Paradoxical outcomes for Zika-exposed tots

In the midst of an unprecedented Zika crisis in Brazil, there were a few flickers of hope: Some babies appeared to be normal at birth, free of devastating birth defects that affected other Brazilian children exposed to the virus in utero.

In the midst of an unprecedented Zika crisis in Brazil, there were a few flickers of hope: Some babies appeared to be normal at birth, free of devastating birth defects that affected other Brazilian children exposed to the virus in utero. But according to a study published online July 8, 2019, in Nature Medicine and an accompanying commentary co-written by a Children’s National clinician-researcher, the reality for Zika-exposed infants is much more complicated.

Study authors led by Karin Nielsen-Saines at David Geffen UCLA School of Medicine followed 216 infants in Rio de Janeiro who had been exposed to the Zika virus during pregnancy, performing neurodevelopmental testing when the babies ranged in age from 7 to 32 months. These infants’ mothers had had Zika-related symptoms themselves, including rash.

Although many children had normal assessments, 29% scored below average in at least one domain of neurological development, including cognitive performance, fine and gross motor skills and expressive language, Sarah B. Mulkey, M.D., Ph.D., and a colleague write in a companion commentary published online by Nature Medicine July 29, 2019.

The study authors found progressively higher risks for developmental, hearing and eye abnormality depending on how early the pregnancy was at the time the infants were exposed. Because Zika virus has an affinity for immature neurons, even babies who were not born with microcephaly remained at continued risk for suffering abnormalities.

Of note, 24 of 49 (49%) infants who had abnormalities at birth went on to have normal test results in the second or third year of life. By contrast, 17 of 68 infants (25%) who had normal assessments at birth had below-average developmental testing or had abnormalities in hearing or vision by age 32 months.

“This work follows babies who were born in 2015 and 2016. It’s heartening that some babies born with abnormalities tested in the normal range later in life, though it’s unclear whether any specific interventions help to deliver these positive findings,” says Dr. Mulkey, a fetalneonatal neurologist in the Division of Fetal and Transitional Medicine at Children’s National in Washington, D.C. “And it’s quite sobering that babies who appeared normal at birth went on to develop abnormalities due to that early Zika exposure.”

It’s unclear how closely the findings apply to the vast majority of U.S. women whose Zika infections were asymptomatic.

“This study adds to the growing body of research that argues in favor of ongoing follow-up for Zika-exposed children, even if their neurologic exams were reassuring at birth,” Dr. Mulkey adds. “As Zika-exposed children approach school age, it’s critical to better characterize the potential implications for the education system and public health.”

In addition to Dr. Mulkey, the perspective’s senior author, William J. Muller, Northwestern University, was the commentary’s lead author.

Autonomic nervous system appears to function well regardless of mode of childbirth

Late in pregnancy, the human body carefully prepares fetuses for the rigors of life outside the protection of the womb. Levels of cortisol, a stress hormone, ramp up and spike during labor. Catecholamines, another stress hormone, also rise at birth, helping to kick start the necessary functions that the baby will need to regulate breathing, heartbeat, blood pressure and energy metabolism levels at delivery. Oxytocin surges, promoting contractions for the mother during labor and stimulating milk production after the infant is born.

These processes also can play a role in preparing the fetal brain during the transition to life outside the womb by readying the autonomic nervous system and adapting its cerebral connections. The autonomic nervous system acts like the body’s autopilot, taking in information it needs to ensure that internal organs run steadily without willful action, such as ensuring the heart beats and eyelids blink at steady intervals. Its yin, the sympathetic division, stimulates body processes while its yang, the parasympathetic division, inhibits them.

Infants born preterm have reduced autonomic function compared with their full-term peers and also face possible serious neurodevelopmental impairment later in life. But is there a difference in autonomic nervous system function for full-term babies after undergoing labor compared with infants delivered via cesarean section (C-section)?

A team from the Children’s National Inova Collaborative Research Program (CNICA) – a research collaboration between Children’s National in Washington, D.C., and Inova Women’s and Children’s Hospital in Virginia – set out to answer that question in a paper published online July 30, 2019, in Scientific Reports.

They enrolled newborns who had experienced normal, full-term pregnancies and recorded their brain function and heart performance when they were about 2 days old. Infants whose conditions were fragile enough to require observation in the neonatal intensive care unit were excluded from the study. Of 167 infants recruited for the prospective cohort study, 118 newborns had sufficiently robust data to include them in the research.  Of these newborns:

  • 62 (52.5%) were born by vaginal delivery
  • 22 (18.6%) started out with vaginal delivery but ultimately switched to C-section based on failure to progress, failed labor induction or fetal intolerance to labor
  • And 34 (28.8%) were born by elective C-section.

The CNICA research team swaddled infants for comfort and slipped electrode nets over their tiny heads to simultaneously measure heart rate variability and electrocortical function through non-invasive techniques. The team hypothesized that infants who had been exposed to labor would have enhanced autonomic tone and higher cortical electroencephalogram (EEG) power than babies born via C-section.

“In a low-risk group of babies born full-term, the autonomic nervous system and cortical systems appear to function well regardless of whether infants were exposed to labor prior to birth,” says Sarah B. Mulkey, M.D., Ph.D., a fetalneonatal neurologist in the Division of Fetal and Transitional Medicine at Children’s National and the study’s lead author.

However, infants born by C-section following a period of labor had significantly increased accelerations in their heart rates. And the infants born by C-section during labor had significantly lower relative gamma frequency EEG at 25.2 hours old compared with the other two groups studied.

“Together these findings point to a possible increased stress response and arousal difference in infants who started with vaginal delivery and finished delivery with C-section,” Dr. Mulkey says. “There is so little published research about the neurologic impacts of the mode of delivery, so our work helps to provide a normal reference point for future studies looking at high-risk infants, including babies born preterm.”

Because the research team saw little differences in autonomic tone or other EEG frequencies when the infants were 1 day old, future research will explore these measures at different points in the newborns’ early life as well as the role of the sleep-wake cycle on heart rate variability.

In addition to Dr. Mulkey, study co-authors include Srinivas Kota, Ph.D., Rathinaswamy B. Govindan, Ph.D., Tareq Al-Shargabi, MSc, Christopher B. Swisher, BS, Laura Hitchings, BScM, Stephanie Russo, BS, Nicole Herrera, MPH, Robert McCarter, ScD, and Senior Author Adré  J. du Plessis, M.B.Ch.B., MPH, all of Children’s National; and Augustine Eze Jr., MS, G. Larry Maxwell, M.D., and Robin Baker, M.D., all of Inova Women’s and Children’s Hospital.

Financial support for research described in this post was provided by the National Institutes of Health National Center for Advancing Translational Sciences under award numbers UL1TR001876 and KL2TR001877.

Children’s National ranked No. 6 overall and No. 1 for newborn care by U.S. News

Children’s National in Washington, D.C., is the nation’s No. 6 children’s hospital and, for the third year in a row, its neonatology program is No.1 among all children’s hospitals providing newborn intensive care, according to the U.S. News Best Children’s Hospitals annual rankings for 2019-20.

This is also the third year in a row that Children’s National has been in the top 10 of these national rankings. It is the ninth straight year it has ranked in all 10 specialty services, with five specialty service areas ranked among the top 10.

“I’m proud that our rankings continue to cement our standing as among the best children’s hospitals in the nation,” says Kurt Newman, M.D., President and CEO for Children’s National. “In addition to these service lines, today’s recognition honors countless specialists and support staff who provide unparalleled, multidisciplinary patient care. Quality care is a function of every team member performing their role well, so I credit every member of the Children’s National team for this continued high performance.”

The annual rankings recognize the nation’s top 50 pediatric facilities based on a scoring system developed by U.S. News. The top 10 scorers are awarded a distinction called the Honor Roll.

“The top 10 pediatric centers on this year’s Best Children’s Hospitals Honor Roll deliver outstanding care across a range of specialties and deserve to be nationally recognized,” says Ben Harder, chief of health analysis at U.S. News. “According to our analysis, these Honor Roll hospitals provide state-of-the-art medical expertise to children with rare or complex conditions. Their rankings reflect U.S. News’ assessment of their commitment to providing high-quality, compassionate care to young patients and their families day in and day out.”

The bulk of the score for each specialty is based on quality and outcomes data. The process also includes a survey of relevant specialists across the country, who are asked to list hospitals they believe provide the best care for patients with challenging conditions.

Below are links to the five specialty services that U.S. News ranked in the top 10 nationally:

The other five specialties ranked among the top 50 were cardiology and heart surgery, diabetes and endocrinology, gastroenterology and gastro-intestinal surgery, orthopedics, and urology.

Fewer than 60% of young women diagnosed with STIs in emergency departments fill scripts

Fewer than 60% of young women diagnosed with sexually transmitted infections (STIs) in the emergency department fill prescriptions for antimicrobial therapy to treat these conditions, according to a research letter published online May 28, 2019, by JAMA Pediatrics.

