Cancer

Children’s National experts at the 2025 Tandem Meetings

Experts from Children’s National Hospital at the 2025 Tandem Meetings

Nurse Practitioner Sameeya Ahmed-Winston, CPNP, CPHON, was recognized with the APP Lifetime Achievement Award.

Experts from Children’s National Hospital presented and showcased their latest research at the 2025 Tandem Meetings in Hawaii.

This leading global conference on hematopoietic cell transplantation (HCT), cellular therapy and gene therapy brings together top specialists to share groundbreaking discoveries, innovative technologies and the latest scientific advancements shaping the field.

Fellow Henna Butt, MD, won Best Abstract for her research paper – Comparative Analysis of CRISPR-Cas9, Lentiviral Transduction and Base Editing for Sickle Cell Disease Therapy in a Murine Model.

Nurse Practitioner Sameeya Ahmed-Winston, CPNP, CPHON, was recognized with the APP Lifetime Achievement Award.

Additional presenters:

These achievements highlight Children’s National Hospital’s commitment to advancing research and improving treatments for patients with complex conditions. By sharing their expertise on a global stage, these specialists help shape the future of patient care and improve outcomes for children worldwide

Read more highlights from the 2025 Tandem Meetings here.

Q&A with Dr. Rokita: Building bioinformatics infrastructure at the Brain Tumor Institute

Jo Lynne Rokita, PhD, is the director of the new Bioinformatics Core housed within the Brain Tumor Institute at Children’s National Hospital.

Jo Lynne Rokita, PhD, is the director of the new Bioinformatics Core housed within the Brain Tumor Institute at Children’s National Hospital. Dr. Rokita is a cancer genomics leader with 20 years of combined research experience in academia, industry and the government. She’s also a technical and analytical expert in genomics research using microarrays and high-throughput sequencing.

“We are very excited that we were able to recruit Dr. Rokita as director of the Bioinformatics Core Facility,” says Muller Fabbri, MD, PhD, associate center director for Cancer and Immunology Research at Children’s National. “Her Bioinformatics Core will play a central role in providing the Brain Tumor Institute community with unique expertise spanning biology/genetics/genomics and bioinformatics and will propel Children’s National forward as a national and worldwide leader in pediatric brain tumor research.”

Dr. Rokita is overseeing the core’s creation, including bringing both bioinformatics staff and computing infrastructure to the program, which will support the data analysis needs of the institute’s investigators. She recently answered questions about the new core and also talked a little bit about the focus of her own research that will continue at Children’s National.

Q: Why is the Brain Tumor Institute establishing a Bioinformatics Core?

A: Growing the institute’s bioinformatics capabilities was one of the things that leadership wanted to make sure was built into the plan for the record-setting $96 million gift that was received in 2023. There was a clear need among the principal investigators for this type of research support which includes organization, analysis and interpretation of large-scale genetic sequencing and other “-omics” data.

Q: How did you decide to join Children’s National?

A: I was leading a pediatric brain tumor focused bioinformatics team at Children’s Hospital of Philadelphia (CHOP). As a part of the Children’s Brain Tumor Network (CBTN), I worked closely with a collaborator from Children’s National, Brian Rood, MD, medical director of the Brain Tumor Institute. He told me about the opportunity and I was very excited to apply.

Q: How did your previous work prepare you for this role?

A: I’ve spent the past 10 years in the pediatric cancer field with the last six focused on brain tumor research. In my various roles at CHOP, I led multiple large-scale genomic analysis efforts, comprehensive data and methods for which we then provided openly to the community. During my postdoctoral fellowship, these efforts included a large neuroblastoma patient-derived cell line “ENCODE” as well as a resource led in collaboration with multiple institutes and the National Cancer Institute funded by Alex’s Lemonade Stand Foundation (ALSF). We further scaled these efforts to build open analytical platforms to empower researchers to build upon our work doing their own cancer genomic analysis. In collaboration with the Childhood Cancer Data Lab at ALSF, we built the platform that ultimately ballooned into the OpenPedCan includes large amounts of harmonized genomic, epigenomic and proteomic data for patients with pediatric cancer. What’s unique is that the data is all processed in the same way and easily accessible through multiple mechanisms. Researchers can use these data to ask questions about the cancer type they study or genes of interest. For example, genes over-expressed, absent and/or mutated in a specific tumor subtype may lead to a better understanding of how a patient’s cancer may respond to a treatment.

We’ll be bringing some of the workflows we created previously here to Children’s National, and that will allow us to join newly generated internal data with the thousands of data points we’ve already harmonized using these workflows.

Q: Can you give us some examples of how data harmonization benefits the field of pediatric brain tumor research?

A: Harmonizing across institutions and databases will help us increase the number of data points available for study. This is really important for rare types of tumors and are major foci of institute collaborator Adriana Fonseca, MD, and her International Rare Brain Tumor Registry program. The Bioinformatics Core will support data organization and analysis for this effort, which aims to sequence the rarest brain tumors — those that make up between only 3% and 5% of all brain tumors. If all the data is analyzed the same way, we can combine multiple studies to increase our total dataset, which in turn may reveal new biomarkers and new subtypes of those tumors. It is critical that we continue to build these data resources in a way that they can be accessed by everyone doing this work. Having dedicated support systems for these functions will push the research farther, faster.

Q: As this work gets underway, what is the core’s main function?

A: As this initiative gets underway, the Bioinformatics Core’s primary goal is to empower investigators by streamlining and centralizing data analyses. We help researchers transfer sequencing data into secure cloud storage, organize newly generated records and prepare those datasets for in-depth study. Our bioinformatics scientists then perform downstream analyses to address the specific questions posed by each investigator. On the backend, we collaborate with information technology at Children’s National to develop a robust infrastructure that supports these activities efficiently. By offering these services in-house, we aim to ensure our investigators have seamless, comprehensive support—ultimately driving innovation and accelerating research progress.

Q: What is “open science” and why is it important in bioinformatics?

A: One of our big focus areas is open science, meaning our goal is to push data and code out into the community so that researchers can easily reproduce and build upon our findings. I’m excited to bring the principles of open science, code sharing and data sharing to the Bioinformatics Core.

Making resources open makes it easier for teams to work together across institutions and research programs. It is also going to benefit patients because people can reuse the code and move towards cures faster. For example, we try to package an entire manuscript’s code when we provide our data so it’s clear how the analyses were done.

Q: What is your particular research passion?

A: I work in several research areas and with many brilliant collaborators. One of our focus areas is understanding how RNA splicing can contribute to pediatric brain tumors to create a change in a protein. We have recently identified tumor-specific splice events in some pediatric brain tumor types and will be partnering with Dalia Haydar, PharmD, PhD, to create therapeutic approaches to targeting these. We are also developing a user-friendly application for mining the large amount of splicing data in pediatric brain tumors.

Another focus of our lab is understanding how the patient’s host genome (alterations inherent in their blood DNA) influences the tumor’s genetics. For example, we’ve just preprinted a study connecting inherited variants to tumor genetics and patient outcomes.

Finally, we are interested in how differences in race, ethnicity and social determinants of health influence survival and treatment outcomes for children with brain tumors.

I am passionate about data sharing, code reproducibility and promoting open science in general.

Q: Is there any specific reason you decided to focus your work around brain tumors and pediatric brain tumors?

A: My cousin passed away from a brain tumor when I was in high school. They didn’t have molecular diagnosis then, but he had a brainstem glioma, likely a diffuse midline glioma. In graduate school, I studied addiction genetics and became fascinated with the brain and towards the end, cancer. As an alumna of Penn State, I was actively involved in philanthropic events raising money for their Dance MaraTHON supporting children with cancer. I was lucky to land a postdoc at CHOP and lean into subsequent roles which allowed my passion for this field to grow.

