Posts

Hodgkin lymphoma cells

T-cell therapy alone or combined with nivolumab is safe and persistent in attacking Hodgkin’s lymphoma cells

Hodgkin lymphoma cells

Hodgkin’s lymphoma is a type of cancer that attacks part of the immune system and expresses tumor-associated antigens (TAA) that are potential targets for cellular therapies.

It is safe for patients with relapsed or refractory Hodgkin’s lymphoma (HL) to receive a novel tumor-associated antigen specific T-cell therapy (TAA-T) either alone or combined with a checkpoint inhibitor, nivolumab — a medication used to treat several types of cancer. The study, published in Blood Advances, further suggests that nivolumab aids in T-cell persistence and expansion to ultimately enhance anti-tumor activity. This offers a potential option for patients who do not have a durable remission with checkpoint inhibitors alone or are at a high risk of relapse after a transplant.

“The fact that this combination therapy is so safe was very encouraging for the treatment of patients with lymphomas,” said Catherine Bollard, M.D., M.B.Ch.B., director of the Center for Cancer and Immunology Research at Children’s National Hospital. “In addition, this data allows us to consider this combination immunotherapy for other patients, including those with solid tumors.”

HL is a type of cancer that attacks part of the immune system and expresses tumor-associated antigens (TAA) that are potential targets for cellular therapies. While it may affect children and adults, it is most common in those who are between 20 and 40 years old. The survival rate for this condition has improved due to scientific advances.

A new approach in cancer therapy is the use of “checkpoint inhibitors,” which are a class of drugs that block some of the inhibitory pathways of the immune system to unleash a powerful tumor killing immune response. Similarly, T-cell therapies have also shown to enhance anti-tumor immune response. Therefore, combining these novel immune therapies is an attractive and targeted alternative to conventional untargeted therapies – such as chemotherapy and radiation – which not only kill the tumor cells but also can kill healthy cells and tissues.

“In five to 10 years we can get rid of chemotherapy and radiation therapy and have an immunotherapy focused treatment for this disease,” said Dr. Bollard.

To determine the safety of infusing TAA-T with and without checkpoint inhibitors, eight patients were infused with TAA-specific T-cell products manufactured from their own blood. Two other patients received TAA-T generated from matched healthy donors as adjuvant therapy after hematopoietic stem cell transplant. According to Dave et al., the TAA-T infusions were safe and patients who received TAA-T as adjuvant therapy after transplant remained in continued remission for over two years.

Of the eight patients with active disease, one patient had a complete response, and seven had stable disease at three months, three of whom remained with stable disease during the first year.

“Treating Hodgkin’s lymphoma with cellular therapy has not yet achieved the same success that we have seen for other lymphoma subtypes,” said Keri Toner, M.D., attending physician at Children’s National. “This study brings us closer to overcoming some of the current barriers by developing methods to improve the persistence and function of the tumor-specific T-cells.”

This study builds upon the researchers’ latest findings in another study, which demonstrated that TAA-T manufactured from patients were safe and associated with prolonged time to progression in solid tumors.

“The addition of a checkpoint inhibitor like Nivolumab to the TAA-T treatment is a powerful next step, but previously, the safety of this combination was unknown,” said Patrick Hanley, Ph.D., chief and director of the Cellular Therapy Program at Children’s National, leader of the GMP laboratory and co-author of the study. “Now that we have demonstrated a safety profile, the next step will be to evaluate the efficacy of this combination in a larger subset of patients.”

Wilm's Tumor

PRAME-specific T cell product may facilitate rapid treatment in cancer settings

Wilms Tumor

PRAME is a cancer-testis antigen that plays a role in cancer cell proliferation and survival and is overexpressed in many human malignancies, including Wilms tumor. “Wilms Tumor (Nephroblastoma)” by euthman is licensed under CC BY 2.0.

Generated preferentially expressed antigen in melanoma (PRAME)-specific T cells from healthy donors can kill PRAME-expressing tumor cells in vitro, researchers at Children’s National Hospital found. Several novel epitopes, which are antigens that are recognized by the immune system, were also identified for enhanced matching, making this a potential therapeutic option for a broader patient group, according to a study published in Cytotherapy.

PRAME is a cancer-testis antigen that plays a role in cancer cell proliferation and survival and is overexpressed in many human malignancies, including melanoma, leukemia, sarcoma, renal cell cancer and Wilms tumor. PRAME also acts as a foreign substance in the body that can trigger the immune system by activating T cells, making it a good target for anticancer immunotherapy — especially for immunocompromised patients.

“The development of an effective off-the-shelf adoptive T-cell therapy for patients with relapsed or refractory cancers expressing PRAME antigen requires the identification of epitopes essential to the adaptive immune response, which are presented by major histocompatibility complex (MHC) class I and II, and are then recognized by the manufactured PRAME-specific T cell product,” said Amy Hont, M.D., oncologist for the Center for Cancer and Immunology Research at Children’s National Hospital. “We, therefore, set out to extend the repertoire of HLA-restricted PRAME peptide epitopes beyond the few already characterized and demonstrate the cytotoxic activity of PRAME-specific T cells to tumor cells known to express PRAME.”