Adolescents make up nearly half of the people diagnosed with sexually transmitted infections each year. According to the Centers for Disease Control and Prevention, untreated sexually transmitted diseases in women can cause pelvic inflammatory disease (PID), an infection of the reproductive organs that can complicate getting pregnant in the future.

“We were astonished to find that teenagers’ rates of filling STI prescriptions were so low,” says Monika K. Goyal, M.D., MSCE, assistant chief of Children’s Division of Emergency Medicine and Trauma Services and the study’s senior author. “Our findings demonstrate the imperative need to identify innovative methods to improve treatment adherence for this high-risk population.”

The retrospective cohort study, conducted at two emergency departments affiliated with a large, urban, tertiary care children’s hospital, enrolled adolescents aged 13 to 19 who were prescribed antimicrobial treatment from Jan. 1, 2016, to Dec. 31, 2017, after being diagnosed with PID or testing positive for chlamydia.

Of 696 emergency department visits for diagnosed STIs, 208 teenagers received outpatient prescriptions for antimicrobial treatments. Only 54.1% of those prescriptions were filled.

“Teenagers may face a number of hurdles when it comes to STI treatment, including out-of-pocket cost, access to transportation and confidentiality concerns,” Dr. Goyal adds.

Future studies will attempt to identify barriers to filling prescriptions in order to inform development of targeted interventions based in the emergency department that promote adherence to STI treatment.

In addition to Dr. Goyal, study co-authors include Lead Author, Alexandra Lieberman, BA, The George Washington University School of Medicine & Health Sciences; and co-authors Gia M. Badolato, MPH, and Jennifer Tran, PA-C, MPH, both of Children’s National.

Alexandra M. Sim

Alexandra M. Sims, M.D., FAAP, counsels grads to know their who, how and why

Alexandra M. Sim

Alexandra M. Sims, M.D., FAAP, general academic pediatrics fellow at Children’s National, tells newly minted George Mason social sciences graduates the concrete and abstract skills they learned during their collegiate experience are exceedingly valuable.

As a 10-year-old growing up in the suburbs of Richmond, Virginia, lip syncing with friends as they pretended to be Destiny’s Child, Alexandra M. Sims, M.D., FAAP, predicted her future: She would become a doctor.

“Ten is a really funny age,” Dr. Sims told members of the 2019 graduating class from George Mason University College of Humanities and Social Sciences, the school and department from which she received her undergraduate degree in Anthropology. “I was old enough to feel compelled to contribute to the world meaningfully, but too young to know the weight of this undertaking. I was old enough to be intrigued by the science of the human body, but too young to be intimidated by the fact that there were no doctors in my family.”

Dr. Sims’ youngest sister, Bria, was born four weeks premature and died a few weeks after birth. The sting of that tragedy instilled in her a commitment to serve others and informed a lifelong passion to help society’s most marginalized.

Ten years after graduating George Mason herself, she invited this year’s newly minted graduates to distill their college experience into three terms: who, how and why:

  • Who means the family members and mentors who helped them enter college and persevere toward graduation.
  • How is their plan to change the world. The general academics pediatrics fellow at Children’s National asks kids about their unique superpower during visits to the primary care clinic at Children’s Health Center Anacostia. “I get a range of responses, and some of them are quite funny,” she told 800 social sciences graduates gathered for their degree celebration. “Some really surprise me in other ways. ‘I want to be kind.’ ‘I want to help people.’ ‘I want to take care of my parents.’ ”
  • Why is the reason they continue to do what they’re doing. For Dr. Sims, that’s service and mitigating health disparities, a mission that has led her to travel around the globe conducting HIV/AIDS outreach and building coalitions near and far. Her current work is domestic, as she seeks advocates for at-risk communities through health services research.

“So, come back to these when you’re feeling unsure or uneasy: your WHO, your HOW and your WHY. Know that your time here at Mason is time well spent, and that the skills that you’ve gained, both the concrete and the abstract, are exceedingly valuable,” she advised the group.

Billie Lou Short and Kurt Newman at Research and Education Week

Research and Education Week honors innovative science

Billie Lou Short and Kurt Newman at Research and Education Week

Billie Lou Short, M.D., received the Ninth Annual Mentorship Award in Clinical Science.

People joke that Billie Lou Short, M.D., chief of Children’s Division of Neonatology, invented extracorporeal membrane oxygenation, known as ECMO for short. While Dr. Short did not invent ECMO, under her leadership Children’s National was the first pediatric hospital to use it. And over decades Children’s staff have perfected its use to save the lives of tiny, vulnerable newborns by temporarily taking over for their struggling hearts and lungs. For two consecutive years, Children’s neonatal intensive care unit has been named the nation’s No. 1 for newborns by U.S. News & World Report. “Despite all of these accomplishments, Dr. Short’s best legacy is what she has done as a mentor to countless trainees, nurses and faculty she’s touched during their careers. She touches every type of clinical staff member who has come through our neonatal intensive care unit,” says An Massaro, M.D., director of residency research.

For these achievements, Dr. Short received the Ninth Annual Mentorship Award in Clinical Science.

Anna Penn, M.D., Ph.D., has provided new insights into the central role that the placental hormone allopregnanolone plays in orderly fetal brain development, and her research team has created novel experimental models that mimic some of the brain injuries often seen in very preterm babies – an essential step that informs future neuroprotective strategies. Dr. Penn, a clinical neonatologist and developmental neuroscientist, “has been a primary adviser for 40 mentees throughout their careers and embodies Children’s core values of Compassion, Commitment and Connection,” says Claire-Marie Vacher, Ph.D.

For these achievements, Dr. Penn was selected to receive the Ninth Annual Mentorship Award in Basic and Translational Science.

The mentorship awards for Drs. Short and Penn were among dozens of honors given in conjunction with “Frontiers in Innovation,” the Ninth Annual Research and Education Week (REW) at Children’s National. In addition to seven keynote lectures, more than 350 posters were submitted from researchers – from high-school students to full-time faculty – about basic and translational science, clinical research, community-based research, education, training and quality improvement; five poster presenters were showcased via Facebook Live events hosted by Children’s Hospital Foundation.

Two faculty members won twice: Vicki Freedenberg, Ph.D., APRN, for research about mindfulness-based stress reduction and Adeline (Wei Li) Koay, MBBS, MSc, for research related to HIV. So many women at every stage of their research careers took to the stage to accept honors that Naomi L.C. Luban, M.D., Vice Chair of Academic Affairs, quipped that “this day is power to women.”

Here are the 2019 REW award winners:

2019 Elda Y. Arce Teaching Scholars Award
Barbara Jantausch, M.D.
Lowell Frank, M.D.

Suzanne Feetham, Ph.D., FAA, Nursing Research Support Award
Vicki Freedenberg, Ph.D., APRN, for “Psychosocial and biological effects of mindfulness-based stress reduction intervention in adolescents with CHD/CIEDs: a randomized control trial”
Renee’ Roberts Turner for “Peak and nadir experiences of mid-level nurse leaders”

2019-2020 Global Health Initiative Exploration in Global Health Awards
Nathalie Quion, M.D., for “Latino youth and families need assessment,” conducted in Washington
Sonia Voleti for “Handheld ultrasound machine task shifting,” conducted in Micronesia
Tania Ahluwalia, M.D., for “Simulation curriculum for emergency medicine,” conducted in India
Yvonne Yui for “Designated resuscitation teams in NICUs,” conducted in Ghana
Xiaoyan Song, Ph.D., MBBS, MSc, “Prevention of hospital-onset infections in PICUs,” conducted in China

Ninth Annual Research and Education Week Poster Session Awards

Basic and Translational Science
Faculty:
Adeline (Wei Li) Koay, MBBS, MSc, for “Differences in the gut microbiome of HIV-infected versus HIV-exposed, uninfected infants”
Faculty: Hayk Barseghyan, Ph.D., for “Composite de novo Armenian human genome assembly and haplotyping via optical mapping and ultra-long read sequencing”
Staff: Damon K. McCullough, BS, for “Brain slicer: 3D-printed tissue processing tool for pediatric neuroscience research”
Staff: Antonio R. Porras, Ph.D., for “Integrated deep-learning method for genetic syndrome screening using facial photographs”
Post docs/fellows/residents: Lung Lau, M.D., for “A novel, sprayable and bio-absorbable sealant for wound dressings”
Post docs/fellows/residents:
Kelsey F. Sugrue, Ph.D., for “HECTD1 is required for growth of the myocardium secondary to placental insufficiency”
Graduate students:
Erin R. Bonner, BA, for “Comprehensive mutation profiling of pediatric diffuse midline gliomas using liquid biopsy”
High school/undergraduate students: Ali Sarhan for “Parental somato-gonadal mosaic genetic variants are a source of recurrent risk for de novo disorders and parental health concerns: a systematic review of the literature and meta-analysis”

