Tag Archive for: study

doctor looking at brain MRIs

NINDS awards $10 million for pediatric concussion research

doctor looking at brain MRIs

Researchers will use advanced brain imaging and blood tests to explore biological markers—changes in blood pressure, heart rate and pupil reactivity—that could predict which children will develop persistent symptoms after concussion.

The National Institute of Neurological Disorders and Stroke has awarded a $10-million grant to the Four Corners Youth Consortium, a group of academic medical centers studying concussions in school-aged children. Led in part by the Safe Concussion Outcome Recovery and Education (SCORE) program at Children’s National Hospital, the project is named Concussion Assessment, Research and Education for Kids, or CARE4Kids.

Researchers will use advanced brain imaging and blood tests to explore biological markers—changes in blood pressure, heart rate and pupil reactivity—that could predict which children will develop persistent symptoms after concussion. The five-year CARE4Kids study will enroll more than 1,300 children ages 11-18 nationwide.

The five-year study will be led by Gerard Gioia, Ph.D., division chief of Neuropsychology at Children’s National Hospital, Frederick Rivara, M.D., M.P.H., at Seattle Children’s Center for Child Health, Behavior and Development and University of Washington’s Medicine’s Department of Pediatrics, and Dr. Chris Giza at University of California, Los Angeles (UCLA).

“We will be gathering innovative data to help answer the critical question asked by every patient: ‘When can I expect to recover from this concussion?’” said Dr. Gioia. “We have a great team and are excited to have been selected to study this important issue.”

Christopher G. Vaughan, Psy.D., neuropsychologist, and Raquel Langdon, M.D., neurologist, both at Children’s National, will join Dr. Gioia as principal investigators of the study at this site.

Every year, more than 3 million Americans are diagnosed with concussions. Symptoms continue to plague 30 percent of patients three months after injury—adolescents face an even higher risk of delayed recovery. Chronic migraine headaches, learning and memory problems, exercise intolerance, sleep disturbances, anxiety and depressed mood are common.

“Providing individualized symptom-specific treatments for youth with a concussion has been a longstanding aim of the SCORE program,”Dr. Vaughan said. “This project will lead to a better understanding of the specific markers for which children may have a longer recovery. With this knowledge, we can start individualized treatments earlier in the process and ultimately help to reduce the number of children who experienced prolonged effects after concussion.”

The grant was announced on September 9, 2021.

In Washington, D.C., an estimated 240 children ages 11 to 18, will participate in the study.

The study will unfold in two phases. The first part will evaluate children with concussion to identify a set of biomarkers predictive of persistent post-concussion symptoms. To validate the findings, the next stage will confirm that these biomarkers accurately predict prolonged symptoms in a second group of children who have been diagnosed with concussion. The goal is to develop a practical algorithm for use in general clinical practice for doctors and other health professionals caring for pediatric patients.

Institutions currently recruiting patients for the study include Children’s National Hospital, UCLA Mattel Children’s Hospital, Seattle Children’s, the University of Washington, University of Rochester, University of Texas Southwestern Medical Center and Wake Forest School of Medicine. Indiana University, the National Institute of Nursing Research, University of Arkansas, University of Southern California and the data coordinating center at the University of Utah are also involved in the project.

Earlier research conducted by the Four Corners Youth Consortium that led to this project was funded by private donations from Stan and Patti Silver, the UCLA Steve Tisch BrainSPORT Program and the UCLA Easton Clinic for Brain Health; Children’s National Research Institute; as well as from the Satterberg Foundation to Seattle Children’s Research Institute; and an investment from the Sports Institute at UW Medicine.

coronavirus

Children’s National Hospital and NIAID launch large study on long-term impacts of COVID-19 and MIS-C on kids

coronavirus

Up to 2,000 children and young adults will be enrolled in a study from Children’s National Hospital in collaboration with the National Institute of Allergy and Infectious Diseases (NIAID) that will examine the long-term effects of COVID-19 and multisystem inflammatory syndrome in children (MIS-C) after these patients have recovered from a COVID-19 infection.

