Nobuyuki Ishibashi

Cortical dysmaturation in congenital heart disease

Nobuyuki Ishibashi

On Jan. 4, 2019, Nobuyuki Ishibashi, M.D., the director of the Cardiac Surgery Research Laboratory and an investigator with the Center for Neuroscience Research at Children’s National Health System, published a review in Trends in Neurosciences about the mechanisms of cortical dysmaturation, or disturbances in cortical development, that can occur in children born with congenital heart disease (CHD). By understanding the early-life impact and relationship between cardiac abnormalities and cortical neuronal development, Dr. Nobuyuki and the study authors hope to influence strategies for neonatal neuroprotection, mitigating the risk for developmental delays among CHD patients.

Dr. Ishibashi answers questions about this review and CHD-neurodevelopmental research:

  1. Tell us more about your research. Why did you choose to study these interactions in this patient population?

My research focuses on studying how CHD and neonatal cardiac surgery affect the rapidly-developing brain. Many children with CHD, particularly the most complex anomalies, suffer from important behavioral anomalies and neurodevelopmental delays after cardiac surgery. As a surgeon scientist, I want to optimize treatment strategy and develop a new standard of care that will reduce neurodevelopmental impairment in our patients.

  1. How does this study fit into your larger body of work? What are a few take-home messages from this paper?

Our team and other laboratories have recently identified a persistent perinatal neurogenesis that targets the frontal cortex – the brain area responsible for higher-order cognitive functions. The main message from this article is that further understanding of the cellular and molecular mechanisms underlying cortical development and dysmaturation will likely help to identify novel strategies to treat and improve outcomes in our patients suffering from intellectual and behavioral disabilities.

  1. What do you want pediatricians and researchers to know about this study? Why is it important right now?

Although the hospital mortality risk is greatly reduced, children with complex CHD frequently display subsequent neurological disabilities affecting intellectual function, memory, executive function, speech and language, gross and fine motor skills and visuospatial functions. In addition to the impact of the neurological morbidity on the patients themselves, the toll on families and society is immense. Therefore it is crucial to determine the causes of altered brain maturation in CHD.

  1. How do you envision this research influencing future studies and pediatric health outcomes? As a researcher, how will you proceed?

In this article we placed special emphasis on the need for well-designed preclinical studies to define disturbances in cortical neurogenesis due to perinatal brain injury. I believe that further study of the impact of hypoxemia on brain development is of broad relevance — not just for children with congenital heart disease, but for other populations where intellectual and behavioral dysfunctions are a source of chronic morbidity, such as survivors of premature birth.

  1. What discoveries do you envision being at the forefront of this field?

One of the important questions is: During which developmental period, prenatal or postnatal, is the brain most sensitive to developmental and behavioral disabilities associated with hypoxemia? Future experimental models will help us study key effects of congenital cortical development anomalies on brain development in children with CHD.

  1. What impact could this research make? What’s the most striking finding and how do you think it will influence the field?

Although cortical neurogenesis at fetal and adult stages has been widely studied, the development of the human frontal cortex during the perinatal period has only recently received greater attention as a result of new identification of ongoing postnatal neurogenesis in the region responsible for important intellectual and behavioral functions. Children’s National is very excited with the discoveries because it has opened new opportunities that may lead to regeneration and repair of the dysmature cortex. If researchers identify ways to restore endogenous neurogenic abilities after birth, the risk of neurodevelopment disabilities and limitations could be greatly reduced.

  1. Is there anything else you would like to add that we didn’t ask you about? What excites you about this research?

In this article we highlight an urgent need to create a truly translational area of research in CHD-induced brain injury through further exploration and integration of preclinical models. I’m very excited about the highly productive partnerships we developed within the Center for Neuroscience Research at Children’s National, led by an internationally-renowned developmental neuroscientist, Vittorio Gallo, Ph.D., who is a co-senior author of this article. Because of our collaboration, my team has successfully utilized sophisticated and cutting-edge neuroscience techniques to study brain development in children born with CHD. To determine the causes of altered brain maturation in congenital heart disease and ultimately improve neurological function, we believe that a strong unity between cardiovascular and neuroscience research must be established.

Additional study authors include Camille Leonetti, Ph.D., a postdoctoral research fellow with the Center for Neuroscience Research and Children’s National Heart Institute, and Stephen Back, M.D., Ph.D., a professor of pediatrics at Oregon Health and Science University.

The research was supported by multiple grants and awards from the National Institutes of Health, inclusive of the National Heart Lung and Blood Institute (RO1HL139712), the National Institute of Neurological Disorders and Stroke (1RO1NS054044, R37NS045737, R37NS109478), the National Institute on Aging (1RO1AG031892-01) and the National Institute of Child Health and Human Development (U54HD090257).

Additional support for this review was awarded by the American Heart Association (17GRNT33370058) and the District of Columbia Intellectual and Developmental Disabilities Research Center, which is supported through the Eunice Kennedy Shriver National Institute of Child Health and Human Development program grant 1U54HD090257.

AlgometRX

Breakthrough device objectively measures pain type, intensity and drug effects

AlgometRX

Clinical Research Assistant Kevin Jackson uses AlgometRx Platform Technology on Sarah Taylor’s eyes to measure her degree of pain. Children’s National Medical Center is testing an experimental device that aims to measure pain according to how pupils react to certain stimuli. (AP Photo/Manuel Balce Ceneta)

Pediatric anesthesiologist Julia C. Finkel, M.D., of Children’s National Health System, gazed into the eyes of a newborn patient determined to find a better way to measure the effectiveness of pain treatment on one so tiny and unable to verbalize. Then she realized the answer was staring back at her.

Armed with the knowledge that pain and analgesic drugs produce an involuntary response from the pupil, Dr. Finkel developed AlgometRx, a first-of-its-kind handheld device that measures a patient’s pupillary response and, using proprietary algorithms, provides a diagnostic measurement of pain intensity, pain type and, after treatment is administered, monitors efficacy. Her initial goal was to improve the care of premature infants. She now has a device that can be used with children of any age and adults.

“Pain is very complex and it is currently the only vital sign that is not objectively measured,” says Dr. Finkel, who has more than 25 years of experience as a pain specialist. “The systematic problem we are facing today is that healthcare providers prescribe pain medicine based on subjective self-reporting, which can often be inaccurate, rather than based on an objective measure of pain type and intensity.” To illustrate her point, Dr. Finkel continues, “A clinician would never prescribe blood pressure medicine without first taking a patient’s blood pressure.”

The current standard of care for measuring pain is the 0-to-10 pain scale, which is based on subjective, observational and self-reporting techniques. Patients indicate their level of pain, with zero being no pain and ten being highest or most severe pain. This subjective system increases the likelihood of inaccuracy, with the problem being most acute with pediatric and non-verbal patients. Moreover, Dr. Finkel points out that subjective pain scores cannot be standardized, heightening the potential for misdiagnosis, over-treatment or under-treatment.

Dr. Finkel, who serves as director of Research and Development for Pain Medicine at the Sheikh Zayed Institute for Pediatric Surgical Innovation at Children’s National, says that a key step in addressing the opioid crisis is providing physicians with objective, real-time data on a patient’s pain level and type, to safely prescribe the right drug and dosage or an alternate treatment.,

She notes that opioids are prescribed for patients who report high pain scores and are sometimes prescribed in cases where they are not appropriate. Dr. Finkel points to the example of sciatica, a neuropathic pain sensation felt in the lower back, legs and buttocks. Sciatica pain is carried by touch fibers that do not have opioid receptors, which makes opioids an inappropriate choice for treating that type of pain.

A pain biomarker could rapidly advance both clinical practice and pain research, Dr. Finkel adds. For clinicians, the power to identify the type and magnitude of a patient’s nociception (detection of pain stimuli) would provide a much-needed scientific foundation for approaching pain treatment. Nociception could be monitored through the course of treatment so that dosing is targeted and personalized to ensure patients receive adequate pain relief while reducing side effects.

“A validated measure to show whether or not an opioid is indicated for a given patient could ease the health care system’s transition from overreliance on opioids to a more comprehensive and less harmful approach to pain management,” says Dr. Finkel.

She also notes that objective pain measurement can provide much needed help in validating complementary approaches to pain management, such as acupuncture, physical therapy, virtual reality and other non-pharmacological interventions.

Dr. Finkel’s technology, called AlgometRx, has been selected by the U.S. Food and Drug Administration (FDA) to participate in its “Innovation Challenge: Devices to Prevent and Treat Opioid Use Disorder.” She is also the recipient of Small Business Innovation Research (SBIR) grant from the National Institute on Drug Abuse.

Young girl sleeping

Is actigraphy helpful for assessing sleep-wake disorders?