Clinical Research
Faculty:
Amy Hont, M.D., for “Ex vivo expanded multi-tumor antigen specific T-cells for the treatment of solid tumors”
Faculty: Lauren McLaughlin, M.D., for “EBV/LMP-specific T-cells maintain remissions of T- and B-cell EBV lymphomas after allogeneic bone marrow transplantation”

Staff: Iman A. Abdikarim, BA, for “Timing of allergenic food introduction among African American and Caucasian children with food allergy in the FORWARD study”
Staff: Gelina M. Sani, BS, for “Quantifying hematopoietic stem cells towards in utero gene therapy for treatment of sickle cell disease in fetal cord blood”
Post docs/fellows/residents: Amy H. Jones, M.D., for “To trach or not trach: exploration of parental conflict, regret and impacts on quality of life in tracheostomy decision-making”
Graduate students: Alyssa Dewyer, BS, for “Telemedicine support of cardiac care in Northern Uganda: leveraging hand-held echocardiography and task-shifting”
Graduate students: Natalie Pudalov, BA, “Cortical thickness asymmetries in MRI-abnormal pediatric epilepsy patients: a potential metric for surgery outcome”
High school/undergraduate students:
Kia Yoshinaga for “Time to rhythm detection during pediatric cardiac arrest in a pediatric emergency department”

Community-Based Research
Faculty:
Adeline (Wei Li) Koay, MBBS, MSc, for “Recent trends in the prevention of mother-to-child transmission (PMTCT) of HIV in the Washington, D.C., metropolitan area”
Staff: Gia M. Badolato, MPH, for “STI screening in an urban ED based on chief complaint”
Post docs/fellows/residents:
Christina P. Ho, M.D., for “Pediatric urinary tract infection resistance patterns in the Washington, D.C., metropolitan area”
Graduate students:
Noushine Sadeghi, BS, “Racial/ethnic disparities in receipt of sexual health services among adolescent females”

Education, Training and Program Development
Faculty:
Cara Lichtenstein, M.D., MPH, for “Using a community bus trip to increase knowledge of health disparities”
Staff:
Iana Y. Clarence, MPH, for “TEACHing residents to address child poverty: an innovative multimodal curriculum”
Post docs/fellows/residents:
Johanna Kaufman, M.D., for “Inpatient consultation in pediatrics: a learning tool to improve communication”
High school/undergraduate students:
Brett E. Pearson for “Analysis of unanticipated problems in CNMC human subjects research studies and implications for process improvement”

Quality and Performance Improvement
Faculty:
Vicki Freedenberg, Ph.D., APRN, for “Implementing a mindfulness-based stress reduction curriculum in a congenital heart disease program”
Staff:
Caleb Griffith, MPH, for “Assessing the sustainability of point-of-care HIV screening of adolescents in pediatric emergency departments”
Post docs/fellows/residents:
Rebecca S. Zee, M.D., Ph.D., for “Implementation of the Accelerated Care of Torsion (ACT) pathway: a quality improvement initiative for testicular torsion”
Graduate students:
Alysia Wiener, BS, for “Latency period in image-guided needle bone biopsy in children: a single center experience”

View images from the REW2019 award ceremony.

Beth Tarini

Getting to know SPR’s future President, Beth Tarini, M.D., MS

Beth Tarini

Quick. Name four pillar pediatric organizations on the vanguard of advancing pediatric research.

Most researchers and clinicians can rattle off the names of the Academic Pediatric Association, the American Academy of Pediatrics and the American Pediatric Society. But that fourth one, the Society for Pediatric Research (SPR), is a little trickier. While many know SPR, a lot of research-clinicians simply do not.

Over the next few years, Beth A. Tarini, M.D., MS, will make it her personal mission to ensure that more pediatric researchers get to know SPR and are so excited about the organization that they become active members. In May 2019 Dr. Tarini becomes Vice President of the society that aims to stitch together an international network of interdisciplinary researchers to improve kids’ health. Four-year SPR leadership terms begin with Vice President before transitioning to President-Elect, President and Past-President, each for one year.

Dr. Tarini says she looks forward to working with other SPR leaders to find ways to build more productive, collaborative professional networks among faculty, especially emerging junior faculty. “Facilitating ways to network for research and professional reasons across pediatric research is vital – albeit easier said than done. I have been told I’m a connector, so I hope to leverage that skill in this new role,” says Dr. Tarini, associate director for Children’s Center for Translational Research.

“I’m delighted that Dr. Tarini was elected to this leadership position, and I am impressed by her vision of improving SPR’s outreach efforts,” says Mark Batshaw, M.D., Executive Vice President, Chief Academic Officer and Physician-in-Chief at Children’s National. “Her goal of engaging potential members in networking through a variety of ways – face-to-face as well as leveraging digital platforms like Twitter, Facebook and LinkedIn – and her focus on engaging junior faculty will help strengthen SPR membership in the near term and long term.”

Dr. Tarini adds: “Success to me would be leaving after four years with more faculty – especially junior faculty – approaching membership in SPR with the knowledge and enthusiasm that they bring to membership in other pediatric societies.”

SPR requires that its members not simply conduct research, but move the needle in their chosen discipline. In her research, Dr. Tarini has focused on ensuring that population-based newborn screening programs function efficiently and effectively with fewer hiccups at any place along the process.

Thanks to a heel stick to draw blood, an oxygen measurement, and a hearing test, U.S. babies are screened for select inherited health conditions, expediting treatment for infants and reducing the chances they’ll experience long-term health consequences.

“The complexity of this program that is able to test nearly all 4 million babies in the U.S. each year is nothing short of astounding. You have to know the child is born – anywhere in the state – and then between 24 and 48 hours of birth you have to do testing onsite, obtain a specific type of blood sample, send the blood sample to an off-site lab quickly, test the sample, find the child if the test is out of range, get the child evaluated and tested for the condition, then send them for treatment. Given the time pressures as well as the coordination of numerous people and organizations, the fact that this happens routinely is amazing. And like any complex process, there is always room for improvement,” she says.

Dr. Tarini’s research efforts have focused on those process improvements.

As just one example, the Advisory Committee on Heritable Disorders in Newborns and Children, a federal advisory committee on which she serves, was discussing how to eliminate delays in specimen processing to provide speedier results to families. One possible solution floated was to open labs all seven days, rather than just five days a week. Dr. Tarini advocated for partnering with health care engineers who could help model ways to make the specimen transport process more efficient, just like airlines and mail delivery services. A more efficient and effective solution was to match the specimen pick-up and delivery times more closely with the lab’s operational times – which maximizes lab resources and shortens wait times for parents.

Conceptual modeling comes so easily for her that she often leaps out of her seat mid-sentence, underscoring a point by jotting thoughts on a white board, doing it so often that her pens have run dry.

“It’s like a bus schedule: You want to find a bus that not only takes you to your destination but gets you there on time,” she says.

Dr. Tarini’s current observational study looks for opportunities to improve how parents in Minnesota and Iowa are given out-of-range newborn screening test results – especially false positives – and how that experience might shake their confidence in their child’s health as well as heighten their own stress level.

“After a false positive test result, are there parents who walk away from newborn screening with lingering stress about their child’s health? Can we predict who those parents might be and help them?” she asks.

Among the challenges is the newborn screening occurs so quickly after delivery that some emotionally and physically exhausted parents may not remember it was done. Then they get a call from the state with ominous results. Another challenge is standardizing communication approaches across dozens of birthing centers and hospitals.

“We know parents are concerned after receiving a false positive result, and some worry their infant remains vulnerable,” she says. “Can we change how we communicate – not just what we say, but how we say it – to alleviate those concerns?”

Zhe Han lab 2018

$2 million NIH grant to study nephrotic syndrome

Zhe Han lab 2018

A Children’s researcher has received a $2 million grant from the National Institutes of Health (NIH) to study nephrotic syndrome in Drosophila, a basic model system that has revealed groundbreaking insights into human health. The award for Zhe Han, Ph.D., an associate professor in Children’s Center for Genetic Medicine Research, is believed to be the first ever NIH Research Project grant (R01)  to investigate glomerular kidney disease using Drosophila. Nephrotic syndrome is mostly caused by damage of glomeruli, so it is equivalent to glomerular kidney disease.

“Children’s National leads the world in using Drosophila to model human kidney diseases,” Han says.

In order to qualify for the five-year funding renewal, Han’s lab needed to successfully accomplish the aims of its first five years of NIH funding.  During the first phase of funding, Han established that nephrocytes in Drosophila serve the same functions as glomeruli in humans, and his lab created a series of fly models that are relevant for human glomerular disease.

“Some 85 percent of the genes known to be involved in nephrotic syndrome are conserved from the fly to humans. They play similar roles in the nephrocyte as they play in the podocytes in human kidneys,” he adds.

Pediatric nephrotic syndrome is a constellation of symptoms that indicate when children’s kidneys are damaged, especially the glomeruli, units within the kidney that filter blood. Babies as young as 1 year old can suffer proteinuria, which is characterized by too much protein being released from the blood into the urine.

