Newborn baby in a crib

Pioneering research center aims to revolutionize prenatal and neonatal health

Catherine Limperopoulos, Ph.D., was drawn to understanding the developing brain, examining how early adverse environments for a mother can impact the baby at birth and extend throughout its entire lifetime. She has widened her lens – and expanded her team – to create the new Center for Prenatal, Neonatal & Maternal Health Research at Children’s National Hospital.

“Despite the obvious connection between mothers and babies, we know that conventional medicine often addresses the two beings separately. We want to change that,” said Dr. Limperopoulos, who also directs the Developing Brain Institute. “Given the current trajectory of medicine toward precision care and advanced imaging, we thought this was the right moment to channel our talent and resources into understanding this delicate and highly dynamic relationship.”

Moving the field forward

Since its establishment in July 2023, the new research center has gained recognition through high-impact scientific publications, featuring noteworthy studies exploring the early phases of human development.

Dr. Limperopoulos has been at the forefront of groundbreaking research, directing attention to the consequences of maternal stress on the unborn baby and the placenta. In addition, under the guidance of Kevin Cook, Ph.D., investigators published a pivotal study on the correlation between pain experienced by premature infants in the Neonatal Intensive Care Unit and the associated risks of autism and developmental delays.

Another area of research has focused on understanding the impact of congenital heart disease (CHD) on prenatal brain development, given the altered blood flow to the brain caused by these conditions during this period of rapid development. Led by Josepheen De Asis-Cruz, M.D., Ph.D., a research team uncovered variations in the functional connectivity of the brains of infants with CHD. In parallel, Nickie Andescavage, M.D., and her team employed advanced imaging techniques to identify potential biomarkers in infants with CHD, holding promise for guiding improved diagnostics and postnatal care. Separately, she is investigating the impact of COVID-19 on fetal brain development.

In the months ahead, the team plans to concentrate its efforts on these areas and several others, including the impact of infectious disease, social determinants of health and protecting developing brains from the negative impacts of maternal stress, pre-eclampsia and other conditions prevalent among expectant mothers.

Assembling a team

Given its robust research plan and opportunities for collaboration, the center pulled together expertise from across the hospital’s faculty and has attracted new talent from across the country, including several prominent faculty members:

  • Daniel Licht, M.D., has joined Children’s National to build a noninvasive optical device research group to better care for children with CHD. Dr. Licht brings decades of experience in pediatric neurology, psychiatry and critical care and is recognized internationally for his expertise in neurodevelopmental outcomes in babies with CHD.
  • Katherine L. Wisner, M.S., M.D., has accumulated extensive knowledge on the impact of maternal stress on babies throughout her career, and her deep background in psychiatry made her a natural addition to the center. While Dr. Wisner conducts research into the urgent need to prioritize maternal mental health, she will also be treating mothers as part of the DC Mother-Baby Wellness Initiative — a novel program based at Children’s National that allows mothers to more seamlessly get care for themselves and participate in mother-infant play groups timed to align with their clinical appointments.
  • Catherine J. Stoodley, B.S., M.S., D.Phil., brings extensive research into the role of the cerebellum in cognitive development. Dr. Stoodley uses clinical studies, neuroimaging, neuromodulation and behavioral testing to investigate the functional anatomy of the part of the brain responsible for cognition.
  • Katherine M. Ottolini, M.D., attending neonatologist, is developing NICU THRIVE – a research program studying the effects of tailored nutrition on the developing newborn brain, including the impact of fortifying human milk with protein, fat and carbohydrates. With a grant from the Gerber Foundation, Dr. Ottolini is working to understand how personalized fortification for high-risk babies could help them grow.

Early accolades

The new center brings together award-winning talent. This includes Yao Wu, Ph.D., who recently earned the American Heart Association’s Outstanding Research in Pediatric Cardiology award for her groundbreaking work in CHD, particularly for her research on the role of altered placental function and neurodevelopmental outcomes in toddlers with CHD. Dr. Wu became the third Children’s National faculty member to earn the distinction, joining an honor roll that includes Dr. Limperopoulos and David Wessel, M.D., executive vice president and chief medical officer.

Interim Chief Academic Officer Catherine Bollard, M.D., M.B.Ch.B., said the cross-disciplinary collaboration now underway at the new center has the potential to make a dramatic impact on the field of neonatology and early child development. “This group epitomizes the Team Science approach that we work tirelessly to foster at Children’s National,” Dr. Bollard said. “Given their energetic start, we know these scientists and physicians are poised to tackle some of the toughest questions in maternal-fetal medicine and beyond, which will improve outcomes for our most fragile patients.”

Members of the Columbia Zika virus research team

School entry neurodevelopmental outcomes of Zika-exposed Colombian children

Members of the Columbia Zika virus research team

The Children’s National Hospital Zika Research Team and collaborators from Biomelab, in Barranquilla, Colombia take a picture after a study visit in Sabanalarga, Colombia following the neurodevelopmental outcomes of children who had in utero exposure to Zika virus. Pictured from Children’s National Hospital: Dr. Sarah Mulkey, Regan Andringa-Seed, Margarita Arroyave-Wessel, and Dr. Madison Berl.

The long-term neurodevelopmental effects of antenatal Zika virus (ZIKV) exposure in children without congenital Zika syndrome (CZS) remain unclear, as few children have been followed to the age of starting primary school.

In a new study published in Pathogens, researchers found children with in utero ZIKV exposure appear to have an overall positive developmental trajectory at 4 to 5 years of age but may experience risks to neurodevelopment in areas of emotional regulation and adaptive mobility.

The hold up in the field

Children who were born during the ZIKV epidemic and who had in utero exposure to ZIKV are only now at the age to start school. Child neurodevelopmental outcome data has not been reported at the age of school entry for children with antenatal ZIKV exposure who do not have the severe birth defects of CZS.

“As these children approach the early school-age years, we aim to examine whether there are neurodevelopmental differences in executive function, motor ability, language development or scholastic skills as compared to a group of unexposed control participants from the same communities in Colombia,” says Sarah Mulkey, M.D., Ph.D., prenatal-neonatal neurologist in The Zickler Family Prenatal Pediatrics Institute at Children’s National Hospital and lead author of the study.

Moving the field forward

Building on previous findings, this study presents the longitudinal outcomes of a well-characterized Colombian cohort of ZIKV-exposed children without CZS at ages 4 to 5 years. These children have been seen for neurodevelopmental follow-up as infants and toddlers at approximately 6 months, 18 months and 3 years of age as part of an international collaboration between researchers in Barranquilla, Colombia and at Children’s National beginning in 2016. The objective of this study was to assess the multi-domain neurodevelopmental outcomes in 4 to 5-year-old children with antenatal ZIKV exposure without CZS compared to unexposed controls in Colombia.

Why we’re excited

Many of the children who had antenatal ZIKV exposure are making good progress in multiple areas of their neurodevelopment. However, the researchers found that children with antenatal ZIKV exposure have differences in areas of emotional regulation, executive function, mood and behavior which may relate to virus exposure during their early brain development.

“These areas of brain function are important for future academic achievement, employment, mental health and social relationships,” says Dr. Mulkey. “So, it will be important to continue to follow these children at older ages when they start school.”

Children’s National leads the way

Children’s National is a leader in conducting outcome studies of children born following antenatal ZIKV exposure. This study follows children in Colombia who are now 5 years old who were first studied while they were in the womb. These children have contributed unique longitudinal understanding to early child neurodevelopment following in utero exposure to ZIKV.

Dr. Mulkey is committed to studying the long-term neurodevelopmental impacts that viruses like Zika and SARS-CoV-2 have on infants born to mothers who were infected during pregnancy through research with the Congenital Infection Program at Children’s National and in collaboration with colleagues in Colombia.

Additional Children’s National authors include Meagan Williams M.S.P.H., C.C.R.C., senior research coordinator; Regan Andringa-Seed, clinical research coordinator, Margarita Arroyave-Wessel, clinical research coordinator; L. Gilbert Vezina, M.D., director, Neuroradiology Program; Dorothy Bulas, M.D., chief, Diagnostic Imaging and Radiology; Robert Podolsky, biostatistician.