Young girl sleeping

The second most-read article in 2018 in the Journal of Clinical Sleep Medicine, published by the American Academy of Sleep Medicine (AASM), was about using actigraphy to evaluate sleep disorders and circadian rhythm sleep-wake disorders.

FDA-approved actigraphy devices are typically kept on the wrist or ankle and track movement activity, which researchers can use as part of a larger toolset to analyze how much activity occurs right before and during sleep.

The AASM guidelines, entitled “Use of Actigraphy for the Evaluation of Sleep Disorders and Circadian Rhythm Sleep-Wake Disorders: An American Academy of Sleep Medicine Clinical Practice Guideline,” included the AASM’s stance on clinical recommendations for children and adults, rated as strong or conditional.

The conditions for evaluating pediatric health conditions are as follows:

  1. The AASM suggests that clinicians use actigraphy in the assessment of pediatric patients with insomnia disorder. (Conditional)
  2. The AASM suggests that clinicians use actigraphy in the assessment of pediatric patients with circadian rhythm sleep-wake disorder. (Conditional)
  3. The AASM suggests that clinicians use actigraphy to monitor total sleep time prior to testing with the Multiple Sleep Latency Test in adult and pediatric patients with suspected central disorders of hypersomnolence. (Conditional)
  4. The AASM recommends that clinicians not use actigraphy in place of electromyography for the diagnosis of periodic limb movement disorder in adult and pediatric patients. (Strong)

In an interview with Neurology Today, Daniel Lewin, Ph.D., a sleep medicine specialist, pediatric psychologist and associate director of the sleep medicine program at Children’s National Health System, offered advice, alongside other sleep medicine experts, about the new guidelines:

“It’s a very powerful tool, but it does require some knowledge of basic sleep mechanisms and of how the tool can be used and what variables can be extracted from the tool,” Dr. Lewin said in the interview with Susan Kreimer.

Anne Goldstein, M.D., M.S., assistant professor of neurology at the University of Michigan Sleep Disorders Center, tells Kreimer that “Actigraphy records only movement and that non-moving is often misinterpreted as sleep.”

Dr. Lewin has used actigraphy in sleep research studies but notes the use of these devices come with extensive training. Other researchers expressed similar sentiments with Neurology Today, noting the value of the sleep assessment tool to capture preliminary sleep behavior assessments, similar to a self-reported sleep log, while noting their limitations, such as capturing sleep patterns over extended periods of time, instead of in 14-day increments.

“When you’re living a typical active human life, sleep can wax and wane, depending on travel patterns, work responsibilities and stress levels,” Nathaniel F. Watson, M.D., professor of neurology at the University of Washington School of Medicine in Seattle and director of the UW Medicine Sleep Clinic, tells Kreimer. “This variability in sleep highlights the need for additional technologies capable of assessing sleep over longer periods of time.”

Read about other researcher’s perspectives captured by Susan Kreimer for Neurology Today.

CASD Posters

Bridging gaps in autism care through technology

CASD Posters

CASD Faculty Member and Clinical Psychologist, Dr. Allison Ratto (top left); Postdoctoral Fellow, Dr. Marissa Miller, (top right); and Research Assistants, Eleonora Sadikova (bottom left) and Laura Saldana (bottom right) presented posters at ABCT.

Technology’s potential to improve care delivery and reduce human suffering were the key focus of discussion at the recent Annual Convention of the Association for Behavioral and Cognitive Therapies (ABCT), held in Washington, D.C.

Within ABCT’s Autism Spectrum and Developmental Disabilities Special Interest Group (ASDD SIG), presentations showcased tools that leverage technology to better meet the needs of both autistic people and the clinicians who care for them. Researchers from the Center for Autism Spectrum Disorders (CASD) at Children’s National took center stage at the ASD focused group to share information about novel developments underway that harness technology for children and families.

Lauren Kenworthy, Ph.D., director of CASD, served as the keynote speaker for the ASDD SIG Meeting. She also chaired a panel, “Leveraging Technology to Improve Autism Acceptance and Treatment” and presented, ” Online Parent Training Modules to Improve Executive Function in Autistic Children” about the e-Unstuck and On Target Parent Training Study, which adapts CASD’s successful classroom-based Unstuck and On Target toolkit for children ages 5 to 10 to an online platform so more families can benefit from the program’s skills and strategies.

Dr. Kenworthy was honored with the 2018 Transformative Contribution Award from the ABCT Autism Spectrum and Developmental Disabilities Special Interest Group for her lifetime of contributions to better understanding and better interventions for young people with ASD.

“It was a special honor to receive this recognition from ABCT this year, when the annual meeting is here in our home city,” says Dr. Kenworthy. “The Center for Autism Spectrum Disorders is focused on developing technology solutions that deliver therapies to everyone who needs them, no matter where they live, and technology is one powerful and promising way we can bridge care gaps both in the Washington, D.C. region and really, around the world.”

CASD Talks

Dr. Lauren Kenworthy presenting during the panel she chaired (top); presenting to the ASDD SIG (bottom left); and receiving the ASDD SIG Transformative Award from ASDD SIG Awards Committee Chair, Dr. Tyler Hassenfeldt (bottom right).

In addition to Dr. Kenworthy, several other CASD researchers presented research during panels and poster presentations, including:

  • Panel Presentation: Efficacy of a Parent-Mediated Sexual Education Curriculum for Youth With ASD”– Cara Pugliese, Ph.D.
  • Poster presentations:
    • “Evidence of Enhanced Social Skills in Young Dual-Language Learners on the Autism Spectrum”- Allison Ratto, Ph.D. (first author)
    • “Exploring Contributors to Parents’ Ideal and Realistic Goals for Involvement in School Training”-Marissa Miller, Ph.D. (first author)
    • “Examining Caregiver Well-Being and Service Use between Latino and Non-Latino Caregivers”-Laura Saldana (first author)
    • “Pre-Pubertal Signs of Future Gender Dysphoria in Youth with ASD”-Eleonora Sadikova (first author)

The Association for Behavioral and Cognitive Therapies Annual Convention has been held for more than half a century. The gathering includes 3,500-plus mental health professionals and students who specialize in cognitive and behavioral therapies.

Sarah Mulkey

MRI and ultrasound imaging detect the spectrum of Zika’s impact

Sarah Mulkey

“A combination of prenatal MRI and US was able to detect Zika-related brain abnormalities during pregnancy, giving families timely information to prepare for the potential complex care needs of these infants,” says Sarah B. Mulkey, M.D., Ph.D.

Worldwide, thousands of babies have been born to mothers who were infected during pregnancy with Zika, a virus associated with neurological deficits, impaired vision and neurodevelopmental disabilities, among other birth defects. These birth defects are sometimes severe, causing lifelong disability. But they’re also relatively rare compared with the overall rates of infection.

Predicting how many Zika-exposed babies would experience neurological birth defects has been challenging.

However, an international study led by Children’s faculty suggests that ultrasound (US) imaging performed during pregnancy and after childbirth revealed most Zika-related brain abnormalities experienced by infants exposed to the Zika virus during pregnancy, according to a prospective cohort study published online Nov. 26, 2018, in JAMA Pediatrics. Some Zika-exposed infants whose imaging had been normal during pregnancy had mild brain abnormalities detected by US and magnetic resonance imaging (MRI) after they were born.

“A combination of prenatal MRI and US was able to detect Zika-related brain abnormalities during pregnancy, giving families timely information to prepare for the potential complex care needs of these infants,” says Sarah B. Mulkey, M.D., Ph.D., a fetal-neonatal neurologist at Children’s National Health System and the study’s lead author. “In our study, we detected mild brain abnormalities on postnatal neuroimaging for babies whose imaging was normal during pregnancy. Therefore, it is important for clinicians to continue to monitor brain development for Zika-exposed infants after birth.”

As of Nov. 20 2018, nearly 2,500 pregnant women in the U.S. had laboratory confirmed Zika infection, and about 2,400 of them had given birth, according to the Centers for Disease Control and Prevention (CDC). While more than 100 U.S. infants were born with Zika-associated birth defects, the vast majority of Zika-exposed U.S. infants were apparently normal at birth. The sequential neuroimaging study Dr. Mulkey leads seeks to determine the spectrum of brain findings in infants exposed to Zika in the womb using both US and MRI before and after birth.

The international research team enrolled 82 women in the study from June 15, 2016, through June 27, 2017. All of the women had been exposed to Zika during pregnancy; all but one experienced clinical symptoms by a mean gestational age of 8.2 weeks. Eighty of those women lived in or near Barranquilla, Colombia, and were exposed to Zika there. Two U.S. study participants were exposed to the primarily mosquito-borne illness during travel to Zika hot zones.