“It’s a serious disease and can be triggered by environmental factors, taking certain prescription medicines or inflammation, among other factors.  Right now, that type of nephrotic syndrome is mainly treated by steroids, and the steroid treatment works in many cases,” he says.

However, steroid-resistant nephrotic syndrome occurs primarily due to genetic mutations that affect the kidney’s filtration system: These filters are either broken or the protein reabsorption mechanism is disrupted.

“When genetics is to blame, we cannot turn to steroids. Right now there is no treatment. And many of these children are too young to be considered for a kidney transplant,” he adds. “We have to understand exactly which genetic mutation caused the disease in order to develop a targeted treatment.”

With the new funding, Han will examine a large array of genetic mutations that cause nephrotic syndrome. He’s focusing his efforts on genes involved in the cytoskeleton, a network of filaments and tubules in the cytoplasm of living cells that help them to maintain shape and carry out important functions.

“Right now, we don’t really understand the cytoskeleton of podocytes – highly specialized cells that wrap around the capillaries of the glomerulus – because podocytes are difficult to access. To change a gene requires time and considerable effort in other experimental models. However, changing genes in Drosophila is very easy, quick and inexpensive. We can examine hundreds of genes involving the cytoskeleton and see how changing those genes affect kidney cell function,” he says.

Han’s lab already found that Coenzyme Q10, one of the best-selling nutrient supplements to support heart health also could be beneficial for kidney health. For the cytoskeleton, he has a different targeted medicine in mind to determine whether Rho inhibitors also could be beneficial for kidney health for patients with certain genetic mutations affecting their podocyte cytoskeleton.

“One particular aim of our research is to use the same strategy as we employed for the Coq2 gene to generate a personalized fly model for patients with cytoskeleton gene mutations and test potential target drugs, such as Rho inhibitors.” Han added. “As far as I understand, this is where the future of medicine is headed.”

Zhe Han

$3 million NIH grant to study APOL1 and HIV synergy

Zhe Han

Zhe Han, Ph.D., (pictured) and Patricio E. Ray, M.D., have received a $3 million, five-year grant from the National Institutes of Health to study the mechanisms behind APOL1 and HIV nephropathies in children, using a combination of Drosophila models, cultured human podocytes and a preclinical model.

Two Children’s researchers have received a $3 million, five-year grant from the National Institutes of Health (NIH) to study the mechanisms of APOL1 and HIV nephropathies in children, using a combination of Drosophila models, cultured human podocytes and a preclinical model.

The APOL1 genetic variants G1 and G2, found almost exclusively in people of African ancestry, lead to a four-fold higher risk of end-stage kidney disease. HIV infection alone also increases the risk of kidney disease but not significantly. However, HIV-positive people who also carry the APOL1 risk alleles G1 or G2 are about 30 times more likely to develop HIV-nephropathy (HIVAN) and chronic kidney disease.

For more than 25 years, Children’s pediatric nephrology program has studied HIV/renal diseases and recently developed Drosophila APOL1-G0 and G1 transgenic lines. That pioneering research suggests that HIV-1 acts as a “second hit,” precipitating HIV-renal disease in children by infecting podocytes through a mechanism that increases expression of the APOL1-RA beyond toxic thresholds.

With this new infusion of NIH funding, labs led by Zhe Han, Ph.D., and Patricio E. Ray, M.D., will determine the phenotype of Drosophila Tg lines that express APOL1-G0/G1/G2 and four HIV genes in nephrocytes to assess how they affect structure and function. The teams also will determine whether APOL1-RA precipitates the death of nephrocytes expressing HIV genes by affecting autophagic flux.

“Our work will close a critical gap in understanding about how HIV-1 interacts with the APOL1 risk variants in renal cells to trigger chronic kidney disease, and we will develop the first APOL1/HIV transgenic fly model to explore these genetic interactions in order to screen new drugs to treat these renal diseases,” says Dr. Ray, a Children’s nephrologist.

While a large number of people from Africa have two copies of APOL1 risk alleles, they do not necessarily develop kidney disease. However, if a patient has two copies of APOL1 risk alleles and is HIV-positive, they almost certainly will develop kidney disease.

Patricio Ray

“Our work will close a critical gap in understanding about how HIV-1 interacts with the APOL1 risk variants in renal cells to trigger chronic kidney disease, and we will develop the first APOL1/HIV transgenic fly model to explore these genetic interactions in order to screen new drugs to treat these renal diseases,” says Dr. Ray, a Children’s nephrologist.

“Many teams want to solve the puzzle of how APOL1 and HIV synergize to cause kidney failure,” says Han, associate professor in Children’s Center for Genetic Medicine Research. “We are in the unique position of combining a powerful new kidney disease model system, Drosophila, with long-standing human podocyte and HIVAN studies.”

The team hypothesizes that even as an active HIV infection is held in check by powerful new medicines, preventing the virus from proliferating or infecting new cells, HIV can act as a Trojan horse by making the human cells it infects express HIV protein.

To investigate this hypothesis, the team will create a series of fly models, each expressing a major HIV protein, and will test the genetic interaction between these HIV genes with APOL1. Similar studies also will be performed using cultured human podocytes. Identified synergy will be studied further using biochemical and transcription profile analyses.

Drosophila is a basic model system, but it has been used to make fundamental discoveries, including genetic control of how the body axes is determined and how the biological clock works – two studies that led to Nobel prizes,” Han adds. “I want to use the fly model to do something close to human disease. That is where my research passion lies.”

Parasite collage

Which micro-organisms lurk within urine?


schistosome blood fluke

Therapy derived from parasitic worms downregulates proinflammatory pathways

schistosome blood fluke

A therapy derived from the eggs of the parasitic Schistosoma helps to protect against one of chemotherapy’s debilitating side effects by significantly downregulating major proinflammatory pathways, reducing inflammation.

A therapy derived from the eggs of parasitic worms helps to protect against one of chemotherapy’s debilitating side effects by significantly downregulating major proinflammatory pathways and reducing inflammation, indicates the first transcriptome-wide profiling of the bladder during ifosfamide-induced hemorrhagic cystitis.

The experimental model study findings were published online Feb. 7, 2019, in Scientific Reports.

With hemorrhagic cystitis, a condition that can be triggered by anti-cancer therapies like the chemotherapy drug ifosfamide and other oxazaphosphorines, the lining of the bladder becomes inflamed and begins to bleed. Existing treatments on the market carry their own side effects, and the leading therapy does not treat established hemorrhagic cystitis.

Around the world, people can become exposed to parasitic Schistosoma eggs through contaminated freshwater. Once inside the body, the parasitic worms mate and produce eggs; these eggs are the trigger for symptoms like inflammation. To keep their human hosts alive, the parasitic worms tamp down excess inflammation by secreting a binding protein with anti-inflammatory properties.

With that biological knowledge in mind, a research team led by Michael H. Hsieh, M.D., Ph.D., tested a single dose of IPSE, an Interleukin-4 inducing, Schistosoma parasite-derived anti-inflammatory molecule and found that it reduced inflammation, bleeding and urothelial sloughing that occurs with ifosfamide-related hemorrhagic cystitis.

In this follow-up project, experimental models were treated with ifosfamide to learn more about IPSE’s protective powers.

The preclinical models were given either saline or IPSE before the ifosfamide challenge. The bladders of the experimental models treated with ifosfamide had classic symptoms, including marked swelling (edema), dysregulated contraction, bleeding and urothelial sloughing. In contrast, experimental models “pre-treated” with IPSE were shielded from urothelial sloughing and inflammation, the study team found.

Transcriptional profiling of the experimental models’ bladders found the IL-1-B TNFa-IL-6 proinflammatory cascade via NFkB and STAT3 pathways serving as the key driver of inflammation. Pretreatment with IPSE slashed the overexpression of Il-1b, Tnfa and Il6 by 50 percent. IPSE drove significant downregulation of major proinflammatory pathways, including the IL-1-B TNFa-IL-6 pathways, interferon signaling and reduced (but did not eliminate) oxidative stress.

“Taken together, we have identified signatures of acute-phase inflammation and oxidative stress in ifosfamide-injured bladder, which are reversed by pretreatment with IPSE,” says Dr. Hsieh, a urologist at Children’s National Health System and the study’s senior author. “These preliminary findings reveal several pathways that could be therapeutically targeted to prevent ifosfamide-induced hemorrhagic cystitis in humans.”

When certain chemotherapy drugs are metabolized by the body, the toxin acrolein is produced and builds up in urine. 2-mercaptoethane sulfonate Na (MESNA) binds to acrolein to prevent urotoxicity. By contrast, IPSE targets inflammation at the source, reversing inflammatory changes that damage the bladder.

“Our work demonstrates that there may be therapeutic potential for naturally occurring anti-inflammatory molecules, including pathogen-derived factors, as alternative or complementary therapies for ifosfamide-induced hemorrhagic cystitis,” Dr. Hsieh adds.

