Posts

global connectedness concept illustration

Research partnerships and capacity building in the time of COVID-19

global connectedness concept illustration

“COVID infection anywhere in the world is COVID infection everywhere in the world,” said John Nkengasong, M.Sc., Ph.D., director of the Africa Centers for Disease Control (Africa CDC), during his remarks on the importance of shared science, innovation and diplomacy. Leading experts in global health met virtually on November 13, 2020, to discuss updates in the COVID-19 crisis and lessons learned in Africa. Children’s National Hospital, along with the George Washington University (GW) Institute for Africa Studies and the CNRS-EpiDaPo Lab, sponsored the half-day conference that captured the interest of international attendees committed to examining how best to expand strong and enduring partnerships between U.S. and African scientists, health professionals and research institutes to meet global challenges.

Trust, transparency and communication were common themes of expert panelists that included Elizabeth Bukusi, Ph.D., M.P.H., Kenya Medical Research Institute; Maryam DeLoffre, Ph.D., GW Humanitarian Action Initiative; Peter Kilmarx, M.D., National Institutes of Health (NIH) Fogarty International Center; Enock Motavu, Ph.D., Makerere University in Uganda; Jennifer Troyer, Ph.D., Human Health and Heredity in Africa Program (H3Africa) at NIH; Désiré Tshala-Katumbay, M.D., Ph.D., National Institute of Biomedical Research in Kinshasa; Eric Vilain, M.D., Ph.D., Center for Genetic Medicine Research at Children’s National, with Institute for African Studies Director Jennifer Cooke, and Jonathan LoTempio Jr and D’Andre Spencer of Children’s National as moderators and co-conveners. Read more about the panelists.

The keynote speaker, Nkengasong, updated the group on the massive efforts in bending the COVID-19 disease curve on the African continent which at present has two million cases and 46,000 deaths. This is fewer than many other regions, and Nkengasong attributes this in part to health systems strengthening and capacity building that already occurred with past pandemics like Ebola. He stressed the importance of focusing on the “4 Ps” — population, pathogen, politics and policy — in fighting the pandemic, and the need to ensure that citizens trust their leaders and the public health measures they advance. New endeavors by the Africa CDC include the Pathogen Genomic Initiative, which will help inform research and responses to COVID-19 and other emergent disease threats, and the African COVID-19 Vaccine Development and Access Strategy, which aims to ensure widespread access, delivery and uptake of effective vaccines across Africa. Africa CDC is surging to hotspots as lockdowns ease or shift, and is empowering universities to invest in proactive and, which has helped with the active response success. “Rising tides raise all boats in the sea,” said Nkengasong. He went on to say that there is great power in coordination and cooperation, and science diplomacy and technology are critical to winning the novel coronavirus war.

In a panel on research partnerships, speakers Motavu, Tshala-Katumbay, and Vilain emphasized the global benefits of scientific collaborations in Africa. Africa contains more human genetic variation than any other region of the world, and capturing that diversity in global understanding of the human genome — which is still heavily skewed toward individuals of European ancestry — will be a major factor in global medical advances of the future. And research into relatively localized diseases can lead to breakthroughs in broader understanding on connections between climate variation, environment, nutrition and child health. “The simplistic, localized, nationalist, way of doing science is over,” said Tshala-Katumbay, “and there is no way to go back.” The discipline of science diplomacy will take time for people to grasp, he added, “but it will be crucial for the future generation of scientists to go back.”

A recurring conference theme was that collaboration between countries is crucial for development of better care. Kilmarx told the event participants that in 2019, the National Institutes of Health supported some 1,668 collaborations with African research institutions. Investments in capacity building have yielded impressive results, and today some of Africa’s foremost leaders in science research and public health have received NIH training and support, stating: “If you plant acorns over the decades, you have some mighty oaks.” Bukusi, once such NIH trainee, now is engaged in training a new generation of African researchers and U.S. researchers based in Africa and expanding research partnerships at the Kenya Medical Research Institute.

Troyer showed the successes of the Human Heredity and Health in Africa Initiative, a large consortium that supports a pan-continental network of laboratories that aims to determine disease susceptibility and drug responses. Finally, DeLoffre underscored the need for long-term investments and the value of building local capacities to respond to current crises and anticipate future challenges.