Researchers showing paintings of zika virus

Dr. Sarah Mulkey and Children’s National clinical research coordinators in the Prenatal Pediatrics Institute and the Division of Pediatric Infectious Diseases display their paintings of the Zika virus. Pictured from left to right: Manuela Iglesias, Elizabeth Corn, Dr. Sarah Mulkey, Emily Ansusinha and Meagan Williams.

pregnant woman talking to doctor

Prenatal COVID exposure associated with changes in newborn brain

pregnant woman talking to doctor

The team found differences in the brains of both infants whose mothers were infected with COVID while pregnant, as well as those born to mothers who did not test positive for the virus.

Babies born during the COVID-19 pandemic have differences in the size of certain structures in the brain, compared to infants born before the pandemic, according to a new study led by researchers at Children’s National Hospital.

The team found differences in the brains of both infants whose mothers were infected with COVID while pregnant, as well as those born to mothers who did not test positive for the virus, according to the study published in Cerebral Cortex.

The findings suggest that exposure to the coronavirus and being pregnant during the pandemic could play a role in shaping infant brain development, said Nickie Andescavage, M.D., the first author of the paper and associate chief for the Developing Brain Institute at Children’s National.

The fine print

The study’s authors looked at three groups of infants: 108 born before the pandemic; 47 exposed to COVID before birth; and 55 unexposed infants. In all cases, researchers performed magnetic resonance imaging (MRI) scans of the newborns’ brains during the first few weeks of life. The MRI scans, which are non-invasive and do not expose patients to radiation, provided 3D images of the brain, allowing doctors to calculate the volume of different areas.

Researchers found several differences in the brains of babies exposed to COVID. They had larger volumes of the gray matter that makes up the brain’s outermost layer, compared to the two other groups. In contrast, an inner area of the brain, known as deep gray matter, was smaller than in unexposed babies. These are areas that contain large numbers of neurons that generate and process signals throughout the brain. “Their brains formed differently if they were exposed to COVID,” said Dr. Andescavage, adding that “those exposed to COVID had unique signatures” in the brain.

Doctors also measured the depths of the folds in the babies’ brains – a way to determine how the brain is maturing during early development. Babies born to mothers who had COVID in pregnancy had deeper grooves in the frontal lobe, while babies born during the pandemic – even without being exposed to COVID – had increased folds and grooves throughout the brain, compared to babies born before the pandemic. “There was something about being born during the pandemic that changed how the brain developed,” Dr. Andescavage said.

What’s ahead

The study authors can’t fully explain what caused the differences in brain development in these babies, Dr. Andescavage said. But other studies have linked maternal stress and depression to changes in the newborn brain. In a future study, Dr. Andescavage and her colleagues will examine the relationship between infant brain development and how stress and anxiety during the pandemic may have played a role in early development.

Because the babies in the study were just a few weeks old, researchers don’t know if their altered brain development will affect how they learn or behave. Researchers plan to follow the children until age 6, allowing them to observe whether pandemic-era babies hit key developmental milestones on time, such as walking, talking, holding a crayon and learning the alphabet.

Researchers have been worried about the effect of COVID on the fetus since the beginning of the pandemic. Studies show that babies exposed to COVID in the womb may experience developmental impacts, and research is underway to better understand long-term outcomes.

Although the coronavirus rarely crosses the placenta to infect the fetus directly, there are other ways maternal infection can influence the developing baby. Dr. Andescavage said inflammation is one potential harm to a developing baby. In addition, if a pregnant woman becomes so sick that the levels of oxygen in her blood fall significantly, that can deprive the fetus of oxygen, she added.

In recent decades, studies of large populations have found that maternal infections with influenza and other viruses increased the risk of serious problems in children even years later, including autism, attention deficit hyperactivity disorder and schizophrenia, although the reasons behind the association are not well understood. Technology may allow doctors to answer a number of questions about COVID and the infant brain.

“With advanced imaging and MRI, we’re in a position now to be able to understand how the babies are developing in ways we never previously could,” Dr. Andescavage said. “That will better allow us to identify the exposures that may be harmful, and at what times babies may be especially vulnerable, to better position us to promote maternal wellness. This, in turn, helps infant wellness.”

collage of news outlet logos

Children’s National in the News: 2023

collage of news outlet logos
Explore some of the notable medical advancements and stories of bravery that defined 2023, showcasing the steadfast commitment of healthcare professionals at Children’s National Hospital and the resilient spirit of the children they support. Delve into our 2023 news highlights for more.

1. COVID during pregnancy dramatically increases the risk of complications and maternal death, large new study finds

According to a study published in British Medical Journal Global Health, women who get COVID during pregnancy are nearly eight times more likely to die and face a significantly elevated risk of ICU admission and pneumonia. Sarah Mulkey, M.D., prenatal-neonatologist neurologist, discussed findings based on her work with pregnant women and their babies.
(Fortune)

2. Rest isn’t necessarily best for concussion recovery in children, study says

A study led by Christopher Vaughan, Psy.D., pediatric neuropsychologist, suggests that — despite what many people may presume — getting kids back to school quickly is the best way to boost their chance for a rapid recovery after a concussion.
(CNN)

3. Pediatric hospital beds are in high demand for ailing children. Here’s why

David Wessel, M.D., executive vice president, chief medical officer and physician-in-chief, explained that one reason parents were still having trouble getting their children beds in a pediatric hospital or a pediatric unit after the fall 2022 respiratory surge is that pediatric hospitals are paid less by insurance.
(CNN)

4. Anisha Abraham details impact of social media use on children: ‘True mental health crisis’

Anisha Abraham, M.D., M.P.H., chief of the Division of Adolescent and Young Adult Medicine, joined America’s Newsroom to discuss the impact social media access has had on children’s mental health.
(FOX News)

5. Saving Antonio: Can a renowned hospital keep a boy from being shot again?

After 13-year-old Antonio was nearly killed outside his mom’s apartment, Children’s National Hospital went beyond treating his bullet wounds. Read how our Youth Violence Intervention Program team supported him and his family during his recovery.
(The Washington Post)

6. Formerly conjoined twins reunite with doctors who separated them

Erin and Jade Buckles underwent a successful separation at Children’s National Hospital. Nearly 20 years later they returned to meet with some of the medical staff who helped make it happen.
(Good Morning America)

7. Asthma mortality rates differ by location, race/ethnicity, age

Shilpa Patel, M.D., M.P.H., medical director of the Children’s National IMPACT DC Asthma Clinic, weighed in on a letter published in Annals of Allergy, Asthma & Immunology, asserting that the disparities in mortality due to asthma in the United States vary based on whether they occurred in a hospital, ethnicity or race and age of the patient.
(Healio)

8. How one Afghan family made the perilous journey across the U.S.-Mexico border

After one family embarked on a perilous journey from Afghanistan through Mexico to the U.S.-Mexico border, they eventually secured entry to the U.S. where Karen Smith, M.D., medical director of Global Services, aided the family’s transition and provided their daughter with necessary immediate medical treatment.
(NPR)

9. When a child is shot, doctors must heal more than just bullet holes

With the number of young people shot by guns on the rise in the U.S., providers and staff at Children’s National Hospital are trying to break the cycle of violence. But it’s not just the physical wounds though that need treating: young victims may also need help getting back on the right track — whether that means enrolling in school, finding a new group of friends or getting a job.
(BBC News)

10. This 6-year-old is a pioneer in the quest to treat a deadly brain tumor

Callie, a 6-year-old diagnosed with diffuse intrinsic pontine glioma, was treated with low-intensity focused ultrasound (LIFU) at Children’s National Hospital and is the second child in the world to receive this treatment for a brain tumor. LIFU is an emerging technology that experts like Hasan Syed, M.D., and Adrianna Fonseca, M.D., are trialing to treat this fatal childhood brain tumor.
(The Washington Post)

11. F.D.A. approves sickle cell treatments, including one that uses CRISPR

The FDA approved a new genetic therapy, giving people with sickle cell disease new opportunities to eliminate their symptoms. David Jacobsohn, M.B.A., M.D., confirmed that Children’s National Hospital is one of the authorized treatment centers and talked about giving priority to the sickest patients if they are on Vertex’s list.
(The New York Times)

12. 6-year-old fulfils wish to dance in the Nutcracker

After the potential need for open-heart surgery threatened Caroline’s Nutcracker performance, Manan Desai, M.D., a cardiac surgeon, figured out a less invasive procedure to help reduce her recovery time so she could perform in time for the holidays.
(Good Morning America)

AI system that can detect RHD

Novel AI platform matches cardiologists in detecting rheumatic heart disease

Artificial intelligence (AI) has the potential to detect rheumatic heart disease (RHD) with the same accuracy as a cardiologist, according to new research demonstrating how sophisticated deep learning technology can be applied to this disease of inequity. The work could prevent hundreds of thousands of unnecessary deaths around the world annually.

