Immunotherapy

t cells fighting cancer cell

Personalized T cell immunotherapy for brain tumors closer to becoming reality

t cells fighting cancer cell

Children’s National Hospital experts developed a new approach that discovered unique proteins in an individual tumor’s cells, which then helped scientists generate personalized T cells to target and kill tumors.

Children’s National Hospital experts developed a new approach that discovered unique proteins in an individual tumor’s cells, which then helped scientists generate personalized T cells to target and kill tumors, according to a pre-clinical study published in Nature Communications.

This effort is the first to create a new workflow for neoantigen identification that incorporates both genetic sequencing and protein identification to create a personalized treatment for medulloblastoma in children, a common malignant brain tumor. Given these promising findings, the researchers are now designing a phase I clinical trial slated to open in 12-18 months.

“This work is an incredibly exciting advancement in personalized medicine. It will allow us to treat patients with a novel T cell therapy that is developed for each individual patient to specifically attack and kill their tumor,” said Catherine Bollard, M.D., M.B.Ch.B., director of the Center for Cancer and Immunology Research at Children’s National and co-author on the paper. “This treatment will offer a potential option for children with hard-to-treat brain tumors for which all other therapeutic options have been exhausted.”

Catherine Bollard

Catherine Bollard, M.D., M.B.Ch.B., director of the Center for Cancer and Immunology Research at Children’s National and co-senior author on the paper.

First, the researchers sequenced the DNA of small tissue samples while studying its complete set of proteins that influence cancer biology — also named a “low-input proteogenomic approach” by the authors. After analyzing the empirical data, which shies away from the commonly used predictive models, the researchers developed a T cell immunotherapy that targets the tumor’s unique proteins and allows the T cells to distinguish between healthy cells and tumor cells. This means that Rivero-Hinojosa et al. managed to merge two research fields, proteogenomics and immunotherapy, and lay the groundwork for personalized, targeted T cell therapies to treat children with brain tumors.

“Neoantigen discovery techniques have either been dependent upon in silico prediction algorithms or have required a significant amount of tumor tissue, making them inappropriate for most brain tumors,” said Brian Rood, M.D., medical director of Neuro-oncology and the Brain Tumor Institute at Children’s National. “This neoantigen identification pipeline creates a new opportunity to expand the repertoire of T cell-based immunotherapies.”

Tumor cells have damaged DNA that create mutations during the repair process because they do not do a good job at maintaining their DNA fidelity. The repairs therefore create aberrant DNA that codes for proteins that were never intended by the genetic code and, consequently, they are unique to the individual’s tumor cells.

Brian Rood

Brian Rood, M.D., medical director of Neuro-oncology and the Brain Tumor Institute at Children’s National and co-senior author on the paper.

“We developed a new filtering pipeline to remove non-annotated normal peptides. Targeting antigens that are completely specific to the tumor, and expressed nowhere else in the body, will potentially increase the strength of tumor antigen-specific T cell products while decreasing the toxicity,” said Samuel Rivero-Hinojosa, Ph.D., staff scientist at Children’s National and first author of the study.

Once the experts identified these unique peptides, they used them to select and expand T cells, which showed specificity for the tumor specific neoantigens and the ability to kill tumor cells. The next step is to conduct a clinical trial in which a patient’s own T cells are trained to recognize their tumor’s unique neoantigens and then reinfused back into the patient.

From an immunotherapy standpoint, tumor specificity is important because when clinicians treat patients with T cell therapies, they want to make sure that the T cells directly target and kill the tumor and will not cause devastating harm to healthy cells. This paper demonstrated that it may be possible to create a better efficacy and safety margin with this new approach.

In the past five years, under the leadership of Dr. Bollard, the Center for Cancer and Immunology Research at Children’s National has advanced the scientific knowledge in preclinical and clinical settings. The center discovered a signaling pathway that can be hijacked to prevent brain tumor development, and further advanced translational research with several key first-in-human studies that utilized novel cell therapies to treat cancer and life-threatening viral infections.

coronavirus

Children’s National Hospital and NIAID launch large study on long-term impacts of COVID-19 and MIS-C on kids

coronavirus

Up to 2,000 children and young adults will be enrolled in a study from Children’s National Hospital in collaboration with the National Institute of Allergy and Infectious Diseases (NIAID) that will examine the long-term effects of COVID-19 and multisystem inflammatory syndrome in children (MIS-C) after these patients have recovered from a COVID-19 infection.

This $40 million multi-year study will provide important information about quality of life and social impact, in addition to a better understanding of the long-term physical impact of the virus, including effects on the heart and lung. The researchers hope to detail the role of genetics and the immune response to COVID-19, so-called “long COVID” and MIS-C, including the duration of immune responses from SARS-CoV-2, the virus that causes COVID-19. It is fully funded by a subcontract with the NIH-funded Frederick National Laboratory for Cancer Research operated by Leidos Biomedical Research, Inc.

“We don’t know the unique long-term impact of COVID-19 or MIS-C on children so this study will provide us with a critical missing piece of the puzzle,” says Roberta DeBiasi, M.D., M.S., chief of the Division of Pediatric Infectious Diseases at Children’s National and lead researcher for this study. “I am hopeful that the insights from this enormous effort will help us improve treatment of both COVID-19 and MIS-C in the pediatric population both nationally and around the world.”

Over the past year, more than 3.6 million children have tested positive for SARS-CoV-2 and over 2,800 cases of MIS-C have been reported throughout the U.S. While the vast majority of children with primary SARS-CoV-2 infection may have mild or no symptoms, some develop severe illness and may require hospitalization, including life support measures. In rare cases, some children who have previously been infected or exposed to someone with SARS-CoV-2 have developed MIS-C, a serious condition that may be associated with the virus. MIS-C symptoms can include fever, abdominal pain, bloodshot eyes, trouble breathing, rash, vomiting, diarrhea and neck pain, and can progress to shock with low blood pressure and insufficient cardiac function. Long COVID is a wide range of symptoms that can last or appear weeks or even months after being infected with the virus that causes COVID-19.

The study is designed to enroll at least 1,000 children and young adults under 21 years of age who have a confirmed history of symptomatic or asymptomatic SARS-CoV-2 infection or MIS-C. Participants who enroll within 12 weeks of an acute infection will attend study visits every three months for the first six months and then every six months for three years. Participants who enroll more than 12 weeks after acute infection will attend study visits every six months for three years. The study will also enroll up to 1,000 household contacts to serve as a control group, and up to 2,000 parents or guardians (one parent per participant) will complete targeted questionnaires.

“The large number of patients who will be enrolled in this study should provide us with a truly comprehensive understanding of how the virus may continue to impact some patients long after the infection has subsided,” says Dr. DeBiasi.

The study primarily aims to determine incidence and prevalence of, and risk factors for, certain long-term medical conditions among children who have MIS-C or a previous SARS-CoV-2 infection. The study will also evaluate the health-related quality of life and social impacts for participants and establish a biorepository that can be used to study the roles of host genetics, immune response and other possible factors influencing long-term outcomes.

Children’s National was one of the first U.S. institutions to report that children can become very ill from SARS-CoV-2 infection, despite early reports that children were not seriously impacted. In studies published in the Journal of Pediatrics in May of 2020 and June of 2021, Children’s National researchers found that about 25% of symptomatic COVID patients who sought care at our institution required hospitalization. Of those hospitalized, about 25% required life support measures, and the remaining 75% required standard hospitalization. Of patients with MIS-C, 52% were critically ill.

Study sites include Children’s National Hospital inpatient and outpatient clinics in the Washington, D.C. area, and the NIH Clinical Center in Bethesda, Maryland.

Those interested in participating should submit this form. You will then be contacted by a study team member to review the study details and determine whether you are eligible to participate.

You can find more information about the study here.

cancer cell

Muller Fabbri, M.D., Ph.D.: The microRNA journey and the future of cancer therapy

cancer cell

Children’s National Hospital welcomes Muller Fabbri, M.D. Ph.D., as associate director for the Center for Cancer and Immunology Research at the Children’s National Research Institute. In this role, he will build and lead the Cancer Biology Program while developing and conducting basic and translational research. Dr. Fabbri will also develop multidisciplinary research projects with various clinical divisions, including oncology, blood and marrow transplantation, pathology and hematology.

Dr. Fabbri shares his journey working with microRNAs, how his work is advancing the field and his vision for the Center for Cancer and Immunology Research at Children’s National.