Immunotherapy options for pediatric patients with high-risk malignancies, especially solid tumors, are few. Tumor-associated antigen-specific T cells (TAA-T) offer a therapeutic option for these patients, and Children’s National is building upon the success of the ongoing clinical trials to optimize this therapy and improve the treatment of our patients.

“These findings will also benefit patients because it better informs the pre-clinical studies of third party TAA-T to treat high-risk malignancies, so that we can move more quickly and safely to clinical trials,” said Dr. Hont.

Stanojevic et al. describes that the T-cell products killed partially HLA-matched tumors, and that this enhanced disintegration of tumor cells compared with non-specific T cells suggests an anti-tumor potential for a clinical trial evaluation to determine the safety and efficacy. Further research about the PRAME-specific T cells will help inform a treatment alternative for patients with solid tumors in the future.

The researchers generated a PRAME-specific T cell bank from healthy donor cells and demonstrated anti-tumor cytolytic activity against tumor lines partially HLA-matched to the T cells and known to express PRAME. By using epitope mapping, they identified several novel epitopes restricted to MHC class I or MHC class II to further inform HLA matching.

“Defining PRAME-specific T cells beyond HLA epitopes could be useful when developing T-cell therapies for worldwide application,” Stanojevic et al. write. “Moreover, creating off-the-shelf products has many potential advantages since such products are readily available for the treatment of patients with aggressive disease or patients for whom an autologous product cannot be manufactured.”

Additional authors from Children’s National are Maja Stanojevic, M.D., Ashley Geiger, M.S., Samuel O’Brien, Robert Ulrey, M.S., Melanie Grant, Ph.D., Anushree Datar, M.S., Ping-Hsien Lee, Ph.D., Haili Lang, M.D., Conrad R.Y. Cruz, M.D., Ph.D.,  Patrick J. Hanley, Ph.D., A. John Barrett, M.D, Michael D. Keller, M.D., and Catherine M. Bollard, M.D., M.B.Ch.B.

t-cells attacking cancer cell

Children’s National spin-out cell therapy company receives funding

t-cells attacking cancer cell

Ongoing efforts by researchers at Children’s National Hospital to improve T-cell therapies have led to a spin-out company MANA Therapeutics which has announced a $35 million Series A financing. MANA is a clinical stage company creating nonengineered, allogeneic and off-the-shelf cell therapies that target multiple cancer antigens. Its EDIFY™ platform aims to educate T-cells that target multiple target multiple cell surface and intracellular tumor-associated antigens across a broad range of liquid and solid tumors, with an initial focus on relapsed acute myeloid leukemia (AML).

MANA was founded in 2017, and was based on the research and human proof-of-concept clinical trials conducted by Catherine Bollard, M.D., M.B.Ch.B., Conrad Russell Y. Cruz, M.D., Ph.D., Patrick Hanley, Ph.D. and other investigators at Children’s National along with their colleagues at Johns Hopkins Medical Center. The trials demonstrated safety and anti-tumor activity of MANA’s approach, and Children’s National provided an exclusive license to MANA to further develop this promising technology into commercial products in the field of immuno-oncology.

MANA Therapeutics recruited an experienced leadership team from industry including Martin B. Silverstein, M.D., president and CEO, who is a former senior executive at Gilead Sciences when they acquired Kite Pharma, one of the leading cell therapy companies, as well as Madhusudan V. Peshwa, Ph.D., chief technology officer, who joined from GE Health Care where he had been Chief Technology Officer and Global Head of R&D for Cell and Gene Therapies.

“MANA is building upon the strong foundational science established at Children’s National with a unique approach that promises to produce off-the-shelf allogeneic therapies that do not compromise on safety or efficacy,” said Marc Cohen, co-founder and executive chairman of MANA Therapeutics. “I look forward to continuing to support the MANA team as they advance their internal pipeline for the treatment of AML and select solid tumors, and expand the potential of EDIFY through strategic partnerships focused on new target antigens and cancer types.”

An international leader in the immunotherapy field, Dr. Bollard was an early believer in the potential of immune cell therapies to dramatically improve the treatment of patients with cancer and patients with life-threatening viral infections. Recently, she and her team at the Children’s National Center for Cancer and Immunology Research published findings in Blood showing T-cells taken from the blood of people who recovered from a COVID-19 infection can be successfully multiplied in the lab and maintain the ability to effectively target proteins that are key to the virus’s function.

“Over the past decade we have seen tremendous progress in cancer research and treatment and are beginning to unlock the potential of cell therapy for a variety of tumor types,” said Dr. Bollard. “The human proof-of-concept trials conducted by my team and colleagues showed potential for a nonengineered approach to educating T-cells to attack multiple tumor antigens, which MANA is expanding even further through refinement of the manufacturing process for an allogeneic product and application to a broader set of antigens in a variety of clinical indications and settings.”