Q: Last question — What do you do with your time when you are not studying pediatric brain tumor data?

A: I enjoy being with my family, observing my children learn and grow, and listening to music.

U.S. News & World Report voting

U.S. News & World Report badgeChildren’s National is ranked one of the top 10 pediatric hospitals in the nation by U.S. News & World Report. Our faculty and staff are proud of the impact made on the lives of children and families in our community. Your participation in the U.S. News & World Report annual reputational survey validates the quality of care we provide and reflects the mutual respect and trust we share as healthcare professionals.

How to determine your voting eligibility

Voting for the U.S. News & World Report Best Children’s Hospitals rankings can be done only through Doximity.

To participate, physicians must:

  • Be board-certified and meet the eligibility criteria for the voting categories.
  • For child and adolescent psychologists, your account must be up to date with your specialty and subspecialty correctly marked.
  • Be a credential-verified member of Doximity (you must have an active and claimed Doximity profile).
  • Have all certifications and board documents currently up-to-date in your Doximity profile.

View the full eligibility criteria

How to claim your Doximity profile to vote

  • You have to claim your profile on Doximity.com to participate in the online survey. If you have not yet claimed your Doximity profile, go to Doximity.com, and click “Find My Profile.”
  • Once your profile has been claimed, you must confirm your email address and board certifications.
  • Verified Doximity members will receive an email inviting them to participate in the U.S. News survey.
  • For more information on how to claim your profile, visit Doximity.com

How to update and verify existing Doximity account information

Your Doximity profile must have up-to-date licenses, certifications and board documents.

  • Once you are logged in, your profile will automatically be in “Edit Mode.” You are able to add new items or edit existing information.
  • Update your Doximity profile and ensure your information is current.

Once registered, users wishing to participate in the online survey should:

  • Watch for an email from Doximity about the annual member survey.
  • Even if you don’t see the email, if you are a registered Doximity user, you can still vote by logging in to Doximity.com with your username and password during the voting period.
  • Once logged in, look for a U.S. News graphic or button on the homepage and click on it.
  • The survey asks users to name the hospitals that provide the best care in your respective specialty, without consideration to location or cost. Pediatric specialists will list 10 hospitals. The order in which you list the hospitals does not matter.

Please note: Children’s National Hospital is listed as “Children’s National Hospital Washington, DC” on the survey.

Visit Doximity’s FAQs if you have issues or questions about registration or claiming your profile.

How to cast your vote

In February 2025 when voting opens, all survey-eligible physicians will receive a notification on the Doximity app for Android or iOS. If you do not use the Doximity app, you will receive an email when voting opens.

  1. Log in to your Doximity account at doximity.com or via the mobile app.
  2. Click the Notifications icon or tap the “Submit your Nominations” button on the homepage. You can also search for “U.S. News Best Hospitals”
  3. Select 10 hospitals in your respective specialty that you believe provide the best care in the United States.
  4. Submit your vote

Having technical issues?

If you have difficulty registering with Doximity or completing the survey, please visit Doximity support for assistance.

Vote

The 2025 U.S. News & World Report Best Children’s Hospitals reputation voting will open in mid-February. Look for your Doximity notification to vote.

Expanded partnership with Virginia Tech accelerates pediatric cancer research

boy getting eye exam

The new partnership will advance pediatric health through innovative discoveries and therapies, with an initial focus on pediatric cancers, including brain tumors.

Children’s National Hospital and Virginia Tech are expanding their research partnership, building on a successful collaboration established in 2019. This partnership will advance pediatric health through innovative discoveries and therapies, with an initial focus on pediatric cancers, including brain tumors.

The partnership brings together Children’s National, ranked among the nation’s top pediatric hospitals by U.S. News & World Report, and Virginia Tech, a leading academic research institution. Together, they aim to deliver transformative advancements to enhance outcomes for children facing devastating diagnoses.

The goals of the research-focused partnership include:

  • Accelerating the understanding of the biology, improvements in prevention and treatment of pediatric cancers and other childhood diseases.
  • Developing new diagnostic and therapeutic tools to improve care for children.
  • Training the next generation of scientists and physician-scientists.

What they’re saying

  • “Over the years, our partnership with Virginia Tech has demonstrated the power of combining top-tier research expertise with a shared commitment to improving pediatric health,” said Catherine Bollard, MBChB, MD, senior vice president and chief research officer and director of the Center for Cancer and Immunology Research. “This expansion underscores our belief that by working together, we can accelerate discoveries and develop life-changing therapies for children with cancer and other rare diseases.”
  • “Children’s National Hospital has been an important partner for us in biomedical research and innovation,” said Michael Friedlander, PhD, Virginia Tech vice president for health sciences and technology. “Our collaboration deepened with the launch of Children’s National Research & Innovation Campus in Washington, D.C., and now, as our partnership grows even stronger, we’re poised together to take on some of the biggest challenges in cancer research to contribute to the health of children and adults.”
  • “Partnering with Children’s National connects us to a world-class clinical trial institute that has been a pioneer in treating brain tumors with focused ultrasound technology, and this presents a unique opportunity to help children and families struggling with cancer,” said Cheng-Chia “Fred” Wu, MD, PhD, a member of the Children’s National Brain Tumor Research Institute and a principal investigator in cancer research and faculty member at the Fralin Biomedical Research Institute in Roanoke and in the Virginia Tech Carilion School of Medicine.“I can’t wait to see where this takes us.”

Big picture

The initial focus of the collaboration is pediatric cancers, including brain tumors — among the most challenging childhood diagnoses. By combining Virginia Tech’s leading-edge technology and research infrastructure with Children’s National’s expertise in pediatric care, the organizations aim to make significant strides in understanding these diseases.

An interdisciplinary approach is at the heart of the ongoing strategy. The collaboration first began with the launch of a 12,000-square-foot Virginia Tech biomedical research facility within the Children’s National Research & Innovation Campus, which opened in 2020. Located on a 12-acre portion of the former Walter Reed Army Medical Center in Washington, D.C., the campus was the nation’s first innovation hub focused exclusively on pediatric research.

Optimizing anesthesia practices for children with acute leukemia undergoing lumbar punctures

bottle of propofol with needles

Anesthesia is used in up to 90% of patients, despite repeated propofol exposure being linked to neurocognitive impairment.

Acute leukemia is the most common childhood cancer, with treatment often involving up to 16 routine lumbar punctures (LPs). Anesthesia is used in up to 90% of patients, despite repeated propofol exposure being linked to neurocognitive impairment. In a quality improvement project, researchers from Children’s National Hospital examined variables that could minimize anesthesia time and propofol exposure for patients. The findings, presented at the 56th Congress of the International Society of Paediatric Oncology in Honolulu, HI., found about half of LPs met the goal of 15 minute of anesthetic exposure with significant differences in completion time between anesthesiologists.

The big picture

Researchers analyzed data from 199 LPs performed in the Non-Operating Anesthesia Room (NOAR) over a six-month period from July to December 2023 – including the start to stop time of anesthetic exposure, type of anesthetic, patient age and body mass index (BMI), proceduralist and anesthesiologist. A P-chart established a center line of 52.5% for procedures being completed within 15 minutes.

What’s next

Plan-Do-Study-Act (PDSA) cycles are being performed to align practices between anesthesiologists and identify successful changes with a goal to raise the center line to 75%.

