly reduced compared to previous years.

The authors conclude that, “this is likely due to social distancing, quarantines and school closures enacted during the pandemic. This is a small silver lining in a very difficult year. As 2021 brings optimism for gradual improvements of the pandemic, careful monitoring is necessary to recognize and prepare for childhood asthma morbidity to return to pre-pandemic levels.”

Additional study authors include: Shilpa J. Patel, M.D., M.P.H., Rachel H.F. Margolis, Ph.D., Eduardo R. Fox, M.D., Deborah Q. Shelef, M.P.H., Nikita Kachroo, B.S., Dinesh Pillai, M.D. and Stephen J. Teach, M.D., M.P.H.

Read the full study in the Journal of Allergy and Clinical Immunology: In Practice.

Asthma-Related Healthcare Utilization by Month

Asthma-Related Healthcare Utilization by Month (2016-2020). Asthma-related emergency department (ED) visits, hospitalizations and pediatric intensive care unit (PICU) admissions over time by month between 2016 and 2020. The p-values are for comparisons of mean monthly numbers for fall seasons of 2016-2019 to fall season of 2020. Image courtesy of the Journal of Allergy and Clinical Immunology: In Practice.

girl with down syndrome sleeping

Characteristics of central breathing abnormalities in children with trisomy 21

girl with down syndrome sleeping

Trisomy 21 (TS21), also known as Down syndrome, is the most common genetic syndrome in the United States. Many children with TS21 have a higher prevalence of sleep-related breathing disorders including central sleep apnea. While the mechanisms of central sleep apnea in TS21 are not completely understood, children with Down syndrome have multiple factors that make them more susceptible to developing central breathing abnormalities, including nervous system impairment, hypothyroidism and hypotonia.

In a recent multi-institutional study published in the journal Pediatric Pulmonology, Gustavo Nino, M.D., MSHS, D’ABSM, director of sleep medicine at Children’s National Hospital, and colleagues investigated the clinical features of central breathing abnormalities in TS21 across different pediatric age groups. The researchers also conducted analyses to look at the effects of biological sex and concomitant obstructive sleep apnea in children with central breathing abnormalities.

The authors conclude that “central breathing abnormalities are common in TS21 among young children (≤2 years of age) and in females older than 2 years of age,” and that “central apnea is often associated with concomitant obstructive sleep apnea and/or hypoxemia in children with TS21.”

Read the full study in Pediatric Pulmonology.

woman writing data to medical form and glucometer for checking sugar level

New grant to assess screening tools for cystic fibrosis-related diabetes

woman writing data to medical form and glucometer for checking sugar level

A grant from the Cystic Fibrosis Foundation will help Children’s National researchers assess the feasibility and accuracy of two new cystic fibrosis-related diabetes screening tools.

Cystic fibrosis-related diabetes (CFRD) is the most common non-pulmonary manifestation of cystic fibrosis (CF), affecting up to 30% of adolescents and 50% of adults living with CF, according to the Cystic Fibrosis Foundation (CFF). CFRD is often asymptomatic and so the CFF recommends that people living with CF be screened for CFRD annually starting at 10 years of age using an oral glucose tolerance test.

Although early detection and treatment of CFRD can lead to significant clinical improvements and prolong life, rates of screening are poor, likely due to the burdensome nature of oral glucose tolerance testing (OGTT). Rates of OGTT screening in patients 10-17 years of age vary widely among CF care centers, ranging 5.9% to 100% with a median of 61.3% of patients at a given center completing screening. At Children’s National, only 46.4% of pediatric CF patients without CFRD completed the OGTT in 2019.  The most commonly cited reason for failure to complete recommended OGTT screening is the additional burden that this time-consuming fasting test, requiring three blood draws, places upon patients who already contend with multiple medical interventions.

“People living with CF face tremendous medical burdens.,” says Brynn Marks, M.D., MSHPEd, pediatric endocrinologist at Children’s National Hospital. “Novel, more convenient approaches to CFRD screening that can provide both diagnostic and therapeutic information are urgently needed.”

Dr. Marks and Carol Chace, MSW, a social worker at Children’s National, have collaborated to receive a $160,000 Pilot and Feasibility Award from the CFF that will allow researchers to assess the feasibility and accuracy of two new CFRD screening tools, the Dexcom G6 Pro, a continuous glucose monitoring (CGM), and the Digostics GTT@home, a home-based OGTT kit. The Dexcom G6 Pro is the first unblinded professional CGM that enables patients to see their glucose values and trends in real-time. The GTT@home uses a built-in timer and audio-visual cues to guide users to collect capillary blood samples through finger sticks.