All women received fetal MRIs and US during the second and/or third trimester of pregnancy. After their infants were born, the children received brain MRI and cranial US. Blood samples from both mothers and babies were tested for Zika using polymerase chain reaction and serology.

Fetal MRI was able to discern Zika-related brain damage as early as 18 weeks gestation and picked up significant fetal brain abnormalities not fully appreciated in US imaging. In one case, the US remained normal while fetal MRI alone detected brain abnormalities. Three fetuses (4 percent) had severe fetal brain abnormalities consistent with Zika infection, including:

Seventy-five infants were born at term. One pregnancy was terminated at 23 weeks gestation due to the gravity of the fetal brain abnormalities. One fetus with normal imaging died during pregnancy. One newborn who was born with significant fetal brain abnormalities died at age 3 days.

Cranial US and brain MRI was performed on the majority of infants whose prenatal imaging had been normal.  Seven of 53 (13 percent) Zika-exposed infants had mild brain abnormalities detected by MRI after birth. In contrast, postnatal cranial US was better at detecting changes of lenticulostriate vasculopathy, cysts within the brain’s choroid plexus (cells that produce cerebrospinal fluid), germinolytic/subependymal cysts and/or calcifications, which were seen in 21 of 57 (37 percent) infants.

“Sequential neuroimaging revealed that the majority of Zika-exposed fetuses had normal brain development. Tragically, in a small number of pregnancies, Zika-related brain abnormalities were quite severe,” Dr. Mulkey adds. “Our data support the CDC’s recommendation that cranial US be performed after Zika-exposed babies are born. In addition, there is clearly a need to follow these babies over time to gauge whether the brain anomalies we see in imaging affects language, motor and social skills.”

Companion editorial: Revealing the effects of Zika

In addition to Dr. Mulkey, study co-authors include Dorothy I. Bulas, M.D.Gilbert Vezina, M.D., Margarita Arroyave-Wessel, MPH,  Stephanie Russo, B.S, Youssef A. Kousa, D.O, Ph.D.Roberta L. DeBiasi, M.D., MS, Senior Author Adré J. du Plessis, M.B.Ch.B., MPH, all of Children’s National; Christopher Swisher, BS, Georgetown University and Caitlin Cristante, BS, Loyola University, both of  whose contributions included research performed at Children’s National; Yamil Fourzali, M.D., Armando Morales, M.D., both of Sabbag Radiologos; Liliana Encinales, M.D., Allied Research Society; Nelly Pacheco, Bacteriologa, Bio-Nep; Robert S. Lanciotti, Ph.D., Arbovirus Diseases Branch, Centers for Disease Control and Prevention; and Carlos Cure, M.D., BIOMELAB.

Research reported in this news release was supported by the IKARIA fund.

Eugene Hwang

Unexpected heterogeneity in CNS-PNET patients treated as a single entity

Eugene Hwang

“We found that some patients diagnosed with standard tools underwent much more treatment than necessary or intended,” said Eugene Hwang, M.D.

Eugene I. Hwang, M.D., a neuro-oncologist in the Center for Cancer and Blood Disorders, and other researchers at Children’s National Health System, Seattle Children’s Hospital and Research Institute, the Fred Hutchinson Cancer Research Center and the Hopp-Children’s Cancer Center at the NCT Heidelberg recently published the results of a clinical trial focusing on children with histologically diagnosed supratentorial primitive neuroectodermal tumors (CNS-PNET) and pineblastomas (PBLs).

The clinical trial, published online October 17, 2018 in the Journal of Clinical Oncology, included children and adolescents aged 3-22 with these brain cancers who were randomly assigned to receive carboplatin during radiation and/or isotretinoin after the standard intensive therapy (high-dose craniospinal radiation and months of inpatient chemotherapy).  Importantly, because each patient was treated prospectively according to the clinical trial design, the conclusions related to tumor biology were felt to be less affected by varied treatment plans.

“This trial really highlighted the importance of new molecular testing methods in accurately diagnosing some of the brain cancers included in the trial. We found that some patients diagnosed with standard tools underwent much more treatment than necessary or intended.” says Dr. Hwang. “Kids who aren’t receiving the right form of cancer treatment may not get better despite months and months of intensive treatment.”

During this clinical trial, 85 participants with institutionally-diagnosed CNS-PNETs/PBLs were enrolled. Out of the 60 patients with sufficient tissue, 31 were non-pineal in location, 22 of which represented tumors that did not fit in the diagnoses intended for trial inclusion.

The researchers discovered that patient outcomes across each molecularly-diagnosed tumor type were strikingly different. Patients with molecularly-confirmed supratentorial embryonal tumors/PBLs exhibited a five-year event free survival (EFS) and an overall survival rate of 62 percent and 78.5 percent, respectively. However, patients with molecularly-classified high-grade gliomas (HGGs) had a five-year EFS of 5.6 percent and OS of 12 percent, showing no benefit even with the chemotherapy and craniospinal radiation.

Researchers determined that for patients with CNS-PNETs/PBLs, prognosis is considerably better than previously assumed when molecularly-confirmed HGG are removed. Dr. Hwang and co-authors concluded that molecular diagnosis can greatly aid standard pathological diagnostic tools, preventing unnecessary intensive therapy for some patients while enabling more rational treatment for others.

“The findings from our clinical trial have highlighted the immense challenges of histology-based diagnosis for some types of pediatric brain tumors, and the enormous importance this has for children with brain cancer,” Dr. Hwang says. “We hope that ultimately our study will pave the way for molecular profiling to become a standard component of initial diagnosis.”

little girl with concussion at doctors

Predicting kids’ outcomes after concussion

little girl with concussion at doctors

A concussion symptom measurement tool, developed by investigators at Children’s National Health System, allows other researchers to collect valuable evidence about the natural progression of symptoms and recovery for children. The tool, Post-Concussion Symptom Inventory (PCSI), was a key tool in the recent large-scale multi-center prospective study of recovery trajectory for children, which was published online in JAMA Pediatrics Sept. 4, 2018.

That study included 2,716 children between the ages of 5 and 17, and identified major trends in symptom improvement post concussion, such as:

  • Children younger than 12 experience primary symptom improvement in the first two weeks
  • Pre-adolescents, male adolescents and teens experience primary symptom improvement in the first four weeks and
  • Female adolescents take longer to perceive primary symptom improvements than children, pre-adolescents and male counterparts.

“We’ve known for many years that different people experience concussion recovery very differently. This study is the first to provide significant evidence of what we should expect to see in terms of symptom improvement for children and teens,” says Gerard Gioia, Ph.D., chief of the Division of Neuropsychology at Children’s National and director of its Safe Concussion Outcome Recovery and Education Program, who co-authored the study and whose team developed the PCSI measurement tool. “Ultimately, these findings are an important step in predicting outcomes after a concussion and developing treatment plans that get kids back to school and sports safely, when they are ready.”

Dr. Gioia and his team also recently received a Centers for Disease Control and Prevention (CDC) grant to develop a new smartphone application, Online Treatment Recovery Assistant for Concussion in Kids (OnTRACK), that applies several concussion tools developed at Children’s National, including the same one applied in the JAMA Pediatrics study, to track individual symptoms over time.

The OnTRACK app will report concussion symptoms on a regular basis (daily or weekly) and map their trajectory, so doctors can see when recovery is proceeding along the expected pathway. Alternatively, clinicians will receive an alert when a child’s recovery misses targets and warrants further investigation and possible referral to a specialist.

John Strang

Neuro- and gender-diverse teens find their voices

John Strang

“These autistic young people spoke a lot about their gender and gender needs and their descriptions of gender dysphoria were deeply emotional. One of the common characteristics of autism is reduced communication of feelings, yet many of these young people were very clear about the anguish that gender dysphoria caused for them and also their need for gender-related interventions,” says John Strang, Psy.D., director of the Gender and Autism Program at Children’s National Health System and study lead.

“They Thought It Was An Obsession” is the title of a qualitative study from the Journal of Autism and Developmental Disorders, that provides an unprecedented glimpse into the development, thoughts, perceptions, feelings and needs of this poorly understood but significant subgroup of transgender and gender minority teens.

The title is an accurate reflection of the study’s analysis, which finds that the accounts of gender dysphoria in autistic transgender youth parallel those of transgender young people without autism. These findings stand in contrast to previous studies asserting the idea that gender dysphoria in autistic youth is driven primarily by superficial autism-related interests.

“These autistic young people spoke a lot about their gender and gender needs and their descriptions of gender dysphoria were deeply emotional. One of the common characteristics of autism is reduced communication of feelings, yet many of these young people were very clear about the anguish that gender dysphoria caused for them and also their need for gender-related interventions,” says John Strang, Psy.D., director of the Gender and Autism Program at Children’s National Health System and study lead.