In addition to Dr. Hsieh, study co-authors include Lead Author Evaristus C. Mbanefo and Rebecca Zee, Children’s National; Loc Le, Nirad Banskota and Kenji Ishida, Biomedical Research Institute; Luke F. Pennington and Theodore S. Jardetzky, Stanford University; Justin I. Odegaard, Guardant Health; Abdulaziz Alouffi, King Abdulaziz City for Science & Technology; and Franco H. Falcone, University of Nottingham.

Financial support for the research described in this report was provided by the Margaret A. Stirewalt Endowment, the National Institute of Diabetes and Digestive and Kidney Diseases under award R01DK113504, the National Institute of Allergy and Infectious Diseases under award R56AI119168 and a Urology Care Foundation Research Scholar Award.

Dr. Michael Hsieh's clay shield

Innovative urologist Michael Hsieh takes unbeaten path

Dr. Michael Hsieh's clay shield

For an elementary school art project, Michael H. Hsieh, M.D., Ph.D., was instructed to fashion a coat of arms out of clay. In addition to panels for truth, justice and Taiwan, in the shield’s M.D. panel, a snake twists around a rod, like the staff for Asclepius, a Greek god associated with healing.

Children’s urologist Michael H. Hsieh, M.D., Ph.D., knew from age 10 that he would become a doctor. Proof is at his parents’ home. For an elementary school art project, students were instructed to fashion a coat of arms out of clay. In addition to panels for truth, justice and Taiwan, in the shield’s M.D. panel, a snake twists around a rod, like the staff for Asclepius, a Greek god associated with healing.

“I liked science. When I can use it to help patients, that is very rewarding,” says Dr. Hsieh, the first doctor in his family.

These days, Dr. Hsieh’s Twitter profile serves as a digital coat of arms, describing him as “tinker, tailor,” #UTI #biologist, epithelial #immunologist, helminthologist and #urologist.

Tinker/tailor is shorthand for the mystery drama, “Tinker Tailor Solider Spy,” he explains, adding that the “tinker” part also refers “to the fact that I am always questioning things, and science is about experimentation, trying to seek answers to questions.”

While still in medical school during a rotation Dr. Hsieh saw a bladder operation on a young child and thought it was “amazing.” That experience in part inspired Dr. Hsieh to become a urologist and bladder scientist. His training in immunology and study of the bladder naturally led him to study urinary tract infections and parasitic worms that affect the urinary tract. In addition, thanks to R01 funding from the National Institutes of Health (NIH), Dr. Hsieh is co-principal investigator with Axel Krieger, University of Maryland, and Jin U. Kang, Johns Hopkins, on a project to develop imaging robots for supervised autonomous surgery on soft tissue.

The $1 million in NIH funding pushes the boundaries on amazing by using multi-spectral imaging technology and improved techniques to reduce surgical complications.

Anastomosis is a technique used by surgeons to join one thing to another, whether it’s a vascular surgeon suturing blood vessels, an orthopedic surgeon joining muscles or a urologist stitching healthy parts of the urinary tract back together. Complications can set in if their stitching is too tight, prompting scar tissue to form, or too loose, letting fluid seep out.

“The human eye can see a narrow spectrum of electromagnetic radiation. These multi-spectral imaging cameras would see across greater set of wavelengths,” he says.

The project has three aims: figuring out the best way to place sutures using multi-spectral imaging, accurately tracking soft tissue as they model suturing and comparing the handicraft of a robot against anastomosis hand-sewn by surgeons.

“I like challenges, and I like new things. I am definitely not interested in doing permutations of other people’s work,” Dr. Hsieh explains. “I would much rather go on a path that hasn’t been tread. It is more difficult in some ways, but on a day-to-day basis, I know I am making a contribution.”

In another innovative research project, Dr. Hsieh leveraged a protein secreted by a parasitic worm, Schistosoma haematobium, that suppresses inflammation in hosts as a new therapeutic approach for chemotherapy-induced hemorrhagic cystitis, a form of inflammation of the bladder.

Watching his first surgery nearly 30 years ago, he had no idea robots might one day vie to take over some part of that complicated procedure, or that parasite proteins could be harnessed as drugs. However, he has a clear idea which innovations could be on the horizon for urology in the next three decades.

“My hope is 30 years from now, we will have a solid UTI vaccine and more non-antibiotic therapies. UTIs are the second-most common bacterial infection in childhood and, in severe cases, can contribute to kidney failure,” he says.

Globally, parasitic worms pose an ongoing challenge, affecting more than 1 billion worldwide – second only to malaria. People persistently infected by schistosome worms fail to reach their growth potential, struggle academically and lack sufficient energy for exercise or work.


“There is a feeling that the infection prevalence might be decreasing globally, but not as quickly as everyone hopes. In 30 years perhaps with more mass drug administration and additional drugs – including a vaccine – we’ll have it close to eliminated globally. It would become more like polio, casting a slim shadow with small pockets of infection here or there, rather than consigning millions to perpetual poverty.”

AlgometRX

Breakthrough device objectively measures pain type, intensity and drug effects

AlgometRX

Clinical Research Assistant Kevin Jackson uses AlgometRx Platform Technology on Sarah Taylor’s eyes to measure her degree of pain. Children’s National Medical Center is testing an experimental device that aims to measure pain according to how pupils react to certain stimuli. (AP Photo/Manuel Balce Ceneta)

Pediatric anesthesiologist Julia C. Finkel, M.D., of Children’s National Health System, gazed into the eyes of a newborn patient determined to find a better way to measure the effectiveness of pain treatment on one so tiny and unable to verbalize. Then she realized the answer was staring back at her.

Armed with the knowledge that pain and analgesic drugs produce an involuntary response from the pupil, Dr. Finkel developed AlgometRx, a first-of-its-kind handheld device that measures a patient’s pupillary response and, using proprietary algorithms, provides a diagnostic measurement of pain intensity, pain type and, after treatment is administered, monitors efficacy. Her initial goal was to improve the care of premature infants. She now has a device that can be used with children of any age and adults.

“Pain is very complex and it is currently the only vital sign that is not objectively measured,” says Dr. Finkel, who has more than 25 years of experience as a pain specialist. “The systematic problem we are facing today is that healthcare providers prescribe pain medicine based on subjective self-reporting, which can often be inaccurate, rather than based on an objective measure of pain type and intensity.” To illustrate her point, Dr. Finkel continues, “A clinician would never prescribe blood pressure medicine without first taking a patient’s blood pressure.”

The current standard of care for measuring pain is the 0-to-10 pain scale, which is based on subjective, observational and self-reporting techniques. Patients indicate their level of pain, with zero being no pain and ten being highest or most severe pain. This subjective system increases the likelihood of inaccuracy, with the problem being most acute with pediatric and non-verbal patients. Moreover, Dr. Finkel points out that subjective pain scores cannot be standardized, heightening the potential for misdiagnosis, over-treatment or under-treatment.

Dr. Finkel, who serves as director of Research and Development for Pain Medicine at the Sheikh Zayed Institute for Pediatric Surgical Innovation at Children’s National, says that a key step in addressing the opioid crisis is providing physicians with objective, real-time data on a patient’s pain level and type, to safely prescribe the right drug and dosage or an alternate treatment.,

She notes that opioids are prescribed for patients who report high pain scores and are sometimes prescribed in cases where they are not appropriate. Dr. Finkel points to the example of sciatica, a neuropathic pain sensation felt in the lower back, legs and buttocks. Sciatica pain is carried by touch fibers that do not have opioid receptors, which makes opioids an inappropriate choice for treating that type of pain.

A pain biomarker could rapidly advance both clinical practice and pain research, Dr. Finkel adds. For clinicians, the power to identify the type and magnitude of a patient’s nociception (detection of pain stimuli) would provide a much-needed scientific foundation for approaching pain treatment. Nociception could be monitored through the course of treatment so that dosing is targeted and personalized to ensure patients receive adequate pain relief while reducing side effects.

“A validated measure to show whether or not an opioid is indicated for a given patient could ease the health care system’s transition from overreliance on opioids to a more comprehensive and less harmful approach to pain management,” says Dr. Finkel.

She also notes that objective pain measurement can provide much needed help in validating complementary approaches to pain management, such as acupuncture, physical therapy, virtual reality and other non-pharmacological interventions.

Dr. Finkel’s technology, called AlgometRx, has been selected by the U.S. Food and Drug Administration (FDA) to participate in its “Innovation Challenge: Devices to Prevent and Treat Opioid Use Disorder.” She is also the recipient of Small Business Innovation Research (SBIR) grant from the National Institute on Drug Abuse.

Sarah Mulkey

MRI and ultrasound imaging detect the spectrum of Zika’s impact

Sarah Mulkey

“A combination of prenatal MRI and US was able to detect Zika-related brain abnormalities during pregnancy, giving families timely information to prepare for the potential complex care needs of these infants,” says Sarah B. Mulkey, M.D., Ph.D.