“These findings highlight our commitment to improving care for children with acute leukemia by reducing anesthesia exposure during lumbar punctures,” said Shelby Smith, RN, MSN, CPNP, CPHON, nurse practitioner at Children’s National and the presenting author. “By identifying factors that impact procedure time and implementing targeted improvements, we aim to enhance patient safety and minimize potential risks associated with repeated propofol use.”

Other Children’s National authors include Birte Wistinghausen, MD.

Charging ahead: Researchers develop robotic renal tumor surgery

robotic surgery apparatus

Researchers at Children’s National Hospital are developing supervised autonomous robotic surgery to make expert kidney tumor removal accessible in rural areas, combining robotics, AI and surgeon oversight for safer, more precise outcomes.

Imagine a robot capable of planning and executing the intricate removal of a cancerous kidney tumor — a concept that might sound like science fiction. Yet this groundbreaking work is underway at the Sheikh Zayed Institute (SZI) for Pediatric Surgical Innovation at Children’s National Hospital.

Called Supervised Autonomous Robotic Renal Tumor Surgery (SARRTS), the project aims to prove that a supervised autonomous kidney resection is feasible. Its goal is to enable general surgeons in rural hospitals to oversee robots performing complex resections, democratizing access to specialized surgical care. Backed by a $1 million contract from the Advanced Research Projects Agency for Health (ARPA-H), the initiative represents new opportunities in medical innovation.

“The hope is that, someday, patients will no longer have to travel to major oncology centers to get the best possible surgical outcome when faced with renal tumors,” said Kevin Cleary, PhD, associate director of engineering at SZI. “We hope to combine the precision of robotics with a surgeon’s clinical expertise to create consistently high outcomes.”

The patient benefit

Surgery is a cornerstone of cancer treatment, but access to skilled surgeons remains unevenly distributed nationwide. Autonomous robotic surgery could address this disparity by increasing access to expert-level care, enhancing the precision and consistency of procedures and unlocking new surgical possibilities beyond human surgeons’ capabilities.

Under the initial concept, the SARRTS system will use a combination of CT imaging and 3D mapping from a robot’s RGB-depth camera. While the robot independently plans and executes the incision and tumor resection, the supervising surgeon retains full control, with the ability to approve, modify or halt the procedure at any time — an interplay between human expertise and robotic precision to help ensure safety.

Testing will be conducted on realistic kidney models, called phantoms, which are designed to train and test surgical outcomes. The project aims to validate the feasibility of supervised autonomous tumor resection while advancing technologies that could pave the way for broader applications.

“Robotics and medicine have finally reached a point where we can consider projects requiring this level of complexity,” said Anthony Sandler, MD, senior vice president and surgeon-in-chief at Children’s National and executive director of SZI. By combining autonomous robotics, artificial intelligence and surgical expertise, we can profoundly impact the lives of patients facing life-altering cancer diagnoses.”

Children’s National leads the way

In addition to the kidney surgery initiative, the Children’s National team is pursuing other groundbreaking projects. These include a second ARPA-H contract focused on robotic gallbladder removal and a National Institutes of Health grant to explore robotic hip-pinning, a procedure used to repair fractured hips with pins, screws and plates.

Axel Krieger, PhD, an associate professor of mechanical engineering at Johns Hopkins University, is collaborating closely on the kidney resection and gallbladder projects. The interdisciplinary team believes this state-of-the-art care could be tested and developed within the next decade.

“This particular surgery is complex, and a robot may offer advantages to address difficulties created by patient anatomy and visibility within the surgical field,” said Dr. Sandler. “We can imagine a day – in the not too distant future – when a human and a robotic arm could team up to successfully advance this care.”

This project has been funded in whole with federal funds from ARPA-H under cooperative agreement AY1AX000023.

Children’s National delivers on the promise in 2024

Children's National Hospital's 2023-2024 Academic Annual Report on a tablet

The Children’s National 2023-2024 Academic Annual Report show on a tablet.

Children’s National Hospital has released its 2023-2024 Academic Annual Report, showcasing a year of transformative progress in pediatric medicine. The report highlights achievements across its research centers, institutes and Innovation Ventures, underscoring the hospital’s role as a leader in advancing child health through innovation and collaboration.

“This year’s report reflects the remarkable progress we have made in advancing the frontiers of pediatric medicine,” said Nathan Kuppermann, MD, MPH, Chief Academic Officer and Chair of Pediatrics. “It highlights groundbreaking work across our research centers, institutes, and Innovation Ventures, showcasing the collaborative spirit that drives our mission forward. These achievements underscore our shared commitment to delivering transformative research and the best possible outcomes for children and families.”

Delivering across centers

The report captures the contributions of each of Children’s National’s research centers, each pushing the boundaries of pediatric healthcare:

  • Center for Cancer & Immunology Research (CCIR): Delivering on the promise of cell and gene therapies, offering innovative treatments for pediatric cancers and immune disorders.
  • Center for Genetic Medicine Research (CGMR): Advancing pediatric genetic medicine through interdisciplinary efforts, addressing complex genetic conditions with cutting-edge science.
  • Center for Neuroscience Research (CNR): A year of growth in scientific excellence, advancing the understanding of brain development and neurological conditions.
  • Center for Prenatal, Neonatal & Maternal Health Research (CPHNMR): Revolutionizing neonatal care with its pioneering infant brain health neuromonitoring program.
  • Center for Translational Research (CTR): Facilitating groundbreaking work by new K awardees and driving translational research to bridge the gap between discovery and clinical care.
  • Sheikh Zayed Institute for Pediatric Surgical Innovation (SZI): Leading the way in advanced research projects in pediatric surgery, pushing technological boundaries to improve outcomes for children worldwide.

Taking the lead in innovation through collaboration

Innovation Ventures at Children’s National is advancing pediatric health security, addressing unique challenges with transformative solutions. Meanwhile, the Children’s National Research & Innovation Campus (CNRIC) continues to thrive as a hub for discovery and collaboration, hosting conferences on topics like artificial intelligence in healthcare, cell and gene therapy, and pediatric epilepsy research.

A vision for the future

The report also highlights Children’s National’s focus on integrating cutting-edge technologies like artificial intelligence into its research and clinical practices, as well as addressing global health challenges such as the effects of climate change on children’s health. These efforts reflect the hospital’s commitment to improving outcomes for children everywhere through innovation, teamwork, and forward-thinking leadership.

The 2023-2024 Academic Annual Report serves as a testament to the dedication and expertise of the Children’s National community, showcasing how collaboration and innovation are shaping the future of pediatric healthcare.

AI for good: Children’s National wins global competitions for measuring brain tumors

Children's National Hospital's winning team for the Brain Tumor Segmentation-Africa (BraTS-Africa) challenge

Meet the winners (left to right): Syed M. Anwar, Ph.D., M.S., principal investigator at Children’s National; Daniel Capellan Martin, M.Sc., Polytechnic University of Madrid; Abhijeet Parida, data scientist at Children’s National; and Austin Tapp, Ph.D., postdoctoral research fellow at Children’s National.

Using an award-winning artificial intelligence (AI) algorithm developed at Children’s National Hospital, researchers ranked first in the world in the Brain Tumor Segmentation-Africa (BraTS-Africa) challenge for their approach to identifying different parts of deadly gliomas. The details of their innovative method were recently published on arXiv, a curated research-sharing platform.

“Technology can bridge the gap in healthcare between high- and low-resource countries,” said Marius George Linguraru, D.Phil., M.A., M.Sc., the Connor Family Professor in Research and Innovation and principal investigator in the Sheikh Zayed Institute for Pediatric Surgical Innovation (SZI). “By tailoring methods we created at our hospital to fit the needs of specific regions, such as sub-Saharan Africa, our research helps improve medical imaging and diagnosis in challenging environments.”