Developed at Children’s National Hospital and detailed in the latest edition of the Journal of the American Heart Association, the new AI system combines the power of novel ultrasound probes with portable electronic devices installed with algorithms capable of diagnosing RHD on echocardiogram. Distributing these devices could allow healthcare workers, without specialized medical degrees, to carry technology that could detect RHD in regions where it remains endemic.

RHD is caused by the body’s reaction to repeated Strep A bacterial infections and can cause permanent heart damage. If detected early, the condition is treatable with penicillin, a widely available antibiotic. In the United States and other high-income nations, RHD has been almost entirely eradicated. However, in low- and middle-income countries, it impacts the lives of 40 million people, causing nearly 400,000 deaths a year.

“This technology has the potential to extend the reach of a cardiologist to anywhere in the world,” said Kelsey Brown, M.D., a cardiology fellow at Children’s National and co-lead author on the manuscript with Staff Scientist Pooneh Roshanitabrizi, Ph.D. “In one minute, anyone trained to use our system can screen a child to find out if their heart is demonstrating signs of RHD. This will lead them to more specialized care and a simple antibiotic to prevent this degenerative disease from critically damaging their hearts.”

The big picture

AI system that can detect RHD

The new AI system combines the power of novel ultrasound probes with portable electronic devices installed with algorithms capable of diagnosing RHD on echocardiogram.

Millions of citizens in impoverished countries have limited access to specialized care. Yet the gold standard for diagnosing RHD requires a highly trained cardiologist to read an echocardiogram — a non-invasive and widely distributed ultrasound imaging technology. Without access to a cardiologist, the condition may remain undetected and lead to complications, including advanced cardiac disease and even death.

According to the new research, the AI algorithm developed at Children’s National identified mitral regurgitation in up to 90% of children with RHD. This tell-tale sign of the disease causes the mitral valve flaps to close improperly, leading to backward blood flow in the heart.

Beginning in March, Craig Sable, M.D., interim division chief of Cardiology, and his partners on the project will implement a pilot program in Uganda incorporating AI into the echo screening process of children being checked for RHD. The team believes that a handheld ultrasound probe, a tablet and a laptop — installed with the sophisticated, new algorithm — could make all the difference in diagnosing these children early enough to change outcomes.

“One of the most effective ways to prevent rheumatic heart disease is to find the patients that are affected in the very early stages, give them monthly penicillin for pennies a day and prevent them from becoming one of the 400,000 people a year who die from this disease,” Dr. Sable said. “Once this technology is built and distributed at a scale to address the need, we are optimistic that it holds great promise to bring highly accurate care to economically disadvantaged countries and help eradicate RHD around the world.”

Children’s National Hospital leads the way

To devise the best approach, two Children’s National experts in AI — Dr. Roshanitabrizi and Marius George Linguraru, D.Phil., M.A., M.Sc., the Connor Family Professor in Research and Innovation and principal investigator in the Sheikh Zayed Institute for Pediatric Surgical Innovation — tested a variety of modalities in machine learning, which mimics human intelligence, and deep learning, which goes beyond the human capacity to learn. They combined the power of both approaches to optimize the novel algorithm, which is trained to interpret ultrasound images of the heart to detect RHD.

Already, the AI algorithm has analyzed 39 features of hearts with RHD that cardiologists cannot detect or measure with the naked eye. For example, cardiologists know that the heart’s size matters when diagnosing RHD. Current guidelines lay out diagnostic criteria using two weight categories — above or below 66 pounds — as a surrogate measure for the heart’s size. Yet the size of a child’s heart can vary widely in those two groupings.

“Our algorithm can see and make adjustments for the heart’s size as a continuously fluid variable,” Dr. Roshanitabrizi said. “In the hands of healthcare workers, we expect the technology to amplify human capabilities to make calculations far more quickly and precisely than the human eye and brain, saving countless lives.”

Among other challenges, the team had to design new ways to teach the AI to handle the inherent clinical differences found in ultrasound images, along with the complexities of evaluating color Doppler echocardiograms, which historically have required specialized human skill to evaluate.

“There is a true art to interpreting this kind of information, but we now know how to teach a machine to learn faster and possibly better than the human eye and brain,” Dr. Linguraru said. “Although we have been using this diagnostic and treatment approach since World War II, we haven’t been able to share this competency globally with low- and middle-income countries, where there are far fewer cardiologists. With the power of AI, we expect that we can, which will improve equity in medicine around the world.”

2023 with a lightbulb

The best of 2023 from Innovation District

2023 with a lightbulbAdvanced MRI visualization techniques to follow blood flow in the hearts of cardiac patients. Gene therapy for pediatric patients with Duchenne muscular dystrophy. 3D-printed casts for treating clubfoot. These were among the most popular articles we published on Innovation District in 2023. Read on for our full list.

1. Advanced MRI hopes to improve outcomes for Fontan cardiac patients

Cardiac imaging specialists and cardiac surgeons at Children’s National Hospital are applying advanced magnetic resonance imaging visualization techniques to understand the intricacies of blood flow within the heart chambers of children with single ventricle heart defects like hypoplastic left heart syndrome. The data allows surgeons to make critical corrections to the atrioventricular valve before a child undergoes the single ventricle procedure known as the Fontan.
(3 min. read)

2. Children’s National gives first commercial dose of new FDA-approved gene therapy for Duchenne muscular dystrophy

Children’s National Hospital became the first pediatric hospital to administer a commercial dose of Elevidys (delandistrogene moxeparvovec-rokl), the first gene therapy for the treatment of pediatric patients with Duchenne muscular dystrophy (DMD). Elevidys is a one-time intravenous gene therapy that aims to delay or halt the progression of DMD by delivering a modified, functional version of dystrophin to muscle cells.
(2 min. read)

3. New model to treat Becker Muscular Dystrophy

Researchers at Children’s National Hospital developed a pre-clinical model to test drugs and therapies for Becker Muscular Dystrophy (BMD), a debilitating neuromuscular disease that is growing in numbers and lacks treatment options. The work provides scientists with a much-needed method to identify, develop and de-risk drugs for patients with BMD.
(2 min. read)

4. First infants in the U.S. with specially modified pacemakers show excellent early outcomes

In 2022, five newborns with life-threatening congenital heart disease affecting their heart rhythms were the first in the United States to receive a novel modified pacemaker generator to stabilize their heart rhythms within days of birth. Two of the five cases were cared for at Children’s National Hospital. In a follow-up article, the team at Children’s National shared that “early post-operative performance of this device has been excellent.”
(2 min. read)

5. AI: The “single greatest tool” for improving access to pediatric healthcare

Experts from the Food and Drug Administration, Pfizer, Oracle Health, NVIDIA, AWS Health and elsewhere came together to discuss how pediatric specialties can use AI to provide medical care to kids more efficiently, more quickly and more effectively at the inaugural symposium on AI in Pediatric Health and Rare Diseases, hosted by Children’s National Hospital and the Fralin Biomedical Research Institute at Virginia Tech.
(3 min. read)

6. AAP names Children’s National gun violence study one of the most influential articles ever published

The American Academy of Pediatrics (AAP) named a 2019 study led by clinician-researchers at Children’s National Hospital one of the 12 most influential Pediatric Emergency Medicine articles ever published in the journal Pediatrics. The findings showed that states with stricter gun laws and laws requiring universal background checks for gun purchases had lower firearm-related pediatric mortality rates but that more investigation was needed to better understand the impact of firearm legislation on pediatric mortality.
(2 min. read)