“While the idea of home-based testing is exciting in general, it is particularly important in the midst of the COVID-19 pandemic, as many are limiting preventative health care visits,” says Dr. Marks. “This research will hopefully inform future larger studies that could one day allow for this screening to be done at home.”

Coronavirus and lungs with world map in the background

Top AI models unveiled in COVID-19 challenge to improve lung diagnostics

Coronavirus and lungs with world map in the background

The top 10 results have been unveiled in the first-of-its-kind COVID-19 Lung CT Lesion Segmentation Grand Challenge, a groundbreaking research competition focused on developing artificial intelligence (AI) models to help in the visualization and measurement of COVID specific lesions in the lungs of infected patients, potentially facilitating more timely and patient-specific medical interventions.

Attracting more than 1,000 global participants, the competition was presented by the Sheikh Zayed Institute for Pediatric Surgical Innovation at Children’s National Hospital in collaboration with leading AI technology company NVIDIA and the National Institutes of Health (NIH). The competition’s AI models utilized a multi-institutional, multi-national data set provided by public datasets from The Cancer Imaging Archive (National Cancer Institute), NIH and the University of Arkansas, that originated from patients of different ages, genders and with variable disease severity. NVIDIA provided GPUs to the top five winners as prizes, as well as supported the selection and judging process.

“Improving COVID-19 treatment starts with a clearer understanding of the patient’s disease state. However, a prior lack of global data collaboration limited clinicians in their ability to quickly and effectively understand disease severity across both adult and pediatric patients,” says Marius George Linguraru, D.Phil., M.A., M.Sc., principal investigator at the Sheikh Zayed Institute for Pediatric Surgical Innovation at Children’s National, who led the Grand Challenge initiative. “By harnessing the power of AI through quantitative imaging and machine learning, these discoveries are helping clinicians better understand COVID-19 disease severity and potentially stratify and triage into appropriate treatment protocols at different stages of the disease.”

The top 10 AI algorithms were identified from a highly competitive field of participants who tested the data in November and December 2020. The results were unveiled on Jan. 11, 2021, in a virtual symposium, hosted by Children’s National, that featured presentations from top teams, event organizers and clinicians.

Developers of the 10 top AI models from the COVID-19 Lung CT Lesion Segmentation Grand Challenge are:

  1. Shishuai Hu, et al. Northwestern Polytechnical University, China. “Semi-supervised Method for COVID-19 Lung CT Lesion Segmentation”
  2. Fabian Isensee, et al. German Cancer Research Center, Germany. “nnU-Net for Covid Segmentation”
  3. Claire Tang, Lynbrook High School, USA. “Automated Ensemble Modeling for COVID-19 CT Lesion Segmentation”
  4. Qinji Yu, et al. Shanghai JiaoTong University, China. “COVID-19-20 Lesion Segmentation Based on nnUNet”
  5. Andreas Husch, et al. University of Luxembourg, Luxembourg. “Leveraging State-of-the-Art Architectures by Enriching Training Information – a case study”
  6. Tong Zheng, et al. Nagoya University, Japan. “Fully-automated COVID-19-20 Segmentation”
  7. Vitali Liauchuk. United Institute of Informatics Problems (UIIP), Belarus. “Semi-3D CNN with ImageNet Pretrain for Segmentation of COVID Lesions on CT”
  8. Ziqi Zhou, et al. Shenzhen University, China. “Automated Chest CT Image Segmentation of COVID-19 with 3D Unet-based Framework”
  9. Jan Hendrik Moltz, et al. Fraunhofer Institute for Digital Medicine MEVIS, Germany. “Segmentation of COVID-19 Lung Lesions in CT Using nnU-Net”
  10. Bruno Oliveira, et al. 2Ai – Polytechnic Institute of Cávado and Ave, Portugal. “Automatic COVID-19 Detection and Segmentation from Lung Computed Tomography (CT) Images Using 3D Cascade U-net”

Linguraru added that, in addition to an award for the top five AI models, these winning algorithms are now available to partner with clinical institutions across the globe to further evaluate how these quantitative imaging and machine learning methods may potentially impact global public health.

“Quality annotations are a limiting factor in the development of useful AI models,” said Mona Flores, M.D., global head of Medical AI, NVIDIA. “Using the NVIDIA COVID lesion segmentation model available on our NGC software hub, we were able to quickly label the NIH dataset, allowing radiologists to do precise annotations in record time.”