Additionally, the autistic characteristics of these young people – which may reduce their concern for social conventions – often lead them to express their gender in individual and sometimes surprising ways.

“A transgender autistic young woman may wear a full beard and understand her gender identity as something completely separate from her appearance,” says Dr. Strang. “The cooccurrence of gender identity-diversity and autism may reveal something of the deeper nature of gender when the overlay of social gender expectations is reduced.”

The study followed 22 autistic transgender teens over nearly two years. It is the first study of its kind to track and follow up with this many youth with the cooccurrence over a significant period of time. The authors believe the report can serve as a guide for how clinicians, peers and families can better support and understand teens who are both neurodiverse and gender diverse.

The study’s methodology is also novel, as it features the inclusion of a slate of autistic gender-diverse coanalysts and coauthors who partnered in the interpretation of the youth provided data.

The coauthor group also included a retransitioned (previously transgender) self-advocate coanalyst to help provide context regarding the experiences and trajectories of the few study participants who moved away from transgender identity during the study’s duration.

Reid Caplan of the Autistic Self-Advocacy Network, an autistic transgender self-advocate and one of the study’s coauthors noted, “Too often in medical literature, the overlap between autistic and transgender identities is described in a way that pathologizes both of these communities. As an autistic transgender young adult, I feel privileged to be a coauthor of research that puts the voices of autistic and gender-diverse youth at the forefront. By giving these youth control over their own narratives, this study exemplifies a key value of the self-advocate community: Nothing about us, without us!”

Chima Oluigbo examines a patient

Eradicating epilepsy with Visualase

Chima Oluigbo examines a patient

Chima Oluigbo, M.D., and his team are using Visualase to identify and eliminate seizure foci and provide patients with a minimally invasive procedure for treating epilepsy.

About one in 26 people will be diagnosed with epilepsy in their lifetime. That adds up to about 3.4 million people in the U.S., or about 1 percent of the population nationwide. This condition can have huge consequences on quality of life, affecting whether children will learn well in school, eventually drive a car, hold down a job or even survive into adulthood.

For most of those that develop epilepsy, medications can keep seizures in check. However, for about a third of patients, this strategy doesn’t work, says Chima Oluigbo, M.D., an attending neurosurgeon at Children’s National Health System. That’s when he and his team offer a surgical fix.

Epilepsy surgery has come a long way, Dr. Oluigbo explains. When he first began practicing in the early 2000s, most surgeries were open, he says – they involved making a long incision in the scalp that can span half a foot or more. After drilling out a window of skull that can be as long as five inches, surgeons had to dig through healthy brain to find the abnormal tissue and remove it.

Each part of this “maximally invasive” procedure can be traumatic on a patient, Dr. Oluigbo says. That leads to significant pain after the procedure, extended hospital stays of at least a week followed by a long recovery. There are also significant risks for neurological complications including stroke, weakness, paralysis, speech problems and more.

However, open surgery isn’t the only option for epilepsy surgery anymore. Several new minimally invasive alternatives are now available to patients and the most promising, Dr. Oluigbo says, is called Visualase. He and his team are the only surgeons in the region who perform this procedure.

In Visualase surgeries, Dr. Oluigbo and his colleagues start by making a tiny incision, about 5 millimeters, on the scalp. Through this opening, they bore an even tinier hole into the skull and thread a needle inside that’s about 1.6 millimeters wide. “The brain barely notices that it’s there,” he says.

The tip of this wire holds a laser. Once this tip is placed directly at the seizure foci – the cluster of nerve cells responsible for generating a seizure – the patient is placed in an intraoperative magnetic resonance imaging (MRI) device. There, after checking the tip’s precise placement, the surgeons turn the laser on. Heat from the laser eradicates the foci, which the surgeons can see in real time using MRI thermography technology. The margins of the destroyed tissue are well-defined, largely sparing healthy tissue.

After the wire is removed, the incision is closed with a single stitch, and patients go home the next day. The majority of patients are seizure free, with rates as high as 90 percent for some types of epilepsy, Dr. Oluigbo says. Although seizure-free rates are also high for open procedures, he adds, Visualase spares them many of open surgeries’ painful and difficult consequences.

“Having done both open surgeries and Visualase,” Dr. Oluigbo says, “I can tell you the difference is night and day.”

Although open procedures will still be necessary for some patients with particularly large foci that are close to the surface, Dr. Oluigbo says that Visualase is ideal for treating medication-resistant cases in which the foci are buried deep within the brain. A typical example is a condition called hypothalamic hamartoma, in which tumors on the hypothalamus lead to gelastic seizures, an unusual seizure type characterized by uncontrollable laughing. He also uses Visualase for another condition called tuberous sclerosis, in which waxy growths called tubers develop in the brain, and for cancerous and benign brain tumors.

It’s gratifying to be able to help these children become seizure-free for the rest of their lives, says Dr. Oluigbo – even more so with the numerous updates he receives from families telling him how much this procedure has improved their children’s lifestyle.

“Visualase has completely changed the way that we approach these patients,” Dr. Oluigbo says. “It’s extraordinary to see the effects that this one procedure can have on the quality of life for patients here at Children’s National.”

toddler on a playground

Perinatal hypoxia associated with long-term cerebellar learning deficits and Purkinje cell misfiring

toddler on a playground

The type of hypoxia that occurs with preterm birth is associated with locomotor miscoordination and long-term cerebellar learning deficits but can be partially alleviated with an off-the-shelf medicine, according to a study using a preclinical model.

Oxygen deprivation associated with preterm birth leaves telltale signs on the brains of newborns in the form of alterations to cerebellar white matter at the cellular and the physiological levels. Now, an experimental model of this chronic hypoxia reveals that those cellular alterations have behavioral consequences.

Chronic sublethal hypoxia is associated with locomotor miscoordination and long-term cerebellar learning deficits in a clinically relevant model of neonatal brain injury, according to a study led by Children’s National Health System researchers published online Aug. 13, 2018, by Nature Communications. Using high-tech optical and physiological methods that allow researchers to turn neurons on and off and an advanced behavioral tool, the research team finds that Purkinje cells fire significantly less often after injury due to perinatal hypoxia. However, an off-the-shelf medicine now used to treat epilepsy enables those specialized brain cells to regain their ability to fire, improving locomotor performance.

Step out of the car onto the pavement, hop up to the level of the curb, stride to the entrance, and climb a flight of stairs. Or, play a round of tennis. The cerebellum coordinates such locomotor performance and muscle memory, guiding people of all ages as they adapt to a changing environment.

“Most of us successfully coordinate our movements to navigate the three-dimensional spaces we encounter daily,” says Vittorio Gallo, Ph.D., Children’s Chief Research Officer and the study’s senior author. “After children start walking, they also have to learn how to navigate the environment and the spaces around them.”

These essential tasks, Gallo says, are coordinated by Purkinje cells, large neurons located in the cerebellum that are elaborately branched like interlocking tree limbs and represent the only source of output for the entire cerebellar cortex. The rate of development of the fetal cerebellum dramatically increases at a time during pregnancy that often coincides with preterm birth, which can delay or disrupt normal brain development.

“It’s almost like a short circuit. Purkinje cells play a very crucial role, and when the frequency of their firing is diminished by injury the whole output of this brain region is impaired,” Gallo says. “For a family of a child who has this type of impaired neural development, if we understand the nature of this disrupted circuitry and can better quantify it, in terms of locomotor performance, then we can develop new therapeutic approaches.”

Study authors Aaron Sathyanesan, Ph.D., Joseph Abbah, B.Pharm., Ph.D., Srikanya Kundu, Ph.D. and Vittorio Gallo, Ph.D.

The research team leveraged a fully automated, computerized apparatus that looks like a ladder placed on a flat surface, encased in glass, with a darkened box at either end. Both the hypoxic and control groups had training sessions during which they learned how to traverse the horizontal ladder, coaxed out of the darkened room by a gentle puff of air and a light cue. Challenge sessions tested their adaptive cerebellar locomotor learning skills. The pads they strode across were pressure-sensitive and analyzed individual stepping patterns to predict how long it should take each to complete the course.

During challenge sessions, obstacles were presented in the course, announced by an audible tone. If learning was normal, then the response to the tone paired with the obstacle would be a quick adjustment of movement, without breaking stride, says Aaron Sathyanesan, Ph.D., co-lead author. Experimental models exposed to perinatal hypoxia showed significant deficits in associating that tone with the obstacle.

“With the control group, we saw fewer missteps during any given trial,” Sathyanesan says. “And, when they got really comfortable, they took longer steps. With the hypoxic group, it took them longer to learn the course. They made a significantly higher number of missteps from day one. By the end of the training period, they could walk along all of the default rungs, but it took them longer to learn how to do so.”