Overall, there was optimism that innovative coalitions are a long-term strength in fighting pandemics and promoting reciprocal learning that will last after the crisis. Science can be a neutral platform that, combined with diplomacy and technology, builds bridges between peoples.

pile of plastic bottles

The linkage between chemicals used in plastics and cardiovascular disease

pile of plastic bottles

For people across the globe, plastics are synonymous with modern life and it’s impossible to avoid exposure to them, including clinical environments where a variety of frequently used materials, such as tubing and blood storage bags, are made from plastics.

For people across the globe, plastics are synonymous with modern life and it’s impossible to avoid exposure to them, including clinical environments where a variety of frequently used materials, such as tubing and blood storage bags, are made from plastics. Led by Nikki Posnack, Ph.D, principal investigator at The Sheikh Zayed Institute for Pediatric Surgical Innovation at Children’s National Hospital, a team of Children’s National researchers has been studying the potential effects of chemicals found in plastics, such as BPA and DEHP, as possible contributors to cardiovascular disease.

Along with conducting proprietary studies of the potential effects, Posnack and her team recently reviewed available scientific studies to further identify and illuminate the potential links between exposure to the synthetic additives contained in plastics and cardiovascular mortality. The article was published this month in Nature Reviews Cardiology.

In the article Posnack cites a 10-year longitudinal study with the finding that high exposure to BPA was associated with a 46-49% higher hazard ratio for cardiovascular and all-cause mortality, compared with low exposure to BPA.

“Plastics may be indispensable materials, but their ubiquity does raise concerns about the effects of our continuous exposure to plasticizer additives like di(2-ethylhexyl) phthalate (DEHP) and synthetic chemicals used to create polymers like BPA,” said Posnack. “Although disease causation can be difficult to pinpoint in population and epidemiological studies, experimental work has clearly demonstrated a direct link to plastic chemicals and cardiac dysfunction. It is clear that future collaborative endeavors are necessary to bridge the gap between experimental, epidemiological and clinical investigations to resolve the impact of plastics on cardiovascular health.”

Nikki Gillum Posnack

Nikki Posnack, Ph.D, principal investigator at The Sheikh Zayed Institute for Pediatric Surgical Innovation at Children’s National Hospital.

Posnack added that, given the omnipresence of plastics and their related chemicals, biomonitoring studies have reported detectable levels of DEHP and BPA in 75-90% of the population. Occupational or clinical environments can also result in elevated exposures to these dangerous chemicals. Previous epidemiological studies have reported links between elevated urinary levels of phthalate or bisphenol, common additives in plastic, and an increased risk of coronary and peripheral artery disease, chronic inflammation, myocardial infarction, angina, suppressed heart rate variability and hypertension.

Additionally, available research has shown that incomplete polymerization or degradation of BPA-based plastic products can result in unsafe human exposure to BPA. Despite these links, the article points out, both BPA and DEHP are still manufactured in high volumes and are used to produce a wide variety of consumer and commercial products.

Further exploring implications for pediatrics, a June 2020 article published by Posnack in Birth Defects Research looks at the potential effects of plastic chemicals on the cardiovascular health of fetal, infant and pediatric groups. The article highlighted experimental work that suggests plasticizer chemicals such as bisphenols and phthalates may exert negative influence on pediatric cardiovascular health. The article systematically called out areas of concern supported by research findings. Also addressing current gaps in knowledge, Posnack outlined future research endeavors that would be needed to resolve the relationship between chemical exposures and the impact on pediatric cardiovascular physiology.

In related work, Posnack and her team are expanding their work on plastics used in blood bags to also investigate the role of blood storage duration on health outcomes. A recently published first study demonstrates that “older” blood products (stored 35 or more days) directly impact cardiac electrophysiology, using experimental models. Published October 22, 2020 in the Journal of the American Heart Association, the study concludes that the cardiac effects are likely caused by biochemical alterations in the supernatant from red blood cell units that occur over time, including but not limited to, hyperkalemia (elevated potassium levels).