Q: You have been working with microRNAs for quite some time. How are you exploring the role of microRNAs in cancer?

A: It was well established within the scientific community that a gene, which is a piece of DNA, becomes a piece of RNA and then becomes a protein. This thought process was pretty much a one-way flow of information that we had, going from DNA to protein as part of a cell function. But, almost 30 years ago, it was discovered that this is not entirely true because what happens is that some of these genes that are transcribed into RNA do not become a protein. Instead, they stay as RNA. Some of these RNAs are tiny and have short sequences, which is why they are called microRNAs.

I work primarily on microRNAs and non-coding RNAs and my research studies focus on the role that microRNAs play in cancer. I can take a cancer cell and a healthy cell and observe how these microRNAs are expressed in the two different cell populations. In this way, the microRNAs expressed in cancer cells are profoundly different from the microRNAs expressed in healthy cells.

We conducted a series of studies to observe what happens to a cancer cell if we restore normal levels of certain microRNAs like the ones you would see in a normal cell. We discovered that by restoring some of these microRNAs levels it led to the death of the cancer cells, suggesting that this approach may be used as a cancer treatment. This is one of the research areas that I will further develop at Children’s National as I seek to understand the mechanisms that control microRNA expression and subsequently affect cancer cell proliferation. With this information, we can target these mechanisms and create drugs that interfere with this function and, hopefully, stop cancer cell growth.

Q: Can you tell us about that eureka moment with your best friend during a lunch break?

A: This was a bit of a crazy idea. I will never forget. I shared a theory during a lunch break with a friend. I dared to ask, what if microRNAs worked like hormones? MicroRNAs can be detected in the blood of patients with cancer, and they can be transferred from one cell to another inside of little vesicles called exosomes. If you think about it, I further asked, what other molecules in our body behave like that — i.e. are secreted, circulate in the blood and then transferred to a target cell? My friend replied, “well, those would be hormones.” To which, I added, yes, exactly! Then, why do we not think of RNAs as hormones? And I quote him now, “you are crazy, but if it works it is huge.”

I felt that I had some validation from my best friend, so I decided to invest in this crazy idea, carving extra time on the side while working on my “safe” projects. It was one of those rare cases in science, where in a little over a year, we showed for the first time that microRNAs do not only work the traditional way, but they can also work as hormones. They do have a receptor protein to attach to, and by binding to this protein, they trigger a response in a cell that can be pro-tumoral or anti-tumoral.

Even today, if you open a textbook of endocrinology, under the chapter of hormones, it mentions that there are only two categories, proteins and lipids. Well, it turns out there is a third category, which is nucleic acids because of RNAs.

Q: You mentioned other research areas of interest as it relates to cancer cell biology. What are they?

A: The other line of research that I am developing stems from the original observation that I made in 2012. Cancer cells release tiny vesicles that I like to compare to envelopes containing a written message — the RNA and microRNA. These vesicles released in the surrounding environment contain a message captured by immune cells, known as macrophages. Macrophages act as scavengers in our bodies. In cancer, macrophages are supposed to digest and destroy the cancer cell. However, it turns out that they also have the proper receptor to receive and read the message enclosed in the vesicles. Then, something shocking happens. The macrophage stops fighting the cancer cell and starts producing proteins called cytokines that promote cancer growth. This finding means that we are 180 degrees apart from what we thought at the beginning. A lot of macrophages in the cancer are good news for the patient because they are supposed to kill cancer cells, but because of this mechanism, a lot of macrophages can be bad news since they can also help the cancer cell grow.

My contribution to this discovery was to investigate how the macrophage response is mediated. I discovered that macrophages operate, at least in part, by expressing receptors that bind to microRNAs released by the cancer cell, thereby favoring cancer growth. In the pediatric cancer field we discovered that because of this microRNA–receptor interaction, the pediatric tumor neuroblastoma becomes resistant to chemotherapy. Therefore, one of the strategies we are working on now is to interfere or impair these negative communications between the cancer cell and immune cell. We want to disrupt these communications so the macrophage cannot read the message from the cancer cell anymore and instead keeps doing its job to fight the cancer. We hope that we can leverage this approach to develop novel cancer treatments or create strategies that improves immune cell function in the presence of the patient’s current therapy to enhance an anti-cancer treatment response.

Q: What is your vision for the Center of Cancer and Immunology Research?

A: I am very excited about what I saw at Children’s NationalI was delighted to talk to many faculty members, and I recognized the immense talent within the Center. I would like to help elevate and enhance the cancer biology program focused on solid tumors, and augment the work being done in this space by the cell therapy program. The clinicians are clearly eager to collaborate with the basic scientists including the sharing of samples and ideas, which is not typical of many scientific environments. My other goal is to ensure that the Cancer Biology Program plays a central role in acquiring an NCI-Designated Cancer Center recognition often given to institutions that stand out in scientific leadership and clinical research. Finally, I want to create the first national center that develops extracellular vesicles as an innovative treatment strategy for cancer. Importantly, I think that we have all the resources and connections at Children’s National that are necessary to realize this vision!

 

T cell

Children’s National Hospital scientists shortlisted for Cancer Grand Challenges funding

T cell

If successful, the team would seek to tackle the challenge of solid tumors in children. The vision is to bring engineered T-cell therapies to the routine treatment of these children within a decade.

A diverse, global team of scientists, led by University College of London and Children’s National Hospital/George Washington University, has been selected for the final stages of Cancer Grand Challenges – and is in with a chance of securing a share of £80 million (c.$111 million) of funding to take on one of cancer’s toughest problems.

Nearly 170 teams submitted ideas for this round of awards, and the NGTC team, which stands for ‘Next Generation T-cell therapies for childhood cancers, led by Martin Pule, Ph.D., University College of London, and Catherine Bollard, M.B.Ch.B., M.D., Children’s National Hospital and George Washington University, is one of 11 shortlisted groups.

The team draws together a unique set of expertise, uniting researchers from the U.K., U.S. and France. Other team members from Children’s National include Conrad Russell Cruz, M.D., Ph.D., principal investigator for the Program for Cell Enhancement and Technologies for Immunotherapies, and Nitin Agrawal, Ph.D., associate professor in the Center for Cancer and Immunology Research (CCIR). Up to four winning teams will be announced in early 2022.

If successful, the NGTC team would seek to tackle the challenge of solid tumors in children. The team says that the scientific and medical communities are beginning to understand that solid tumors in children are very different from those in adults – if they could understand more about these differences and find new ways to target them, they could create new ways to better treat children’s cancers.

The NGTC team’s vision is to bring engineered T-cell therapies to the routine treatment of these children within a decade.

Through a series of ambitious studies, the team hopes to identify suitable, pediatric tumor-specific targets for engineered T-cells, including previously unexplored options like glycolipids or the immunopeptidome. They also hope to explore whether treatment effectiveness can be boosted by modulating the tumor microenvironment – which can inhibit T-cell therapies but is yet to be suitably studied in children’s cancers. The team has a strong translational focus and the most promising new treatment avenues would be explored in preclinical and early clinical studies.

“We’re tremendously excited to have this opportunity to work together and strive closer to our vision – to improve the lives of the patients we serve,” says joint team lead Dr. Bollard, who is also the director of the Center for Cancer and Immunology Research at Children’s National.

“This round of Cancer Grand Challenges has demonstrated the fresh thinking that can be sparked when global teams unite across disciplines to bring new perspectives to tough challenges,” says Dr. David Scott, Ph.D., director of Cancer Grand Challenges. “We were thrilled to receive such a strong response from the global research community.”

Find out more at cancergrandchallenges.org.

inside a GMP lab

Cell therapy manufacturing process ramps up to meet increased demand for T-cell products

inside a GMP lab

The new laboratory space includes floor-to-ceiling windows and brand new, state-of-the-art GMP lab suites.

Since Children’s National Hospital began its pediatric cellular therapy program in 2013, it has received more than $5 million in annual funding, treated over 200 patients, manufactured more than 400 cell-based products and supported over 25 clinical trials.

One of the in-house programs supporting this work is the Good Manufacturing Practices (GMP) facility. Patrick Hanley, Ph.D., chief and director of the cellular therapy program at Children’s National and leader of the GMP laboratory, explained that the first patient received a dose of less than 10 million cells in May 2014. Fast forward to now, the lab uses liters of media, automated bioreactors and multiple staff, making upwards of 12 billion cells per run — a growing production scale that enables many different options. Using cells as an off-the-shelf technology is one of those.