Dr. Linguraru was the program chair of the International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) 2024 in Marrakesh, Morocco, the leading global meeting on AI in medical imaging.

Children’s National leads the way

Gliomas are a type of brain tumor with a high death rate and are especially difficult to diagnose in low- and middle-income countries. Given the increased need in Africa, researchers worldwide came together in Morocco to compete over the best way to accurately detect and measure tumors using MRI data and AI.

By applying advanced machine-learning techniques, the researchers adapted tools initially designed for well-resourced settings to work in countries with far fewer.

The study focused on transfer learning, a process in which an AI model is trained in advance on a large number of brain tumor images and then adjusted to work with smaller sets of new data. In this case, the models were adapted to work with local sub-Saharan African data using a strategy to combine different models’ strengths.

When tested, the approach achieved impressive accuracy scores. The Children’s National team, which included a colleague from the Polytechnic University of Madrid, ranked first in the BraTS-Africa 2024 challenge for identifying different parts of gliomas.

“To make the method widely available, the winning algorithm is shared online for others to use and improve upon,” Dr. Linguraru said. “My favorite part of these competitions is how they highlight the way innovation and collaboration can reduce global healthcare inequalities.”

The big picture

Children’s National researchers consistently lead global events using AI and advanced imaging to tackle complex healthcare challenges. In 2023, the team won a global contest to measure pediatric brain tumors at the MICCAI 2023 Conference. This year’s success in the BraTS-Africa challenge builds on this knowledge base and expands its use to adult gliomas.

At the Radiological Society of North America 2024 annual meeting, which drew 50,000 attendees, Zhifan Jiang, Ph.D., a staff scientist in the Precision Medical Imaging Lab at SZI, also won the Cum Laude Award for his scientific poster on applying AI to radiological images to predict severe outcomes for children with brain tumors caused by neurofibromatosis type 1.

“These achievements show how our science is leading the world in using AI for good,” Dr. Linguraru said. “Every day, we’re building on our knowledge of advanced imaging, brain tumors and AI to improve the diagnosis, measurement and treatment of deadly tumors — on a global scale.”

Attendees of the Brain Tumor Segmentation-Africa (BraTS-Africa) challenge

Rewriting the script for sickle cell disease

More than 100,000 Americans have sickle cell disease, an inherited blood disorder that can cause excruciating pain crises and shorter life expectancies.

Children’s National has one of the largest sickle cell programs in the United States. We are pioneering treatments and provide specialized care to about 1,500 patients each year. We participate in clinical trials to improve outcomes, shorten treatment time, reduce complications and minimize the need for opioids and chemotherapy.

Kendric receives care at Children's National.

Kendric receives care at Children’s National.

In recognition of our clinical and research excellence, Children’s National was one of a few U.S. pediatric hospitals selected to offer two promising new FDA-approved gene therapies.

Hematologist Robert Sheppard Nickel, M.D., leads a study to reduce toxicities in bone marrow transplants. “Years of development led to these curative therapies,” Dr. Nickel says. “I hope in the future we can safely cure more children with sickle cell disease.”

“The future looks promising to revolutionize the lives of our patients and make these therapies accessible worldwide,” says Andrew Campbell, M.D., director of our Comprehensive Sickle Cell Disease Program.

Kendric and Nasir find hope

In May 2024 at Children’s National, 12-year-old Kendric of Clinton, Maryland, became the world’s first patient with sickle cell disease to begin a commercially approved gene therapy that could dramatically reduce or even eliminate his pain. It involved extracting his bone marrow stem cells; genetically modifying them in a specialized lab to reduce the risk of sickling; and then, after chemotherapy, infusing them back into his bloodstream.

Expert, compassionate care empowered Kendric to understand the science behind his treatment and chart a path to recovery. “My care team taught me how to deal with my disease and everything that I need to know for the future,” he says. “They gave me hope that I could be cured.”

Nasir and his care team

Nasir and his care team.

Nasir, age 20, spent his childhood waiting to find a match for a stem cell transplant to address his sickle cell disease. Finally, in 2023, at Children’s National, he found an answer in gene therapy to alter his own cells.

Due to painful episodes and the need for frequent blood transfusions, both Kendric and Nasir missed out on a lot of school, important moments with friends and simply being kids. Now, they can explore a world in which patients like themselves can overcome this disease and reclaim their health.

“I have all of this oxygen and energy that came out of nowhere,” Nasir says. “It’s really a new life. I feel reborn.”

“The network of doctors at Children’s National gave us reassurance and lots of hope,” says Kendric’s mom, Deborah. “They made us feel like family. We are in awe of how quickly things moved and how much compassion they have shown us.”

Read more stories like this one in the latest issue of Believe magazine.

Children’s National in the News: 2024

collage of news logosIn 2024, Children’s National Hospital continued to make remarkable strides across diverse areas of pediatric medicine, from groundbreaking technological innovations to critical health advocacy. The following compilation showcases ten significant stories that demonstrate the breadth and depth of the hospital’s impact, as featured in major national news outlets including NBC Nightly News, CNN, The Washington Post, The New York Times, NPR, The Today Show, Healio, and POLITICO. Delve into our 2024 news highlights for more.

1. World’s smallest pacemaker gives new hope to babies with heart defects

Charles Berul, M.D., and a patient family talk about the pill-sized pacemaker that saved the life of Abby, an infant born with deadly heart defects. (NBC Nightly News)

2. ‘A $10 death trip’: Fentanyl is killing teens. Meet one fighting for his life

Sivabalaji Kaliamurthy, M.D., addiction psychiatrist and director of the Addictions Program, spoke to CNN about the impact of drug addiction on teen health and the lack of resources available to treat opioid use disorder. (CNN)

3. Health panel urges interventions for children and teens with high BMI

Susma Vaidya, M.D., M.P.H., associate medical director of the IDEAL Clinic, shared her concerns about childhood obesity treatment recommendations issued today by a leading panel of independent U.S. health experts. (The Washington Post)

4. An Rx for food? Doctor’s offices offer groceries to those in need

Shideh Majidi, M.D., M.S.C.S., and Emily Frymark, clinical dietitian, spoke about how the food pharmacy, created in partnership with the Capital Area Food Bank, benefits patients with diabetes and other chronic conditions. (The Washington Post)

5. First patient begins newly approved sickle cell gene therapy

Kendric Cromer, a 12-year-old boy being treated at Children’s National Hospital, became the first person in the world with sickle cell disease to begin a commercially approved gene therapy that may cure the condition. “This is a big effort,” says David Jacobsohn, M.D., ScM, M.B.A. (The New York Times)

6. ‘We created this problem’: A pediatric surgeon on how gun violence affects children

Mikael Petrosyan, M.D., associate chief of General and Thoracic Surgery, discusses the stress medical staff face when treating young victims of gun violence. (NPR)

7. 7th grade boy rings bell after final round of chemotherapy

Landon, an 11-year-old patient, rang the bell at Children’s National Hospital with family, friends, doctors and nurses cheering after finishing his final round of chemotherapy. (The Today Show)

8. Study: One in three adolescents experience ‘period poverty’

Monika Goyal, M.D., M.S.C.E., pediatric emergency medicine specialist and co-director of the Center for Translational Research, emphasized the need for awareness in addressing period poverty in teenagers and young adults. (Healio)

9. The AI assurance labs are coming

Kolaleh Eskandanian, Ph.D., M.B.A., P.M.P., vice president and chief innovation officer, participates in a panel discussion covering AI data collection, associated risks, reliance and other topics related to artificial intelligence. (POLITICO)

10. First day of a ‘new life’ for a boy with sickle cell

Children’s National patient Kendric Cromer, 12, became one of the first children ever to be treated with a newly approved gene therapy that will free him from the sickle cell disease that has stolen his childhood. (The New York Times)

The best of 2024 from Innovation District

2024 with a lightbulb instead of a zero2024 marked another groundbreaking year for Children’s National Hospital, showcasing remarkable advances across the spectrum of pediatric medicine, research and healthcare innovation. From pioneering surgical procedures to breakthrough artificial intelligence applications, the institution continued to push the boundaries of what’s possible in children’s healthcare. Read on for our list of the most popular articles we published on Innovation District in 2024.