MRI of the patient's head close-up

Madison Berl, Ph.D., receives 2020 PERF award for Infrastructure/Registry Research

MRI of the patient's head close-up

The Pediatric Epilepsy Research Foundation Grant (PERF) has awarded Madison Berl, Ph.D., neuropsychologist at Children’s National Hospital, the 2020 PERF award for Infrastructure/Registry Research. The funds will support her work on researching neuropsychological outcomes of children being considered for pediatric epilepsy surgery.

This grant, which provides $200,000 of research funding, will allow Dr. Berl to systematically collect data outcomes and create robust prediction models that are critical to achieving precision medicine that allows for selecting the most effective surgical treatment for an individual child.

“While seizures are a critical outcome, there is increasing recognition that outcomes beyond seizure control is critical to children and their families when evaluating and treating the impact of epilepsy and its treatments,” said Dr. Berl.

Guidelines and consensus statements related to pediatric epilepsy surgery are uniformly lacking high quality published outcome data to support clinical decisions that impact likelihood of seizure freedom and optimizing outcomes beyond seizures (e.g., neuropsychological functioning, quality of life, improved sleep). Despite recognition of the need for standardized collection of data on a multi-institutional basis, the efforts that exist are limited in scope.

Moreover, as new techniques – such as laser ablation and brain stimulation – are approved for pediatric patients, there is little information available to determine which children will benefit from which intervention.

“This project fundamentally is a multi-site registry for epilepsy surgery outcomes,” Dr. Berl added.

“However, this type of infrastructure also fosters growth and active collaboration within a network of pediatric epilepsy clinicians. I am excited because if successful, this will be the start of long-term collaborative effort.”

illustration of lungs surrounded by virus

COVID-19: First comprehensive review of pediatric lung imaging features

illustration of lungs surrounded by virus

A systematic review and meta-analysis by Children’s National Hospital researchers, published in Pediatric Pulmonology, provides the first comprehensive review of the findings of published studies describing COVID-19 lung imaging data in children.

The number COVID-19 studies focused on children have been small and with limited data. This has prevented the identification of specific pediatric lung disease patterns in COVID-19. Although children make up around 9.5% of COVID-19 infections, less than 2% of the literature on the virus, its symptoms and effects, have focused on kids.

A systematic review and meta-analysis by Children’s National Hospital researchers, published in Pediatric Pulmonology, provides the first comprehensive review of the findings of published studies describing COVID-19 lung imaging data in children. The analysis concludes that chest CT manifestations in children with COVID‐19 could potentially prompt intervention in the pediatric population.

Marius George Linguraru, D.Phil., M.A., M.Sc., principal investigator in the Sheikh Zayed Institute for Pediatric Surgical Innovation at Children’s National, discusses the importance of this work.

Q: What findings stand out to you?

A: We found that more than a third of children with COVID-19 had normal imaging. The lung imaging findings in these children were overall less frequent and less severe than in adult patients, but they were also more heterogeneous than in adults. Importantly, children with COVID-19 were three times more likely to have a normal exam than adults.

Several common lung imaging findings reported in adults were extremely rare or not found in the pediatric studies. These discoveries, and other recent reports in this space, support the fact that children’s symptoms may be less obvious than adults or even absent, but they still carry the virus and may be at risk for serious and life-threatening illness.

Marius George Linguraru

Marius George Linguraru, D.Phil., M.A., M.Sc., principal investigator in the Sheikh Zayed Institute for Pediatric Surgical Innovation at Children’s National.

Q: How will the findings of this study benefit pediatric care?

A: In our study, we showed how the health of the lungs of these children is impacted. Our results from data from 1,026 children (from newborns to 18 year old) with COVID-19 present chest manifestations that could potentially prompt informed intervention and better recovery.

Another conclusion of our study is that the abnormalities reported on the chest scans of children infected with COVID-19 are distinct from the typical lung images seen during other viral respiratory infections in the pediatric population. This is important for preparing for the cold and flu season.

Q: Why was this review important to our understanding of how COVID-19 impacts children?

A: This is the first systematic review and meta-analysis focused on the manifestation of the COVID-19 infection in the lungs of children. Our study, and others from colleagues at Children’s National, helps lead the efforts on elucidating how the pandemic affects the health of children.

Though children were initially thought to be less susceptible to infection, the data has made it clear that many children are at high risk for hospitalization and severe health complications. Although there are similarities between how children and adults are affected by the pandemic, there are also critical differences.