Worldwide, thousands of babies have been born to mothers who were infected during pregnancy with Zika, a virus associated with neurological deficits, impaired vision and neurodevelopmental disabilities, among other birth defects. These birth defects are sometimes severe, causing lifelong disability. But they’re also relatively rare compared with the overall rates of infection.

Predicting how many Zika-exposed babies would experience neurological birth defects has been challenging.

However, an international study led by Children’s faculty suggests that ultrasound (US) imaging performed during pregnancy and after childbirth revealed most Zika-related brain abnormalities experienced by infants exposed to the Zika virus during pregnancy, according to a prospective cohort study published online Nov. 26, 2018, in JAMA Pediatrics. Some Zika-exposed infants whose imaging had been normal during pregnancy had mild brain abnormalities detected by US and magnetic resonance imaging (MRI) after they were born.

“A combination of prenatal MRI and US was able to detect Zika-related brain abnormalities during pregnancy, giving families timely information to prepare for the potential complex care needs of these infants,” says Sarah B. Mulkey, M.D., Ph.D., a fetal-neonatal neurologist at Children’s National Health System and the study’s lead author. “In our study, we detected mild brain abnormalities on postnatal neuroimaging for babies whose imaging was normal during pregnancy. Therefore, it is important for clinicians to continue to monitor brain development for Zika-exposed infants after birth.”

As of Nov. 20 2018, nearly 2,500 pregnant women in the U.S. had laboratory confirmed Zika infection, and about 2,400 of them had given birth, according to the Centers for Disease Control and Prevention (CDC). While more than 100 U.S. infants were born with Zika-associated birth defects, the vast majority of Zika-exposed U.S. infants were apparently normal at birth. The sequential neuroimaging study Dr. Mulkey leads seeks to determine the spectrum of brain findings in infants exposed to Zika in the womb using both US and MRI before and after birth.

The international research team enrolled 82 women in the study from June 15, 2016, through June 27, 2017. All of the women had been exposed to Zika during pregnancy; all but one experienced clinical symptoms by a mean gestational age of 8.2 weeks. Eighty of those women lived in or near Barranquilla, Colombia, and were exposed to Zika there. Two U.S. study participants were exposed to the primarily mosquito-borne illness during travel to Zika hot zones.

All women received fetal MRIs and US during the second and/or third trimester of pregnancy. After their infants were born, the children received brain MRI and cranial US. Blood samples from both mothers and babies were tested for Zika using polymerase chain reaction and serology.

Fetal MRI was able to discern Zika-related brain damage as early as 18 weeks gestation and picked up significant fetal brain abnormalities not fully appreciated in US imaging. In one case, the US remained normal while fetal MRI alone detected brain abnormalities. Three fetuses (4 percent) had severe fetal brain abnormalities consistent with Zika infection, including:

Seventy-five infants were born at term. One pregnancy was terminated at 23 weeks gestation due to the gravity of the fetal brain abnormalities. One fetus with normal imaging died during pregnancy. One newborn who was born with significant fetal brain abnormalities died at age 3 days.

Cranial US and brain MRI was performed on the majority of infants whose prenatal imaging had been normal.  Seven of 53 (13 percent) Zika-exposed infants had mild brain abnormalities detected by MRI after birth. In contrast, postnatal cranial US was better at detecting changes of lenticulostriate vasculopathy, cysts within the brain’s choroid plexus (cells that produce cerebrospinal fluid), germinolytic/subependymal cysts and/or calcifications, which were seen in 21 of 57 (37 percent) infants.

“Sequential neuroimaging revealed that the majority of Zika-exposed fetuses had normal brain development. Tragically, in a small number of pregnancies, Zika-related brain abnormalities were quite severe,” Dr. Mulkey adds. “Our data support the CDC’s recommendation that cranial US be performed after Zika-exposed babies are born. In addition, there is clearly a need to follow these babies over time to gauge whether the brain anomalies we see in imaging affects language, motor and social skills.”

Companion editorial: Revealing the effects of Zika

In addition to Dr. Mulkey, study co-authors include Dorothy I. Bulas, M.D.Gilbert Vezina, M.D., Margarita Arroyave-Wessel, MPH,  Stephanie Russo, B.S, Youssef A. Kousa, D.O, Ph.D.Roberta L. DeBiasi, M.D., MS, Senior Author Adré J. du Plessis, M.B.Ch.B., MPH, all of Children’s National; Christopher Swisher, BS, Georgetown University and Caitlin Cristante, BS, Loyola University, both of  whose contributions included research performed at Children’s National; Yamil Fourzali, M.D., Armando Morales, M.D., both of Sabbag Radiologos; Liliana Encinales, M.D., Allied Research Society; Nelly Pacheco, Bacteriologa, Bio-Nep; Robert S. Lanciotti, Ph.D., Arbovirus Diseases Branch, Centers for Disease Control and Prevention; and Carlos Cure, M.D., BIOMELAB.

Research reported in this news release was supported by the IKARIA fund.

Deer tick

Lyme disease: When will pediatric symptoms resolve?

Deer tick

Over a 13-year period that began in 2004, cases of illness transmitted by ticks, mosquitoes and fleas have more than tripled, the CDC found.

The summer of 2018 was a bad summer for Lyme disease, the tick-borne disease that was first documented in the 1970s in the town of Lyme, Connecticut. While about 30,000 cases of this disease had been reported annually in recent years, studies suggest that the actual number of infections is around 10 times greater.

And according to a study published May 2018 by the Centers for Disease Control and Prevention (CDC), those case numbers may increase over time. Over a 13-year period that began in 2004, cases of illness transmitted by ticks, mosquitoes and fleas have more than tripled, the CDC found.

Lyme disease causes a host of uncomfortable symptoms, ranging from headache and neurological problems, heart problems and eye inflammation in earlier stages, and progressing to joint pain and arthritis in later stages. While it can be treated successfully with appropriate antibiotics, the timeframe for kids’ symptom resolution has been unclear.

A new study by researchers at Children’s National Health System shows that symptoms improve just days or weeks after starting antibiotic therapy for the vast majority of patients, with people whose symptoms had been present a briefer time improving the fastest.

“These findings offer a reassuring timeline for doctors, patients and their families about when patients with Lyme disease can expect to feel better,” says study Senior Author Roberta L. DeBiasi, M.D., MS, Children’s National’s chief of the Division of Pediatric Infectious Diseases and co-director of the Congenital Zika Virus Program. Dr. DeBiasi was recently appointed to serve on a 52-member Tick-Borne Disease Working Group established in 2018 by the Department of Health and Human Services.

Dr. DeBiasi and colleagues collected data retrospectively from the medical records of 78 patients who had been hospitalized at Children’s National for Lyme disease from 2008 to 2015. Each child, who was younger than 18 years old, had documented symptoms and lab tests conclusive for this disease.

Just under one-half had symptoms consistent with early-stage disease, such as:

  • A severe headache
  • Meningitis (inflammation of the membranes covering the brain)
  • Cranial nerve palsy (a nerve dysfunction that affects eye movement and can cause double vision)
  • Multiple erythema migrans rashes (the bulls-eye-shaped rash that’s a hallmark of Lyme disease) and
  • Pseudotumor cerebri (increased pressure inside the skull).

Just over one-half had symptoms consistent with late-stage disease, which mostly consisted of arthritis affecting the knees, along with the hips and elbows in some cases.

In the hospital, each patient was started on an antibiotic that can effectively treat Lyme, including doxycycline, cefotaxime or ceftriaxone, which they continued at home for the prescribed length of the course. The researchers then tracked how quickly the patients’ symptoms resolved.

They report online July 30, 2018, in the Journal of the Pediatric Infectious Diseases Society, that the time to symptom resolution for early stages of disease did not depend on the duration of symptoms prior to starting antibiotics. However, for later stages of disease, patients with longer duration of symptoms prior to starting treatment took longer for their symptoms to resolve.

For patients with early-stage disease, the most common symptom was headache; the median time to symptom resolution was just three days, no matter how long the headache had persisted before treatment started. However, for patients with late-stage Lyme disease, the median time to resolution was 18 days. However, the time depended largely on how long symptoms had persisted before patients began taking antibiotics. For example, patients who had experienced arthritis for less than one week had a shorter time to resolution than those who had arthritis for more than two weeks.

This finding is important, Dr. DeBiasi says, because it suggests that diagnosing Lyme disease earlier – and prescribing the appropriate therapy as soon as possible – can hasten recovery. The vast majority of patients in the study, she adds, eventually experienced full resolution of their symptoms, which should be comforting to families worried about whether their child will ever feel well again.

“We all want what patients and their families want: to feel better as quickly as possible,” Dr. DeBiasi says. “This study gives us valuable information about how soon that will happen given the duration of pediatric patients’ symptoms.”

Dr. DeBiasi and Children’s Psychologist Maureen Monaghan, Ph.D., are leading another Lyme study in collaboration with the National Institutes of Health/National Institute of Allergy and Infectious Diseases to evaluate symptom resolution, quality of life and neurocognitive outcomes in a larger group of pediatric patients with Lyme disease.