1. Prenatal COVID exposure associated with changes in newborn brain

A study led by researchers at Children’s National Hospital showed that babies born during the COVID-19 pandemic have differences in the size of certain structures in the brain, compared to infants born before the pandemic. The findings suggest that exposure to the coronavirus and being pregnant during the pandemic could play a role in shaping infant brain development.
(3 min. read)

2. Children’s National Hospital again ranked among the best in the nation by U.S. News & World Report

Children’s National Hospital was ranked as a top hospital in the nation by the U.S. News & World Report 2024-25 Best Children’s Hospitals annual rankings. This marks the eighth straight year Children’s National has made the Honor Roll list. The Honor Roll is a distinction awarded to only 10 children’s hospitals nationwide.
(2 min. read)

3. Children’s National performs first ever HIFU procedure on patient with cerebral palsy

In January 2023, a team of multidisciplinary doctors performed the first case in the world of using bilateral high intensity focused ultrasound (HIFU) pallidotomy on Jesus, a 22-year-old patient with dyskinetic cerebral palsy. The procedure is part of a clinical trial led by Chima Oluigbo, M.D., pediatric neurosurgeon at Children’s National Hospital.
(3 min. read)

4. Novel ultrasound device gets FDA breakthrough designation with Children’s National support

A novel ultrasound device developed by Bloom Standard received the Food and Drug Administration’s valued breakthrough device designation with the help of Children’s National Hospital. The device that enables autonomous, hands-free ultrasound scans to be performed anywhere, by any user.
(2 min. read)

5. First-of-its-kind pilot study on the impacts of Lyme disease in pregnancy and infant development

Understanding the effects of Lyme disease on the developing fetal brain is essential to ensure timely prenatal and postnatal treatments to protect the fetus and newborn. In response to this need, Children’s National Hospital is leading a pilot study to establish the groundwork needed for a larger study to determine the effect of in utero exposure to Lyme disease on pregnancy and early childhood neurodevelopmental outcomes.
(3 min. read)

6. Earliest hybrid HLHS heart surgery kids thrive 5 years later

Five years ago, Cayden was born 6 weeks early weighing less than four pounds and at risk of dying from her critical congenital heart disease. Today, she’s a happy five-year-old. Early diagnosis of her hypoplastic right ventricle, double inlet left ventricle and critical coarctation of the aorta allowed for the team at Children’s National Hospital to create a careful plan for safe delivery and to offer an innovative hybrid HLHS surgical approach at the hospital within 24 hours after she was born.
(1 min. read)

7. Wayne J. Franklin, M.D., F.A.C.C., named senior vice president of the Children’s National Heart Center

Children’s National Hospital appointed Wayne J. Franklin, M.D., F.A.C.C., as the new senior vice president (SVP) of the Children’s National Heart Center. In this role, Dr. Franklin oversees the full spectrum of heart care services including cardiac imaging and diagnostics, interventional cardiology, electrophysiology, cardiac anesthesia, cardiac surgery and cardiac intensive care.
(2 min. read)

8. Artificial – and accelerated – intelligence: endless applications to expand health equity

By pioneering artificial intelligence (AI) innovation programs at Children’s National Hospital, Marius George Linguraru, D.Phil., M.A., M.Sc., and the AI experts he leads are ensuring patients and families benefit from a coming wave of technological advances. The team is teaching AI to interpret complex data that could otherwise overwhelm clinicians.
(4 min. read)

9. Evidence review: Maternal mental conditions drive climbing death rate in U.S.

Painting a sobering picture, a research team led by Children’s National Hospital culled years of data demonstrating that maternal mental illness is an under-recognized contributor to the death of new mothers. They called for urgent action to address this public health crisis.
(3 min. read)

10. Nathan Kuppermann, M.D., M.P.H., named chief academic officer and chair of Pediatrics

Children’s National Hospital appointed Nathan Kuppermann, M.D., M.P.H., as its new executive vice president, chief academic officer and chair of Pediatrics. In this role, Dr. Kuppermann oversees research, education and innovation for the Children’s National Research Institute as well as academic and administrative leadership in the Department of Pediatrics at George Washington University School of Medicine & Health Services.
(2 min. read)

11. First global clinical trial achieves promising results for hypochondroplasia

Researchers from Children’s National Hospital presented findings from the first clinical trial of the medication vosoritide for children with hypochondroplasia – a rare genetic growth disorder. During the phase 2 trial, researchers found vosoritide increased the growth rate in children with hypochondroplasia, allowing them to grow on average an extra 1.8 cm per year.
(2 min. read)

12. Pioneering research center aims to revolutionize prenatal and neonatal health

Since its establishment in July 2023, the Center for Prenatal, Neonatal & Maternal Health Research at Children’s National Hospital has gained recognition through high-impact scientific publications, featuring noteworthy studies exploring the early phases of human development.
(3 min. read)

Radon in school: A hidden worry for eastern Pennsylvania students

Kids sitting at desks in school

Some students may be exposed to nearly twice the annual dose of natural background radiation, estimated by the U.S. Nuclear Regulatory Commission at 3.1 mSv (310 mrem).

A Children’s National Hospital researcher teamed up with a high school student from Bethlehem, Pa., to shed light on radon, a silent health risk that may be present in some schools.

They examined radon levels in five eastern Pennsylvania school districts. The neighborhoods surrounding all 37 public schools had average radon levels exceeding the federal action level, or 4.0 pCi/L. According to their findings, the same could be true of the school buildings.

In a new research letter published in JAMA Network Open, researchers found some students may be exposed to nearly twice the annual dose of natural background radiation, estimated by the U.S. Nuclear Regulatory Commission at 3.1 mSv (310 mrem).

An odorless and invisible gas, radon is the leading cause of lung cancer among nonsmokers and the second overall cause of lung cancer nationwide. Its greatest danger lies in prolonged exposure, a risk amplified in school settings where children and teachers spend extensive hours. The U.S. Environmental Protection Agency (EPA) estimates more than 70,000 classrooms have high short-term radon levels.

“This study highlights the urgent need for radon testing in schools,” said Beth Tarini, M.D., M.S., M.B.A., co-director of the Center for Translational Research at Children’s National and the manuscript’s senior author. “Unchecked exposure to radon in these settings could have significant short- and long-term health effects, particularly for children.”

The EPA has found that approximately 20% of schools nationwide have done some testing, and only . In the Washington, D.C., region, Dr. Tarini says testing is often done:

  • The District of Columbia requires public schools to test for radon and publicize the results. If the results are above the federal limit of >4pCi/L, the schools are required to mitigate the risk.
  • Maryland doesn’t require schools to test for radon, but some schools test. The state’s largest school district — Montgomery County Public Schools — has been testing for radon since the late 1980s and retests facilities every five years.
  • In Virginia, the commonwealth requires public schools to test for radon, make the results public and report the results to the state.

Brian Yang, the study’s first author, called for action in Pennsylvania and regions with known radon risks.