Given the limited knowledge in the manifestation of COVID-19 in children, with children susceptible to infection and hospitalization, and with children returning to school, continued efforts to understand the impact of COVID-19 on young patients is critically important. Understanding how children fare through the pandemic is the foundation of discovering better ways to take care of young patients and their health.

You can find the full study published in Pediatric Pulmonology. Learn more about the Sheikh Zayed Institute for Pediatric Surgical Innovation at Children’s National.

sick child in palliative care hospital bed

Children’s National Research Institute receives NIH grant for palliative care study

sick child in palliative care hospital bed

A new NIH grant will support the first study that examines palliative care needs in pediatric rare disease community.

The National Institute of Health (NIH) has awarded $500,875 to the Children’s National Research Institute (CNRI), the academic arm of Children’s National Hospital, to support a new study examining the palliative care needs of children living with rare genetic diseases.

This is the first study of families of children with genetic and metabolic conditions, termed collectively as rare diseases, that is designed to intervene to support the well-being of family caregivers and create advance care plans for future medical decision making. In the United States, a rare disease is defined as a particular condition affecting fewer than 200,000 people. Pediatric patients with rare diseases experience high mortality rates, with 30 percent not living to see their fifth birthday.

“Children with ultra-rare or complex rare disorders are routinely excluded from research studies because of their conditions, creating a significant health disparity. Surveys show that families of children with rare diseases are adversely impacted by lack of easy access to peer and psychological support,” says Maureen Lyon, Ph.D., Clinical Health Psychologist and Professor of Pediatrics at the CNRI and principal investigator on the project. “This study will examine the palliative care needs of family caregivers of children with rare genetic disorders and advance care planning intervention, which will ultimately help facilitate discussions about future medical care choices that families are likely to be asked to make for their child.”

Although greatly needed, there are few empirically validated interventions to address these issues Currently, there is only one intervention described for families of children with rare diseases — a Swedish residential, competence program — which focuses on active coping. However, this intervention does not address pediatric advance care planning, a critical aspect of palliative care.

Lyon adds that the major benefit of this proposed project will be filling the gap in knowledge about what family caregivers of medically fragile children with rare diseases want with respect to palliative care. In the United States, these families are expected to provide a level of care that, until a few decades ago, was reserved for hospitals.

Maureen E Lyon

Maureen Lyon, Ph.D., Clinical Health Psychologist and Professor of Pediatrics at the CNRI and principal investigator on the project.

“Our hope is that this study will provide a structured model for facilitating family decisions about end-of-life care, for those families who do not have the good fortune to have children who have the capacity to share in decision-making,” Lyon says.

In addition to bridging the knowledge gap regarding palliative care in rare disease patients, the study will also help inform current clinical, ethical and policy discussions, as well as the legal issues in a variety of areas, such as the debate surrounding advocacy, particularly for those children with impairments in physical function.

“We look forward to the results of this study,” said Marshall Summar, M.D., director of the Rare Disease Institute and division chief, Genetics and Metabolism at Children’s National Hospital. “As a leader in rare disease care, we continually examine how we can improve care and support for our patient families at our clinic and want to share our findings with others engaged in caring for rare disease patients. Because rare diseases can be life limiting in some cases, we need to learn all we can about how best to care and support a patient and family as they prepare for a potential transition to palliative care.”

All research at Children’s National Hospital is conducted through the CNRI, including translational, clinical and community studies. The CNRI also oversees the educational activities and academic affairs of the hospital and the Department of Pediatrics at the George Washington University School of Medicine and Health Sciences, frequently partnering with many other research institutions regionally and nationally. CNRI conducts and promotes translational and clinical medical research and education programs within Children’s National Hospital that lead to improved understanding, prevention, treatment and care of childhood diseases.

Kristina Hardy

Kristina Hardy awarded St. Baldrick’s Foundation research grant for supportive care

Kristina Hardy

Kristina Hardy, Ph.D., pediatric neuropsychologist within the Division of Neuropsychology at Children’s National Hospital, was a recipient of a $60,000 grant for children with acute lymphoblastic leukemia (ALL), a cancer of the blood, from the St. Baldrick’s Foundation, the largest charitable funder of childhood cancer research grants. .