The cell therapy program exports these off-the-shelf products beyond Children’s National to make them available for kids across the country. Catherine Bollard, M.D., MBChB., director of the Center for Cancer and Immunology Research at Children’s National, and Michael Keller, M.D., director of the Translational Research Laboratory in the Program for Cell Enhancement and Technologies for Immunotherapy (CETI) at Children’s National, each led clinical trials with hospitals across the United States, including the first-ever cellular therapy clinical trial run through the Children’s Oncology Group.

To meet the high demand for cell therapy trials at Children’s National, the GMP lab moved to a larger space, doubling the team’s capacity to produce alternative treatment options for patients and facilitate the lab’s ability to support clinical divisions throughout the hospital.

The GMP lab is exploring how to make cell products more consistent — regardless of patient-to-patient variability. They are also hoping to delineate the characteristics that ensure quality cell products, educate other facilities, enhance the overall knowledge of how to safely manufacture these products and make these technologies more available and affordable to the patients who need them.

Among Hanley’s many goals for the GMP lab, one is to improve the transition from when an investigator discovers a product in the translational research lab to when it is manufactured for patients.

“To improve this transition, we have started a process development team that will learn the process alongside the research team, replicate it, and then train the staff who manufacture the product for patients,” said Hanley. “In addition to providing a better training opportunity for the manufacturing staff, it allows us to work with the investigators earlier on to identify changes that will need to be made to translate the products to patients, ultimately resulting in safer, more potent immunotherapy products.”

While cell therapy has seen increased interest in the last 10 years, there are still some challenges in the field, given that it is not as mature as other scientific areas. The lack of trained staff, scalability of cell and gene therapy, the variability between patients and products, delayed FDA approvals and rejection of licensing applications for cell therapy products — are barriers that scientists and companies often face.

“Each of us has a unique immune system, and that means that if we try and make a product from it, it will not behave like any other, so the number of cells, the potency the alloreactivity — it is all different,” said Hanley. “T-cells are a living drug that expand in the body at different rates, are composed of different types of T-cells, and release different cytokines and in different amounts.”

This all ties back to the process development and basic research. The better researchers can characterize the products under development, the more they will know about how the products work and the easier it will be to tie these products to patient outcomes.

Meet some of the Children’s National multidisciplinary experts who join forces to lead the cell therapy space.

Jay Tanna, M.S., quality assurance manager, has extensive experience with drug development at Children’s National as well as Sloan Kettering, another premier cell therapy institution. He has a Masters in Pharmaceutical Manufacturing and a Regulatory Affairs Certification (RAC) in U.S. FDA drugs and biologics regulations from the Regulatory Affairs Professional Society (RAPS).

Kathryn Bushnell, M.T. (ASCP), the cell therapy lab manager, oversees Stem Cell Processing. She has 20 years of experience with hematopoietic progenitor cells and cellular therapy, starting her career as a medical technologist at MD Anderson Cancer Center.

Nan Zhang, Ph.D., assistant director of manufacturing at Children’s National, has worked at Wake Forest and the National Institutes of Health developing various cellular therapies. Zhang chaired the cell processing session at the annual meeting of the American Society of Hematology in 2020.

Abeer Shibli, M.T., is a specialist in the cellular therapy laboratory with extensive experience in the processing of cellular therapy products. She has over 10 years of experience as a medical technologist, is specialized in blood banking and transfusion medicine and is one of the senior technologists in the lab.

Chase McCann, M.S.P.H., Ph.D., is the cell therapy lab lead for manufacturing at Children’s National Hospital. He recently completed his Ph.D. training in Immunology and Microbial Pathogenesis at Weill Cornell Medicine in New York. Much of his graduate research focused on developing and enhancing cellular therapies for HIV while identifying common mechanisms of escape, shared by both HIV and various cancers, which limit the efficacy of current cell therapies. Previously, McCann worked as the laboratory coordinator for the HIV Prevention Trials Network, and now oversees the manufacturing of many cell therapies supporting the many clinical trials currently underway at Children’s National.

Anushree Datar, M.S., the cell therapy lab lead for immune testing and characterization, oversees the release testing of products manufactured in the GMP for safety and function before they can be infused in patients. She also leads a part of the research team investigating the improvement in immune function after cell infusion.

Dr. Bollard is also the director of the Program for Cell Enhancement and Technologies for Immunotherapy and president of the Foundation for the Accreditation for Cellular Therapy (FACT). Additionally, in 2019, she became a member of the Frederick National Laboratory Advisory Committee (FNLAC) for the NIH and an ad hoc member of the Pediatric Oncologic Drugs Advisory Committee (ODAC) for the FDA. She has been an associate editor for the journal Blood since 2014 and in 2020 was appointed editor-in-chief of Blood Advances (starting Fall 2021). Dr. Bollard has 21 years of cell therapy experience as a physician, sponsor and principal investigator.

Dr. Hanley serves as the commissioning editor of the peer-reviewed journal Cytotherapy, as the vice-president-elect (North America) of the International Society of Cell and Gene Therapy (ISCT), and board of directors member at FACT, which provides him visibility into various cell and gene therapies, manufacturing approaches, and other intangibles that make Children’s National facility one of the leaders in the field.

To find the full research program list and their experts, click here.

GMP group photo

Lab members celebrate the expansion of the GMP Laboratory.

US News badges

For fifth year in a row, Children’s National Hospital nationally ranked a top 10 children’s hospital

US News badges

Children’s National Hospital in Washington, D.C., was ranked in the top 10 nationally in the U.S. News & World Report 2021-22 Best Children’s Hospitals annual rankings. This marks the fifth straight year Children’s National has made the Honor Roll list, which ranks the top 10 children’s hospitals nationwide. In addition, its neonatology program, which provides newborn intensive care, ranked No.1 among all children’s hospitals for the fifth year in a row.

For the eleventh straight year, Children’s National also ranked in all 10 specialty services, with seven specialties ranked in the top 10.

“It is always spectacular to be named one of the nation’s best children’s hospitals, but this year more than ever,” says Kurt Newman, M.D., president and CEO of Children’s National. “Every member of our organization helped us achieve this level of excellence, and they did it while sacrificing so much in order to help our country respond to and recover from the COVID-19 pandemic.”

“When choosing a hospital for a sick child, many parents want specialized expertise, convenience and caring medical professionals,” said Ben Harder, chief of health analysis and managing editor at U.S. News. “The Best Children’s Hospitals rankings have always highlighted hospitals that excel in specialized care. As the pandemic continues to affect travel, finding high-quality care close to home has never been more important.”

The annual rankings are the most comprehensive source of quality-related information on U.S. pediatric hospitals. The rankings recognize the nation’s top 50 pediatric hospitals based on a scoring system developed by U.S. News. The top 10 scorers are awarded a distinction called the Honor Roll.

The bulk of the score for each specialty service is based on quality and outcomes data. The process includes a survey of relevant specialists across the country, who are asked to list hospitals they believe provide the best care for patients with the most complex conditions.

Below are links to the seven Children’s National specialty services that U.S. News ranked in the top 10 nationally:

The other three specialties ranked among the top 50 were cardiology and heart surgerygastroenterology and gastro-intestinal surgery, and urology.

Muller Fabbri

Children’s National Hospital welcomes Muller Fabbri, M.D., Ph.D.

Muller Fabbri

Dr. Fabbri joins Children’s National from the University of Hawaii Cancer Center, where he was a tenured associate professor and leader of the Cancer Biology Program. He received his medical degree at the University of Pisa in Italy and his Ph.D. degree at the Second University of Naples in Italy.

Children’s National Hospital is pleased to announce it has selected Muller Fabbri, M.D. Ph.D., as associate director for the Center for Cancer and Immunology Research at the Children’s National Research Institute. In this role, he will build and lead the Cancer Biology Program while developing and conducting basic and translational research. Dr. Fabbri will also develop multidisciplinary research projects with various clinical divisions, including oncology, blood and marrow transplantation, pathology and hematology.

A distinguished lecturer, instructor, researcher, public speaker and mentor, Dr. Fabbri’s research interest focuses on decoding cancer cellular biology riddles that lead to personalized medicine. He has pioneered a theory that explains non-coding RNAs’ functioning in intercellular communication that promotes cancer cell growth, dissemination and drug resistance. To better understand the immune response against cancer cells, he has investigated the role of exosomes and other extracellular vesicles. Inflammation, tumor microenvironment and immunity, as it relates to cancer, are other research areas of interest.