“This research underscores the need to test radon levels in schools and, if necessary, mitigate,” said Yang, a senior at Moravian Academy in Bethlehem, Pa. “Addressing this invisible and under-recognized threat should be a public health priority.”

For more details, read the full study — “Estimated Radon Exposure in Eastern Pennsylvania Schools” — in JAMA Network Open.

 

 

Regional powerhouse: Cell and Gene therapy leaders from mid-Atlantic forge connections

Nearly 200 biomedical leaders from Washington, D.C., Maryland, and Virginia gathered at the Children’s National Research & Innovation Campus for the 2nd annual Cell & Gene Therapy Symposium. The event showcased groundbreaking developments in rare disease treatments and underscored the importance of regional collaboration.

“By targeting diseases at the cellular level, we are on the cusp of breakthroughs in cell and gene therapy that will transform medicine,” said Catherine Bollard, M.D., M.B.Ch.B., director of the Center for Cancer and Immunology Research (CCIR) at Children’s National Hospital and a host of the symposium. “Progress will accelerate if we build partnerships beyond our own organizations.”

The big picture

Scientists and clinicians have worked for more than two decades to develop cell and gene therapies aimed at treating diseases on a cellular level. The past few years have been particularly promising as investment in science has led to advancements. Children’s National is at the forefront, as one of the first pediatric hospitals in the world to offer commercial gene therapies for sickle cell disease.

Many more treatments for rare diseases are in development at Children’s National and beyond. Leaders at CCIR are actively building collaborations with companies, academic institutions and enterprises across the mid-Atlantic region to accelerate these efforts.

During the symposium, Eugene Hwang, M.D., chief of Oncology at Children’s National, addressed the urgent need for more effective and less toxic treatments for pediatric brain tumors. He highlighted the potential of combining immunotherapies with innovations like low-intensity focused ultrasound, which can open the blood-brain barrier temporarily to improve drug delivery to tumors.

“With collaboration between the lab and clinic, alongside industry partners and even between hospitals, we can finally make strides I haven’t seen in my entire career,” Dr. Hwang said. “It’s an incredibly inspiring time for all of us.”

Why it matters

Experts from organizations as diverse as MaxCyte, ScaleReady, RoosterBio, PSC Biotech, Qiagen, FujiFilm and the Frederick County Office of Economic Development came together for the daylong conversation.

Michael Friedlander, Ph.D., executive director of the Fralin Biomedical Research Institute at Virginia Tech, emphasized the critical role of regional partnerships in fulfilling the potential of these emerging therapies. He pointed to the collaborative research between Children’s National and Virginia Tech on brain tumors, where bioengineers and cancer researchers are working side-by-side to create new treatments.

“We are now able to begin delivering these leading-edge therapies to patients,” Dr. Friedlander said. “For example, those who live in rural settings often have much less access to such frontline medical innovations. By collaborating with Children’s National and gaining access to urban pediatric populations, as well as patients in our more rural area, we can start to bring these therapies to a much broader audience.”

What’s next

Patrick Hanley, Ph.D., chief and director of the Cellular Therapy Program at Children’s National, observed that other regions in the U.S. are uniting to advance scientific discoveries with the backing of government, academia and industry. He hopes to see similar collaboration across the D.C., Maryland, and Virginia area, known as the DMV. Children’s National is leading an initiative called CHARM – the Capital Health and Mid-Atlantic Regenerative Medicine – to bring regional experts together for webinars, networking events and partnership opportunities.

“There’s significant interest in cell and gene therapy worldwide,” said Dr. Hanley, a symposium host. “I see an even greater interest in creating cell and gene therapy hubs. The time is right for our mid-Atlantic region, and I’m excited to see what unfolds in the next five years.”

Honor bestowed on AeRang Kim, M.D., Ph.D.

 Drs. Wessel, Dome and Kim with Michelle Riley-Brown and the Speight’s On November 1, Children’s National Hospital installed AeRang Kim, M.D., Ph.D., as the first holder of The Lexi Speight Chair in Pediatric Oncology.

Dr. Kim is clinical research director for the Oncology Division within the Cancer and Blood Disorders Center at Children’s National. She is a tenured professor of pediatrics at the George Washington University School of Medicine and Health Sciences.

The big picture

Dr. Kim joins a distinguished group of Children’s National physicians and scientists who hold an endowed chair. Children’s National is grateful to generous donors who altogether have funded 49 professorships.

Professorships support groundbreaking work on behalf of children and their families and foster new discoveries and innovations in pediatric medicine. These appointments carry prestige and honor that reflect the recipient’s achievements and donor’s commitment to advancing and sustaining knowledge.

Why it matters

Since arriving at Children’s National in 2010, Dr. Kim has played a pivotal role in our solid tumor program. She leads the renowned multi-disciplinary Sarcoma Clinic, which includes a comprehensive team of oncologists, nurses, orthopedic surgeons, radiologists, a genetic counselor and a physical therapist. It is one of the few of its kind in the country. Dr. Kim’s dedication and leadership have been instrumental in earning Children’s National recognition as a Sarcoma Alliance Center of Excellence.

Dr. Kim leads clinical trials evaluating new pediatric solid tumor treatments across multiple institutions. She pioneers precision approaches using targeted drugs, advanced devices and cell therapies. Her innovative work attracts numerous grants, including a recent $1.3 million from the Department of Defense.

“The future of cancer treatment is in precision medicine,” says Dr. Kim. “As The Lexi Speight Chair of Pediatric Oncology, I will explore new ways to design clinical trials to accelerate development of new therapies for solid tumors. This could change the paradigm for pediatric cancer treatment.”

Moving the field forward

The Speight family, through their vision and generosity, are ensuring that Dr. Kim and future holders of this chair will launch bold, new initiatives to rapidly advance the field of pediatric oncology, elevate our leadership and improve the lifetimes of children with solid tumors.

“When Lexi died, we had a decision to make about how to channel our grief,” Cyndi Speight, Lexi’s mom, remembered. “And do what we could to help other children and families from experiencing what we did.” And so, Cyndi, her husband Petr, and their daughter Sam established The Lexi Speight Chair in Pediatric Oncology with support from community partners in loving memory of Lexi. The Speight family started Laps for Lexi, an annual 5K run/walk that raised money for both pediatric cancer at Children’s National and a scholarship at Sandy Spring Friends School. This successful event ran for 13 years, bringing hope to children and families. The Speight family’s dedication and passion for advancing solid tumor care ensures that Lexi’s legacy lives on in our pursuit of better treatments for children.

Children’s National again ranked among the best in the nation by U.S. News & World Report

2024-25 US News BadgesChildren’s National Hospital in Washington, D.C., was ranked as a top hospital in the nation by the U.S. News & World Report 2024-25 Best Children’s Hospitals annual rankings. This marks the eighth straight year Children’s National has made the Honor Roll list. The Honor Roll is a distinction awarded to only 10 children’s hospitals nationwide.

This year, U.S. News ended ordinal rankings on its Honor Roll. Instead of assigning a numerical rank from 1 to 10, all hospitals on the Honor Roll will be recognized as having attained the highest standards of care in the nation.

In addition, Children’s National tied for #1 pediatric hospital in the Mid-Atlantic region, which includes New York, New Jersey, Delaware, Pennsylvania, the District of Columbia, West Virginia and Virginia. It’s also best in the Mid-Atlantic in Neonatology.

For the fourteenth straight year, Children’s National ranked in 10 specialty services. New this year, U.S. News included behavioral health as a service line in the rankings. Since it’s the first year, there are no ordinal rankings for behavioral health, but the Children’s National program was named one of the top 50 programs in the country.