Dr. Hardy along with her co-principal investigator in this project, Dr. Sarah Alexander, an oncologist from the Hospital for Sick Children in Toronto, study neurocognitive difficulties in survivors of pediatric cancer. Through their research, both doctors will examine the potential connections between specific anesthesia medications, their doses, the amount of time they’re given and the chances of patients having learning problems later on in life. This critical research will be important for patients, families and clinical teams in helping to make the best choices for anesthesia use.

“About 20-40% of children who are diagnosed with ALL develop problems with thinking and learning after treatment,” said Dr. Hardy. “This research is exciting because if certain types or amounts of anesthesia are shown to increase risk for cognitive changes in survivors, we may be able to quickly change the way that we use anesthesia to lessen the risk.”

The St. Baldrick’s Foundation is on a mission to defy childhood cancers by supporting the most promising research to find cures and better treatments for all childhood cancers. As a leader in the pediatric cancer community, St. Baldrick’s works tirelessly to ensure that current and future children diagnosed with cancer will have access to the most cutting-edge treatment from the best leaders in the pediatric oncology field.

Research & Innovation Campus

Tailoring treatments to young patients

Research & Innovation Campus

The Children’s National Research & Innovation campus will be a a one-of-a-kind pediatric research and innovation hub.

Children’s National Hospital president and CEO, Kurt Newman, M.D., recently spoke with Modern Healthcare about the soon-to-open Children’s National Research & Innovation Campus and how it will help address the lagging development of devices, medications and technologies specifically designed to help children.

You can read the full article here.

Lataisia C. Jones on Mission Unstoppable

Getting to know the unstoppable Lataisia C. Jones, Ph.D.

Lataisia C. Jones on Mission Unstoppable

Children’s National Hospital neuroscientist Lataisia C. Jones, Ph.D., appears in the Jan. 18, 2020, edition of Mission Unstoppable, a Saturday morning show aired by CBS that spotlights cutting-edge women leaders in science, technology, engineering and math.

Budding neuroscientist Lataisia C. Jones, Ph.D., is unstoppable. For instance, using everyday items that families can pluck from their own kitchen cabinets, she walks kids through the steps of creating homemade lava lamps. In the process, the youngsters learn a bit of science, like the fact that oil and water do not mix provides the hypnotic magic behind their new lamps.

Jones’ infectious enthusiasm for science that Children’s National Hospital patients and families experience in person during weekly Young Scientist sessions she hosts will be shared nationwide as Jones appears in the Jan. 18, 2020, edition of “Mission Unstoppable.” The half-hour show aired by CBS on Saturday mornings is co-produced by the Geena Davis Institute on Gender in Media and spotlights cutting-edge women leaders in science, technology, engineering and math (STEM).

“I’m excited,” Jones says of the filming experience. “It’s going to be an amazing opportunity to show kids that there is a fun way of learning. This show is opening a lot of doors and a lot of eyes to the fact that science can be fun.”

Jones’ scientific inquiry focuses on the corpus callosum, a network of fibers centrally located in the middle of the brain that is responsible for transferring information from one lobe to another. Her current research leverages experimental models to better understand brain abnormalities associated with autism spectrum disorder. Or, as she tells CBS viewers, studying the brain helps the field better understand how information is processed in order for people to move, learn and think effortlessly.

Lataisia C. Jones on Mission Unstoppable

“I’m excited,” Jones says of the filming experience. “It’s going to be an amazing opportunity to show kids that there is a fun way of learning. This show is opening a lot of doors and a lot of eyes to the fact that science can be fun.”

In September 2019, Jones was selected to serve as an IF/THEN Ambassador by the American Association for the Advancement of Science, the world’s largest general scientific society, to inspire the next generation of women pursuing STEM careers. A postdoctoral fellow in the Center for Neuroscience Research lab run by Masaaki Torii, Ph.D., Jones now also serves as a role model for future scientists, connecting with middle school students in person, virtually and via the CBS network television show.

“A lot of my inspiration comes from individuals who I mentor, which also shows that I am learning as well. If I am able to teach science, translate it in different ways to different audiences, I am helping to fulfill my lifelong dream,” she adds. “I always say we all have an inner scientist.”