Purkinje cells fire two different kinds of spikes. Simple spikes are a form of constant activity as rhythmic and automatic as a heartbeat. Complex spikes, by contrast, occur less frequently. Sathyanesan and co-authors say that some of the deficits that they observed were due to a reduction in the frequency of simple spiking.

Two weeks after experiencing hypoxia, the hypoxic group’s locomotor performance remained significantly worse than the control group, and delays in learning could still be seen five weeks after hypoxia.

Gamma-aminobutyric acid (GABA), a neurotransmitter, excites immature neurons before and shortly after birth but soon afterward switches to having an inhibitory effect within in the cerebellum, Sathyanesan says. The research team hypothesizes that reduced levels of excitatory GABA during early development leads to long-term motor problems. Using an off-the-shelf drug to increase GABA levels immediately after hypoxia dramatically improved locomotor performance.

“Treating experimental models with tiagabine after hypoxic injury elevates GABA levels, partially restoring Purkinje cells’ ability to fire,” Gallo says. “We now know that restoring GABA levels during this specific window of time has a beneficial effect. However, our approach was not specifically targeted to Purkinje cells. We elevated GABA everywhere in the brain. With more targeted and selective administration to Purkinje cells, we want to gauge whether tiagabine has a more powerful effect on normalizing firing frequency.”

In addition to Gallo and Sathyanesan, Children’s co-authors include Co-Lead Author, Srikanya Kundu, Ph.D., and Joseph Abbah, B.Pharm., Ph.D., both of Children’s Center for Neuroscience Research.

Research covered in this story was supported by the Intellectual and Developmental Disability Research Center under award number U54HD090257.

NeuroPace RNS x-ray

New brain “pacemaker” offers new hope for refractory epilepsy

NeuroPace RNS x-ray

Example of NeuroPace RNS System placement.

If a child’s refractory seizures – seizures that don’t respond to medication – are originating in a part of the brain that is central to function (for example, impacting memory or verbal skills) the standard next step – surgical resection – is not an option for seizure reduction or relief. In most cases, these children are followed, more medications are tried, and other strategies attempted, but few viable options exist to ease their symptoms.

It’s possible that the next generation of implantable neurostimulators, which act as a type of pacemaker for the brain, might make a difference for some children previously left with no answers. Children’s National neurosurgeon Chima Oluigbo, M.D., in collaboration with the Comprehensive Pediatric Epilepsy Program at Children’s National, is looking at how these devices might be used to reduce or eliminate refractory seizures in pediatric patients. One example of this type of device is the RNS System.

“The RNS has been FDA approved for adults since 2013,” says Dr. Oluigbo, who recently implanted a NeuroPace RNS in the first pediatric patient at Children’s National, and one of the first young patients in the country. “The safety and efficacy data in the adult population, now gathered from a cohort of more than 800 adults, is showing positive outcomes so far. That allows pediatric neurosurgeons to consider an off-label use of this device for patients under the approved usage age of 18, when no other treatments exist.”

The RNS operates differently from previous neuro pacemaker-style devices. It is a “closed-loop” system that doesn’t require external activation once a seizure has started. Instead, the precise location of seizure origination is identified via functional magnetic resonance imaging (fMRI). Leads are then placed at the seizure site via surgery, and once activated, the RNS monitors and self-activates when pre-seizure electrical impulses are detected. The device responds by emitting a series of its own electrical impulses to interrupt and reset the brain’s seizure activity. The RNS system’s ability to continuously monitor the patient also allows physicians to get an inside look at the ongoing brain function of these young patients.

“Children’s National is one of the first places to apply the use of this device in children, because we are one of the few locations on the East coast with the multi-disciplinary expertise to implement it safely and effectively,” says Dr. Oluigbo. “Our clinical epilepsy team has been imaging and treating children with epilepsy for almost 30 years. With one of the oldest neurosurgical programs in country and our technological capabilities, Children’s National becomes the perfect location to explore how technology like this can improve the quality of life for our patients, many of whom have previously been told there is nothing more we can do to help.”

De-personalized data from patients who receive the NeuroPace RNS will be shared with the company in the hopes that the data will assist the FDA in assessing the appropriateness of extending the age range of approval from 18 and above to 12 and above.

“Our hope is to contribute to the body of data about this device and determine if it will improve the lives of our younger patients the way it has already been done for adults,” Dr. Oluigbo concludes. “Kids’ brains may respond differently, however, sharing our patients’ experiences and outcomes will help us identify whether or not this is a viable and promising option for more children with refractory epilepsy.”

Tory Peitz and Victoria Catalano

Making weight: Ensuring that micro preemies gain pounds and inches

Tory Peitz and Victoria Catalano

Tory Peitz, R.N., (left) and Victoria Catalano, RDN, LD, CNSC, CLC, (right) Pediatric Dietitian Specialist in the Neonatal Intensive Care Unit at Children’s National Health System, measure the length of a micro preemie who weighed 1.5 pounds at birth.

A quality-improvement project to standardize feeding practices for micro preemies – preterm infants born months before their due date –  helped to boost their weight and nearly quadrupled the frequency of lactation consultations ordered in the neonatal intensive care unit (NICU), a multidisciplinary team from Children’s National Health System finds.

According to the Centers for Disease Control and Prevention, about 1 in 10 infants in 2016 was preterm, born prior to completing 37 gestational weeks of pregnancy. Micro preemies are the tiniest infants in that group, weighing less than 1,500 grams and born well before their brain, lungs and organs like the liver are fully developed.

As staff reviewed charts for very low birth weight preterm infants admitted to Children’s NICU, they found dramatic variation in nutritional practices among clinicians and a mean decline in delta weight Z-scores, a more sensitive way to monitor infants’ weight gain along growth percentiles for their gestational age. A multidisciplinary team that included dietitians, nurses, neonatologists, a lactation consultant and a quality-improvement leader evaluated nutrition practices and determined key drivers for improving nutrition status.

“We tested a variety of strategies, including standardizing feeding practices; maximizing intended delivery of feeds; tracking adequacy of calorie, protein and micronutrient intake; and maximizing use of the mother’s own breast milk,” says Michelande Ridoré, MS, a Children’s NICU quality-improvement lead who will present the group’s findings during the Virginia Neonatal Nutrition Association conference this fall. “We took nothing for granted: We reeducated everyone in the NICU about the importance of the standardized feeding protocol. We shared information about whether infants were attaining growth targets during daily rounds. And we used an infographic to help nursing moms increase the available supply of breastmilk,” Ridoré says.

On top of other challenges, very low birth weight preterm infants are born very lean, with minimal muscle. During the third trimester, pregnant women pass on a host of essential nutrients and proteins to help satisfy the needs of the fetus’ developing muscles, bones and brain. “Because preterm infants miss out on that period in utero, we add fortification to provide preemies with extra protein, phosphorus, calcium and zinc they otherwise would have received from mom in the womb,” says Victoria Catalano, RDN, LD, CNSC, CLC, a pediatric clinical dietitian in Children’s NICU and study co-author. Babies’ linear growth is closely related to neurocognitive development, Catalano says. A dedicated R.N.  is assigned to length boards for Children’s highest-risk newborns to ensure consistency in measurements.

Infants who were admitted within the first seven days of life and weighed less than 1,500 grams were included in the study. At the beginning of the quality-improvement project, the infants’ mean delta Z-score for weight was -1.8. By December 2018, that had improved to -1.3. And the number of lactation consultation ordered weekly increased from 1.1 to four.

“We saw marked improvement in micro preemies’ nutritional status as we reduced the degree of variation in nutrition practices,” says Mary Revenis, M.D., NICU medical lead on nutrition and senior author for the research. “Our goal was to increase mean delta Z-scores even more. To that end, we will continue to test other key drivers for improved weight gain, including zinc supplementation, updating infants’ growth trajectories in the electronic medical record and advocating for expanded use of birth mothers’ breast milk,” Dr. Revenis says.

In addition to Ridoré, Catalano and Dr. Revenis, study co-authors include Caitlin Forsythe MS, BSN, RNC-NIC, lead author; Rebecca Vander Veer RD, LD, CNSC, CLC, pediatric dietitian specialist; Erin Fauer RDN, LD, CNSC, CLC, pediatric dietitian specialist; Judith Campbell, RN, IBCLC, NICU lactation consultant; Eresha Bluth MHA; Anna Penn M.D., Ph.D., neonatalogist; and Lamia Soghier M.D., Med., NICU medical unit director.