In addition to Dr. DeBiasi and Monaghan, Children’s co-authors include Lead Author Mattia E. Chason; Biostatistician Jichuan Wang, Ph.D.; and Yao Cheng.

bacteriophage

Phage therapy draws renewed interest to combat drug-resistant microbes

bacteriophage

In the face of growing antibiotic resistance and few antibiotics in the development pipeline, phages are drawing renewed research interest as a potential silver bullet.

The married professors were spending their Thanksgiving holiday in Egypt when the husband, Thomas L. Patterson, Ph.D., got very sick very quickly, experiencing fever, nausea and a racing heartbeat. By the time Patterson was accurately diagnosed with a highly multi-drug resistant bacterial infection, he was near death. His wife, Steffanie Strathdee, Ph.D., promised to “leave no stone unturned.’”

What happened next is the ultimate infectious disease feel good story: Strathdee, part of an All-Star team of infectious disease experts and epidemiologists, concocted a cocktail of viruses that killed the superbug and saved Patterson’s life.

“He was going to die,” says Roberta L. DeBiasi, M.D., MS, chief of the Division of Pediatric Infectious Diseases at Children’s National Health System. “Because of her epidemiology background – and because she loves him – Patterson became the first patient successfully treated with bacteriophages.”

Dr. DeBiasi explains that all viruses take over cells and use their machinery for their own purposes. In order to escape, viruses blow up the cell. Bacteriophages are viruses that target bacteria, taking over their machinery and ultimately killing the bacterial host.

“Infection is a race between the body’s immune response and the bacteria replicating themselves,” she adds. “Bacteria have to continually replicate. If you knock out 90 percent of them with phage therapy, that gives the immune system a fighting chance to win the race.”

She was so inspired by the team’s ingenuity that DeBiasi, program vice-chair, invited them to recount the story during IDWeek2018, held Oct. 3 to Oct. 7, 2018, in San Francisco. During the closing plenary, Patterson, a professor of psychiatry, and Strathdee, associate dean of Global Health Sciences, will be joined by Robert T. “Chip” Schooley, M.D., (all of University of California, San Diego), to discuss the clinical aspects and efficacy of phage therapy.

About 50 years ago, the U.S. military had investigated leveraging phages but ultimately placed that research portfolio on the back burner. Now, in the face of growing antibiotic resistance and few experimental antibiotics in the development pipeline, phages are drawing renewed research interest as a potential silver bullet.

“The technology has been around for 50 years. We’re going back to old things because we’re so desperate,” Dr. DeBiasi adds.

The tricky thing with phages is that each bacterium needs its own tailored phage therapy.

Children’s National is working with Adaptive Phage Therapeutics, a company based in Gaithersburg, Maryland, that developed the phage used to save Patterson, in order to help build out that library of phages, each ready to be directed to do battle against a specific pathogen.

“We have been consultants to them to think about what would be a good clinical trial, particularly in a pediatric population,” Dr. DeBiasi says.

Children’s National has been collecting and sending isolates from patients with neurogenic bladder who experience urinary tract infections to shore up the phage library in anticipation of a clinical trial. The work builds on Children’s experience as the first center to use phage therapy in a pediatric patient, a 2-year-old who had multidrug-resistant Pseudomonas aeruginosa infection complicated by bacteremia/sepsis.

Staphylococcus aureus

Understanding antibiotic resistance in patients with cystic fibrosis

Staphylococcus aureus

Patients with cystic fibrosis who carried antibiotic-resistant bacteria, such as Staphylococcus aureus, in their lungs had significantly lower microbial diversity and more aggressive disease, according to a small study published in Heliyon.

A defective gene causes thick, sticky mucus to build up in the lungs of patients with cystic fibrosis (CF). There, it traps bacteria, causing patients to develop frequent lung infections that progressively damage these vital organs and impair patients’ ability to breathe.

Most patients with this progressive genetic disorder die by the fourth decade of life. A key to helping patients live even that long – a vast improvement from an average lifespan of 10 years  just decades ago – is judicious use of antibiotics, explains Andrea Hahn, M.D., a pediatric infectious diseases specialist at Children’s National Health System.

But antibiotics are a double-edged sword, Dr. Hahn adds: Although they’re necessary to eradicate lung infections, repeated use of these drugs can lead to antibiotic resistance, making it tougher to treat future infections. Also, antibiotic use can kill the nonpathogenic bacteria living in the lungs as well. That decreases the diversity of the microbial community that resides in the lungs, a factor associated with disease progression. But how antibiotic resistance impacts the relationship between lung bacterial diversity and CF patients’ pulmonary function has been unknown.

Dr. Hahn and colleagues investigated this question in a small study that was published online Sept. 17, 2018, in Heliyon. Their findings suggest that the presence of multidrug resistant bacteria in the airways of patients with CF is associated with decreased microbial diversity and decreased pulmonary function.

In the study, the researchers recruited six patients with CF from Children’s National during well-child visits. During those appointments, the research team collected respiratory secretions from these volunteers. They collected more samples at subsequent visits, including:

  • When patients were admitted to the hospital for pulmonary exacerbations (periods when infections inflamed their airways, making it difficult to breathe);
  • Just after intravenous antibiotic courses to treat these infections; and
  • Thirty days after patients completed antibiotic therapy, when their lungs’ bacterial flora had some time to bounce back.

Over the 18-month study period, these patients made multiple visits for exacerbations and antibiotic treatments, leading to samples from 19 patient encounters overall.

The scientists then analyzed each sample in two different ways. They used some to grow cultures in petri dishes, the classic method that labs use to figure out which bacterial species are present and to determine which antibiotics are effective in tamping them down. They used another part of the sample to run genetic analyses that searched for antibiotic resistance genes. Both methods were necessary to gather a complete inventory of which antibiotic-resistant bacteria were present, Dr. Hahn explains.

“Laboratory cultures are designed to grow certain types of bacteria that we know are problematic, but they don’t show everything,” she says. “By genetically sequencing these samples, we can see everything that’s there.”

Their results revealed a host of bacterial species present in these patients’ airways, including methicillin-resistant Staphylococcus aureus, a notoriously hard-to-treat microbe. Patients who carried this or other antibiotic-resistant bacteria had significantly lower microbial diversity in their samples and more aggressive disease. Their samples also were more likely to contain bacteria of the genus Alcaligenes, whose role in CF is not yet known.

Although heavy antibiotic use probably contributed to both the antibiotic resistance and lowered microbial diversity, Dr. Hahn says, the answer isn’t to reduce use of these drugs: They’re necessary to help patients with CF recover after each bout with pulmonary exacerbations. Rather, she says, using methods beyond a simple lab culture can help doctors target infectious bacteria more selectively, perhaps avoiding collateral damage.

“We can’t stop using antibiotics,” she says, “but we can learn to use them better.”

In addition to Dr. Hahn, Children’s co-authors include Aszia Burrell; Hani Fanous; Hollis Chaney, M.D.; Iman Sami Zakhari, M.D.; Geovanny F. Perez, M.D.; Anastassios C. Koumbourlis, M.D., MPH; and Robert J. Freishtat, M.D., MPH; and Senior Author, Keith A. Crandall, of The George Washington University.

Financial support for the research described in this post was provided by the National Institutes of Health National Center for Advancing Translational Sciences under award number UL1TR000075 and the National Heart, Lung and Blood Institute under award number K12HL119994.

Natella Rakhamania

Natella Yurievna Rakhmanina named to regional HIV planning commission

Natella Rakhamania

Natella Yurievna Rakhmanina, M.D., Ph.D., FAAP, AAHIVS, director of Ryan White HIV Services at Children’s National Health System, was appointed a commissioner to the Washington, D.C., Regional Planning Commission on Health and HIV.

Dr. Rakhmanina will be among the District of Columbia board and commission appointees honored during a swearing-in ceremony on Sept. 17, 2018, at the Walter Washington Convention Center.

Looking back over the last decade, she says the District has made impressive progress in lowering the prevalence rate of human immunodeficiency virus (HIV), which in 2002 had 1,686 per 100,000 District residents diagnosed with AIDS.

“It was really high. I was stunned coming to clinic and seeing a large number of kids and adolescents in care and many suffering significant complications, as our treatment options were limited at the time,” she says.

Since that time, DC Health has made “incredible investments” and adopted innovative approaches, such as name-based reporting of HIV and a Red Carpet program, to ensure newly diagnosed people are quickly linked with care. As a proud partner of DC Health’s HIV/AIDS, Hepatitis, STD and TB Administration, Children’s National launched a campaign in 2009 to universally test adolescents for HIV in two pediatric emergency departments (ED), she says.