As the first African American to earn a Ph.D. from Florida State University’s College of Medicine, Department of Neuroscience, Jones has continued to acquire “first” experiences throughout her academic and professional career. But she’s also motivated to diversify the ranks of science to ensure she’s not the last.

“I am not the normal face you see in science,” she says. “Another reason for me to be stronger and to work harder and get more things done in science is so people who look like me know they can do the same things and know that they’re just as good.”

Dr. Kurt Newman in front of the capitol building

Making healthcare innovation for children a priority

Dr. Kurt Newman in front of the capitol building

Recently, Kurt Newman, M.D., president and CEO of Children’s National Hospital, authored an opinion piece for the popular political website, The Hill. In the article, he called upon stakeholders from across the landscape to address the significant innovation gap in children’s healthcare versus adults.

As Chair of the Board of Trustees of the Children’s Hospital Association,  Dr. Newman knows the importance of raising awareness among policy makers at the federal and state level about the healthcare needs of children. Dr. Newman believes that children’s health should be a national priority that is addressed comprehensively. With years of experience as a pediatric surgeon, he is concerned by the major inequities in the advancements of children’s medical devices and technologies versus those for adults. That’s why Children’s National is working to create collaborations, influence policies and facilitate changes that will accelerate the pace of pediatric healthcare innovation for the benefit of children everywhere. One way that the hospital is tackling this challenge is by developing the Children’s National Research & Innovation Campus, which will be the nation’s first innovation campus focused on pediatric research.

Research & Innovation Campus

Children’s National welcomes Virginia Tech to its new campus

Children’s National Hospital and Virginia Tech create formal partnership that includes the launch of a Virginia Tech biomedical research facility within the new Children’s National Research & Innovation Campus.

Children’s National Hospital and Virginia Tech recently announced a formal partnership that will include the launch of a 12,000-square-foot Virginia Tech biomedical research facility within the new Children’s National Research & Innovation Campus. The campus is an expansion of Children’s National that is located on a nearly 12-acre portion of the former Walter Reed Army Medical Center in Washington, D.C. and is set to open its first phase in December 2020. This new collaboration brings together Virginia Tech, a top tier academic research institution, with Children’s National, a U.S. News and World Report top 10 children’s hospital, on what will be the nation’s first innovation campus focused on pediatric research.

Research & Innovation Campus

“Virginia Tech is an ideal partner to help us deliver on what we promised for the Children’s National Research & Innovation Campus – an ecosystem that enables us to accelerate the translation of potential breakthrough discoveries into new treatments and technologies,” says Kurt Newman, M.D., president and CEO, Children’s National. “Our clinical expertise combined with Virginia Tech’s leadership in engineering and technology, and its growing emphasis on biomedical research, will be a significant advance in developing much needed treatment and cures to save children’s lives.”

Earlier this year, Children’s National announced a collaboration with Johnson & Johnson Innovation LLC to launch JLABS @ Washington, DC at the Research & Innovation Campus. The JLABS @ Washington, DC site will be open to pharmaceutical, medical device, consumer and health technology companies that are aiming to advance the development of new drugs, medical devices, precision diagnostics and health technologies, including applications in pediatrics.

“We are proud to welcome Virginia Tech to our historic Walter Reed campus – a campus that is shaping up to host some of the top minds, talent and innovation incubators in the world,” says Washington, D.C. Mayor Muriel Bowser. “The new Children’s National Research & Innovation Campus will exemplify why D.C. is the capital of inclusive innovation – because we are a city committed to building the public and private partnerships necessary to drive discoveries, create jobs, promote economic growth and keep D.C. at the forefront of innovation and change.”

Faculty from the Children’s National Research Institute and the Fralin Biomedical Research Institute at Virginia Tech Carilion (VTC) have worked together for more than a decade, already resulting in shared research grants, collaborative publications and shared intellectual property. Together, the two institutions will now expand their collaborations to develop new drugs, medical devices, software applications and other novel treatments for cancer, rare diseases and other disorders.

“Joining with Children’s National in the nation’s capital positions Virginia Tech to improve the health and well-being of infants and children around the world,” says Virginia Tech President Tim Sands, Ph.D. “This partnership resonates with our land-grant mission to solve big problems and create new opportunities in Virginia and D.C. through education, technology and research.”