“I feel fortunate to be working with Dr. Catherine Bollard and her team at an extraordinary research center,” said Dr. Fabbri. “I am eager to join Children’s National, and I look forward to learning from this leadership team, which also includes Dr. Vittorio Gallo, Dr. Mark Batshaw and Dr. Jeffery Dome.”

Dr. Fabbri was drawn to Children’s National because of its proximity to partners like the National Institute of Health (NIH), the Food Drug Administration (FDA), various universities and the private sector, fostering a rich scientific environment. One of Dr. Fabbri’s many goals, is to make sure that the Cancer Biology Program plays a central role in the acquisition of an NCI-Designated Cancer Center recognition often given to institutions that stand out in scientific leadership and clinical research.

Dr. Fabbri joins Children’s National from the University of Hawaii Cancer Center, where he was a tenured associate professor and leader of the Cancer Biology Program. He received his medical degree at the University of Pisa in Italy and his Ph.D. degree at the Second University of Naples in Italy.

Dr. Catherine Bollard is accompanied by her mentees

Catherine Bollard, M.D., awarded two notable recognitions

Dr. Catherine Bollard is accompanied by her mentees

Dr. Catherine Bollard and some of her mentees.

For her work on developing cell-based therapies and dedication to her trainees, Catherine Bollard, M.D., MBChB, director of the Center for Cancer and Immunology Research at Children’s National hospital, receives two outstanding awards in her field.

Celebrating the minds behind the architecture of modern medicine and influencing the drug industry, The Medicine Maker, through an international panel of judges, added Dr. Bollard to the 2021 Power List in the category of advanced medicine.

Dr. Bollard mentioned that it is encouraging to see mRNA vaccine technology successfully fighting the COVID-19 pandemic because it paves the way for cancer vaccine advancements. Still, there are challenges affecting drug development. The centralized manufacturing hinders the large-scale production of patient-specific products as more cell therapies are getting approval, she added.

“Looking to the future, cell-based therapies will not be sustainable with a purely patient-specific centralized manufacturing model and, therefore, the field must move into the development of off-the-shelf cell therapies,” said Dr. Bollard. “The success of off-the-shelf virus-specific T-cells is especially exciting because it has the potential to be the platform for other antigen-specific and CAR-T cell therapies.”

A global society of clinicians, researchers, regulators, technologists and industry partners, The International Society for Cell & Gene Therapy (ISCT), will bestow Dr. Bollard the 2021 ISCT Darwin J. Prockop Mentoring Award on May 26. Her ongoing commitment to mentorship has advanced the careers of many aspiring professionals that have worked alongside her. The ISCT Award Committee selected someone that can inspire the current and future growing workforce. Dr. Bollard is highly recognized across the industry for her leadership, passion and dedication to her mentees, and her extraordinary efforts to advance their skills, capabilities and opportunities.

Dr. Catherine Bollard is accompanied by her mentees

To Patrick Hanley, Ph.D., chief and director of the Cellular Therapy Program at Children’s National, Dr. Bollard is the most deserving mentor for this award. She has provided advice and guidance to over 93 individuals, including 22 junior faculty, 27 post-doctoral fellows and 12 graduate students. Dr. Bollard also acts as a mentor to other senior investigators at Children’s National, particularly those in the Bone Marrow Transplantation division.

“For the past 15 years, Cath has been a strong mentor, friend, advocate, and voice of reason for me and has been instrumental in my success, both at Baylor College of Medicine and now at Children’s National,” said Hanley. “With her support and mentorship, I have been fortunate to publish high impact papers, earn a number of awards and receive prestigious grants. Without her guidance this wouldn’t have been possible.”

Amy Hont, M.D., oncologist for the Center for Cancer and Immunology Research at Children’s National, mentioned that Dr. Bollard is endlessly dedicated to her mentees and staff. “Dr. Bollard has been incredibly supportive of my research career throughout my training and progression to faculty. I feel very fortunate that I have been able to benefit not only from her unparalleled knowledge and expertise, but also her career advice and resources.”

Dr. Bollard leads clinical and research efforts to fight cancer and other inflammatory diseases by strengthening the immune system using adoptive cell therapy. She is a former president of the International Society of Cellular Therapy, and the current president of the Foundation for the Accreditation for Cellular Therapy (FACT). As a distinguished hematologist, immunologist and immunotherapist, she is working to develop cell and gene therapies for patients with cancer, viral infections and immune mediated diseases. She is especially interested in bone marrow and cord blood transplantation and improving outcomes after such transplant by decreasing infectious complications and preventing relapse. Dr. Bollard also has a specific interest in targeting viral infections in immune-suppressed patient populations, including individuals living with the human immunodeficiency virus.

Wilm's Tumor

PRAME-specific T cell product may facilitate rapid treatment in cancer settings

Wilms Tumor

PRAME is a cancer-testis antigen that plays a role in cancer cell proliferation and survival and is overexpressed in many human malignancies, including Wilms tumor. “Wilms Tumor (Nephroblastoma)” by euthman is licensed under CC BY 2.0.

Generated preferentially expressed antigen in melanoma (PRAME)-specific T cells from healthy donors can kill PRAME-expressing tumor cells in vitro, researchers at Children’s National Hospital found. Several novel epitopes, which are antigens that are recognized by the immune system, were also identified for enhanced matching, making this a potential therapeutic option for a broader patient group, according to a study published in Cytotherapy.

PRAME is a cancer-testis antigen that plays a role in cancer cell proliferation and survival and is overexpressed in many human malignancies, including melanoma, leukemia, sarcoma, renal cell cancer and Wilms tumor. PRAME also acts as a foreign substance in the body that can trigger the immune system by activating T cells, making it a good target for anticancer immunotherapy — especially for immunocompromised patients.

“The development of an effective off-the-shelf adoptive T-cell therapy for patients with relapsed or refractory cancers expressing PRAME antigen requires the identification of epitopes essential to the adaptive immune response, which are presented by major histocompatibility complex (MHC) class I and II, and are then recognized by the manufactured PRAME-specific T cell product,” said Amy Hont, M.D., oncologist for the Center for Cancer and Immunology Research at Children’s National Hospital. “We, therefore, set out to extend the repertoire of HLA-restricted PRAME peptide epitopes beyond the few already characterized and demonstrate the cytotoxic activity of PRAME-specific T cells to tumor cells known to express PRAME.”

Immunotherapy options for pediatric patients with high-risk malignancies, especially solid tumors, are few. Tumor-associated antigen-specific T cells (TAA-T) offer a therapeutic option for these patients, and Children’s National is building upon the success of the ongoing clinical trials to optimize this therapy and improve the treatment of our patients.

“These findings will also benefit patients because it better informs the pre-clinical studies of third party TAA-T to treat high-risk malignancies, so that we can move more quickly and safely to clinical trials,” said Dr. Hont.

Stanojevic et al. describes that the T-cell products killed partially HLA-matched tumors, and that this enhanced disintegration of tumor cells compared with non-specific T cells suggests an anti-tumor potential for a clinical trial evaluation to determine the safety and efficacy. Further research about the PRAME-specific T cells will help inform a treatment alternative for patients with solid tumors in the future.

The researchers generated a PRAME-specific T cell bank from healthy donor cells and demonstrated anti-tumor cytolytic activity against tumor lines partially HLA-matched to the T cells and known to express PRAME. By using epitope mapping, they identified several novel epitopes restricted to MHC class I or MHC class II to further inform HLA matching.

“Defining PRAME-specific T cells beyond HLA epitopes could be useful when developing T-cell therapies for worldwide application,” Stanojevic et al. write. “Moreover, creating off-the-shelf products has many potential advantages since such products are readily available for the treatment of patients with aggressive disease or patients for whom an autologous product cannot be manufactured.”