7. Why a colorectal transition program matters

Children’s National Hospital recently welcomed pediatric and adult colorectal surgeon Erin Teeple, M.D., to the Division of Colorectal and Pelvic Reconstruction. Dr. Teeple is the only person in the United States who is board-certified as both a pediatric surgeon and adult colorectal surgeon, uniquely positioning her to care for people with both acquired and congenital colorectal disease and help them transition from pediatric care to adult caregivers.
(3 min. read)

8. First-of-its-kind holistic program for managing pain in sickle cell disease

The sickle cell team at Children’s National Hospital received a grant from the Founders Auxiliary Board to launch a first-of-its-kind, personalized holistic transformative program for the management of pain in sickle cell disease. The clinic uses an inter-disciplinary approach of hematology, psychology, psychiatry, anesthesiology/pain medicine, acupuncture, mindfulness, relaxation and aromatherapy services.
(3 min read)

9. Recommendations for management of positive monosomy X on cell-free DNA screening

Non-invasive prenatal testing using cell-free DNA (cfDNA) is currently offered to all pregnant women regardless of the fetal risk. In a study published in the American Journal of Obstetrics and Gynecology, researchers from Children’s National Hospital provided context and expert recommendations for maternal and fetal evaluation and management when cfDNA screening is positive for monosomy X or Turner Syndrome.
(2 min. read)

10. Innovation in clubfoot management using 3D anatomical mapping

While clubfoot is relatively common and the treatment is highly successful, the weekly visits required for Ponseti casting can be a significant burden on families. Researchers at Children’s National Hospital are looking for a way to relieve that burden with a new study that could eliminate the weekly visits with a series of 3D-printed casts that families can switch out at home.
(1 min. read)

11. Gender Self-Report seeks to capture the gender spectrum for broad research applications

A new validated self-report tool provides researchers with a way to characterize the gender of research participants beyond their binary designated sex at birth. The multi-dimensional Gender Self-Report, developed using a community-driven approach and then scientifically validated, was outlined in a peer-reviewed article in the American Psychologist, a journal of the American Psychological Association.
(2 min. read)

12. Cardiovascular and bone diseases in chronic kidney disease

In a study published by Advances in Chronic Kidney Disease, a team at Children’s National Hospital reviewed cardiovascular and bone diseases in chronic kidney disease and end-stage kidney disease patients with a focus on pediatric issues and concerns.
(1 min. read)

ARPA-H logo

Children’s National selected as member of ARPA-H Investor Catalyst Hub spoke network

ARPA-H logoThe hospital will advocate for the unique needs of children as part of nationwide network working to accelerate transformative health solutions.

Children’s National Hospital was selected as a spoke for the Investor Catalyst Hub, a regional hub of ARPANET-H, a nationwide health innovation network launched by the Advanced Research Projects Agency for Health (ARPA-H).

The Investor Catalyst Hub seeks to accelerate the commercialization of groundbreaking and accessible biomedical solutions. It uses an innovative hub-and-spoke model designed to reach a wide range of nonprofit organizations and Minority-Serving Institutions, with the aim of delivering scalable healthcare outcomes for all Americans.

“The needs of children often differ significantly from those of adults. This partnership reflects our commitment to advancing pediatric healthcare through innovation and making sure we’re addressing those needs effectively,” said Kolaleh Eskandanian, Ph.D., M.B.A., vice president and chief innovation officer at Children’s National. “Leveraging the strength of this hub-and-spoke model, we anticipate delivering transformative solutions to enhance the health and well-being of the patients and families we serve.”

Children’s National joins a dynamic nationwide network of organizations aligned to ARPA-H’s overarching mission to improve health outcomes through the following research focus areas: health science futures, proactive health, scalable solutions and resilient systems. Investor Catalyst Hub spokes represent a broad spectrum of expertise, geographic diversity and community perspectives.

“Our spoke network embodies a rich and representative range of perspectives and expertise,” said Mark Marino, vice president of Growth Strategy and Development for VentureWell and project director for the Investor Catalyst Hub. “Our spokes comprise a richly diverse network that will be instrumental in ensuring that equitable health solutions reach communities across every state and tribal nation.”

As an Investor Catalyst Hub spoke, Children’s National gains access to potential funding and flexible contracting for faster award execution compared to traditional government contracts. Spoke membership also offers opportunities to provide input on ARPA-H challenge areas and priorities, along with access to valuable networking opportunities and a robust resource library.

boy in hospital bed

Local context, health system integrations key to sustainable interventions after RHD diagnosis

boy in hospital bed

Although entirely preventable, RHD, a disease of poverty and social disadvantage resulting in high morbidity and mortality, remains an ever-present burden in low- and middle-income countries, as well as rural, remote, marginalized and disenfranchised populations within high-income countries.

A rheumatic heart disease (RHD) work group convened by the National Heart, Lung, and Blood Institute (NHLBI) concludes that any priority intervention strategies to slow or stop late complications of RHD need to consider local contexts and should be integrated into health systems to meet the affected community’s needs in a sustainable way.

The group outlined priorities based on current available evidence to support the development and implementation of accessible, affordable and sustainable interventions in low-resource settings to manage RHD and its related complications.

Craig Sable, M.D., associate chief of Cardiology at Children’s National Hospital, served as a senior author on the recommendations, based on the work group findings.

Why it matters

Although entirely preventable, RHD, a disease of poverty and social disadvantage resulting in high morbidity and mortality, remains an ever-present burden in low- and middle-income countries, as well as rural, remote, marginalized and disenfranchised populations within high-income countries.

The NHLBI workshop sought to support RHD eradication efforts worldwide by:

  • Analyzing the current state of science
  • Identifying basic science and clinical research priorities

Each work group was assigned to review existing guidelines and research for different stages of the disease’s progression, which is now being published together as a set of five companion articles to raise the prioritization of RHD research and funding.

Moving the field forward

Due to the high prevalence of RHD in low- and middle-income countries, Dr. Sable’s work group focused on gaining a better understanding of the needs in the field from the five perspectives: people living with RHD, the community, healthcare providers, health systems and policymakers.

They identified several priorities and strategies, and they stressed that any interventional strategy, now or in the future, must be culturally safe and community-driven to ensure the creation of a locally and culturally relevant, sustainable continuum of care for people from historically marginalized populations.

What’s next

The authors emphasize that that over 300,000 deaths per year are the result of inadequate, underfunded and poorly integrated care. “Global vision and leadership to enact and implement available policies are needed to close large research gaps in all aspects at patient, health system and policy levels. Robust research and development are urgently needed to improve comprehensive tertiary care and ensure implementation of evidence-based interventions, while developing new innovations, technologies and interventions.”

You can read all the working group manuscripts, including this one: Tertiary Prevention and Treatment of Rheumatic Heart Disease: A National Heart, Lung, and Blood Institute Working Group Summary, in BMJ Global Health.

Learn more about the challenges of rheumatic heart disease in sub-Saharan Africa and other developing parts of the world through the Rheumatic Heart Disease microdocumentary series:

healthcare workers putting on PPE

“Mask up!” Soon, AI may be prompting healthcare workers

Researchers at Children’s National Hospital are embarking on an effort to deploy computer vision and artificial intelligence (AI) to ensure medical professionals appropriately use personal protective equipment (PPE). This strikingly common problem touches almost every medical specialty and setting.

With nearly $2.2 million in grants from the National Institutes of Health, the team is combining their expertise with information scientists at Drexel University and engineers at Rutgers University to build a system that will alert doctors, nurses and other medical professionals of mistakes in how they are wearing their PPE. The goal is to better protect healthcare workers (HCWs) from dangerous viruses and bacteria that they may encounter — an issue laid bare with the COVID-19 pandemic and PPE shortages.

“If any kind of healthcare setting says they don’t have a problem with PPE non-adherence, it’s because they’re not monitoring it,” said Randall Burd, M.D., Ph.D., division chief of Trauma and Burn Surgery at Children’s National and the principal investigator on the project. “We need to solve this problem, so the medical community will be prepared for the next potential disaster that we might face.”

The big picture

The World Health Organization has estimated that between 80,000 and 180,000 HCWs died globally from COVID-19 between January 2020 and May 2021 — an irreplaceable loss of life that created significant gaps in the pandemic response. Research has shown that HCWs had an 11-fold greater infection risk than the workers in other professions, and those who were not wearing appropriate PPE had a 1/3 higher infection risk, compared to peers who followed best practices.