“I applaud the computer science, data science and image processing global academic community for rapidly teaming up to combine multi-disciplinary expertise towards development of potential automated and multi-parametric tools to better study and address the myriad of unmet clinical needs created by the pandemic,” said Bradford Wood, M.D., director, NIH Center for Interventional Oncology and chief, Interventional Radiology Section, NIH Clinical Center. “Thank you to each team for locking arms towards a common cause that unites the scientific community in these challenging times.”

illustration of human lungs

The need for more nuanced definitions of asthma

illustration of human lungs

Asthma, which is the most common chronic pediatric lung disease, has traditionally been defined as a syndrome of airway inflammation characterized by clinical symptoms of cough, wheezing, and shortness of breath. The complex and diverse nature of asthma has led to its classification as a syndrome or a constellation of symptoms and signs rather than a single diagnosis.

A review article published last month in Pediatric Research summarizes recent advances in defining asthma as a disease in children and demonstrates the need for even more nuanced definitions of an illness that affects an estimated 6 million youngsters in the United States.

More precise definitions of asthma will lead to more accurate diagnoses, better care for patients, and thereby fewer visits to the emergency department, says senior author Deepa Rastogi, M.D., M.S., co-director of Children’s National Hospital’s Severe Asthma Program and Associate Professor, Pediatrics and Genomics and Precision Medicine, George Washington University School of Medicine and Health Sciences.

The review — “Defining pediatric asthma: phenotypes to endotypes and beyond” — details current knowledge of asthma phenotypes and endotypes and recommends an approach to endotyping asthma that may be useful for defining asthma for clinical care as well as for future research studies in the realm of personalized medicine for asthma.

Asthma, which is the most common chronic pediatric lung disease, has traditionally been defined as a syndrome of airway inflammation characterized by clinical symptoms of cough, wheezing, and shortness of breath. The complex and diverse nature of asthma has led to its classification as a syndrome or a constellation of symptoms and signs rather than a single diagnosis.

The review summarizes key biomarkers that distinguish childhood asthma subtypes. While atopy and its severity are important features of childhood asthma, there is evidence to support the existence of a childhood asthma endotype distinct from the atopic endotype.

The article also summarizes a clinical approach that includes existing measures of airway-specific and systemic measures of atopy, coexisting morbidities, and disease severity and control, in the definition of childhood asthma, to empower health care providers to better characterize the disease burden in children.

“For health care providers, asking the right set of questions and doing the right testing will define the disease severity and control, which may get 90% of the disease under control,” says Rastogi. “This approach will allow health care providers to identify those children with severe asthma who would benefit from specialty intervention by a pediatric allergist or pulmonologist.”

At the Children’s National IMPACT DC Asthma Clinic, a team of providers that includes Rastogi, is practicing cutting-edge medicine that incorporates several concepts summarized in the review. The award-winning pediatric program is improving care and outcomes for children with severe asthma who have recently been to the emergency room, have been hospitalized for asthma, or generally have trouble controlling the disease.

When a child and their parents visit the clinic, they meet with clinicians who conduct a detailed medical consultation and provide a unique care plan for the patient. The team then coordinates treatment with the child’s primary care provider, school nurse and others involved in their care.

“Identifying the labile child using the endotyping tools allows us to intervene in a timely manner,” says Rastogi. “The article highlights the need to define asthma at the clinical level utilizing tools that already exist while also detailing areas where more research is needed.”

In its examination of how the definition of asthma has evolved over time, the review notes that the 2007 National Heart Lung and Blood Institute Guidelines for the Diagnosis and Management of Asthma introduced severity and control classifications. But in 2010, the World Health Organization (WHO) identified the lack of standardized use of the classifications, noting that the terms were being used interchangeably.

The WHO also emphasized the need for a uniform definition for severe asthma that would differentiate treatment-resistant severe asthma from difficult-to-treat severe asthma, based on the high doses of inhaled corticosteroids and systemic corticosteroids required to achieve asthma control.

In 2019, the Global Initiative for Asthma (GINA) report included umbrella definitions of asthma — “a heterogeneous disease, usually characterized by chronic airway inflammation defined by the history of respiratory symptoms such as wheeze, shortness of breath, chest tightness, and cough that vary over time and in intensity, together with variable expiratory airflow limitations.”