Additional authors from Children’s National are Maja Stanojevic, M.D., Ashley Geiger, M.S., Samuel O’Brien, Robert Ulrey, M.S., Melanie Grant, Ph.D., Anushree Datar, M.S., Ping-Hsien Lee, Ph.D., Haili Lang, M.D., Conrad R.Y. Cruz, M.D., Ph.D.,  Patrick J. Hanley, Ph.D., A. John Barrett, M.D, Michael D. Keller, M.D., and Catherine M. Bollard, M.D., M.B.Ch.B.

t-cells attacking cancer cell

Children’s National spin-out cell therapy company receives funding

t-cells attacking cancer cell

Ongoing efforts by researchers at Children’s National Hospital to improve T-cell therapies have led to a spin-out company MANA Therapeutics which has announced a $35 million Series A financing. MANA is a clinical stage company creating nonengineered, allogeneic and off-the-shelf cell therapies that target multiple cancer antigens. Its EDIFY™ platform aims to educate T-cells that target multiple target multiple cell surface and intracellular tumor-associated antigens across a broad range of liquid and solid tumors, with an initial focus on relapsed acute myeloid leukemia (AML).

MANA was founded in 2017, and was based on the research and human proof-of-concept clinical trials conducted by Catherine Bollard, M.D., M.B.Ch.B., Conrad Russell Y. Cruz, M.D., Ph.D., Patrick Hanley, Ph.D. and other investigators at Children’s National along with their colleagues at Johns Hopkins Medical Center. The trials demonstrated safety and anti-tumor activity of MANA’s approach, and Children’s National provided an exclusive license to MANA to further develop this promising technology into commercial products in the field of immuno-oncology.

MANA Therapeutics recruited an experienced leadership team from industry including Martin B. Silverstein, M.D., president and CEO, who is a former senior executive at Gilead Sciences when they acquired Kite Pharma, one of the leading cell therapy companies, as well as Madhusudan V. Peshwa, Ph.D., chief technology officer, who joined from GE Health Care where he had been Chief Technology Officer and Global Head of R&D for Cell and Gene Therapies.

“MANA is building upon the strong foundational science established at Children’s National with a unique approach that promises to produce off-the-shelf allogeneic therapies that do not compromise on safety or efficacy,” said Marc Cohen, co-founder and executive chairman of MANA Therapeutics. “I look forward to continuing to support the MANA team as they advance their internal pipeline for the treatment of AML and select solid tumors, and expand the potential of EDIFY through strategic partnerships focused on new target antigens and cancer types.”

An international leader in the immunotherapy field, Dr. Bollard was an early believer in the potential of immune cell therapies to dramatically improve the treatment of patients with cancer and patients with life-threatening viral infections. Recently, she and her team at the Children’s National Center for Cancer and Immunology Research published findings in Blood showing T-cells taken from the blood of people who recovered from a COVID-19 infection can be successfully multiplied in the lab and maintain the ability to effectively target proteins that are key to the virus’s function.

“Over the past decade we have seen tremendous progress in cancer research and treatment and are beginning to unlock the potential of cell therapy for a variety of tumor types,” said Dr. Bollard. “The human proof-of-concept trials conducted by my team and colleagues showed potential for a nonengineered approach to educating T-cells to attack multiple tumor antigens, which MANA is expanding even further through refinement of the manufacturing process for an allogeneic product and application to a broader set of antigens in a variety of clinical indications and settings.”

Read more about how the Series A funding will enable rapid progress with MANA’s programs.

Lee Beers

Lee Beers, M.D., F.A.A.P, begins term as AAP president

Lee Beers

“The past year has been a stark reminder about the importance of partnership and working together toward common goals,” says Dr. Beers. “I am humbled and honored to be taking on this role at such a pivotal moment for the future health and safety of not only children, but the community at large.”

Lee Savio Beers, M.D., F.A.A.P., medical director of Community Health and Advocacy at the Child Health Advocacy Institute (CHAI) at Children’s National Hospital, has begun her term as president of the American Academy of Pediatrics (AAP). The AAP is an organization of 67,000 pediatricians committed to the optimal physical, mental and social health and well-being for all children – from infancy to adulthood.

“The past year has been a stark reminder about the importance of partnership and working together toward common goals,” says Dr. Beers. “I am humbled and honored to be taking on this role at such a pivotal moment for the future health and safety of not only children, but the community at large.”

Dr. Beers has pledged to continue AAP’s advocacy and public policy efforts and to further enhance membership diversity and inclusion. Among her signature issues:

  • Partnering with patients, families, communities, mental health providers and pediatricians to co-design systems to bolster children’s resiliency and to alleviate growing pediatric mental health concerns.
  • Continuing to support pediatricians during the COVID-19 pandemic with a focus on education, pediatric practice support, vaccine delivery systems and physician wellness.
  • Implementation of the AAP’s Equity Agenda and Year 1 Equity Workplan.

Dr. Beers is looking forward to continuing her work bringing together the diverse voices of pediatricians, children and families as well as other organizations to support improving the health of all children.

“Dr. Beers has devoted her career to helping children,” says Kurt Newman, M.D., president and chief executive officer of Children’s National. “She has developed a national advocacy platform for children and will be of tremendous service to children within AAP national leadership.”

Read more about Dr. Beer’s career and appointment as president of the AAP.

Research & Innovation Campus

Boeing gives $5 million to support Research & Innovation Campus

Research & Innovation Campus

Children’s National Hospital announced a $5 million gift from The Boeing Company that will help drive lifesaving pediatric discoveries at the new Children’s National Research & Innovation Campus.

Children’s National Hospital announced a $5 million gift from The Boeing Company that will help drive lifesaving pediatric discoveries at the new Children’s National Research & Innovation Campus. The campus, now under construction, is being developed on nearly 12 acres of the former Walter Reed Army Medical Center. Children’s National will name the main auditorium in recognition of Boeing’s generosity.

“We are deeply grateful to Boeing for their support and commitment to improving the health and well-being of children in our community and around the globe,” said Kurt Newman, M.D., president and CEO of Children’s National “The Boeing Auditorium will help the Children’s National Research & Innovation campus become the destination for discussion about how to best address the next big healthcare challenges facing children and families.”

The one-of-a-kind pediatric hub will bring together public and private partners for unprecedented collaborations. It will accelerate the translation of breakthroughs into new treatments and technologies to benefit kids everywhere.

“Children’s National Hospital’s enduring mission of positively impacting the lives of our youngest community members is especially important today,” said Boeing President and CEO David Calhoun. “We’re honored to join other national and community partners to advance this work through the establishment of their Research & Innovation Campus.”

Children’s National Research & Innovation Campus partners currently include Johnson & Johnson Innovation – JLABS, Virginia Tech, the National Institutes of Health (NIH), Food & Drug Administration (FDA), U.S. Biomedical Advanced Research and Development Authority (BARDA), Cerner, Amazon Web Services, Microsoft, National Organization of Rare Diseases (NORD) and local government.

The 3,200 square-foot Boeing Auditorium will be the focal point of the state-of-the-art conference center on campus. Nationally renowned experts will convene with scientists, medical leaders and diplomats from around the world to foster collaborations that spur progress and disseminate findings.

Boeing’s $5 million commitment deepens its longstanding partnership with Children’s National. The company has donated nearly $2 million to support pediatric care and research at Children’s National through Chance for Life and the hospital’s annual Children’s Ball. During the coronavirus pandemic, Boeing fabricated and donated 2,000 face shields to help keep patients and frontline care providers at Children’s National safe.

Catherine Bollard

Catherine Bollard, M.D., M.B.Ch.B., named next editor-in-chief of Blood Advances

Catherine Bollard

“As editor-in-chief, I will aim to capture new developments in the hematology field, including immunology, immunotherapy, cell therapy, gene and cell therapy and transplant,” said Dr. Bollard.

The American Society of Hematology (ASH) has selected Catherine Bollard, M.D., M.B.Ch.B., director of the Center for Cancer and Immunology Research at the Children’s National Research Institute as the next editor-in-chief of its journal Blood Advances.

Blood Advances is a peer-reviewed online open access journal published by ASH that covers the latest developments in basic, translational and clinical hematology. Dr. Bollard’s term as editor-in-chief will begin in September 2021. She was selected by the ASH Executive Committee after a competitive international search.

Blood Advances has a broad presence, a large and growing number of manuscript submissions, and an engaged readership,” said Dr. Bollard. “I am so looking forward to continuing to build and strengthen the journal as its editor-in-chief.”

Since its launch in 2016, Blood Advances has taken advantage of its digital, open-access publication model to emphasize multimedia and a rapid, continuous publication format. Under the leadership of founding editor-in-chief Robert Negrin, M.D., of Stanford University, the peer-reviewed journal has pioneered new means of interactive, collaborative discussion and achieved an impact factor of 4.910.