Burd said the Centers for Disease Control and Prevention has recommended that hospitals task observers to stand in the corner with a clipboard to watch clinicians work and confirm that they are being mindful of their PPE. However, “that’s just not scalable,” he said. “You can’t always have someone watching, especially when you may have 50 people in and out of an operating room on a challenging case. On top of that, the observers are generally trained clinicians who could be filling other roles.”

What’s ahead

Bringing together the engineering talents at Drexel and Rutgers with the clinical and machine-learning expertise at Children’s National, the researchers plan to build a computer-vision system that will watch whether HCWs are properly wearing PPE such as gloves, masks, eyewear, gowns and shoe covers.

The team is contemplating how the system will alert HCWs to any errors and is considering haptic watch alerts and other types of immediate feedback. The emerging power of AI brings tremendous advantages over the current, human-driven systems, said Marius George Linguraru, D.Phil., M.A., M.Sc., the Connor Family Professor in Research and Innovation at Children’s National and principal investigator in the Sheikh Zayed Institute for Pediatric Surgical Innovation.

“Human observers only have one pair of eyes and may fatigue or get distracted,” Linguraru said. “Yet artificial intelligence, and computers in general, work without getting tired. We are excited to figure out how a computer can do this work – without ever blinking.”

Children’s National Hospital leads the way

Linguraru says that Children’s National and its partners make up the ideal team to tackle this vexing challenge because of their ability to assemble a multidisciplinary team of scientists and engineers who can work together with clinicians. “This is a dialogue,” he said. “A computer scientist, like myself, needs to understand the intricacies of complicated clinical realities, while a clinician needs to understand how AI can impact the practice of medicine. The team we are bringing together is intentional and poised to fix this problem.”

Roberta Debiasi

Roberta L. DeBiasi, M.D., M.S., named as Robert H. Parrott Professor of Pediatric Research

Roberta Debiasi

“This wonderful honor will greatly benefit the work of our Infectious Disease Division, and I look forward to working to utilize it to its full potential,” says Dr. DeBiasi.

Children’s National Hospital named Roberta L. DeBiasi, M.D., M.S., as the Robert H. Parrott Professor of Pediatric Research at Children’s National Hospital.

Dr. DeBiasi is chief of the Division of Pediatric Infectious Diseases at Children’s National. She leads the hospital’s response to emerging and highly contagious diseases and co-leads the Children’s National Congenital Infection Program. Dr. DeBiasi is a Principal Investigator in the Center for Translational Research at Children’s National Research Institute. She is a tenured Professor of Pediatrics and Microbiology, Immunology and Tropical Medicine at George Washington University.

About the award

Professorships at Children’s National support groundbreaking work on behalf of children and their families and foster new discoveries and innovations in pediatric medicine. These appointments carry prestige and honor that reflect the recipient’s achievements and donor’s forethought to advance and sustain knowledge. The Robert H. Parrott Professorship in Pediatric Research is one of 47 endowed chairs at Children’s National.

Dr. DeBiasi leads a multidisciplinary team of experts caring for children with infectious diseases and tracking disease transmission to help limit spread and prevent outbreaks. The Division of Pediatric Infectious Diseases is a key referral center in the Washington, D.C., area, helping thousands of patients each year. The division also promotes prevention through community outreach and education.

Dr. DeBiasi’s wide-ranging research portfolio includes studies and clinical trials focused on COVID-19, MIS-C, influenza, Ebola, Lyme disease, Zika and other infections affecting pregnant women, newborns and children. She is the institutional lead of the Lyme Clinical Trials Network, and Principal Investigator for a study focused on long term outcomes in children with all stages of Lyme Disease in partnership with the National Institutes of Health and National Institute of Allergy and Infectious Diseases. She also leads COVID-19 and MIS-C research at Children’s National and is Principal Investigator of a 3-year comprehensive longitudinal study of outcomes in children with COVID-19 and MIS-C in collaboration with the National Institutes of Health. Dr. DeBiasi has authored more than 120 original research, review articles and book chapters. Her research awards include the Infectious Diseases Society of America Young Investigator Award and the John Horsley Prize from the University of Virginia.

“This Chair is particularly meaningful to me because Dr. Parrott was a legendary leader,” says Dr. DeBiasi. “I have read and heard about his legacy at Children’s National for many years. Additionally, he was a virologist, and the focus of my academic career and research has been virology. This wonderful honor will greatly benefit the work of our Infectious Disease Division, and I look forward to working to utilize it to its full potential.”

About the donors

The Robert H. Parrott Professorship in Pediatric Research is supported by many generous donors, including the Charles Engelhard Foundation and the Diane and Norman Bernstein Foundation, Inc.  Through their vision and generosity, these donors are ensuring that Dr. DeBiasi and future holders of this professorship will launch bold, new initiatives to rapidly advance the field of pediatric infectious diseases, elevate our leadership and improve the health of children in the nation’s capital and around the world.

U.S. News Badges

Children’s National Hospital ranked #5 in the nation on U.S. News & World Report’s Best Children’s Hospitals Honor Roll

U.S. News BadgesChildren’s National Hospital in Washington, D.C., was ranked #5 in the nation on the U.S. News & World Report 2023-24 Best Children’s Hospitals annual rankings. This marks the seventh straight year Children’s National has made the Honor Roll list. The Honor Roll is a distinction awarded to only 10 children’s hospitals nationwide.

For the thirteenth straight year, Children’s National also ranked in all 10 specialty services, with eight specialties ranked in the top 10 nationally. In addition, the hospital was ranked best in the Mid-Atlantic for neonatology, cancer, neurology and neurosurgery.

“Even from a team that is now a fixture on the list of the very best children’s hospitals in the nation, these results are phenomenal,” said Kurt Newman, M.D., president and chief executive officer of Children’s National. “It takes a ton of dedication and sacrifice to provide the best care anywhere and I could not be prouder of the team. Their commitment to excellence is in their DNA and will continue long after I retire as CEO later this month.”

“Congratulations to the entire Children’s National team on these truly incredible results. They leave me further humbled by the opportunity to lead this exceptional organization and contribute to its continued success,” said Michelle Riley-Brown, MHA, FACHE, who becomes the new president and CEO of Children’s National on July 1. “I am deeply committed to fostering a culture of collaboration, empowering our talented teams and charting a bold path forward to provide best in class pediatric care. Our focus will always remain on the kids.”

“I am incredibly proud of Kurt and the entire team. These rankings help families know that when they come to Children’s National, they’re receiving the best care available in the country,” said Horacio Rozanski, chair of the board of directors of Children’s National. “I’m confident that the organization’s next leader, Michelle Riley-Brown, will continue to ensure Children’s National is always a destination for excellent care.”

The annual rankings are the most comprehensive source of quality-related information on U.S. pediatric hospitals and recognizes the nation’s top 50 pediatric hospitals based on a scoring system developed by U.S. News.

“For 17 years, U.S. News has provided information to help parents of sick children and their doctors find the best children’s hospital to treat their illness or condition,” said Ben Harder, chief of health analysis and managing editor at U.S. News. “Children’s hospitals that are on the Honor Roll transcend in providing exceptional specialized care.”

The bulk of the score for each specialty service is based on quality and outcomes data. The process includes a survey of relevant specialists across the country, who are asked to list hospitals they believe provide the best care for patients with the most complex conditions.

The eight Children’s National specialty services that U.S. News ranked in the top 10 nationally are:

The other two specialties ranked among the top 50 were cardiology and heart surgery, and urology.

sick boy with malaria

New guidance to optimize blood sugar monitoring in cerebral malaria

A Children’s National Hospital research team based in Malawi pinpointed the optimal duration and frequency for monitoring the blood glucose in children with cerebral malaria, providing a roadmap to improve the treatment and outcomes for young patients diagnosed with the life-threatening disease.

Published in the American Journal of Tropical Medicine and Hygiene, the findings analyzed data from 1,674 pediatric cases to recommend the best schedule for periodic bedside point-of-care laboratory testing in children with cerebral malaria (CM). Currently, World Health Organization (WHO) guidelines state that blood glucose should be monitored in all forms of severe malaria, but they do not include advice on the timing or duration of the measurements.