While these definitions of asthma account for the varied disease presentation, they are again limited in defining early childhood asthma, since tests of airflow obstruction, such as spirometry (which measures lung function) cannot be reliably performed prior to the age of 5.

In the review, Rastogi and her co-authors encourage clinicians to uniquely define asthma for each child based on:

  • the age of onset (early vs. late)
  • the severity and control of disease (per the latest NHLBI guidelines as intermittent, mild, moderate or severe persistent)
  • the predominant form of immune response (allergic vs. nonallergic)
  • the inciting trigger (exercise vs. viral induced)
  • the pattern of pulmonary function deficits and
  • the presence of comorbidities

Better controlling childhood asthma could lead to reduced rates of adult asthma, says Rastogi.

“I’d love to be in a place where we can phenotype pediatric asthma with genetic, molecular, and biomarker details that directly guide targeted therapy,” says Rastogi. “That’s where oncology is now. That’s where I’d like to be with childhood asthma.”

Lee Beers

Lee Beers, M.D., F.A.A.P, begins term as AAP president

Lee Beers

“The past year has been a stark reminder about the importance of partnership and working together toward common goals,” says Dr. Beers. “I am humbled and honored to be taking on this role at such a pivotal moment for the future health and safety of not only children, but the community at large.”

Lee Savio Beers, M.D., F.A.A.P., medical director of Community Health and Advocacy at the Child Health Advocacy Institute (CHAI) at Children’s National Hospital, has begun her term as president of the American Academy of Pediatrics (AAP). The AAP is an organization of 67,000 pediatricians committed to the optimal physical, mental and social health and well-being for all children – from infancy to adulthood.

“The past year has been a stark reminder about the importance of partnership and working together toward common goals,” says Dr. Beers. “I am humbled and honored to be taking on this role at such a pivotal moment for the future health and safety of not only children, but the community at large.”

Dr. Beers has pledged to continue AAP’s advocacy and public policy efforts and to further enhance membership diversity and inclusion. Among her signature issues:

  • Partnering with patients, families, communities, mental health providers and pediatricians to co-design systems to bolster children’s resiliency and to alleviate growing pediatric mental health concerns.
  • Continuing to support pediatricians during the COVID-19 pandemic with a focus on education, pediatric practice support, vaccine delivery systems and physician wellness.
  • Implementation of the AAP’s Equity Agenda and Year 1 Equity Workplan.

Dr. Beers is looking forward to continuing her work bringing together the diverse voices of pediatricians, children and families as well as other organizations to support improving the health of all children.

“Dr. Beers has devoted her career to helping children,” says Kurt Newman, M.D., president and chief executive officer of Children’s National. “She has developed a national advocacy platform for children and will be of tremendous service to children within AAP national leadership.”

Read more about Dr. Beer’s career and appointment as president of the AAP.

person holding vape and cigarette

E-cigarettes can be a gateway to conventional cigarette smoking

person holding vape and cigarette

A new study finds that e-cigarette use is associated with a higher risk of cigarette smoking among adolescents who had no prior intention of taking up conventional smoking.

Cigarette smoking remains a leading preventable cause of morbidity and mortality in the United States. And while adolescent cigarette smoking has declined over the past several decades, e-cigarette use presents a new risk for nicotine use disorder. A new study, published Nov. 9 in the journal Pediatrics, finds that e-cigarette use is associated with a higher risk of cigarette smoking among adolescents who had no prior intention of taking up conventional smoking. These findings have strong implications for practice and policy, researchers say.

“Research is showing us that adolescent e-cigarette users who progress to cigarette smoking are not simply those who would have ended up smoking cigarettes anyway,” says Olusegun Owotomo, M.D., Ph.D., M.P.H., the study’s lead author and a pediatric resident at Children’s National Hospital. “Our study shows that e-cigarettes can predispose adolescents to cigarette smoking, even when they have no prior intentions to do so.”

In one of the first theory-guided nationally representative studies to identify which adolescent e-cigarette users are at most risk of progressing to cigarette smoking, Researchers looked at data of more than 8,000 U.S. adolescents, ages 12-17, who had never smoked. The data was collected by the Population Assessment of Tobacco and Health (PATH) study, an NIH and FDA collaborative nationally representative prospective cohort study of tobacco use, from 2014-2016. Among adolescents who did not intend to smoke cigarettes in the future, those who used e-cigarettes were more than four times more likely to start smoking cigarettes one year later compared to those who did not use e-cigarettes.