The partnership with Children’s National adds to Virginia Tech’s growing footprint in the Washington D.C. region, which includes plans for a new graduate campus in Alexandria, Va. with a human-centered approach to technological innovation. Sands said the proximity of the two locations – just across the Potomac – will enable researchers to leverage resources, and will also create opportunities with the Virginia Tech campus in Blacksburg, Va. and the Virginia Tech Carilion Health Science and Technology campus in Roanoke, Va.

Carilion Clinic and Children’s National have an existing collaboration for provision of certain specialized pediatric clinical services. The more formalized partnership between Virginia Tech and Children’s National will drive the already strong Virginia Tech-Carilion Clinic partnership, particularly for children’s health initiatives and facilitate collaborations between all three institutions in the pediatric research and clinical service domains.

Children’s National and Virginia Tech will engage in joint faculty recruiting, joint intellectual property, joint training of students and fellows, and collaborative research projects and programs according to Michael Friedlander, Ph.D., Virginia Tech’s vice president for health sciences and technology, and executive director of the Fralin Biomedical Research Institute at VTC.

“The expansion and formalization of our partnership with Children’s National is extremely timely and vital for pediatric research innovation and for translating these innovations into practice to prevent, treat and ultimately cure nervous system cancer in children,” says Friedlander, who has collaborated with Children’s National leaders and researchers for more than 20 years. “Both Virginia Tech and Children’s National have similar values and cultures with a firm commitment to discovery and innovation in the service of society.”

“Brain and other nervous system cancers are among the most common cancers in children (alongside leukemia),” says Friedlander. “With our strength in neurobiology including adult brain cancer research in both humans and companion animals at Virginia Tech and the strength of Children’s National research in pediatric cancer, developmental neuroscience and intellectual disabilities, this is a perfect match.”

The design of the Children’s National Research & Innovation Campus not only makes it conducive for the hospital to strengthen its prestigious partnerships with Virginia Tech and Johnson & Johnson, it also fosters synergies with federal agencies like the Biomedical Advanced Research and Development Authority, which will collaborate with JLABS @ Washington, DC to establish a specialized innovation zone to develop responses to health security threats. As more partners sign on, this convergence of key public and private institutions will accelerate discoveries and bring them to market faster for the benefit of children and adults.

“The Children’s National Research & Innovation Campus pairs an inspirational mission to find new treatments for childhood illness and disease with the ideal environment for early stage companies. I am confident the campus will be a magnet for big ideas and will be an economic boost for Washington DC and the region,” says Jeff Zients, who was appointed chair of the Children’s National Board of Directors effective October 1, 2019. As a CEO and the former director of President Obama’s National Economic Council, Zients says that “When you bring together business, academia, health care and government in the right setting, you create a hotbed for innovation.”

Ranked 7th in National Institutes of Health research funding among pediatric hospitals, Children’s National continues to foster collaborations as it prepares to open its first 158,000-square-foot phase of its Research & Innovation Campus. These key partnerships will enable the hospital to fulfill its mission of keeping children top of mind for healthcare innovation and research while also contributing to Washington D.C.’s thriving innovation economy.

kidneys with cysts on them

$6M gift powers new PKD clinical and research activities

kidneys with cysts on them

PKD is a genetic disorder characterized by clusters of fluid-filled sacs (cysts) multiplying and interfering with the kidneys’ ability to filter waste from the blood.

When Lisa M. Guay-Woodford, M.D., McGehee Joyce Professor of Pediatrics at Children’s National Hospital, considers a brand-new gift, she likens it to 6 million gallons of “rocket fuel” that will power new research to better understand polycystic kidney disease.

Dr. Guay-Woodford received a $5.7 million dollar gift to support PKD clinical and research activities. PKD is a genetic disorder characterized by clusters of fluid-filled sacs (cysts) multiplying and interfering with the kidneys’ ability to filter waste from the blood. The kidneys’ smooth surface transforms to a bumpy texture as the essential organs grow oversized and riddled with cysts.

The extraordinary generosity got its start in an ordinary clinical visit.