Children’s National neurologist Douglas Postels, M.D., M.S., led a team of trainees from Howard University, The George Washington University, the University of Washington and Children’s National to collect and analyze patient data that led to the creation of evidence-based recommendations for glucose monitoring.

“If blood glucose in children with severe malaria is too low, the child is at high risk of death,” Dr. Postels said. “What we found in this research study is both interesting and important, and we hope our study results will help the WHO in creating evidence-based guidelines for blood glucose monitoring in children with cerebral malaria.”

The big picture

In 2021, 247 million people contracted malaria worldwide, killing some 619,000 primarily in Africa. Almost 80% were children under 5 years old, making it one of the most virulent pediatric diseases in the world. Many who survive experience significant neurologic, cognitive and behavioral morbidities.

Dr. Postels works at Queen Elizabeth Central Hospital in Blantyre, Malawi, caring for patients on the Pediatric Research Ward and conducting research aimed at improving outcomes. The clinical team works without access to many medical tools that are considered standard throughout more advanced economies. Yet this team has one of the lowest mortality rates for cerebral malaria across Africa, thanks to their ongoing research to better understand the pathophysiology of malaria and improve its treatment.

The challenges are immense: During COVID-19, they battled supply chain issues that frustrated repairs on an aging MRI scanner. After the second tropical cyclone struck in the last two years, Blantyre was left without power for a week and without water for a month.

“You can imagine trying to run a hospital with no water,” Dr. Postels said. “During Cyclone Freddy, it was raining like crazy, and people were collecting water in bins—anything they could collect it in — to use for handwashing, as well as trying to clean instruments and supplies.”

What they’re saying

Using evidence-based guidelines to optimize care becomes important in sub-Saharan Africa, where resources are scarce. Running laboratory-based blood studies frequently is an inefficient use of supplies and laboratory reagents. Results of point-of-care testing are also available more rapidly and at less cost than studies performed in hospital labs.

An accompanying editorial in the journal said the new research on glucose monitoring in cerebral malaria “provides valuable data that could help clinicians in resource-limited settings improve CM management with more efficient use of available resources.” The work is increasing calls for further study and updates to international guidelines.

The bottom line

According to the team’s analysis, blood glucose should be measured in children with CM on admission and every six hours for the first 24 hours. If all results in the first 24 hours are normal, clinicians can stop testing.  If any blood sugar levels in the first 24 hours are low, the patient’s blood glucose should be checked for another 24 hours.

“This testing strategy captures 100% of the children who have a glucose level of 2.2 mmol/L or less, the definition of hypoglycemia in severe malaria,” Dr. Postels said.  “We want to do enough, but not too much.”

The overarching goal for Dr. Postels and the trainees who join him in Blantyre is improving care.  “If we can help clinicians better care for children with cerebral malaria, then hopefully we can make a small contribution to decreasing the death rate and improve neurologic outcomes of the children who survive,” he said. “That’s my hope.”

Panel members at the NIAID symposium

CN-NIAID Symposium seeks ways to promote child health amid challenges

Panel members at the NIAID symposium

More than 30 million children seek emergency care each year, but 80 percent of these visits happen at hospitals that aren’t designed for pediatrics — a daunting figure during pandemics and other crises in healthcare. This considerable hurdle is one of many challenges that leaders in pediatric health came to discuss during a two-day symposium on promoting child health, hosted by Children’s National Hospital, the National Institute of Allergy and Infectious Diseases and the Pediatric Pandemic Network (PPN).

The symposium laid out a multitude of issues facing children and their doctors: growing mental health diagnoses, shrinking access to care in rural areas, asthma and eczema, winter respiratory surges and more.

Joelle Simpson, M.D., chief of emergency medicine at Children’s National and PPN principal investigator, said the network is drawing on expertise from 10 pediatric hospitals to ensure communities are better prepared for whatever challenges lie ahead, through training and support, collaboration among pediatric specialists, education on best practices and the promotion of equity and inclusion.

Built on a Health Resources and Services Administration grant, the network is focusing on four key areas: infectious disease and disease outbreaks, emergency and disaster management, mental and behavioral health, and health equity and community engagement. “This year, we know we are boiling the ocean as we come together,” Simpson said.

Miss the symposium? Check out the recordings available on YouTube, including the closing Q&A with many of the panelists and Sheryl Gay Stolberg, health policy reporter with the New York Times.

Day 1 of the 6th Annual Children’s National Hospital – NIAID Symposium

Day 2 of the 6th Annual Children’s National Hospital – NIAID Symposium

 

stressed pregnant mom

Pandemic stress reshapes the placentas of expectant moms

stressed pregnant mom

Elevated maternal stress during the COVID-19 pandemic changed the structure, texture and other qualities of the placenta in pregnant mothers.

Elevated maternal stress during the COVID-19 pandemic changed the structure, texture and other qualities of the placenta in pregnant mothers – a critical connection between mothers and their unborn babies – according to new research from the Developing Brain Institute at Children’s National Hospital.

Published in Scientific Reports, the findings spotlight the underappreciated link between the mental health of pregnant mothers and the health of the placenta – a critical organ that develops during pregnancy to nourish and protect babies. The long-term neurodevelopmental impact on their children is under investigation.

“During the pandemic, mothers were exposed to a litany of negative stressors including social distancing, fear of dying, financial insecurity and more,” said Catherine Limperopoulos, Ph.D., chief and director of the Developing Brain Institute, which led the research. “We now know that this vital organ was changed for many mothers, and it’s essential that we continue to investigate the impact this may have had on children who were born during this global public health crisis.”

The big picture

Dr. Limperopoulos’s team compared magnetic resonance imaging (MRI) of 165 women who were pregnant before March 2020 to 63 women who became pregnant during the pandemic. Those pregnant during the pandemic were not knowingly exposed to COVID-19, and they collectively scored significantly higher on questionnaires measuring stress and depression. They were recruited at Children’s National as part of a clinical trial aimed at reducing pregnant women’s elevated stress levels during the pandemic.

The placenta is a temporary organ that grows during pregnancy to provide oxygen, nutrients and immunological protection to babies, and its health is vital to the well-being of the developing fetus. The data showed key changes in how the placenta grew and developed among women pregnant during the pandemic, especially when compared to placental growth and development among women who were pregnant before the pandemic. Changes in placental development also were associated with the infant’s birth weight at delivery. Importantly, these changes seem to be connected to maternal stress and depression symptoms.

Taken as a whole, the findings suggest that the disturbances measured on placental development in the womb may influence the placenta’s ability to support fetal health and wellness. “We are continuing to follow up on these mother-baby dyads to determine the long-term functional significance of these placental changes in utero,” Dr. Limperopoulos said.

Studies have shown that the placenta adapts to negative changes in the maternal environment and mental health status, and disruptions in placental function impact infant brain development and children’s neurobehavior and temperament.

The patient benefit

Dr. Limperopoulos’s research studying childbirth amid the pandemic builds on her extensive work investigating the impact of maternal stress on unborn children, including its adverse effect on brain structure and biochemistry. She’s also working on treatments and interventions to better support new families. Her program, DC Mother-Baby Wellness, brings together community partners to provide wrap-around care to expectant and new moms with elevated scores for stress, anxiety and depression.

“When identified early, maternal stress is a modifiable risk factor that can be treated with psychotherapy, social support and other personalized, evidence-based interventions,” Dr. Limperopoulos said. “We look forward to continued research in this area to better understand the mechanisms behind these biological changes and the needs of mothers and children who are born during pandemics, natural disasters and other significantly stressful events.”

mother and baby doing a telehealth call

Using telehealth to study babies born to mothers infected with SARS-CoV-2

mother and baby doing a telehealth call

Continued advancements in telehealth methods to follow child neurodevelopment will help ensure robust child follow-up and inclusion of diverse cohorts.

Multiple studies have shown that SARS-CoV-2 infection can impact pregnant mothers and their fetuses but more research is needed to understand the long-term impact on the neurodevelopment of these children as they get older. Child neurodevelopmental evaluations are typically performed in-person. Since the COVID-19 pandemic began, the transition to telehealth methods was needed.