E-cigarette use constitutes a relatively new risk factor for nicotine use disorder among U.S. adolescents. A 2019 study from the Centers for Disease Control and Prevention found that 28% of high school students and 11% of middle school students were current e-cigarette users. With the recent emergence of newer and potentially highly addictive e-cigarette products, adolescents who use e-cigarettes are at increased risk of developing nicotine use disorder and progressing to smoke conventional cigarettes.

“Abstinence from e-cigarettes can protect teens from becoming future smokers and should be framed as a smoking prevention strategy by all concerned stakeholders,” says Dr. Owotomo. “Pediatricians are best positioned to educate patients and families on the clinical and psychosocial consequences of e-cigarette use and should support education campaigns and advocacy efforts geared to discourage adolescent e-cigarette use.”

doctor helping child with asthma

New guidelines advance treatment approach for children with asthma

doctor helping child with asthma

Patients with asthma will benefit from new recommendations from a team of national asthma experts.

Patients with asthma will benefit from new recommendations from a team of national asthma experts that includes Stephen Teach, M.D., M.P.H., director and principal investigator of the IMPACT DC Asthma Clinic at Children’s National HospitalThe new guidance, published in the Journal of Allergy and Clinical Immunology, represents the first update to federal comprehensive asthma management and treatment guidelines in more than a decade.

The new recommendations are based on systematic reviews conducted by the Agency for Healthcare Research and Quality, input from National Asthma Education Prevention Program participant organizations and a 19-member expert panel consisting of medical experts and the public.

“The updated guidelines touch on several management issues of critical importance to children, families, and clinicians struggling with the most common chronic disease of childhood,” says Dr. Teach. “Being a part of this expert panel allowed me to advocate for the unique needs of pediatric patients, especially those from under-resourced environments.”

The focused updates provide new guidance for six areas:

  • Using inhaled corticosteroids when needed for recurrent wheezing or persistent asthma.
  • Using long-acting antimuscarinic antagonists (LAMAs) with inhaled corticosteroids for long-term asthma management. A LAMA is a bronchodilator, a medicine that helps to keep airway muscles relaxed.
  • Using allergy shots that contain very small amounts of allergen to treat some people with allergic asthma.
  • Using one or more methods to reduce exposure to indoor asthma triggers.
  • Using a fractional exhaled nitric oxide test to help manage asthma or help confirm a diagnosis in some patients when the diagnosis is unclear. This test involves breathing into a tube connected to a machine that measures the amount of nitric oxide, which can increase when there is airway inflammation.
  • Using bronchial thermoplasty to treat selected adults with persistent asthma. During this procedure heat is used to reduce the muscle around the airways.

“The new and updated recommendations help to better control asthma in children and adolescents through the use of existing medicines, allergy shots and control of environmental triggers,” says Dr. Teach. “Taken together, application of these guidelines will significantly improve care and outcomes for kids of all ages.”

Research & Innovation Campus

Boeing gives $5 million to support Research & Innovation Campus

Research & Innovation Campus

Children’s National Hospital announced a $5 million gift from The Boeing Company that will help drive lifesaving pediatric discoveries at the new Children’s National Research & Innovation Campus.

Children’s National Hospital announced a $5 million gift from The Boeing Company that will help drive lifesaving pediatric discoveries at the new Children’s National Research & Innovation Campus. The campus, now under construction, is being developed on nearly 12 acres of the former Walter Reed Army Medical Center. Children’s National will name the main auditorium in recognition of Boeing’s generosity.

“We are deeply grateful to Boeing for their support and commitment to improving the health and well-being of children in our community and around the globe,” said Kurt Newman, M.D., president and CEO of Children’s National “The Boeing Auditorium will help the Children’s National Research & Innovation campus become the destination for discussion about how to best address the next big healthcare challenges facing children and families.”

The one-of-a-kind pediatric hub will bring together public and private partners for unprecedented collaborations. It will accelerate the translation of breakthroughs into new treatments and technologies to benefit kids everywhere.

“Children’s National Hospital’s enduring mission of positively impacting the lives of our youngest community members is especially important today,” said Boeing President and CEO David Calhoun. “We’re honored to join other national and community partners to advance this work through the establishment of their Research & Innovation Campus.”

Children’s National Research & Innovation Campus partners currently include Johnson & Johnson Innovation – JLABS, Virginia Tech, the National Institutes of Health (NIH), Food & Drug Administration (FDA), U.S. Biomedical Advanced Research and Development Authority (BARDA), Cerner, Amazon Web Services, Microsoft, National Organization of Rare Diseases (NORD) and local government.