Roger Packer

From discovery to ‘no excuses’ in neuro-oncology

For more than three decades, the world’s pre-eminent scientists and clinicians in pediatric neuro-oncology have convened the International Symposium on Pediatric Neuro-oncology every two years. Their goal is to advance the care and treatment of pediatric brain and central nervous system tumors by connecting across disciplines to share research findings and discuss the latest treatment approaches.

This year for the first time, representatives from parent advocacy groups and patient support foundations were also invited to attend the traditionally scientific meeting. Their inclusion allowed care providers and scientific investigators to make sure the voices of patients and families, and their needs, are heard.

Roger J. Packer, M.D., senior vice president of the Center for Neuroscience and Behavioral Medicine at Children’s National Health System, served as international organizing committee chair this year. He was chair and organizer of the very first symposium, held in 1986, and has led additional sessions over the years.

Dr. Packer had the honor of giving the opening keynote address to more than 1,200 participants in Denver this year. He used his lecture to highlight some of the amazing knowledge leaps made in the last decade in understanding the molecular makeup and genetics behind brain and spinal cord tumors.

“We’ve made more discoveries in these areas in the last 10 years than we made in the 50 years before that. It’s been a phenomenal decade for discovery,” he notes.  “But the fact remains we have not yet been able to translate all of this knowledge into more effective therapies for most children with brain and central nervous system cord tumors.”

Dr. Packer says progress made in managing and treating childhood low grade gliomas is one example of how care should move forward for other tumor types. The unique genetic and molecular makeup of low grade gliomas, which are the single most common form of childhood low grade tumor, has allowed clinicians to begin moving away from surgeries, radiation therapy and chemotherapy toward less neurotoxic treatments targeted at the specific molecular properties of the tumor itself.

“Although the chemotherapy protocol we began for low-grade gliomas 30 years ago works well and is still the standard of care today, the new molecular approaches we and others have tested will hopefully replace it soon and result in even better outcomes,” he adds.

Medulloblastoma, the most common form of malignant brain tumor, is one area Dr. Packer notes could stand to benefit from therapies with less impact on a child’s quality of life. The current treatment protocol used for this childhood tumor also remains the same as the one that Dr. Packer helped develop more than 30 years ago.

“Our protocol is effective, and we’ve moved survival from 50 percent to 80 percent for these types of tumors using this approach, but it’s time to determine how best to move toward effective molecularly targeted therapies that would allow us to reduce the neurotoxic treatments necessary to treat these tumors.”

“We have to move from our decade of discovery to a decade of no excuses where we are able to use what we’ve learned to improve the care of all childhood brain and spinal cord tumors,” he says.

Dr. Packer says the key is to avoid getting paralyzed by the mountain of molecular data that is available and really focus on the specific information needed to make treatments more precise.

One promising new approach is the use of immunotherapy for pediatric brain and spinal cord tumors. Children’s National and colleagues from across the U.S. are at the forefront of developing these therapies to control tumor growth, and presented several related studies at ISPNO:

There were also several poster session presentations where Dr. Hwang, Lindsey Kilburn, M.D., Brian Rood, M.D., and others from the Children’s National team shared findings related to the potential and the challenges of molecular targeted therapies, especially immunotherapies. The team at Children’s also presented data related to new findings about how to reverse neurologic and neurocognitive deficits that often result from these conditions, including some that for years were thought to be irreversible, such as vision deficits.

Dr. Packer notes that many of the newest clinical trials both in the U.S. and internationally have the potential to kick start this decade of “no excuses.”

“We’ve made great progress, but we haven’t yet been able to take full advantage of the knowledge we’ve amassed. To do it, we all have to work together as a community nationally and internationally to change the paradigms of how we treat these children and make meaningful advances.”

Pregnant-Mom

Safeguarding fetal brain health in pregnancies complicated by CHD

Pregnant-Mom

During the last few weeks of pregnancy, certain regions of the fetal brain experience exponential growth but also are more vulnerable to injury during that high-growth period.

Yao Wu, Ph.D., a research postdoctoral fellow in the Developing Brain Research Laboratory at Children’s National Health System, has received a Thrasher Research Fund early career award to expand knowledge about regions of the fetal brain that are vulnerable to injury from congenital heart disease (CHD) during pregnancy.

CHD, the most common birth defect, can have lasting effects, including overall health issues; difficulty achieving milestones such as crawling, walking or running; and missed days at daycare or school, according to the Centers for Disease Control and Prevention. Brain injury is a major complication for infants born with CHD. Catherine Limperopoulos, Ph.D., director of Children’s brain imaging lab, was the first to provide in vivo evidence that fetal brain growth and metabolism in the third trimester of pregnancy is impaired within the womb.

“It remains unclear which specific regions of the fetal brain are more vulnerable to these insults in utero,” Limperopoulos says. “We first need to identify early brain abnormalities attributed to CHD and understand their impact on infants’ later behavioral and cognitive development in order to better counsel parents and effectively intervene during the prenatal period to safeguard brain health.”

During the last few weeks of pregnancy, certain regions of the fetal brain experience exponential growth but also are more vulnerable to injury during that high-growth period. The grant, $26,749 over two years, will underwrite “Brain Development in Fetuses With Congenital Heart Disease,” research that enables Wu to utilize quantitative, non-invasive magnetic resonance imaging (MRI) to compare fetal brain development in pregnancies complicated by CHD with brain development in healthy fetuses of the same gestational age.Wu will leverage quantitative, in vivo 3-D volumetric MRI to compare overall fetal and neonatal brain growth as well as growth in key regions including cortical grey matter, white matter, deep grey matter, lateral ventricles, external cerebrospinal fluid, cerebellum, brain stem, amygdala and the hippocampus.

The research is an offshoot of a prospective study funded by the National Institutes of Health that uses advanced imaging techniques to record brain growth in 50 fetuses in pregnancies complicated by CHD who need open heart surgery and 50 healthy fetuses. MRI studies are conducted during the second trimester (24 to 28 weeks gestational age), third trimester (33 to 37 weeks gestational age) and shortly after birth but before surgery. In addition, fetal and neonatal MRI measurements will be correlated with validated scales that measure infants’ and toddlers’ overall development, behavior and social/emotional maturity.

“I am humbled to be selected for this prestigious award,” Wu says. “The findings from our ongoing work could be instrumental in identifying strategies for clinicians and care teams managing high-risk pregnancies to optimize fetal brain development and infants’ overall quality of life.”

Making the grade: Children’s National is nation’s Top 5 children’s hospital

Children’s National rose in rankings to become the nation’s Top 5 children’s hospital according to the 2018-19 Best Children’s Hospitals Honor Roll released June 26, 2018, by U.S. News & World Report. Additionally, for the second straight year, Children’s Neonatology division led by Billie Lou Short, M.D., ranked No. 1 among 50 neonatal intensive care units ranked across the nation.

Children’s National also ranked in the Top 10 in six additional services:

For the eighth year running, Children’s National ranked in all 10 specialty services, which underscores its unwavering commitment to excellence, continuous quality improvement and unmatched pediatric expertise throughout the organization.

“It’s a distinct honor for Children’s physicians, nurses and employees to be recognized as the nation’s Top 5 pediatric hospital. Children’s National provides the nation’s best care for kids and our dedicated physicians, neonatologists, surgeons, neuroscientists and other specialists, nurses and other clinical support teams are the reason why,” says Kurt Newman, M.D., Children’s President and CEO. “All of the Children’s staff is committed to ensuring that our kids and families enjoy the very best health outcomes today and for the rest of their lives.”

The excellence of Children’s care is made possible by our research insights and clinical innovations. In addition to being named to the U.S. News Honor Roll, a distinction awarded to just 10 children’s centers around the nation, Children’s National is a two-time Magnet® designated hospital for excellence in nursing and is a Leapfrog Group Top Hospital. Children’s ranks seventh among pediatric hospitals in funding from the National Institutes of Health, with a combined $40 million in direct and indirect funding, and transfers the latest research insights from the bench to patients’ bedsides.

“The 10 pediatric centers on this year’s Best Children’s Hospitals Honor Roll deliver exceptional care across a range of specialties and deserve to be highlighted,” says Ben Harder, chief of health analysis at U.S. News. “Day after day, these hospitals provide state-of-the-art medical expertise to children with complex conditions. Their U.S. News’ rankings reflect their commitment to providing high-quality care.”

The 12th annual rankings recognize the top 50 pediatric facilities across the U.S. in 10 pediatric specialties: cancer, cardiology and heart surgery, diabetes and endocrinology, gastroenterology and gastrointestinal surgery, neonatology, nephrology, neurology and neurosurgery, orthopedics, pulmonology and urology. Hospitals received points for being ranked in a specialty, and higher-ranking hospitals receive more points. The Best Children’s Hospitals Honor Roll recognizes the 10 hospitals that received the most points overall.