“All teenagers aged 13 and older who arrive for any medical diagnosis are offered an oral HIV test. Children’s National ED-based HIV screening program alone has tested 30,000 children at both of our emergency departments,” she says. “We’re still not at our goal. However, the prevalence of HIV had dropped to 1.9 percent in the latest department of health analysis. We are doing better. We have much fewer people dying from AIDS. We are diagnosing earlier.”

What’s more, trends in mother-to-child transmission, a major route of transmission for pediatric HIV, also have improved in D.C.

“In 2006, our maternal HIV transmission rates were among the highest in the nation. But, in 2013, 2014 and 2015 there were zero cases. We have seen some setbacks recently, however.  In 2016, there were three perinatally acquired cases and four in 2017, but these cases came out of the larger Metropolitan D.C. area,” she explains. “Every perinatally transmitted case for us is a red star. We work very closely with the regional departments of health. We really want to get back to zero cases of maternal transmission in the region.”

The regional planning commission meets several times per year to decide how to distribute federal funding in Washington and the Metropolitan D.C. area to support HIV prevention, diagnosis, treatment and care.

“My voice on the council is to make sure I speak up for services for mothers, children and adolescents,” Dr. Rakhmanina says. “The biggest challenge of HIV care remains treating children. There’s a good selection of medicines for adults, but not all are suited for kids. Young children in particular can’t be given one pill once a day. Really young children can’t swallow a pill. Using a liquid formulation, which kids prefer, may mean opening three different bottles twice daily and swallowing a liquid that often doesn’t taste good.”

Adolescents diagnosed with HIV also find medication adherence challenging, she says.

“At that age, they face a lot of challenges to self-acceptance and disease management, in part, because it’s not a physical disability. A young person with HIV may not feel anything,” she says. “They struggle with staying on daily medications. Many of them tell us they don’t want to think about HIV and face stigma.”

Another ongoing challenge is ensuring moms living with HIV remain on medicines after they’ve given birth.

“They’re tremendously committed to continuing treatment while pregnant: Treatment means their babies are born free of HIV,” she says. “That is a great success. Once the baby is born, many times the women bring their babies to be tested, but the woman’s own health becomes less of a priority. We see a drop in adherence once they have the baby.”

By serving on the commission, Dr. Rakhmanina aims to push to extend Children’s commitment to excellence beyond its walls.

Emergency Department Check in

Missed opportunities for STI screening in the ED

Emergency Department Check in

Researchers found that even though young women with pelvic inflammatory disease (PID) are at increased risk for also being infected with syphilis and human immunodeficiency virus (HIV), few adolescent females diagnosed with PID in U.S. pediatric emergency departments (ED) undergo laboratory tests for HIV or syphilis.

Sexually transmitted infections (STIs) are on the rise in the U.S., reaching unprecedented highs in recent years for the three most common STIs reported in the nation: chlamydia, gonorrhea and syphilis. Nearly half of the 20 million new STI cases each year are in adolescents aged 15 to 24, according to the Department of Health & Human Services. In particular, about two in five sexually active teen girls has an STI.

These infections can be far more than an embarrassing nuisance; some can cause lifelong infertility. According to the Centers for Disease Control and Prevention, undiagnosed STIs cause infertility in more than 20,000 women each year.

A new retrospective cohort study led by researchers at Children’s National Health System and published online July 24, 2018, in Pediatrics shines a stark spotlight on missed opportunities for diagnosis. Researchers found that even though young women with pelvic inflammatory disease (PID) are at increased risk for also being infected with syphilis and human immunodeficiency virus (HIV), few adolescent females diagnosed with PID in U.S. pediatric emergency departments (ED) undergo laboratory tests for HIV or syphilis.

A team of Children’s researchers reviewed de-identified data from the Pediatric Health Information System, a database that aggregates encounter-level data from 48 children’s hospitals across the nation. From 2010 through 2015, there were 10,698 diagnosed cases of PID among young women aged 12 to 21. Although HIV and syphilis screening rates increased over the study period, just 27.7 percent of these women underwent syphilis screening, 22 percent were screened for HIV, and only 18.4 percent underwent lab testing for both HIV and syphilis.

Screening rates varied dramatically by hospital, with some facilities screening just 2 percent of high-risk young women while others tested more than 60 percent.

HIV screening was more likely to occur among:

  • Women admitted to the hospital, compared with those discharged from the ED (adjusted odds ratio [aOR] of 7.0)
  • Uninsured women, compared with women with private insurance (1.6 aOR)
  • Non-Latino African American women, compared with non-Latino white women (1.4 aOR)
  • Women seen at small hospitals with fewer than 300 beds (1.4 aOR)
  • Women with public insurance compared with women with private insurance (1.3 aOR)
  • 12-year-olds to 16-year-olds, compared with older adolescents (1.2 aOR)

Syphilis screening was more likely to occur for:

  • Women admitted to the hospital (4.6 aOR)
  • Non-Latino African American women (1.8 aOR)
  • Uninsured women (1.6 aOR)
  • Women with public insurance (1.4 aOR)
  • 12-year-olds to 16-year-olds (1.1 aOR)

“We know that 20 percent of the nearly 1 million cases of PID that are diagnosed each year occur in young women, with the majority of diagnoses made in EDs. It is encouraging that HIV and syphilis screening rates for women with PID increased over the study period. However, our findings point to missed opportunities to safeguard young women’s reproductive health,” says Monika K. Goyal, M.D., M.S.C.E., assistant professor of Pediatrics and Emergency Medicine and the study’s senior author. “Such discrepancies in screening across the 48 hospitals we studied underscore the need for a standardized approach to sexually transmitted infection (STI) screening.”

Untreated STIs can cause PID, an infection of a woman’s reproductive organs that can complicate her ability to get pregnant and also can cause infertility. Since 2006, the Centers for Disease Control and Prevention (CDC) has recommended that all women diagnosed with PID be tested for HIV. The CDC’s treatment guidelines also recommend screening people at high risk for syphilis.

“Syphilis infection rates have steadily increased each year, and it is now most prevalent among young adults,” Dr. Goyal says. “Future research should examine how STI screening can be improved in emergency departments, especially since adolescents at high risk for STIs often access health care through EDs. We also should explore innovative approaches, including electronic alerts and shared decision-making to boost STI screening rates for young women.”

In addition to Dr. Goyal, Children’s study co-authors include Lead Author, Amanda Jichlinski, M.D.; and co-authors, Gia Badolato, M.P.H., and William Pastor, M.A., M.P.H.

Research reported in this news release was supported by the National Institute of Child Health and Human Development under K23 award number HD070910.

Making the grade: Children’s National is nation’s Top 5 children’s hospital

Children’s National rose in rankings to become the nation’s Top 5 children’s hospital according to the 2018-19 Best Children’s Hospitals Honor Roll released June 26, 2018, by U.S. News & World Report. Additionally, for the second straight year, Children’s Neonatology division led by Billie Lou Short, M.D., ranked No. 1 among 50 neonatal intensive care units ranked across the nation.

Children’s National also ranked in the Top 10 in six additional services:

For the eighth year running, Children’s National ranked in all 10 specialty services, which underscores its unwavering commitment to excellence, continuous quality improvement and unmatched pediatric expertise throughout the organization.

“It’s a distinct honor for Children’s physicians, nurses and employees to be recognized as the nation’s Top 5 pediatric hospital. Children’s National provides the nation’s best care for kids and our dedicated physicians, neonatologists, surgeons, neuroscientists and other specialists, nurses and other clinical support teams are the reason why,” says Kurt Newman, M.D., Children’s President and CEO. “All of the Children’s staff is committed to ensuring that our kids and families enjoy the very best health outcomes today and for the rest of their lives.”

The excellence of Children’s care is made possible by our research insights and clinical innovations. In addition to being named to the U.S. News Honor Roll, a distinction awarded to just 10 children’s centers around the nation, Children’s National is a two-time Magnet® designated hospital for excellence in nursing and is a Leapfrog Group Top Hospital. Children’s ranks seventh among pediatric hospitals in funding from the National Institutes of Health, with a combined $40 million in direct and indirect funding, and transfers the latest research insights from the bench to patients’ bedsides.

“The 10 pediatric centers on this year’s Best Children’s Hospitals Honor Roll deliver exceptional care across a range of specialties and deserve to be highlighted,” says Ben Harder, chief of health analysis at U.S. News. “Day after day, these hospitals provide state-of-the-art medical expertise to children with complex conditions. Their U.S. News’ rankings reflect their commitment to providing high-quality care.”

The 12th annual rankings recognize the top 50 pediatric facilities across the U.S. in 10 pediatric specialties: cancer, cardiology and heart surgery, diabetes and endocrinology, gastroenterology and gastrointestinal surgery, neonatology, nephrology, neurology and neurosurgery, orthopedics, pulmonology and urology. Hospitals received points for being ranked in a specialty, and higher-ranking hospitals receive more points. The Best Children’s Hospitals Honor Roll recognizes the 10 hospitals that received the most points overall.

This year’s rankings will be published in the U.S. News & World Report’s “Best Hospitals 2019” guidebook, available for purchase in late September.