“As editor-in-chief, I will aim to capture new developments in the hematology field, including immunology, immunotherapy, cell therapy, gene and cell therapy and transplant,” said Dr. Bollard. Her vision for the future of Blood Advances also includes further expansion of the journal’s global reach as well as continued efforts to recruit an editorial team representing geographic, ethnic and gender diversity.

“We have tremendous opportunities for growth, and I think in order to grow we must consider what readers want, how we can provide quality service for authors and reviewers, and how we can establish our own identity as a journal,” she said.

Dr. Bollard is a hematologist whose research interests include developing cell and gene therapies for patients with cancer and underlying immune deficiencies. Recognized as a national and international leader in the bone marrow transplant, immunology and immunotherapy space, Dr. Bollard has an expansive understanding of cancer, immune deficiencies and viral infections in pediatric and adult patients.

In her role as director of the Center for Cancer and Immunology Research at Children’s National Hospital, she works to establish clinical and research programs focused on developing and bringing novel cell therapies from bench to bedside.

Blood Advances is an important hub for hypothesis-generating papers, pilot studies and case reports, commentaries and other educational materials of interest to hematologists everywhere,” said ASH President Stephanie Lee, M.D., of Fred Hutchinson Cancer Research Center. “I am confident that Dr. Bollard will continue leveraging the journal’s unique digital platform to maintain its tradition of excellence as she executes her vision as editor-in-chief. I look forward to seeing how the journal evolves under her leadership.”

coronavirus

T-cells show promise to protect vulnerable patients from COVID-19 infection

coronavirus

Children’s National Hospital immunotherapy experts have found that T-cells taken from the blood of people who recovered from a COVID-19 infection can be successfully multiplied in the lab and maintain the ability to effectively target proteins that are key to the virus’s function.

Children’s National Hospital immunotherapy experts have found that T-cells taken from the blood of people who recovered from a COVID-19 infection can be successfully multiplied in the lab and maintain the ability to effectively target proteins that are key to the virus’s function. Their findings were published Oct. 26, 2020, in Blood.

“We found that many people who recover from COVID-19 have T-cells that recognize and target viral proteins of SARS-CoV-2, giving them immunity from the virus because those T-cells are primed to fight it,” says Michael Keller, M.D., a pediatric immunology specialist at Children’s National Hospital, who led the study. “This suggests that adoptive immunotherapy using convalescent T-cells to target these regions of the virus may be an effective way to protect vulnerable people, especially those with compromised immune systems due to cancer therapy or transplantation.”

Based on evidence from previous phase 1 clinical trials using virus-targeting T-cells “trained” to target viruses such as Epstein-Barr virus, the researchers in the Cellular Therapy Program at Children’s National hypothesized that the expanded group of COVID-19 virus-targeting T-cells could be infused into immunocompromised patients, helping them build an immune response before exposure to the virus and therefore protecting the patient from a serious or life-threatening infection.

“We know that patients who have immune deficiencies as a result of pre-existing conditions or following bone marrow or solid organ transplant are extremely vulnerable to viruses like SARS-CoV-2,” says Catherine Bollard, M.D., M.B.Ch.B., senior author of the study and director of the novel cell therapies program and the Center for Cancer and Immunology Research at Children’s National. “We’ve seen that these patients are unable to easily clear the virus on their own, and that can prevent or delay needed treatments to fight cancer or other diseases. This approach could serve as a viable option to protect or treat them, especially since their underlying conditions may make vaccines for SARS-CoV-2 unsafe or ineffective.”

The T-cells were predominantly grown from the peripheral blood of donors who were seropositive for SARS-CoV-2. The study also identified that SARS-CoV-2 directed T-cells have adapted to predominantly target specific parts of the viral proteins found on the cell membrane, revealing new ways that the immune system responds to COVID-19 infection.

Current vaccine research focuses on specific proteins found mainly on the “spikes” of the coronavirus SARS-CoV-2. The finding that T-cells are successfully targeting a membrane protein instead may add another avenue for vaccine developers to explore when creating new therapeutics to protect against the virus.

“This work provides a powerful example of how both scientific advances and collaborative relationships developed in response to a particular challenge can have broad and unexpected impacts on other areas of human health,” says Brad Jones, Ph.D., an associate professor of immunology in medicine in the Division of Infectious Diseases at Weill Cornell Medicine and co-author on the study, whose lab focuses on HIV cure research. “I began working with Dr. Bollard’s team several years ago out of our shared interest in translating her T-cell therapy approaches to HIV. This put us in a position to quickly team up to help develop the approach for COVID-19.”

The Cellular Therapy Program is now seeking approval from the U.S. Food and Drug Administration for a phase 1 trial that will track safety and effectiveness of using COVID-19-specific T-cells to boost the immune response in patients with compromised immune systems, particularly for patients after bone marrow transplant.

mother measuring sick child's temperature

Connections between Kawasaki disease and MIS-C

mother measuring sick child's temperature

A new review article enumerates some key similarities and differences between MIS-C and Kawasaki disease.

Since May 2020, there has been some attention in the general public and the news media to a specific constellation of symptoms seen in children with COVID-19 or who have been exposed to COVID-19. For a time, headlines even called it a “Kawasaki-like” disease. At first glance, both the symptoms and the effective treatments are remarkably similar. However, a new review published in Trends in Cardiovascular Medicine finds that under closer scrutiny, the two conditions have some interesting differences as well.

“At the beginning of this journey, we thought we might be missing actual cases of Kawasaki disease because we identified a few patients who presented late and developed coronary artery abnormalities,” says Ashraf Harahsheh, M.D., senior author of the review article, “Multisystem inflammatory syndrome in children: Is there a linkage to Kawasaki disease?” and a cardiologist at Children’s National Hospital. “But as time passed, children exposed to COVID-19 started to present with a particular constellation of symptoms that actually had some important similarities and distinctions from Kawasaki.”

Similarities between Kawasaki disease and MIS-C

Both disease patterns seem to have a common trigger that provokes the inflammatory cascade reaction in genetically susceptible children, the authors write. However, there is also early evidence that children with each disease have different genetic markers, meaning different populations are genetically susceptible to each disease.

Additionally, the authors found that the massive activation of pro-inflammatory cytokines seen in MIS-C, also known as a “cytokine storm,” overlaps with a similar occurrence seen in Kawasaki disease, adult COVID-19 patients, toxic shock syndrome and some other viral infections.

Primary differences between Kawasaki disease and MIS-C

Overall, when compared to Kawasaki disease, children with MIS-C tend to:

  • Present at an older age
  • Have a more profound form of inflammation
  • Have more gastrointestinal manifestation
  • Show different laboratory findings
  • Have greater risk of left ventricle dysfunction and shock

Further study of both Kawasaki and MIS-C needed

Despite noted differences, the authors are also careful to credit the documented similarities between Kawasaki disease and MIS-C as a key to the quick identification of the new syndrome in children. The study of Kawasaki disease also gave clinicians a valid basis to begin developing diagnostic recommendations and treatment protocols.

The review’s first author Yue-Hin Loke, M.D., who is also a cardiologist at Children’s National, says, “The quick recognition of MIS-C is only possible because of meticulous research conducted by Dr. Tomisaku Kawasaki, who recently passed away on June 5th, 2020. Even though some aspects of both are still shrouded in mystery, the previous research and clinical advancements made in Kawasaki disease set the stage for our immediate response to MIS-C.”

“Previous research provided key information for cardiologists facing this new syndrome, including the necessity of routine echocardiograms to watch for coronary artery abnormalities (CAAs) and for use of  intravenous immunoglobulin (IVIG) to mitigate  the development of CAAs,” says Charles Berul, M.D., chief of Cardiology at Children’s National and a co-author. “Both of these factors have played a key role in reducing the mortality of MIS-C to almost zero.”

The authors note that more research is needed to understand both Kawasaki disease and the specifics of MIS-C, but that what is learned about the mechanisms of one can and should inform study and treatment of the other. And in the meantime, caution and continued surveillance of these patients, especially with respect to coronary artery and myocardial function, will continue to improve the long-term outcomes for both syndromes.

US News Badges

Children’s National ranked a top 10 children’s hospital and No. 1 in newborn care nationally by U.S. News

US News Badges

Children’s National Hospital in Washington, D.C., was ranked No. 7 nationally in the U.S. News & World Report 2020-21 Best Children’s Hospitals annual rankings. This marks the fourth straight year Children’s National has made the list, which ranks the top 10 children’s hospitals nationwide.