Continued advancements in telehealth methods to follow child neurodevelopment will help ensure robust child follow-up and inclusion of diverse cohorts, says a commentary in JAMA Network Open.

Why it matters

Commentary author Sarah Mulkey, M.D., prenatal-neonatal neurologist at Children’s National Hospital, highlights a new study that used a novel telehealth method to look for neurodevelopmental differences in infants ages 6-12 months born to mothers with SARS-CoV-2 infection compared to nonexposed infants of the same age and found no differences in neurodevelopment among the two cohorts. The study adapted a standardized assessment to a telehealth method.

“The results of this study provide needed reassurance to the many mothers who have experienced SARS-CoV-2 infection during pregnancy,” says Dr. Mulkey.

What’s been the hold up in the field?

“Developmental assessments that rely on observation of infants’ developmental skills can naturally make the transition to a telehealth platform,” says Sarah Mulkey, M.D., prenatal-neonatal neurologist at Children’s National Hospital and commentary author. “General movement assessment is an observation-based assessment of infants that can be captured by a parent or caregiver on video, and it has been used in neurodevelopmental outcomes studies of children after antenatal SARS-CoV-2 exposure.”

Moving the field forward

Child outcomes research can have improved enrollment and continuity of participant follow-up due to the availability of remote assessments. Neurodevelopmental tools are being developed that can be used on a telehealth platform or by parent recorded videos.

Researchers from the Children’s National Congenital Zika Virus Program have also developed telehealth-based methods for child outcome research that has been utilized in international Zika outcome studies funded by the Thrasher Research Fund and the NIH.

Read the full commentary, Use of Telehealth Methods to Track Infant Neurodevelopment After In Utero SARS-CoV-2 Exposure, in JAMA Network Open.

antibodies binding to coronavirus

Biomarker patterns unique to MIS-C and severe COVID in children identified

antibodies binding to coronavirus

Researchers have identified specific biomarker patterns in the blood that are unique to severe COVID-19 infection, as well as others unique to Multisystem Inflammatory Syndrome in Children (MIS-C).

Using powerful sequencing technology, researchers have identified specific biomarker patterns in the blood that are unique to severe COVID-19 infection, as well as others unique to Multisystem Inflammatory Syndrome in Children (MIS-C), a severe complication of COVID-19 infection in children. These findings pave the way for development of potential diagnostic tests in the future, according to a multi-center study published in Cell Reports Medicine. The study includes 416 blood samples from 237 patients at Children’s National Hospital, University of California at San Francisco and Emory University/Children’s Healthcare of Atlanta.

“Our overall goal is to develop tests that can accurately predict if a child with COVID is likely to develop severe disease, and also accurately distinguish children with MIS-C from children with other causes of fever,” says co-author Roberta DeBiasi, M.D., M.S., principal investigator of the study site at Children’s National and chief of the Division of Pediatric Infectious Diseases there. “These two groups of children can decompensate quickly and require rapid diagnosis and more aggressive treatments right from the beginning.”

MIS-C is a condition where different parts of the body, including skin, mucous membranes, gastrointestinal tract, heart, lungs, kidneys or brain can become inflamed after a COVID-19 infection. Researchers still don’t know why some children develop the condition and why minority children are over-represented in MIS-C cases.

The study is funded by National Institutes of Health’s Eunice Kennedy Shriver National Institute of Child Health and Human Development as part of a national effort to develop approaches to identify children at high risk of developing MIS-C.

The longitudinal analysis included 416 blood samples from 70 patients with acute COVID-19 (mild, moderate and severe illness) and 141 patients with MIS-C across the three hospitals. Blood samples included those that were collected at the beginning of the illness, during initial recovery, one-month after hospitalization and more than three months after illness.

Investigators used a combination of both whole blood RNA (wbRNA) sequencing, as well as cell-free RNA (cfRNA) and cell-free DNA (cfDNA) sequencing of plasma samples to identify key biosignatures. Information from wbRNA is primarily from circulating white blood cells and identifies inflammatory and immune responses to infection. In contrast, both cfRNA and cfDNA can inform about the levels and types of cell death from peripheral tissues.

“wbRNA analyses revealed that although multiple inflammatory pathways were activated in both severe COVID-19 and MIS-C, there were specific patterns that were unique to each disease and distinguish them from mild COVID and other control conditions,” says Meghan Delaney, D.O., M.P.H., co-author and co-investigator of the study at Children’s National. “This finding can be useful in understanding the pathogenesis of the diseases and also in developing a diagnostic test.”

Additionally, cfRNA and cfDNA analysis from MIS-C patients demonstrated distinct signatures of cell injury and death, including endothelial cells, which are the lining of blood vessels, and a type of neuronal cells called Schwann cells, indicating increased levels of organ injury compared to samples from COVID-19 patients.

“To our knowledge, no one has performed comprehensive analysis of both plasma cell-free RNA and whole blood RNA, as well as cell-free DNA in this setting, which is a powerful approach because it gives us different but complementary types of information,” says Dr. DeBiasi.

During the next three years of the four-year grant, researchers will continue working on developing a test that will accurately distinguish MIS-C from other inflammatory conditions affecting children such as Kawasaki Disease, as well as a test which can predict the likelihood of severe COVID-19 infection. Although this may be applied on a research basis in the near future, Dr. DeBiasi says it can take a period of months to years of regulatory reviews before such a diagnostic test could become available commercially.

Borrelia burgdorferi bacteria

Most children diagnosed with Lyme disease recover fully after treatment

Borrelia burgdorferi bacteria

Lyme disease is caused by the bacterium Borrelia burgdorferi.

Experts found most children diagnosed with Lyme disease recovered within six months of completing antibiotic treatment, according to a new joint study published in Pediatric Research.

The study, which was supported through a partnership between Children’s National Research Institute (CNRI) at Children’s National Hospital and the National Institute of Allergy and Infectious Diseases (NIAID), also revealed that a notably small percentage of children took longer than six months to recover and experienced a significant impact on their daily functioning.

The big picture

This research studied the long-term outcomes of children with Lyme disease through a cross-sectional evaluation using validated surveys. The study collected survey responses from the parents of 102 children ages 5 to 18 years who had been diagnosed with Lyme disease between six months and 10 years before enrollment. Adolescents ages 10 to 18 years were also invited to complete adolescent-specific questionnaires.

According to these parent survey responses, the vast majority (87%) of fully recovered patients did so

within the initial 6-month period after completing antibiotic treatment, with approximately one third recovering within the first month post-treatment and an additional third recovering 1–3 months post-treatment. However, 13% of children who ultimately made a full recovery took longer to do so. At the time of study completion, 6% of children still experienced symptoms attributed to Lyme disease but only 1% experienced symptoms significant enough to impair daily functioning.

Why we’re excited

According to the authors, this study supports previous data showing an excellent overall prognosis for children with Lyme disease, which should help alleviate understandable parental stress associated with lingering non-specific symptoms among infected children.

“These findings can help clinicians manage families’ expectations about the varying post-treatment recovery times of pediatric Lyme disease patients,” says Roberta DeBiasi, M.D., chief of Infectious Diseases at Children’s National Hospital and one of the study’s authors. “It may also give parents relief in knowing that their child has an excellent chance of full recovery after treatment.”

What’s next

Common symptoms of Lyme disease include fever, headache, fatigue and a distinct skin rash called erythema migrans. Without treatment, the infection can spread to joints, the heart and the nervous system.

Antibiotic treatment resulting in full recovery is successful in most Lyme cases. For some, however, symptoms of pain, fatigue or difficulty thinking persist or return after antibiotic treatment. Symptoms that substantially reduce levels of activity and impact quality of life for more than six months after treatment are classified as post-treatment Lyme disease (PTLD) syndrome.

PTLD syndrome remains poorly understood in children and adults, and more research is needed to better understand these prolonged symptoms and identify treatment targets, according to the authors.

You can read the full study, Pediatric Lyme disease: systematic assessment of post-treatment symptoms and quality of life, in Pediatric Research.

baby getting vaccinated

Addressing COVID-19 vaccine hesitancy for parents and caregivers

 

baby getting vaccinated

A one-hour webinar delivered as a digital intervention can reduce parental COVID-19 vaccine hesitancy and parental uncertainty regarding vaccine information.