The 3,200 square-foot Boeing Auditorium will be the focal point of the state-of-the-art conference center on campus. Nationally renowned experts will convene with scientists, medical leaders and diplomats from around the world to foster collaborations that spur progress and disseminate findings.

Boeing’s $5 million commitment deepens its longstanding partnership with Children’s National. The company has donated nearly $2 million to support pediatric care and research at Children’s National through Chance for Life and the hospital’s annual Children’s Ball. During the coronavirus pandemic, Boeing fabricated and donated 2,000 face shields to help keep patients and frontline care providers at Children’s National safe.

illustration of lungs with virus

Segmenting viral bronchiolitis patients to better predict clinical outcomes

illustration of lungs with virus

By evaluating viral bronchiolitis patients at first presentation and categorizing them based on clinical phenotype, the researchers were able to better predict outcomes and disease progression patterns.

Researchers from Children’s National Hospital have recently published a pilot study of children with viral bronchiolitis. By evaluating viral bronchiolitis patients at first presentation and categorizing them based on clinical phenotype, the researchers were able to better predict outcomes and disease progression patterns. Nasal airway cytokine levels were also measured to assess the underlying airway immunobiology of different clinical phenotypes. The researchers believe this novel subdivision of viral bronchiolitis patients based on a robust combination of clinical and molecular assessment can help lead to more individualized care and better patient outcomes.

Viral bronchiolitis is broadly used to group together infants with first-time severe viral respiratory infection, which is the most common cause of early life sick visits and hospitalizations worldwide. However, viral respiratory infections can vary significantly in clinical manifestations, which has raised concern among experts that the use of viral bronchiolitis as a catchall term may be compromising patient care. Children’s National researchers hypothesized that a novel segmentation technique of viral bronchiolitis patients by phenotype at first episode could provide better outcome prediction. In addition, lung X-rays and nasal cytokine profiles could help illuminate the underlying airway disease processes that drive the phenotypical differences observed at bedside.

The study examined 50 children ≤ 2 years old, including 41 patients admitted at Children’s National with PCR-confirmed viral respiratory infection and 9 controls. Researchers examined clinical features at presentation by reviewing each patient’s electronic medical record. Key parameters served as the basis for patient segmentation into three phenotypical groups: hypoxemia, wheezing and mild phenotypes. Patients in the hypoxia group (n = 16) were characterized by their need for supplemental oxygen; patients in the wheezing phenotype (n = 16) were distinguished by wheezing or subcostal retractions and patients in the mild phenotype (n = 9) displayed persistent respiratory symptoms but not hypoxia, wheezing or subcostal retractions. Chest x-rays further revealed that patients in the hypoxia phenotype displayed significantly more lung opacities than the other phenotypes.

As hypothesized, the three phenotype groups displayed distinct clinically relevant outcomes. Patients in the hypoxia group had more severe clinical symptoms at presentation and were significantly more likely to require prolonged hospitalization and pediatric intensive care unit (PICU) settings for treatment. Patients in the wheezing phenotype had shorter hospital stays but were significantly more likely to make a respiratory sick visit after initial discharge, with 69% coming back to the hospital with the same symptoms. Patients in the mild phenotype had the shortest hospital stays and did not require transfer to the PICU.

Nasal cytokine profiles were also assessed for all study subjects. Controls had lower cytokine levels than patients, with no significant difference between phenotype groups. However, wheezing patients with ≥1 recurrent respiratory sick visit had higher nasal levels of type 2 cytokines IL-13 and IL-4, consistent with the pathobiology of allergic asthma. This result adds support for the potential of initial sub-setting in guiding timely intervention.

The researchers hope that the strong results of their pilot study will guide clinicians to revise current practices regarding viral bronchiolitis and personalize care of viral respiratory illnesses from first presentation in order to improve outcomes. Study author and Children’s National pulmonologist Maria Arroyo, M.D., says, “if we can prevent these patients from coming [back] to the hospital just by doing a clinical evaluation the first time that they present with [viral respiratory infection]…that would be very impactful.”