In addition, its neonatology program, which provides newborn intensive care, ranked No.1 among all children’s hospitals for the fourth year in a row.

For the tenth straight year, Children’s National also ranked in all 10 specialty services, with seven specialties ranked in the top 10.

“Our number one goal is to provide the best care possible to children. Being recognized by U.S. News as one of the best hospitals reflects the strength that comes from putting children and their families first, and we are truly honored,” says Kurt Newman, M.D., president and CEO of Children’s National Hospital.

“This year, the news is especially meaningful, because our teams — like those at hospitals across the country — faced enormous challenges and worked heroically through a global pandemic to deliver excellent care.”

“Even in the midst of a pandemic, children have healthcare needs ranging from routine vaccinations to life-saving surgery and chemotherapy,” said Ben Harder, managing editor and chief of Health Analysis at U.S. News. “The Best Children’s Hospitals rankings are designed to help parents find quality medical care for a sick child and inform families’ conversations with pediatricians.”

The annual rankings are the most comprehensive source of quality-related information on U.S. pediatric hospitals. The rankings recognize the nation’s top 50 pediatric hospitals based on a scoring system developed by U.S. News. The top 10 scorers are awarded a distinction called the Honor Roll.

The bulk of the score for each specialty service is based on quality and outcomes data. The process includes a survey of relevant specialists across the country, who are asked to list hospitals they believe provide the best care for patients with the most complex conditions.

Below are links to the seven Children’s National specialty services that U.S. News ranked in the top 10 nationally:

The other three specialties ranked among the top 50 were cardiology and heart surgery, gastroenterology and gastro-intestinal surgery, and urology.

Vittorio Gallo and Mark Batshaw

Children’s National Research Institute releases annual report

Vittorio Gallo and Marc Batshaw

Children’s National Research Institute directors Vittorio Gallo, Ph.D., and Mark Batshaw, M.D.

The Children’s National Research Institute recently released its 2019-2020 academic annual report, titled 150 Years Stronger Through Discovery and Care to mark the hospital’s 150th birthday. Not only does the annual report give an overview of the institute’s research and education efforts, but it also gives a peek in to how the institute has mobilized to address the coronavirus pandemic.

“Our inaugural research program in 1947 began with a budget of less than $10,000 for the study of polio — a pressing health problem for Washington’s children at the time and a pandemic that many of us remember from our own childhoods,” says Vittorio Gallo, Ph.D., chief research officer at Children’s National Hospital and scientific director at Children’s National Research Institute. “Today, our research portfolio has grown to more than $75 million, and our 314 research faculty and their staff are dedicated to finding answers to many of the health challenges in childhood.”

Highlights from the Children’s National Research Institute annual report

  • In 2018, Children’s National began construction of its new Research & Innovation Campus (CNRIC) on 12 acres of land transferred by the U.S. Army as part of the decommissioning of the former Walter Reed Army Medical Center campus. In 2020, construction on the CNRIC will be complete, and in 2012, the Children’s National Research Institute will begin to transition to the campus.
  • In late 2019, a team of scientists led by Eric Vilain, M.D., Ph.D., director of the Center for Genetic Medicine Research, traveled to the Democratic Republic of Congo to collect samples from 60 individuals that will form the basis of a new reference genome data set. The researchers hope their project will generate better reference genome data for diverse populations, starting with those of Central African descent.
  • A gift of $5.7 million received by the Center for Translational Research’s director, Lisa Guay-Woodford, M.D., will reinforce close collaboration between research and clinical care to improve the care and treatment of children with polycystic kidney disease and other inherited renal disorders.
  • The Center for Neuroscience Research’s integration into the infrastructure of Children’s National Hospital has created a unique set of opportunities for scientists and clinicians to work together on pressing problems in children’s health.
  • Children’s National and the National Institute of Allergy and Infectious Diseases are tackling pediatric research across three main areas of mutual interest: primary immune deficiencies, food allergies and post-Lyme disease syndrome. Their shared goal is to conduct clinical and translational research that improves what we know about those conditions and how we care for children who have them.
  • An immunotherapy trial has allowed a little boy to be a kid again. In the two years since he received cellular immunotherapy, Matthew has shown no signs of a returning tumor — the longest span of time he’s been tumor-free since age 3.
  • In the past 6 years, the 104 device projects that came through the National Capital Consortium for Pediatric Device Innovation accelerator program raised $148,680,256 in follow-on funding.
  • Even though he’s watched more than 500 aspiring physicians pass through the Children’s National pediatric residency program, program director Dewesh Agrawal, M.D., still gets teary at every graduation.

Understanding and treating the novel coronavirus (COVID-19)

In a short period of time, Children’s National Research Institute has mobilized its scientists to address COVID-19, focusing on understanding the virus and advancing solutions to ameliorate the impact today and for future generations. Children’s National Research Institute Director Mark Batshaw, M.D., highlighted some of these efforts in the annual report:

  • Eric Vilain, M.D., Ph.D., director of the Center for Genetic Medicine Research, is looking at whether or not the microbiome of bacteria in the human nasal tract acts as a defensive shield against COVID-19.
  • Catherine Bollard, M.D., MBChB, director of the Center for Cancer and Immunology Research, and her team are seeing if they can “train” T cells to attack the invading coronavirus.
  • Sarah Mulkey, M.D., Ph.D., an investigator in the Center for Neuroscience Research and the Fetal Medicine Institute, is studying the effects of, and possible interventions for, coronavirus on the developing brain.

You can view the entire Children’s National Research Institute academic annual report online.

Vote for STAT Madness

It’s a three-peat! Children’s National again competes in STAT Madness

Vote for STAT Madness

Children’s National Hospital collects patients’ blood, extracts T-cells and replicates them in the presence of specific proteins found on cancer cells which, in essence, teaches the T-cells to target specific tumor markers. Training the T-cells, growing them to sufficient quantities and ensuring they are safe for administration takes weeks. But when patients return to the outpatient clinic, their T-cell infusion lasts just a few minutes.

For the third consecutive year, Children’s National was selected to compete in STAT Madness, an annual bracket-style competition that chooses the year’s most impactful biomedical innovation by popular vote. Children’s entry, “Immunotherapy of relapsed and refractory solid tumors with ex vivo expanded multi-tumor associated antigen specific cytotoxic T lymphocytes,” uses the body’s own immune system to attack and eliminate cancer cells in pediatric and adult patients with solid tumor malignancies.

In 2018, Children’s first-ever STAT Madness entry advanced through five brackets in the national competition and, in the championship round, finished second. That innovation, which enables more timely diagnoses of rare diseases and common genetic disorders, helping to improve kids’ health outcomes around the world, also was among four “Editor’s Pick” finalists, entries that spanned a diverse range of scientific disciplines.

An estimated 11,000 new cases of pediatric cancer were diagnosed in children 14 and younger in the U.S. in 2019. And, when it comes to disease, cancer remains the leading cause of death among children, according to the National Institutes of Health. An enterprising research team led by Children’s National faculty leveraged T-cells – essential players in the body’s immune system – to treat pediatric and adult patients with relapsed or refractory solid tumors who had exhausted all other therapeutic options.

“We’re using the patient’s own immune system to fight their cancer, rather than more traditional chemotherapy drugs,” says Catherine M. Bollard, M.D., director of the Center for Cancer & Immunology Research at Children’s National and co-senior author of the study. “It’s more targeted and less toxic to the patient. These T-cells home in on any cancer cells that might be in the body, allowing healthy cells to continue to grow,” Dr. Bollard adds.

That means patients treated in the Phase I, first-in-human trial didn’t lose their hair and weren’t hospitalized for the treatment. After a quick clinical visit for their treatment, they returned to normal activities, like school, with good energy levels.

“With our specially trained T-cell therapy, many patients who previously had rapidly progressing disease experienced prolonged disease stabilization,” says Holly J. Meany, M.D., a Children’s National oncologist and the study’s co-senior author. “Patients treated at the highest dose level showed the best clinical outcomes, with a six-month, progression-free survival of 73% after tumor-associated antigen cytotoxic T-cell (TAA-T) infusion, compared with 38% with their immediate prior therapy.”

The multi-institutional team published their findings from the study online July 29, 2019, in the Journal of Clinical Oncology.