While vaccines have been proven to be highly effective in preventing COVID-19 infections and severe illness, the goal of achieving herd immunity remains unattainable without vaccinating children. Due to the prevalence of misinformation on the internet, Lauren Arrigoni, DNP, and Claire Boogaard, M.D., M.P.H., at Children’s National Hospital led a study, published in the Journal of Pediatric Health Care, that addresses parental hesitancy about giving their children COVID-19 vaccines. They found that a one-hour webinar delivered as a digital intervention can reduce parental COVID-19 vaccine hesitancy and parental uncertainty regarding vaccine information.

The big picture

The study used a pretest-posttest design with an adapted version of the Parental Attitudes about Childhood Vaccine (PACV) survey for COVID-19 vaccines. The webinar was streamed live and later posted to YouTube with survey QR codes and pre-survey and post-survey links in the video description. PACV data from the recorded webinar were collected over 4 weeks after the original webinar date. According to Dr. Arrigoni, the webinar itself was a collaborative work of a nurse and physicians to help provide scientific-based evidence for the general population of parents and caregivers. This project’s results have important implications for practice, as the researchers suggest that educational strategies have the potential to improve vaccination rates by increasing parental confidence in the COVID-19 vaccine. Using the webinar as a digital education strategy, the researchers also designed a dedicated section to empower parents to have conversations with their peers who may be hesitant about vaccines, even if they lack a medical background.

The patient benefit

While it was not possible to directly measure vaccination rates during this project due to time constraints, the researchers did find that parents who participated in the webinar felt more empowered and informed to make the decision to vaccinate their child. By addressing common parental concerns and providing accurate information, the webinar, as well as other types of digital interventions, could play a role in improving vaccination rates and ultimately contributing to truly ending the COVID-19 pandemic.

Why we’re excited

Overall, this study indicates that a webinar can effectively engage a large audience, educate them about vaccines and encourage conversations around vaccination.

“Vaccine hesitancy outreach can even begin before the vaccine is available,” says Dr. Arrigoni. “Applying these learned lessons can lead to more vaccinated individuals and would be an important step in battling parental vaccine hesitancy now and for future pandemics and viruses.”

You can read the full study, A Webinar to Improve Parental COVID-19 Vaccine Hesitancy, in the Journal of Pediatric Health Care.

Abstract Happy 2022 New Year greeting card with light bulb

The best of 2022 from Innovation District

Abstract Happy 2022 New Year greeting card with light bulbA clinical trial testing a new drug to increase growth in children with short stature. The first ever high-intensity focused ultrasound procedure on a pediatric patient with neurofibromatosis. A low dose gene therapy vector that restores the ability of injured muscle fibers to repair. These were among the most popular articles we published on Innovation District in 2022. Read on for our full top 10 list.

1. Vosoritide shows promise for children with certain genetic growth disorders

Preliminary results from a phase II clinical trial at Children’s National Hospital showed that a new drug, vosoritide, can increase growth in children with certain growth disorders. This was the first clinical trial in the world testing vosoritide in children with certain genetic causes of short stature.
(2 min. read)

2. Children’s National uses HIFU to perform first ever non-invasive brain tumor procedure

Children’s National Hospital successfully performed the first ever high-intensity focused ultrasound (HIFU) non-invasive procedure on a pediatric patient with neurofibromatosis. This was the youngest patient to undergo HIFU treatment in the world.
(3 min. read)

3. Gene therapy offers potential long-term treatment for limb-girdle muscular dystrophy 2B

Using a single injection of a low dose gene therapy vector, researchers at Children’s National restored the ability of injured muscle fibers to repair in a way that reduced muscle degeneration and enhanced the functioning of the diseased muscle.
(3 min. read)

4. Catherine Bollard, M.D., M.B.Ch.B., selected to lead global Cancer Grand Challenges team

A world-class team of researchers co-led by Catherine Bollard, M.D., M.B.Ch.B., director of the Center for Cancer and Immunology Research at Children’s National, was selected to receive a $25m Cancer Grand Challenges award to tackle solid tumors in children.
(4 min. read)

5. New telehealth command center redefines hospital care

Children’s National opened a new telehealth command center that uses cutting-edge technology to keep continuous watch over children with critical heart disease. The center offers improved collaborative communication to better help predict and prevent major events, like cardiac arrest.
(2 min. read)

6. Monika Goyal, M.D., recognized as the first endowed chair of Women in Science and Health

Children’s National named Monika Goyal, M.D., M.S.C.E., associate chief of Emergency Medicine, as the first endowed chair of Women in Science and Health (WISH) for her outstanding contributions in biomedical research.
(2 min. read)

7. Brain tumor team performs first ever LIFU procedure on pediatric DIPG patient

A team at Children’s National performed the first treatment with sonodynamic therapy utilizing low intensity focused ultrasound (LIFU) and 5-aminolevulinic acid (5-ALA) medication on a pediatric patient. The treatment was done noninvasively through an intact skull.
(3 min. read)

8. COVID-19’s impact on pregnant women and their babies

In an editorial, Roberta L. DeBiasi, M.D., M.S., provided a comprehensive review of what is known about the harmful effects of SARS-CoV-2 infection in pregnant women themselves, the effects on their newborns, the negative impact on the placenta and what still is unknown amid the rapidly evolving field.
(2 min. read)

9. Staged surgical hybrid strategy changes outcome for baby born with HLHS

Doctors at Children’s National used a staged, hybrid cardiac surgical strategy to care for a patient who was born with hypoplastic left heart syndrome (HLHS) at 28-weeks-old. Hybrid heart procedures blend traditional surgery and a minimally invasive interventional, or catheter-based, procedure.
(4 min. read)

10. 2022: Pediatric colorectal and pelvic reconstructive surgery today

In a review article in Seminars in Pediatric Surgery, Marc Levitt, M.D., chief of the Division of Colorectal and Pelvic Reconstruction at Children’s National, discussed the history of pediatric colorectal and pelvic reconstructive surgery and described the key advances that have improved patients’ lives.
(11 min. read)

coronavirus and DNA

Case study: COVID-19 patient with autoimmune adrenal insufficiency and hypothyroidism

coronavirus and DNA

This is the first report of a pediatric patient with COVID-19 who developed autoimmune thyroid and cortisol deficiency, although not confirmed that it was related or triggered by the COVID-19 infection.

There is emerging speculation that the inflammatory state associated with SARS-CoV-2 infection may trigger autoimmune conditions, but no causal link has been established. In a case study, published in Hormone Research in Paediatrics, researchers at Children’s National Hospital report a 14-year-old girl admitted with COVID-19 and symptoms of MIS-C who was then recognized to have autoimmune polyglandular syndrome (APS2). This is the first report of a pediatric patient with COVID-19 who developed autoimmune thyroid and cortisol deficiency, although not confirmed that it was related or triggered by the COVID-19 infection.

What this means

APS2 is rare in children and has an incidence of 1 in 20,000. Until now, there have only been reports of autoimmune thyroiditis and adrenal insufficiency in adults post-COVID-19.

“The role of COVID-19 in the etiopathogenesis of APS2 in this case remains unclear,” says Myrto Flokas, M.D., endocrinology fellow at Children’s National Hospital and first author of the case study. “But we suspect that it may have contributed to the rapid progression and severe clinical manifestations of both adrenal insufficiency and hypothyroidism leading to the presentation akin to MIS-C.”

The hold-up in the field

COVID-19 has been reported to affect the immune system and may serve as a trigger for autoimmune diseases similar to other viral infections.

“This is a case-report and while we cannot draw any mechanistic conclusions or infer causality, it is the first pediatric report of an association,” says Roopa Kanakatti Shankar, M.D., endocrinologist at Children’s National and one of the authors of the case study.  “We hope it will contribute to this novel field as our understanding of COVID-19 and its myriad effects on the immune system is still evolving.”

Why it matters

This case will alert clinicians to be mindful of the association and similarities in presentation of adrenal insufficiency to MIS-C and consider adrenal crisis in the differential diagnosis of such a presentation.

You can read the full case study, New-Onset Primary Adrenal Insufficiency and Autoimmune Hypothyroidism in a Pediatric Patient Presenting with MIS-C, in Hormone Research in Paediatrics.