This year’s rankings will be published in the U.S. News & World Report’s “Best Hospitals 2019” guidebook, available for purchase in late September.

An-Massaro

Keeping an eye on autonomic function for infants with HIE

An-Massaro

“By including heart rate variability measurements and other markers of autonomic function in our current predictive armamentarium,” says An Massaro, M.D., “we may be able to offer new hope for infants with HIE.”

In about two to three in every 1,000 full-term births, babies develop a neurological condition called hypoxic ischemic encephalopathy (HIE) when their brains receive insufficient oxygen. HIE can be a devastating condition, leading to severe developmental or cognitive delays or motor impairments that become more evident as the child grows older. Despite improvements in care – including therapeutic hypothermia, a whole-body cooling method administered shortly after birth that can slow brain damage – about half of children with this condition die from neurological complications by age 2.

Finding ways to identify children with the most severe HIE could help researchers focus their efforts and provide even more intense neuroprotective care, explains An Massaro, M.D., a neonatologist at Children’s National Health System. But thus far, it’s been unclear which symptoms reflect the extent of HIE-induced brain damage.

That’s why Dr. Massaro and colleagues embarked on a study published in the May 2018 issue of Journal of Pediatrics. The team sought to determine whether dysfunction of the autonomic nervous system (ANS) – the auto-pilot part of the nervous system responsible for unconscious bodily functions, such as breathing and digestion – reflected in routine care events can be used as a marker for brain injury severity.

The researchers collected data from 25 infants who were treated for HIE with therapeutic hypothermia at Children’s National. Thanks to multi-modal monitoring, these babies’ medical records hold a treasure trove of information, explains Rathinaswamy B. Govindan, Ph.D., a staff scientist in Children’s Advanced Physiological Signals Processing Lab.

In addition to including continuous heart rate tracings and blood pressure readings that are standard for many infants in the neonatal intensive care unit (NICU), they also recorded cerebral near infrared spectroscopy, a monitor that measures brain tissue oxygen levels. The investigators performed detailed analyses to evaluate how these monitor readings change in response to a variety of routine care events, such as diaper changes, heel sticks, endotracheal tube manipulations and pupil examinations.

The researchers stratified these infants based on how dysfunctional their ANS behaved by using heart rate variability as a marker: The fewer natural fluctuations in heart rate, the more damaged their ANS was thought to be. And they also used non-invasive brain magnetic resonance imaging (MRI) to determine brain damage. They then compared this information with the babies’ physiological responses during each care event.

Their findings show that infants with impaired ANS, based on depressed heart rate variability before the care event, had significantly different responses to these care events compared with babies with intact ANS.

  • For stimulating interventions, such as diaper changes and heel sticks, both heart rate and blood pressure increased in babies with intact ANS but decreased in babies with impaired ones.
  • Shining a light in their pupils led to an expected decreased heart rate with stable blood pressure in ANS-intact infants, but in ANS-impaired infants, there was no responsive change in heart rate and, additionally, a decrease in blood pressure was observed.
  • Responses were similar between the two groups during breathing tube manipulations, except for a slight increase in heart rate a few minutes later in the ANS-impaired group.

These results, Govindan explains, suggest that a real-time, continuous way to assess ANS function may offer insights into the expected physiological response for a given infant during routine NICU care.

“This is exactly the type of additional information that intensivists need to pinpoint infants who may benefit from additional neuroprotective support,” he says. “Right now, it is standard practice to monitor brain activity continuously using electroencephalogram and to check the status of the brain using MRI to assess the response to therapeutic cooling. Neither of these assessments can be readily used by neonatologists at the bedside in real-time to make clinical decisions.”

Assessing ANS function in real-time can help guide neuroprotective care in high-risk newborns by providing insight into the evolving nature of brain damage in these infants, Dr. Massaro adds.

Beyond simply serving as a biomarker into brain injury, poor ANS function also could contribute to the development of secondary injury in newborns with HIE by stymieing the normal changes in heart rate and blood pressure that help oxygenate and heal injured brains. The researchers found that the cumulative duration of autonomic impairment was significantly correlated with the severity of brain injury visible by MRI in this group of infants.

“By including heart rate variability measurements and other markers of autonomic function in our current predictive armamentarium,” says Dr. Massaro, “we may be able to offer new hope for infants with HIE.”

In addition to Dr. Massaro, the Senior Author, study co-authors include Lead Author, Heather Campbell, M.D.; Rathinaswamy B. Govindan, Ph.D., Children’s Advanced Physiological Signals Processing Lab; Srinivas Kota, Ph.D.; Tareq Al-Shargabi, M.S.; Marina Metzler, B.S.; Nickie Andescavage, M.D., Children’s neonatalogist; Taeun Chang, M.D., Children’s neonatal and fetal neurologist; L. Gilbert Vezina, M.D., attending in Children’s Division of Diagnostic Imaging and Radiology; and Adré J. du Plessis, M.B.Ch.B., M.P.H., chief of Children’s Division of Fetal and Transitional Medicine.

This research was supported by the Clinical and Translational Science Institute at Children’s National under awards UL1TR000075 and 1KL2RR031987-01 and the Intellectual and Developmental Disabilities Research Consortium within the National Institutes of Health under award P30HD040677.

Anna Penn

Protecting the fetal brain from harm

Anna Penn

Ongoing placental dysfunction and allopregnanolone loss, not the increase that was expected due to stress, may alter cortical development in complicated pregnancies and put babies at risk, says Anna Penn, M.D., Ph.D.

Researchers long have known that allopregnanolone (ALLO), a derivative of the hormone progesterone, is produced in adults’ brains during times of acute stress and modulates how easily the brain’s neurons fire. ALLO also is produced in the placenta during fetal development, one of more than 200 different hormones that each uniquely contribute to fostering a smooth pregnancy and maintaining a fetus’ overall health. Although ALLO is thought to protect the developing brain in pregnancies complicated by conditions that might harm it, such as high blood pressure, how its levels evolve during pregnancy and in newborns shortly after birth has remained unknown.

Now, a new study presented during the Pediatric Academic Societies (PAS) 2018 annual meeting suggests that the placenta ramps up ALLO production over the second trimester, peaking just as fetuses approach full term.

To investigate this phenomenon, Anna Penn, M.D., Ph.D., a neonatologist/neuroscientist at Children’s National Health System, and colleagues created a designer experimental model to study how premature loss of ALLO alters orderly brain development. Knowing more about the interplay between ALLO and normal development of the cortex, the outer layer of the cerebrum, is a first step that could lead to strategies to rescue this vital brain region.

“The cortex is basically the brain’s command-and-control center for higher functions. In our experimental model, it develops from the middle of gestation through to the end of gestation. If ALLO levels are disrupted just as these cells are being born, neurons migrating to the cortex are altered and the developing neural network is compromised,” says Dr. Penn, senior author of the research presented at PAS 2018. “We’re concerned this same phenomenon occurs in human infants whose preterm birth disrupts their supply of this essential hormone.”

To better understand the human placental hormone pattern, the research team analyzed cord blood or serum samples collected within the first 36 hours of life for 61 preterm newborns born between 24 to 36 gestational weeks. They compared those preemie samples with samples drawn from 61 newborns carried to term who were matched by race, gender, size for gestational age, delivery method and maternal demographics.

They used liquid-chromatography-tandem mass spectrometry, a technique that can precisely analyze trace levels of compounds, to compare levels of 27 different steroids, including ALLO and its precursors as well as better-known adrenal gland hormones, such as cortisol and 17-Hydroxyprogesterone.

“Pregnancies complicated by hypertension tended to correlate with lower ALLO levels, though this finding did not reach statistical significance. This suggests that ongoing placental dysfunction and ALLO loss, not the increase that we expected to be caused by stress, may alter cortical development in these pregnancies and put babies at risk,” Dr. Penn adds. “In addition, having the largest neonatal sample set to date in which multiple steroid hormones have been measured can provide insight into the shifting hormone patterns that occur around 36 weeks gestation, just prior to term. Hopefully, restoring the normal hormonal milieu for preemies or other at-risk newborns will improve neurological outcomes in the future.”

In addition to Dr. Penn, study co-authors include Caitlin Drumm, MedStar Georgetown University Hospital; Sameer Desale, MedStar Health Research Institute; and Kathi Huddleston, Benjamin Solomon and John Niederhuber, Inova Translational Medicine Institute.

Preemie Baby

Brain food for preemies

Preemie Baby

Babies born prematurely – before 37 weeks of pregnancy – often have a lot of catching up to do. Not just in size. Preterm infants typically lag behind their term peers in a variety of areas as they grow up, including motor development, behavior and school performance.