“Our research team and our parents are delighted that some patients treated in our study continue to do well following T-cell therapy without additional treatment. In some cases, two years after treatment, patients do not appear to have active disease and are maintaining an excellent quality of life,” says Amy B. Hont, M.D., the study’s lead author. “One of these was a patient whose parents were told his only other option was palliative care. Our innovation gives these families new hope,” Dr. Hont adds.

The 2020 STAT Madness #Core64 bracket opened March 2, and the champion will be announced April 6.

In addition to Drs. Hont, Meany and Bollard, Children’s National co-authors include C. Russell Cruz, M.D., Ph.D., Robert Ulrey, MS, Barbara O’Brien, BS, Maja Stanojevic, M.D., Anushree Datar, MS, Shuroug Albihani, MS, Devin Saunders, BA, Ryo Hanajiri, M.D., Ph.D., Karuna Panchapakesan, MS, Payal Banerjee, MS, Maria Fernanda Fortiz, BS, Fahmida Hoq, MBBS, MS, Haili Lang, M.D., Yunfei Wang, DrPH, Patrick J. Hanley, Ph.D., and Jeffrey S. Dome, M.D., Ph.D.; and Sam Darko, MS, National Institute of Allergy and Infectious Diseases.

Financial support for the research described in this post was provided by the Children’s National Hospital Heroes Gala, Alex’s Army Foundation, the Children’s National Board of Visitors and Hyundai Hope on Wheels Young Investigator Grant to Support Pediatric Cancer Research, the Children’s National Research Institute Bioinformatics Unit, the Clinical and Translational Science Institute and the National Institutes of Health under award No. UL1-TR001876.

Dr. Kurt Newman in front of the capitol building

Making healthcare innovation for children a priority

Dr. Kurt Newman in front of the capitol building

Recently, Kurt Newman, M.D., president and CEO of Children’s National Hospital, authored an opinion piece for the popular political website, The Hill. In the article, he called upon stakeholders from across the landscape to address the significant innovation gap in children’s healthcare versus adults.

As Chair of the Board of Trustees of the Children’s Hospital Association,  Dr. Newman knows the importance of raising awareness among policy makers at the federal and state level about the healthcare needs of children. Dr. Newman believes that children’s health should be a national priority that is addressed comprehensively. With years of experience as a pediatric surgeon, he is concerned by the major inequities in the advancements of children’s medical devices and technologies versus those for adults. That’s why Children’s National is working to create collaborations, influence policies and facilitate changes that will accelerate the pace of pediatric healthcare innovation for the benefit of children everywhere. One way that the hospital is tackling this challenge is by developing the Children’s National Research & Innovation Campus, which will be the nation’s first innovation campus focused on pediatric research.

Research & Innovation Campus

Children’s National welcomes Virginia Tech to its new campus

Children’s National Hospital and Virginia Tech create formal partnership that includes the launch of a Virginia Tech biomedical research facility within the new Children’s National Research & Innovation Campus.

Children’s National Hospital and Virginia Tech recently announced a formal partnership that will include the launch of a 12,000-square-foot Virginia Tech biomedical research facility within the new Children’s National Research & Innovation Campus. The campus is an expansion of Children’s National that is located on a nearly 12-acre portion of the former Walter Reed Army Medical Center in Washington, D.C. and is set to open its first phase in December 2020. This new collaboration brings together Virginia Tech, a top tier academic research institution, with Children’s National, a U.S. News and World Report top 10 children’s hospital, on what will be the nation’s first innovation campus focused on pediatric research.

Research & Innovation Campus

“Virginia Tech is an ideal partner to help us deliver on what we promised for the Children’s National Research & Innovation Campus – an ecosystem that enables us to accelerate the translation of potential breakthrough discoveries into new treatments and technologies,” says Kurt Newman, M.D., president and CEO, Children’s National. “Our clinical expertise combined with Virginia Tech’s leadership in engineering and technology, and its growing emphasis on biomedical research, will be a significant advance in developing much needed treatment and cures to save children’s lives.”

Earlier this year, Children’s National announced a collaboration with Johnson & Johnson Innovation LLC to launch JLABS @ Washington, DC at the Research & Innovation Campus. The JLABS @ Washington, DC site will be open to pharmaceutical, medical device, consumer and health technology companies that are aiming to advance the development of new drugs, medical devices, precision diagnostics and health technologies, including applications in pediatrics.

“We are proud to welcome Virginia Tech to our historic Walter Reed campus – a campus that is shaping up to host some of the top minds, talent and innovation incubators in the world,” says Washington, D.C. Mayor Muriel Bowser. “The new Children’s National Research & Innovation Campus will exemplify why D.C. is the capital of inclusive innovation – because we are a city committed to building the public and private partnerships necessary to drive discoveries, create jobs, promote economic growth and keep D.C. at the forefront of innovation and change.”

Faculty from the Children’s National Research Institute and the Fralin Biomedical Research Institute at Virginia Tech Carilion (VTC) have worked together for more than a decade, already resulting in shared research grants, collaborative publications and shared intellectual property. Together, the two institutions will now expand their collaborations to develop new drugs, medical devices, software applications and other novel treatments for cancer, rare diseases and other disorders.

“Joining with Children’s National in the nation’s capital positions Virginia Tech to improve the health and well-being of infants and children around the world,” says Virginia Tech President Tim Sands, Ph.D. “This partnership resonates with our land-grant mission to solve big problems and create new opportunities in Virginia and D.C. through education, technology and research.”

The partnership with Children’s National adds to Virginia Tech’s growing footprint in the Washington D.C. region, which includes plans for a new graduate campus in Alexandria, Va. with a human-centered approach to technological innovation. Sands said the proximity of the two locations – just across the Potomac – will enable researchers to leverage resources, and will also create opportunities with the Virginia Tech campus in Blacksburg, Va. and the Virginia Tech Carilion Health Science and Technology campus in Roanoke, Va.

Carilion Clinic and Children’s National have an existing collaboration for provision of certain specialized pediatric clinical services. The more formalized partnership between Virginia Tech and Children’s National will drive the already strong Virginia Tech-Carilion Clinic partnership, particularly for children’s health initiatives and facilitate collaborations between all three institutions in the pediatric research and clinical service domains.

Children’s National and Virginia Tech will engage in joint faculty recruiting, joint intellectual property, joint training of students and fellows, and collaborative research projects and programs according to Michael Friedlander, Ph.D., Virginia Tech’s vice president for health sciences and technology, and executive director of the Fralin Biomedical Research Institute at VTC.

“The expansion and formalization of our partnership with Children’s National is extremely timely and vital for pediatric research innovation and for translating these innovations into practice to prevent, treat and ultimately cure nervous system cancer in children,” says Friedlander, who has collaborated with Children’s National leaders and researchers for more than 20 years. “Both Virginia Tech and Children’s National have similar values and cultures with a firm commitment to discovery and innovation in the service of society.”

“Brain and other nervous system cancers are among the most common cancers in children (alongside leukemia),” says Friedlander. “With our strength in neurobiology including adult brain cancer research in both humans and companion animals at Virginia Tech and the strength of Children’s National research in pediatric cancer, developmental neuroscience and intellectual disabilities, this is a perfect match.”

The design of the Children’s National Research & Innovation Campus not only makes it conducive for the hospital to strengthen its prestigious partnerships with Virginia Tech and Johnson & Johnson, it also fosters synergies with federal agencies like the Biomedical Advanced Research and Development Authority, which will collaborate with JLABS @ Washington, DC to establish a specialized innovation zone to develop responses to health security threats. As more partners sign on, this convergence of key public and private institutions will accelerate discoveries and bring them to market faster for the benefit of children and adults.

“The Children’s National Research & Innovation Campus pairs an inspirational mission to find new treatments for childhood illness and disease with the ideal environment for early stage companies. I am confident the campus will be a magnet for big ideas and will be an economic boost for Washington DC and the region,” says Jeff Zients, who was appointed chair of the Children’s National Board of Directors effective October 1, 2019. As a CEO and the former director of President Obama’s National Economic Council, Zients says that “When you bring together business, academia, health care and government in the right setting, you create a hotbed for innovation.”

Ranked 7th in National Institutes of Health research funding among pediatric hospitals, Children’s National continues to foster collaborations as it prepares to open its first 158,000-square-foot phase of its Research & Innovation Campus. These key partnerships will enable the hospital to fulfill its mission of keeping children top of mind for healthcare innovation and research while also contributing to Washington D.C.’s thriving innovation economy.