The associated article, “Phenotypical Sub-setting of the First Episode of Severe Viral Respiratory Infection Based on Clinical Assessment and Underlying Airway Disease: A Pilot Study,” was published April 2, 2020 in Frontiers in Pediatrics. Notable authors include Maria Arroyo, M.D., Kyle Salka, M.S., and Gustavo Nino, M.D., M.S.H.S., D.A.B.S.M.

illustration of lungs surrounded by virus

COVID-19: First comprehensive review of pediatric lung imaging features

illustration of lungs surrounded by virus

A systematic review and meta-analysis by Children’s National Hospital researchers, published in Pediatric Pulmonology, provides the first comprehensive review of the findings of published studies describing COVID-19 lung imaging data in children.

The number COVID-19 studies focused on children have been small and with limited data. This has prevented the identification of specific pediatric lung disease patterns in COVID-19. Although children make up around 9.5% of COVID-19 infections, less than 2% of the literature on the virus, its symptoms and effects, have focused on kids.

A systematic review and meta-analysis by Children’s National Hospital researchers, published in Pediatric Pulmonology, provides the first comprehensive review of the findings of published studies describing COVID-19 lung imaging data in children. The analysis concludes that chest CT manifestations in children with COVID‐19 could potentially prompt intervention in the pediatric population.

Marius George Linguraru, D.Phil., M.A., M.Sc., principal investigator in the Sheikh Zayed Institute for Pediatric Surgical Innovation at Children’s National, discusses the importance of this work.

Q: What findings stand out to you?

A: We found that more than a third of children with COVID-19 had normal imaging. The lung imaging findings in these children were overall less frequent and less severe than in adult patients, but they were also more heterogeneous than in adults. Importantly, children with COVID-19 were three times more likely to have a normal exam than adults.

Several common lung imaging findings reported in adults were extremely rare or not found in the pediatric studies. These discoveries, and other recent reports in this space, support the fact that children’s symptoms may be less obvious than adults or even absent, but they still carry the virus and may be at risk for serious and life-threatening illness.

Marius George Linguraru

Marius George Linguraru, D.Phil., M.A., M.Sc., principal investigator in the Sheikh Zayed Institute for Pediatric Surgical Innovation at Children’s National.

Q: How will the findings of this study benefit pediatric care?

A: In our study, we showed how the health of the lungs of these children is impacted. Our results from data from 1,026 children (from newborns to 18 year old) with COVID-19 present chest manifestations that could potentially prompt informed intervention and better recovery.

Another conclusion of our study is that the abnormalities reported on the chest scans of children infected with COVID-19 are distinct from the typical lung images seen during other viral respiratory infections in the pediatric population. This is important for preparing for the cold and flu season.

Q: Why was this review important to our understanding of how COVID-19 impacts children?

A: This is the first systematic review and meta-analysis focused on the manifestation of the COVID-19 infection in the lungs of children. Our study, and others from colleagues at Children’s National, helps lead the efforts on elucidating how the pandemic affects the health of children.

Though children were initially thought to be less susceptible to infection, the data has made it clear that many children are at high risk for hospitalization and severe health complications. Although there are similarities between how children and adults are affected by the pandemic, there are also critical differences.

Given the limited knowledge in the manifestation of COVID-19 in children, with children susceptible to infection and hospitalization, and with children returning to school, continued efforts to understand the impact of COVID-19 on young patients is critically important. Understanding how children fare through the pandemic is the foundation of discovering better ways to take care of young patients and their health.

You can find the full study published in Pediatric Pulmonology. Learn more about the Sheikh Zayed Institute for Pediatric Surgical Innovation at Children’s National.

NCC-PDI device competition

Medical device competition announces six winners to share in $250K

Judges award grants for pediatric medical devices that address cardiovascular, NICU, and orthopaedic and spine device innovations.

baby being examined by doctor

Advanced lung care program receives Certificate of Need

baby being examined by doctor

The program that cares for children with advanced lung disease at Children’s National Hospital has secured a certificate of need (CON) from the Washington D.C. State Health Planning and Development Agency (SHPDA) to become the area’s first pediatric-specific lung transplant program.

“This is a significant step toward providing complete, wraparound care for young patients with complex lung conditions,” says Michael Tsifansky, M.D., director of Respiratory Failure and Lung Transplantation, who leads the program. “While our goal is always to provide the best care that will maintain lung function and avoid a lung transplant completely or for as long as possible, we look forward to being able to offer this life-saving procedure to those children who need it in the same location where they receive care.”

While many children’s hospitals offer care for complex lung conditions, there are only a few programs in the entire United States that provide lung transplants specifically for children and none in the Washington, D.C., region.

