Tag Archive for: technology

hands on simulation training at AAP

At AAP: hands-on simulation training with life-saving technology

aap_nshah_techdependentinfants_atmospheric

Recent medical breakthroughs have enabled very premature infants and children with rare genetic and neurological diseases to survive what had once been considered to be fatal conditions. This has resulted in a growing number of children with medically complex conditions whose very survival depends on ongoing use of technology to help their brains function, their lungs take in oxygen, and their bodies remain nourished.

“Many pediatricians care for technology-dependent children with special health needs,” says Neha Shah, M.D., M.P.H., an associate professor of pediatrics in the Division of Hospitalist Medicine at Children’s National Health System. “These kids have unique risks – some of which may be associated with that life-saving device malfunctioning.” Because there is no standard residency training for these devices, many clinicians may feel ill-equipped to address their patients’ device-related issues. To bridge that training gap, Dr. Shah and co-presenters, Priti Bhansali, M.D., M.Ed., and Anjna Melwani, M.D., will lead hands-on simulation training during the American Academy of Pediatrics 2016 National Conference.

“Inevitably, these things happen at 3 in the morning,” Dr. Shah adds. “Individual clinicians’ skill level and comfort with the devices varies. We should all have the same core competency.”

How the training works

During the simulation, the audience is given a specific case. They have eight minutes to troubleshoot and resolve the issue, using mannequins specially fitted with devices, such as trach tubes and feeding tubes, in need of urgent attention. Depending on their actions, the mannequin may decompensate with worsened breathing and racing heartbeats. The high-stakes, hands-on demo is followed by a 12-minute debrief, a safe environment to review lessons learned. Once they complete one simulation, attendees move to the next in the series of four real-life scenarios.

“We’ve done this a few times and my heart rate still goes up,” Dr. Shah admits. After giving similar training sessions at other academic meetings, participants said that having a chance to touch and feel the devices and become familiar with them in a calm environment is a benefit.

Dr. Shah came up with the concept for the hands-on training by speaking with a small group of peers, asking about how comfortable they felt managing kids with medical complex cases. The vast majority favored additional education about common devices, such as gastronomy tubes, tracheostomy tubes, and ventriculoperitoneal shunts.  In addition to the in-person training, the team has created a web-based curriculum discussing dysautonomia, spasticity, gastroesophageal reflux disease, enteric feeding tubes, venous thromboembolism, and palliative care, which they described in an article published in the Fall 2015 edition of the Journal of Continuing Education in the Health Professions.

“Most times, clinicians know what they need to do and the steps they need to follow. They just haven’t done it themselves,” Dr. Bhansali adds. “The simulation forces people to put their hands on these devices and use them.”

AAP 2016 presentations:
Saturday, October 22, 2016

  • W1059- “Emergencies in the Technology-Dependent Child: What Every Pediatrician Should Know” 8:30 a.m. to 10 a.m. (SOLD OUT)
  • W1131-  “Emergencies in the Technology-Dependent Child: What Every Pediatrician Should Know” (Encore) 2 p.m. to 3:30PM
Smart Tissue Autonomous Robot (STAR)

Popular Science awards smart tissue autonomous robot

stm-star01rescaled

Technology developed in the Sheikh Zayed Institute for Pediatric Surgical Innovation at Children’s National has been named one of the 12 Most Important Health Innovations of the Year in the November/December 2016 issue of Popular Science. Smart Tissue Autonomous Robot (STAR), a technology that performed the first supervised, autonomous robotic soft tissue surgery on a live subject (in vivo) this year, has been awarded a 2016 Popular Science Best of What’s New Award in the Health category.

How the smart tissue autonomous robot works

STAR removes the surgeon’s hands from the procedure, instead utilizing the surgeon as supervisor, with soft tissue suturing autonomously planned and performed by the STAR robotic system.  The system integrates near infrared florescent (NIRF) markers and 3-D plenoptic vision to provide uninhibited tracking of tissue motion. This tracking is combined with an intelligent algorithm that autonomously adjusts the surgical plan in real time as tissue movements occur.

About Popular Science health innovations of the year

Each year, the editors of Popular Science review thousands of products in search of the top 100 tech innovations of the year—breakthrough products and technologies that represent a significant leap in their categories.

The Best of What’s New awards honor the innovations that shape the future,” says Kevin Gray, Executive Editor, Popular Science. “From lifesaving technology to incredible space engineering to gadgets that are just breathtakingly cool, this is the best of what’s new.”

David Wessel to speak at USN’s Healthcare of Tomorrow

David Wessel

The fourth annual U.S. News & World Report Healthcare of Tomorrow conference will take place on Nov. 2 in Washington, DC. The leadership forum, which examines challenges in health care and how we must evolve with policies, society, and technology, will hold children’s hospital sessions for the first time. The topics will include pediatric population health, patient safety, strategic partnerships, and genomic medicine. Children’s National’s David Wessel, M.D., executive vice president and chief medical officer, hospital and specialty services, is scheduled to speak during the event.

Elena Grant

Interventional cardiac magnetic resonance team welcomes new specialist

elena-grant-photo

The Interventional Cardiac Magnetic Resonance (ICMR) Program at Children’s National is actively developing newer and safer ways to perform cardiac procedures on young patients, with some of the world’s leading experts in cardiac catheterization and imaging. Elena Grant, M.D., a former pediatric cardiology fellow at Children’s National, is the newest member to join the team that pioneered real-time MRI-guided radiation-free cardiac catheterization for children.

In addition to clinical work as a Children’s National Interventional Cardiologist, Dr. Grant will perform preclinical research at the National Institutes of Health to develop new procedures, techniques, and devices that can be translated to clinical practice to treat children and adults with congenital heart disease.

Dr. Grant specializes in interventional cardiology. She received her medical degree from the University of Dundee Medical School in Dundee, Scotland, followed by Foundation Training in Edinburgh, Scotland. She completed her pediatric residency at Massachusetts General Hospital, her Pediatric Cardiology fellowship at Children’s National, and she recently finished an advanced fellowship in interventional pediatric cardiology at Children’s Healthcare of Atlanta and Emory University.

Advances in interventional cardiovascular MRI

Children’s National is at the forefront of this exciting new field and is currently the only institution in the United States to perform radiation-free MRI-guided cardiac catheterization procedures in children.

ICMR is a partnership with the National Institutes of Health that brings together researchers, clinicians, engineers, and physicists to provide radiation-free, less invasive, and more precise diagnostics and treatment options for pediatric patients and adults with congenital heart disease.

The ICMR approach to heart catheterization uses real-time MRI, instead of X-ray, in pediatric research subjects undergoing medically necessary heart catheterization. This research study is intended as a step toward routine MRI-guided catheterization in children, which attempts to avoid the hazards of ionizing radiation (X-ray).

In 2015, after working with NIH to explore how interventional cardiovascular MRI could be integrated into pediatric practices, the ICMR team, including Dr. Grant, Russell Cross, M.D., Joshua Kanter, M.D., and Laura Olivieri, M.D., performed the first  radiation-free MRI-guided right heart catheterization on a 14-year-old girl at Children’s National. Since then, nearly 50 such procedures have been successfully completed, and the team is working to broaden the age range and cardiac disease complexity of patients who can undergo the procedure.

About 1 percent of newborns are born with a heart condition, and the team at Children’s performs more than 450 X-ray guided cardiac catheterizations and over 500 cardiac MRI scans per year.