This $40 million multi-year study will provide important information about quality of life and social impact, in addition to a better understanding of the long-term physical impact of the virus, including effects on the heart and lung. The researchers hope to detail the role of genetics and the immune response to COVID-19, so-called “long COVID” and MIS-C, including the duration of immune responses from SARS-CoV-2, the virus that causes COVID-19. It is fully funded by a subcontract with the NIH-funded Frederick National Laboratory for Cancer Research operated by Leidos Biomedical Research, Inc.

“We don’t know the unique long-term impact of COVID-19 or MIS-C on children so this study will provide us with a critical missing piece of the puzzle,” says Roberta DeBiasi, M.D., M.S., chief of the Division of Pediatric Infectious Diseases at Children’s National and lead researcher for this study. “I am hopeful that the insights from this enormous effort will help us improve treatment of both COVID-19 and MIS-C in the pediatric population both nationally and around the world.”

Over the past year, more than 3.6 million children have tested positive for SARS-CoV-2 and over 2,800 cases of MIS-C have been reported throughout the U.S. While the vast majority of children with primary SARS-CoV-2 infection may have mild or no symptoms, some develop severe illness and may require hospitalization, including life support measures. In rare cases, some children who have previously been infected or exposed to someone with SARS-CoV-2 have developed MIS-C, a serious condition that may be associated with the virus. MIS-C symptoms can include fever, abdominal pain, bloodshot eyes, trouble breathing, rash, vomiting, diarrhea and neck pain, and can progress to shock with low blood pressure and insufficient cardiac function. Long COVID is a wide range of symptoms that can last or appear weeks or even months after being infected with the virus that causes COVID-19.

The study is designed to enroll at least 1,000 children and young adults under 21 years of age who have a confirmed history of symptomatic or asymptomatic SARS-CoV-2 infection or MIS-C. Participants who enroll within 12 weeks of an acute infection will attend study visits every three months for the first six months and then every six months for three years. Participants who enroll more than 12 weeks after acute infection will attend study visits every six months for three years. The study will also enroll up to 1,000 household contacts to serve as a control group, and up to 2,000 parents or guardians (one parent per participant) will complete targeted questionnaires.

“The large number of patients who will be enrolled in this study should provide us with a truly comprehensive understanding of how the virus may continue to impact some patients long after the infection has subsided,” says Dr. DeBiasi.

The study primarily aims to determine incidence and prevalence of, and risk factors for, certain long-term medical conditions among children who have MIS-C or a previous SARS-CoV-2 infection. The study will also evaluate the health-related quality of life and social impacts for participants and establish a biorepository that can be used to study the roles of host genetics, immune response and other possible factors influencing long-term outcomes.

Children’s National was one of the first U.S. institutions to report that children can become very ill from SARS-CoV-2 infection, despite early reports that children were not seriously impacted. In studies published in the Journal of Pediatrics in May of 2020 and June of 2021, Children’s National researchers found that about 25% of symptomatic COVID patients who sought care at our institution required hospitalization. Of those hospitalized, about 25% required life support measures, and the remaining 75% required standard hospitalization. Of patients with MIS-C, 52% were critically ill.

Study sites include Children’s National Hospital inpatient and outpatient clinics in the Washington, D.C. area, and the NIH Clinical Center in Bethesda, Maryland.

Those interested in participating should submit this form. You will then be contacted by a study team member to review the study details and determine whether you are eligible to participate.

You can find more information about the study here.

Roger Packer

All about neurology: Upcoming conferences led by Roger Packer, M.D.

Roger Packer

Roger Packer, M.D., senior vice president of the Center for Neurosciences and Behavioral Medicine at Children’s National Hospital, will speak at a series of symposiums in the next couple of months.

Most recently, he presented on pediatric brain tumor trials at a webinar hosted by the American Brain Tumor Association titled “Clinical Trials – Paving the Way Forward.” In case you missed it, you can watch it here.