At present, there is no local option for a pediatric-specific program that can perform the transplant and provide the necessary comprehensive services for patients, from infancy up to age 18. As a top children’s hospital, Children’s National is uniquely positioned to provide the highest level of pediatric care to these patients and allow children and their families to spend more time at home while undergoing this and other lifesaving treatments.

With the CON process complete, the program can now start the process of securing certification from the United Network of Organ Sharing (UNOS) and completing a few other federal regulatory steps.

In the meantime, Dr. Tsifansky says that it’s important for people to know that there is already a program that can provide care for pediatric patients with advanced lung conditions.

“The path to a lung transplant is extremely long,” he says, “And our job in the advanced lung disease program is to manage the care of these children in ways that will keep them as healthy as possible for as long as possible. In some cases that hopefully means there is no lung transplant in their future. For others, it means making sure their bodies are strong enough and healthy enough to qualify for and tolerate the life-saving lung transplant they need, when they need it.”

The team hopes to secure all regulatory approvals and perform the first pediatric lung transplant at Children’s National in early 2021.

Children's National Pulmonary Division Stats

2020 at a glance: Pulmonary Medicine at Children’s National


The Children’s National Division of Pulmonary Medicine is consistently recognized by U.S. News & World Report as one of the top programs in the nation

Staphylococcus

Airway microbial diversity in children with Cystic Fibrosis

Staphylococcus

Despite having less overall microbial richness, children with Cystic Fibrosis displayed a greater presence of Staphylococcus species.

Cystic Fibrosis (CF) is a disease that mainly affects the lungs and arises from mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene that encodes for the CFTR membrane protein located on certain secretory cells. CFTR dysfunction leads to complications such as the production of abnormally viscous mucus which causes chronic suppurative lung infections that require antibiotics to treat. New drugs called CFTR modulators can help improve CFTR protein function and some are even FDA-approved for use in children. In addition to CFTR protein function, the lung’s resident microbiota and its richness of diversity, plays an important role in both health and disease, including CF.

In a new study published in Heliyon, scientists from Children’s National Hospital examined the difference in the upper airway microbiome between children with CF and healthy controls. Age-related differences among children with CF and the impact of CFTR modulators on microbial diversity were also assessed. Seventy-five children between 0-6 years of age participated in the study, including 25 children with CF and 50 healthy controls. For CF participants, oropharyngeal swabs and clinical data were obtained from the biorepository, while data for controls were obtained during a single clinical visit.

Analysis revealed that CF patients had less microbial diversity and different composition of the upper airway microbiome compared to age similar controls, a finding that is consistent with research on the lower airways. Despite having less overall microbial richness, children with CF displayed a greater presence of Staphylococcus species, (a main driver of the pulmonary exacerbations characteristic of CF), three Rothia operational taxonomic units (OTUs) and two Streptococcus OTUs. CF patients received a significantly higher number of antibiotics courses within the previous year compared to healthy controls, and further investigation will be necessary to understand the impact of antibiotics on the upper airway microbiome of infants and children with CF.

Longitudinal comparisons to study effects of age and CFTR modulation on the microbiome of children with CF were also undertaken. Younger CF patients (those 0 to <3 years of age at study enrollment), were more likely to have culturally-normal respiratory flora and more stable microbial composition over time than older CF patients (those ≥ 3–6 years of age at study enrollment), with no significant differences in alpha or beta diversity. Older CF patients were significantly more likely to be receiving a CFTR modulator than younger patients. CF patients receiving CFTR modulators had higher microbial diversity measures than those not receiving CFTR modulators and were closer (but still significantly lower) in microbial richness to healthy controls. No significant differences in beta diversity were found between the three groups.

This study adds to the growing body of evidentiary support for the use of CFTR modulators in improving airway microbial diversity in CF patients. Future studies with a larger cohort and greater focus on the impact on early initiation of CFTR modulators on microbial diversity and clinical outcomes is necessary.

The study, “Airway microbial diversity is decreased in young children with cystic fibrosis compared to healthy controls but improved with CFTR modulation,” was recently published in Heliyon. The lead author is Andrea Hahn, M.D., M.S., an investigator at the Children’s National Research Institute. Notable authors include Aszia Burrell; Emily Ansusinha; Hollis Chaney, M.D.; Iman Sami, M.D.; Geovanny F. Perez, M.D.; Anastassios C. Koumbourlis, M.D., M.P.H.; Robert McCarter, Sc.D.; and Robert J. Freishtat, M.D., M.P.H..