Read more about how the Series A funding will enable rapid progress with MANA’s programs.

2019 at a glance: Oncology at Children’s National

Oncology at Children's National
Michael Keller

Virus-specific t-cells show promise before transplant in SCID patients

Michael Keller

“Today, we know that virus-specific T-cells can help protect patients from dangerous viruses after stem cell transplants,” says Michael Keller, M.D. “Through this research, we used the same therapy and approach, but applied it pre-transplant with the hope of providing the same benefit of protection against life-threatening viruses to patients who need it the most.”

Experts at Children’s National Health System have been successfully studying the use of virus-specific T-cells (VST) to help protect immunocompromised patients from life-threatening viruses after bone marrow transplants. Research published recently in the Biology of Blood and Marrow Transplantation presents promising new findings from testing the use of these same VSTs before transplant to help give patients with severe combined immunodeficiency (SCID) a better chance at long-term survival.

Babies born with SCID are highly susceptible to severe infections that are often fatal if not treated with immune-restoring treatments, like hematopoietic stem cell transplants (HSCT). However, undergoing an HSCT with an infection present has shown to lead to a decrease in survival at two years old for SCID patients when compared to those who start the HSCT infection-free. The study lead, Michael Keller, M.D., hypothesized that the success of HSCTs in SCID patients may be improved by controlling severe viral infections before the patient undergoes the transplant.

“Today, we know that virus-specific T-cells can help protect patients from dangerous viruses after stem cell transplants,” says Dr. Keller. “Through this research, we used the same therapy and approach, but applied it pre-transplant with the hope of providing the same benefit of protection against life-threatening viruses to patients who need it the most.”

Dr. Keller administered the VSTs from a healthy third-party donor in a five-month-old infant fighting adenovirus before undergoing a HSCT to cure him of SCID. Today, the baby is healthy and has a normal immune system. Ultimately, this research shows that the use of VSTs is likely safe in the pre-HSCT period in patients with SCID and may be an effective therapy for viral infections when they are resistant to antiviral therapy.

“I believe this VST therapy could make a real and lasting impact for patients with SCID,” said Dr. Keller. “It gives them a real chance at a long life.”

Children’s National Chief of Allergy and Immunology helps move gene therapy forward

Catherine Bollard

Catherine Bollard, M.D., MBChB, Chief of the Division of Allergy and Immunology, recently shared her expertise on an FDA panel that unanimously expressed its support for a pediatric cancer T-cell therapy called CTL019.

On July 12, 2017, a U.S. Food and Drug Administration advisory committee unanimously expressed its support for CTL019 – a pediatric cancer T-cell therapy. If the FDA follows the advice from the 10-member Oncologic Drug Advisory Committee (ODAC) – which included Children’s National Health System’s Catherine Bollard, M.D., MBChB, Chief of the Division of Allergy and Immunology and Director of the Program for Cell Enhancement and Technologies for Immunotherapy – CTL019 will become the first gene therapy to hit the market.

“Many of these children with recurrent cancer are out of other options to treat their illness,” said Dr. Bollard. “We are encouraged by these findings and the potential for this therapy to improve outcomes and quality of life.”

CTL019 is a chimeric antigen receptor (CAR) T-cell therapy, comprised of genetically modified T cells that target CD19, an antigen expressed on the surface of B cells. Also known as tisagenlecleucel, the therapy targets a single type of cancer called acute lymphoblastic leukemia and was created by Novartis.

In clinical trials, CTL019 showed unparalleled effectiveness. Of the 68 patients who received the drug, 52 responded almost immediately, and their cancer disappeared within the first three months. Seventy-five percent of those patients remained cancer-free six months after treatment. The therapy has one main side effect: an immune reaction called cytokine release syndrome, which can be deadly, with extended spiking fevers and other symptoms.

However, because of CTL019’s high efficacy, FDA scientists asked the ODAC panel to focus on the therapy’s safety and manufacturing challenges rather than whether or not it works.

Several committee members, including Dr. Bollard, expressed apprehension about the T-cell subpopulations’ heterogeneity, which could affect safety and efficacy. Another issue for consideration by the ODAC panel was the long-term side effects of CTL019 and the possibility that the T-cell modification could go awry, causing secondary cancers in the future.

Despite these concerns, the committee concluded that the strong efficacy data and the near-term benefits of CAR-T therapy more than tipped the scales in favor of the therapy. ODAC members were also pleased with Novartis’ plan to minimize risk, which includes limiting CTL019 distribution to selected centers with CAR T-cell therapy experience, and extensive, long-term post-marketing surveillance plans.

The FDA is not required to follow the ODAC panel’s advice when making its final decision, but it often does so. A final decision by the FDA is anticipated by late September.

Read more about the story in the Philadelphia Inquirer, Medpage Today and Healio.com.