New research suggests one way to combat this problem. The study, led by Children’s researchers and presented during the Pediatric Academic Societies 2018 annual meeting, suggests that the volume of carbohydrates, proteins, lipids and calories consumed by very vulnerable premature infants significantly contributes to increased brain volume and white matter development, even though additional research is needed to determine specific nutritional approaches that best support these infants’ developing brains.

During the final weeks of pregnancy, the fetal brain undergoes an unprecedented growth spurt, dramatically increasing in volume as well as structural complexity as the fetus approaches full term.

One in 10 infants born in the U.S. in 2016 was born before 37 weeks of gestation, according to the Centers for Disease Control and Prevention. Within this group, very low birthweight preemies are at significant risk for growth failure and neurocognitive impairment. Nutritional support in the neonatal intensive care unit (NICU) helps to encourage optimal brain development among preterm infants. However, their brain growth rates still lag behind those seen in full-term newborns.

“Few studies have investigated the impact of early macronutrient and caloric intake on microstructural brain development in vulnerable preterm infants,” says Katherine Ottolini, lead author of the Children’s-led study. “Advanced quantitative magnetic resonance imaging (MRI) techniques may help to fill that data gap in order to better direct targeted interventions to newborns who are most in need.”

The research team at Children’s National Health System enrolled 69 infants who were born younger than 32 gestational weeks and weighed less than 1,500 grams. The infants’ mean birth weight was 970 grams and their mean gestational age at birth was 27.6 weeks.

The newborns underwent MRI at their term-equivalent age, 40 weeks gestation. Parametric maps were generated for fractional anisotropy in regions of the cerebrum and cerebellum for diffusion tensor imaging analyses, which measures brain connectivity and white matter tract integrity. The research team also tracked nutritional data: Grams per kilogram of carbohydrates, proteins, lipids and overall caloric intake.

“We found a significantly negative association between fractional anisotropy and cumulative macronutrient/caloric intake,” says Catherine Limperopoulos, Ph.D., director of Children’s Developing Brain Research Laboratory and senior author of the research. “Curiously, we also find significantly negative association between macronutrient/caloric intake and regional brain volume in the cortical and deep gray matter, cerebellum and brainstem.”

Because the nutritional support does contribute to cerebral volumes and white matter microstructural development in very vulnerable newborns, Limperopoulos says the significant negative associations seen in this study may reflect the longer period of time these infants relied on nutritional support in the NICU.

In addition to Ottolini and Limperopoulos, study co-authors include Nickie Andescavage, M.D., Attending, Children’s Neonatal-Perinatal Medicine; and Kushal Kapse.

newborn in incubator

How EPO saves babies’ brains

newborn in incubator

Researchers have discovered that treating premature infants with erythropoietin can help protect and repair their vulnerable brains.

The drug erythropoietin (EPO) has a long history. First used more than three decades ago to treat anemia, it’s now a mainstay for treating several types of this blood-depleting disorder, including anemia caused by chronic kidney disease, myelodysplasia and cancer chemotherapy.

More recently, researchers discovered a new use for this old drug: Treating premature infants to protect and repair their vulnerable brains. However, how EPO accomplishes this feat has remained unknown. New genetic analyses presented at the Pediatric Academic Societies 2018 annual meeting that was conducted by a multi-institutional team that includes researchers from Children’s National show that this drug may work its neuroprotective magic by modifying genes essential for regulating growth and development of nervous tissue as well as genes that respond to inflammation and hypoxia.

“During the last trimester of pregnancy, the fetal brain undergoes tremendous growth. When infants are born weeks before their due dates, these newborns’ developing brains are vulnerable to many potential insults as they are supported in the neonatal intensive care unit during this critical time,” says An Massaro, M.D., an attending neonatologist at Children’s National Health System and lead author of the research. “EPO, a cytokine that protects and repairs neurons, is a very promising therapeutic approach to support the developing brains of extremely low gestational age neonates.”

The research team investigated whether micro-preemies treated with EPO had distinct DNA methylation profiles and related changes in expression of genes that regulate how the body responds to such environmental stressors as inflammation, hypoxia and oxidative stress.  They also investigated changes in genes involved in glial differentiation and myelination, production of an insulating layer essential for a properly functioning nervous system. The genetic analyses are an offshoot of a large, randomized clinical trial of EPO to treat preterm infants born between 24 and 27 gestational weeks.

The DNA of 18 newborns enrolled in the clinical trial was isolated from specimens drawn within 24 hours of birth and at day 14 of life. Eleven newborns were treated with EPO; a seven-infant control group received placebo.

DNA methylation and whole transcriptome analyses identified 240 candidate differentially methylated regions and more than 50 associated genes that were expressed differentially in infants treated with EPO compared with the control group. Gene ontology testing further narrowed the list to five candidate genes that are essential for normal neurodevelopment and for repairing brain injury:

“These findings suggest that EPO’s neuroprotective effect may be mediated by epigenetic regulation of genes involved in the development of the nervous system and that play pivotal roles in how the body responds to inflammation and hypoxia,” Dr. Massaro says.

In addition to Dr. Massaro, study co-authors include Theo K. Bammler, James W. MacDonald, biostatistician, Bryan Comstock, senior research scientist, and Sandra “Sunny” Juul, M.D., Ph.D., study principal investigator, all of University of Washington.

Research and Education Week awardees embody the diverse power of innovation

cnmc-research-education-week

“Diversity powers innovation” was brought to life at Children’s National April 16 to 20, 2018, during the eighth annual Research and Education Week. Children’s faculty were honored as President’s Award winners and for exhibiting outstanding mentorship, while more than 360 scientific poster presentations were displayed throughout the Main Atrium.

Two clinical researchers received Mentorship Awards for excellence in fostering the development of junior faculty. Lauren Kenworthy, Ph.D received the award for Translational Science and Murray M. Pollack, M.D., M.B.A., was recognized in the Clinical Science category as part of Children’s National Health System’s Research and Education Week 2018.

Dr. Kenworthy has devoted her career to improving the lives of people on the autism spectrum and was cited by former mentees as an inspirational and tireless counselor. Her mentorship led to promising new lines of research investigating methods for engaging culturally diverse families in autism studies, as well as the impact of dual language exposure on cognition in autism.

Meanwhile, Dr. Pollack was honored for his enduring focus on motivating early-career professionals to investigate outcomes in pediatric critical care, emergency medicine and neonatology. Dr. Pollack is one of the founders of the Collaborative Pediatric Critical Care Research Network. He developed PRISM 1 and 2, which has revolutionized pediatric intensive care by providing a methodology to predict mortality and outcome using standardly collected clinical data. Mentees credit Dr. Pollack with helping them develop critical thinking skills and encouraging them to address creativity and focus in their research agenda.

In addition to the Mentorship and President’s Awards, 34 other Children’s National faculty, residents, interns and research staff were among the winners of Poster Presentation awards. The event is a celebration of the commitment to improving pediatric health in the form of education, research, scholarship and innovation that occurs every day at Children’s National.

Children’s Research Institute (CRI) served as host for the week’s events to showcase the breadth of research and education programs occurring within the entire health system, along with the rich demographic and cultural origins of the teams that make up Children’s National. The lineup of events included scientific poster presentations, as well as a full slate of guest lectures, educational workshops and panel discussions.

“It’s critical that we provide pathways for young people of all backgrounds to pursue careers in science and medicine,” says Vittorio Gallo, Ph.D., Children’s chief research officer and CRI’s scientific director. “In an accelerated global research and health care environment, internationalization of innovation requires an understanding of cultural diversity and inclusion of different mindsets and broader spectrums of perspectives and expertise from a wide range of networks,” Gallo adds.

“Here at Children’s National we want our current and future clinician-researchers to reflect the patients we serve, which is why our emphasis this year was on harnessing diversity and inclusion as tools to power innovation,” says Mark L. Batshaw, M.D., physician-in-chief and chief academic officer of Children’s National.

“Research and Education Week 2018 presented a perfect opportunity to celebrate the work of our diverse research, education and care teams, who have come together to find innovative solutions by working with local, national and international partners. This event highlights the ingenuity and inspiration that our researchers contribute to our mission of healing children,” Dr. Batshaw concludes.

Awards for the best posters were distributed according to the following categories:

  • Basic and translational science
  • Quality and performance improvement
  • Clinical research
  • Community-based research and
  • Education, training and program development.

Each winner illustrated promising advances in the development of new therapies, diagnostics and medical devices.

Diversity powers innovation: Denice Cora-Bramble, M.D., MBA
Diversity powers innovation: Vittorio Gallo, Ph.D.
Diversity powers innovation: Mark L. Batshaw, M.D.