“In my first year here, I witnessed what makes Children’s National so special — our commitment to collaboration, empowering one another, and charting a bold path forward for pediatric care,” said Michelle Riley-Brown, MHA, FACHE, president and chief executive officer of Children’s National. “I’m proud U.S. News again recognized Children’s National as one of the top in the nation and the highest-ranked pediatric hospital in D.C., Maryland and Virginia. Together, we’ll continue to push the boundaries of care, research and innovation to make a difference for those who matter most — the kids.”

The annual rankings are the most comprehensive source of quality-related information on U.S. pediatric hospitals and recognizes the nation’s top 50 pediatric hospitals based on a scoring system developed by U.S. News.

“For nearly two decades, U.S. News has published Best Children’s Hospitals to empower the parents and caregivers of children with complex medical needs,” said Ben Harder, chief of health analysis and managing editor at U.S. News. “Children’s hospitals appearing on the U.S. News Honor Roll have a track record of delivering unparalleled specialized care.”

The bulk of the score for each specialty service is based on quality and outcomes data. The process includes a survey of relevant specialists across the country, who are asked to list hospitals they believe provide the best care for patients with the most complex conditions.

The Children’s National specialty services that U.S. News ranked in the top 10 nationally are:

The other four specialties ranked among the top 50 are Behavioral Health, Cardiology and Heart Surgery, Pulmonology and Lung Surgery, and Urology.

Meet Dr. Andrew Campbell: Trailblazing treatment for patients with sickle cell disease

Andrew Campbell, M.D., remembers the first time he met a patient with sickle cell disease in the early years of his medical training. It was a brief interaction that had a profound effect on the trajectory of his career.

Sickle cell disease is an inherited blood disorder that primarily affects African American and Hispanic American children. The disease can cause severe pain events as well as progressive organ damage in patients.

This life-altering disease has affected children for more than a century, yet only one FDA-approved drug for treatment of sickle cell disease was developed in the first 100 years of its existence. Recognizing the health inequities that have contributed to an overall lack of therapies and providers in the field, Dr. Campbell knew he had to act.

“It was an area that needed a lot of resources, but also a lot of research and understanding of what our patients are going through. So, that was my initial launch into the field of Hematology and Oncology,” he explained, and he’s been an instrumental leader ever since.

For the past seven years, Dr. Campbell has served as the director of the Comprehensive Sickle Cell Disease Program at Children’s National Hospital — one of the largest sickle cell programs in the country, treating nearly 1,400 patients a year. Locally, he is Principal Investigator for the American Society of Hematology Sickle Cell Research Collaborative’s DMV Sickle Cell Consortium that includes several area sickle cell clinics including Northern Virginia, Richmond, Washington DC and Maryland.

In December 2023, the FDA approved two new gene therapies (CASGEVY™ and LYFGENIA™) to treat patients with sickle cell disease. Children’s National became one of the few pediatric hospitals in the country to offer these therapies, going on to then treat the first patient in the U.S. using the gene therapy method.

Dr. Campbell, who is treating the 12-year-old patient, says his team is excited about the future of these non-chemotherapy treatments and the curative possibilities they will bring to the field.

Despite being part of this significant milestone in the sickle cell community, Dr. Campbell says the work doesn’t stop there. His passion for making a difference and his impact on patients extends far beyond just Washington, D.C., and even the U.S.

For example, Dr. Campbell directs a research group called the Consortium for the Advancement of Sickle Cell Disease Research (CASiRe), with other sickle cell providers across the world. He says one of their goals is to better understand the ways that sickle cell can present itself in patients based on the country in which they receive treatment. “It’s really showing that based on the geographic difference of patients, it has implication in how they receive care,” he explains, adding that the group hopes to take what they learn in these studies to design more inclusive clinical trials in the future.

When he’s not devoting his time to research, you can find Dr. Campbell taking the fight for patients with sickle cell disease directly to lawmakers.

“I have gone to Capitol Hill a number of times to advocate for access and improvement of treatments for sickle cell disease,” he says, hoping that by using his voice and presenting his research, he can help the current generation, as well as the future generation of patients, get the care they deserve.

What’s a TAA-T? Advocates create videos to translate science for patients

As researchers develop groundbreaking cellular therapies to treat pediatric solid tumors, physicians are preparing new ways to explain how these treatments work to patients and caregivers.

In a series of educational videos, scientists from Children’s National Hospital and institutions worldwide are offering tutorials on these novel treatments and how they target solid tumors at the cellular level.

“Let’s start by breaking down what a tumor-associated antigen-specific T (TAA-T) cell is,” Children’s National Research Technician Sammy Murphy says in one new video. “Our aim is to harness the power of T cells to identify and attack cancer cells.”

In less than six minutes, Murphy provides a short course on the details of these TAA-T cells and how her team combines their expertise in biology, medicine, bioinformatics, quality assurance and more to create the new therapies. “This collaborative team spirit has been a huge motivating factor and represents the best of what science can be,” she explains.

The big picture

Children’s National summer student Diana Kentell, a senior at Pratt Institute of Art studying digital art and 2D animation, created this video and a collection of others for the Cancer Grand Challenges (CGC), sponsored by the National Cancer Institute and Cancer Research UK. In 2022, the CGC awarded $25 million to Children’s National, the University College of London Cancer Institute and its partners on the NexTGen team to develop new therapies for pediatric solid tumors using CAR T cells.

The NexTGen team includes six patient advocates who have all been touched by pediatric tumors and support the scientists by providing the patient perspective on research and new treatments. These videos are a slice of the group’s efforts.

C. Russell Y. Cruz, M.D., Ph.D., a translational immunologist on the NexTGen team who oversaw Kentell’s video project, says bridging the gap between scientists and their patients who enroll in clinical trials will be essential to ensuring patients weigh the possibilities and the risks.

“Patient advocates help us understand our work from their perspective, making our science accessible to everyone,” Dr. Cruz said. “Engaging with such dedicated individuals often helps us refine our own ideas and provides invaluable insights. Most importantly, they remind us of our ultimate goal: to free future generations from the burden of pediatric cancer.”

Why we’re excited

In addition to the video on TAA-T cells, the team has assembled a collection of videos on killing assays, tumor slice assays and CAR T-cell manufacturing, which will help patients learn about the treatments when the clinical trials start.  Sara Wakeling, who leads the NexTGen team’s patient advocates, said this toolkit will be a vital resource.

“Each of us came to this advocacy work because we were deeply affected by pediatric cancer.  We aim to ensure that the child’s voice is central to the research and that the science is communicated in an informative and digestible way for patients’ families and the public,” Wakeling said. “With these videos, lay summaries of manuscripts and other explainers, we will have concrete information to share with families as soon as the new CAR T-cell therapies are ready for clinical trials.”

CellBuilder: A ready-made solution for cell & gene therapy manufacturing

A clean room at CNRI.

With CellBuilder and our global partnerships, Children’s National hopes to expand access to groundbreaking cell and gene therapy treatments as they take off in the next five years.

With cell and gene therapies poised to reshape cancer and rare disease treatments, researchers at Children’s National Hospital are pioneering ready-to-use solutions that will bring these cutting-edge therapies directly to hospitals and other treatment centers, shrinking the distance between doctors and patients.

“The next five years are going to be a period of tremendous growth for cell and gene therapy,” said Patrick Hanley, Ph.D., chief and director of the Cellular Therapy Program at Children’s National. “Currently, there’s no shortage of interest from the medical community, but there’s a shortage of people who can manufacture and administer this care. We’re looking for ways to get these treatments to the patients by providing other institutions the tools they need to launch these programs cost-effectively, safely and efficiently.”