For details on more upcoming presentations, see below:

On Friday, May 14, Dr. Packer will speak at the Cure Search for Children’s Cancer’s ‘Blurred Lines: Therapeutic vs. Research-only Biopsies,’ a session highlighting technologies, including liquid biopsies and single-cell sequencing, that have the potential to allow researchers to collect more data while decreasing the amount of tissue needed from solid tumor biopsies.

On Friday, May 28, he will give a virtual keynote address at the Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology during their “Pediatric oncology, hematology and immunology in 21st century: From research to clinical practice” online presentation. Dr. Packer will co-chair the session on central nervous system tumors and present on “CNS tumors: Major advances in neuro-oncology in last 10 years.”

And at the 50th Golden Anniversary Meeting of the Child Neurology Society, taking place September 29 to October 2, Dr. Packer will lead a symposium on new therapies for childhood medulloblastoma — the most common malignant brain tumor in children. Here, he will receive a recognition during the society’s annual gala honoring the “Founders of Child Neurology,” for his contribution in a new book in which Dr. Packer has a chapter outlining the history of child neurologists in the field of pediatric neuro-oncology.

Beth Tarini

Getting to know SPR’s future President, Beth Tarini, M.D., MS

Beth Tarini

Quick. Name four pillar pediatric organizations on the vanguard of advancing pediatric research.

Most researchers and clinicians can rattle off the names of the Academic Pediatric Association, the American Academy of Pediatrics and the American Pediatric Society. But that fourth one, the Society for Pediatric Research (SPR), is a little trickier. While many know SPR, a lot of research-clinicians simply do not.

Over the next few years, Beth A. Tarini, M.D., MS, will make it her personal mission to ensure that more pediatric researchers get to know SPR and are so excited about the organization that they become active members. In May 2019 Dr. Tarini becomes Vice President of the society that aims to stitch together an international network of interdisciplinary researchers to improve kids’ health. Four-year SPR leadership terms begin with Vice President before transitioning to President-Elect, President and Past-President, each for one year.

Dr. Tarini says she looks forward to working with other SPR leaders to find ways to build more productive, collaborative professional networks among faculty, especially emerging junior faculty. “Facilitating ways to network for research and professional reasons across pediatric research is vital – albeit easier said than done. I have been told I’m a connector, so I hope to leverage that skill in this new role,” says Dr. Tarini, associate director for Children’s Center for Translational Research.

“I’m delighted that Dr. Tarini was elected to this leadership position, and I am impressed by her vision of improving SPR’s outreach efforts,” says Mark Batshaw, M.D., Executive Vice President, Chief Academic Officer and Physician-in-Chief at Children’s National. “Her goal of engaging potential members in networking through a variety of ways – face-to-face as well as leveraging digital platforms like Twitter, Facebook and LinkedIn – and her focus on engaging junior faculty will help strengthen SPR membership in the near term and long term.”

Dr. Tarini adds: “Success to me would be leaving after four years with more faculty – especially junior faculty – approaching membership in SPR with the knowledge and enthusiasm that they bring to membership in other pediatric societies.”

SPR requires that its members not simply conduct research, but move the needle in their chosen discipline. In her research, Dr. Tarini has focused on ensuring that population-based newborn screening programs function efficiently and effectively with fewer hiccups at any place along the process.

Thanks to a heel stick to draw blood, an oxygen measurement, and a hearing test, U.S. babies are screened for select inherited health conditions, expediting treatment for infants and reducing the chances they’ll experience long-term health consequences.

“The complexity of this program that is able to test nearly all 4 million babies in the U.S. each year is nothing short of astounding. You have to know the child is born – anywhere in the state – and then between 24 and 48 hours of birth you have to do testing onsite, obtain a specific type of blood sample, send the blood sample to an off-site lab quickly, test the sample, find the child if the test is out of range, get the child evaluated and tested for the condition, then send them for treatment. Given the time pressures as well as the coordination of numerous people and organizations, the fact that this happens routinely is amazing. And like any complex process, there is always room for improvement,” she says.

Dr. Tarini’s research efforts have focused on those process improvements.