Called CellBuilder, the starter kits for cell and gene therapy programs could transform the landscape for pediatric patients.

The big picture

Dr. Hanley and many members of the Children’s National team have been working in cell and gene therapy for more than a decade, gaining extensive experience in the technical and regulatory hurdles inherent in creating treatments that target diseases at their source.

In cell therapy, a specific cell type is modified and transferred to a patient with a payload that can target a disease or disorder. For example, T cells may be modified and delivered to patients to teach their immune systems to fight cancer.  In gene therapy, a patient’s genetic code is modified to treat or prevent diseases, such as sickle cell disease, cancers and other genetic disorders. This can be done by introducing a healthy copy of a gene, repairing a faulty gene or altering a gene’s function.

Children’s National has become a leader in manufacturing virus-specific T cells, one method of delivering cell therapies, and the Cellular Therapy Program has conducted consortium-led, multi-center trials. Many other healthcare sites across the country want to start programs offering this care at their facilities.

The holdup in the field

Starting a cell and gene therapy program from scratch can take years of effort, training and money. That’s why Jay Tanna, M.S., R.A.C., quality assurance manager of the Cellular Therapy Program at Children’s National, said the team is creating CellBuilder starter kits, which include the manufacturing protocol and the resources necessary to launch a cell therapy program almost instantly.

“With a suitable knowledge base, institutions can start their own cellular therapy program at the point of care, using our manufacturing protocols, vetted reagents and other key elements of the process,” Tanna said. “Of course, interested institutions would have to meet regulatory requirements and establish a clean room to manufacture these therapies. If they want to use CellBuilder to run a clinical trial, they can do that. If they want to take it to become a licensed product, they can do that, too.”

Children’s National has worked with more than five institutions to build their virus-specific T-cell program and is now using the kits to accelerate and commercialize the process to increase patient access. The lab has also entered into a memorandum of understanding with the Tokyo-based Hitachi Global Life Solutions, Inc., an innovative modular clean room manufacturer, with the goal of offering a bundled solution.

Why we’re excited

Dr. Hanley and his colleagues say that the partnerships Children’s National is forging as they consult with other experts in this field will expand access to cell and gene therapy across the country—and hopefully around the world.

“It used to be that, to get a CAR T cell, you would collect the cells at Children’s National, ship them to a company like Novartis, have the therapy manufactured there and then shipped back,” said Michael Keller, M.D., who co-led a first-of-its kind immunotherapy trial as the Translational Research Laboratory director at the Children’s National Cell Enhancement and Technologies for Immunotherapy Program. “It was expensive, time-consuming and limited patient access. Now, there’s growing interest in manufacturing at each site, just like you would with a bone marrow transplant.”

With CellBuilder and our global partnerships, Children’s National hopes to expand access to groundbreaking cell and gene therapy treatments as they take off in the next five years, extending lifetimes and improving the quality of life for children suffering from rare disorders.

“We’re trying to capture the momentum underway in the field by providing this kit so that institutions don’t have to know how to do everything,” Dr. Hanley said. “We provide all the knowledge, a reagent list and everything else they need—and they provide the care.”

Access4Kids: A new model to pay for pediatric cell and gene therapies

Science is pioneering cures for pediatric rare diseases in a coming wave of new cell and gene therapies. However, the biopharmaceutical industry’s insistence on large patient populations and high profit margins may prevent these life-saving treatments from reaching the children who desperately need them. When successful therapeutics fail to see commercialization, experts say they have fallen into the “Valley of Death.”

To address this, leaders from pediatric healthcare, federal organizations, academia, industry and patient advocacy groups gathered at the Children’s National Research & Innovation Campus. Their objective: build a new framework to deliver these transformative drugs to clinics worldwide.

Meet the team forming Access4Kids, a nonprofit whose mission is to build new pathways to pay for cures and provide hope to children with life-limiting diseases. This group is working to change medicine and how we pay for it, under the leadership of Catherine Bollard, M.D., M.B.Ch.B., director of the Children’s National Center for Cancer and Immunology Research, Crystal Mackall, M.D., director of the Stanford Center for Cancer Cell Therapy, Julie Park, M.D., Oncology Department chair at St. Jude Children’s Research Hospital, and Alan Wayne, M.D., pediatrician-in-chief at Children’s Hospital Los Angeles.

Expanding team innovates to take on pediatric brain tumors

Cheng-Chia “Fred” Wu, M.D., Ph.D.

Cheng-Chia “Fred” Wu, M.D., Ph.D., joins the team at the campus as an assistant professor at Virginia Tech’s Fralin Biomedical Research Institute. Image credit: Fralin Biomedical Research Institute.

Experience, talent and technology are coming together at the Children’s National Research & Innovation Campus to solve the complex challenges of treating pediatric brain tumors through a growing partnership between Children’s National Hospital and Virginia Tech.

Cheng-Chia “Fred” Wu, M.D., Ph.D., joins the team at the campus as an assistant professor at Virginia Tech’s Fralin Biomedical Research Institute. He hopes to improve treatment for pediatric brain tumors and other cancers by leveraging technological advances in focused ultrasound and studying how this modality can be combined with other novel therapies. Children’s National physicians and scientists are collaborating with Virginia Tech scientists to develop these new approaches.

Why we’re excited

Catherine Bollard, M.D., M.B.Ch.B., director of the Center for Cancer and Immunology Research and interim chief academic officer at Children’s National, said collaborations — including the partnership between Children’s National and Virginia Tech — are essential to solving formidable scientific challenges.

“We are thrilled to be working with Dr. Wu to develop cutting-edge therapeutics for pediatric brain tumors,” Dr. Bollard said. “With Dr. Wu’s experience and the talents of our team at Children’s National, I have great hope that we will be able to combine our novel technologies and therapies to provide tremendous breakthroughs for treating pediatric patients with brain tumors.”

Before joining Virginia Tech, Dr. Wu was an assistant professor of radiation oncology at Columbia University Irving Medical Center in New York, where he treated pediatric cancers and central nervous system malignancies.

“Partnering with Children’s National connects us to a world-class clinical trial institute that has been a pioneer in treating brain tumors with focused ultrasound technology, and this presents a unique opportunity to help children and families struggling with cancer,” Dr. Wu said. “I can’t wait to see where this takes us.”

Dr. Wu played a key role in the Initiative for Drug Delivery Innovation for Childhood Brain Tumors at Columbia, developing a bench-to-bedside platform to facilitate the translation of promising technologies for targeted drug delivery in children with brain tumors.

Within three years, the team demonstrated the safety and feasibility of using focused ultrasound in the brainstem and adding radiation in preclinical models. They then opened two clinical trials for kids with relapsed diffuse midline glioma, an aggressive and difficult-to-treat brain tumor that occurs in the brain stem, thalamus and spinal cord.

What’s ahead

Dr. Wu will be involved in a wide range of research touching both organizations, including veterinary medicine and biomedical engineering at Virginia Tech.

Michael Friedlander, Ph.D., executive director of the Fralin Biomedical Research Institute at Virginia Tech Carilion and vice president for health sciences and technology at Virginia Tech, welcomed Dr. Wu’s experience as a pediatric radiation oncologist, translational physician-scientist and clinical trialist who has led an innovative drug delivery program.

“He is armed with a unique set of skills to identify promising new technology and implement it in areas of great need for treatment of pediatric cancers,” Dr. Friedlander said. “We are absolutely delighted to have Dr. Wu as part of the team.  He represents a powerful new part of the strong partnership between Virginia Tech and Children’s National Hospital for addressing pediatric brain cancer.”