As just one example, the Advisory Committee on Heritable Disorders in Newborns and Children, a federal advisory committee on which she serves, was discussing how to eliminate delays in specimen processing to provide speedier results to families. One possible solution floated was to open labs all seven days, rather than just five days a week. Dr. Tarini advocated for partnering with health care engineers who could help model ways to make the specimen transport process more efficient, just like airlines and mail delivery services. A more efficient and effective solution was to match the specimen pick-up and delivery times more closely with the lab’s operational times – which maximizes lab resources and shortens wait times for parents.

Conceptual modeling comes so easily for her that she often leaps out of her seat mid-sentence, underscoring a point by jotting thoughts on a white board, doing it so often that her pens have run dry.

“It’s like a bus schedule: You want to find a bus that not only takes you to your destination but gets you there on time,” she says.

Dr. Tarini’s current observational study looks for opportunities to improve how parents in Minnesota and Iowa are given out-of-range newborn screening test results – especially false positives – and how that experience might shake their confidence in their child’s health as well as heighten their own stress level.

“After a false positive test result, are there parents who walk away from newborn screening with lingering stress about their child’s health? Can we predict who those parents might be and help them?” she asks.

Among the challenges is the newborn screening occurs so quickly after delivery that some emotionally and physically exhausted parents may not remember it was done. Then they get a call from the state with ominous results. Another challenge is standardizing communication approaches across dozens of birthing centers and hospitals.

“We know parents are concerned after receiving a false positive result, and some worry their infant remains vulnerable,” she says. “Can we change how we communicate – not just what we say, but how we say it – to alleviate those concerns?”

Clubfoot

Assessing clubfoot recurrence rates and causes

Clubfoot

A Children’s National research team performed a structured literature review to determine the reported rates of clubfoot correction and recurrence after the Ponseti technique and to identify factors that contribute to these issues.

Clubfoot, or talipes equinovarus, is a congenital foot deformity that affects the bones, muscles, tendons and blood vessels in the feet. It occurs in approximately 1 to 3 of every 1,000 births and is traditionally treated with the nonsurgical Ponseti technique, which uses manipulation and casting to correct the condition. Unfortunately, recurrence of clubfoot after treatment is somewhat common.

A Children’s National research team led by Matthew Oetgen, M.D., Division Chief of Orthopaedic Surgery and Sports Medicine, recently performed a structured literature review to determine the reported rates of clubfoot correction and recurrence after the Ponseti technique and to identify factors that contribute to these issues.

Ponseti treatment is generally administered during the first few weeks of life in order to take advantage of the elasticity of tissues forming the ligaments, joint capsules and tendons. These structures are stretched with weekly, gentle manipulations, and a plaster cast is applied after each session to retain the degree of correction obtained and to soften the ligaments. Over the course of six to eight weeks, the displaced bones are brought into the correct alignment. In order to maintain this alignment, braces are then worn for 23 hours a day for up to three months, and then at night for two to four years.

Matthew Oetgen

The team, led by Matthew Oetgen, M.D., determined that the average rate for correction of clubfoot via the Ponseti technique is 95 percent, with a recurrence rate of 23 percent.

The team from Children’s National, which included Princeton intern Michelle Richardson and Allison Matthews, focused on 81 articles found in the PubMed, Cumulative Index to Nursing and Allied Health Literature (CINAHL), and Scopus databases. From this data, they determined that the average rate for correction of clubfoot via the Ponseti technique is 95 percent, with a recurrence rate of 23 percent.

The researchers also found that 78 percent of recurrence was due to five factors: brace non-compliance, lack of parent education, functional brace issues, casting issues and poor patient tolerance.

Looking further into non-compliance of bracing, the team discovered that the average non-compliance rate was 27 percent, and that factors affecting non-compliance in about half the cases included parent education, financial difficulties, practical brace issues, social difficulties and cultural issues.

The team’s findings should be helpful in establishing programs aimed at decreasing recurrence rates and improving compliance with bracing in children treated for clubfoot.