Dr. Guay-Woodford saw a young patient in her clinic at Children’s National a few times in 2015. The child’s diagnosis sparked a voyage of discovery for the patient’s extended family and, ultimately, they attended a presentation she gave during a regional meeting about PKD. That led to a telephone conversation and in-person meeting as they invited her to describe “the white space” between what was being done at the time to better understand PKD and what could be done.

“It’s the power of the art and science of medicine. They come to see people like me because of the science. If we can convey to patients and families that who they are and their unique concerns are really important to researchers, that becomes a powerful connection,” she says. “The art plus the science equals hope. That is what these families are looking for: We give people the latest insights about their disease because information is power.”

The infusion of new funding will strengthen the global initiative’s four pillars:

  • Coordinated care for children and families impacted by renal cystic disease. The Inherited and Polycystic Kidney Disease (IPKD) program, launched September 2019, includes a cadre of experts working together as a team in the medical home so that “in a single, one-stop visit, Children’s National can address the myriad concerns they have,” she explains. A multi-disciplinary team that includes nephrologists, hepatologists and endocrinology experts meets weekly to ensure the Center of Excellence provides the highest-caliber patient care. The team includes genetic counselors to empower families with knowledge about genetic risks and testing opportunities. A nurse helps families navigate the maze of who to call about which issue. Psychologists help to ease anxiety. “There is stress. There is fear. There is pain that can be associated with this set of diseases. The good news is we can control their medical issues. The bad news is some children have difficulty coping. Our psychologists help children cope so they can be a child and do the normal things that children do,” she says.
  • Strengthening global databases to capture PKD variations. The team will expand its outreach to other centers located around the world – including Australia, Europe, India and Latin America – caring for patients with both the recessive and dominant forms of polycystic kidney disease, to better understand the variety of ways the disease can manifest in children. We really don’t know a lot about kids with the dominant form of the disease. How hard should we push to control their blood pressure, knowing that could ease symptoms? What are the ramifications of experiencing acute pain compared with chronic pain? How much do these pain flareups interfere with daily life and a child’s sense of self,” she asks. Capturing the nuances of the worldwide experience offers the power of harnessing even more data. And ensuring that teams collect data in a consistent way means each group would have the potential to extract the most useful information from database queries.
  • Filling a ‘desperate need’ for biomarkers. Developing clinical trials for new therapies requires having biomarkers that indicate the disease course. Such biomarkers have been instrumental in personalizing care for patients with other chronic conditions. “We are in desperate need for such biomarkers, and this new funding will underwrite pilot studies to identify and validate these disease markers. The first bite at the apple will leverage our imaging data to identify promising biomarkers,” she says.
  • Genetic mechanisms that trigger kidney disease. About 500,000 people in the U.S. have PKD. In many cases, children inherit a genetic mutation but, often, their genetic mutation develops spontaneously. Dr. Guay-Woodford’s research about the mechanisms that make certain inherited renal disorders lethal, such as autosomal recessive polycystic kidney disease, is recognized around the world. The fourth pillar of the new project provides funding to continue her lab’s research efforts to improve the mechanistic understanding of what triggers PKD.
Vittorio Gallo Alpha Omega Alpha Award

Vittorio Gallo, Ph.D., inducted into Alpha Omega Alpha

Vittorio Gallo Alpha Omega Alpha Award

Vittorio Gallo, Ph.D., Chief Research Officer at Children’s National, was inducted into Alpha Omega Alpha (AΩA), a national medical honor society that since 1902 has recognized excellence, leadership and research in the medical profession.

“I think it’s great to receive this recognition. I was very excited and surprised,” Gallo says of being nominated to join the honor society.

“Traditionally AΩA membership is based on professionalism, academic and clinical excellence, research, and community service – all in the name of ‘being worthy to serve the suffering,’ which is what the Greek letters AΩA stand for,” says Panagiotis Kratimenos, M.D., Ph.D., an ΑΩΑ member and attending neonatologist at Children’s National who conducts neuroscience research under Gallo’s mentorship. Dr. Kratimenos nominated his mentor for induction.

“Being his mentee, I thought Gallo was an excellent choice for AΩΑ faculty member,” Dr. Kratimenos says. “He is an outstanding scientist, an excellent mentor and his research is focused on improving the quality of life of children with brain injury and developmental disabilities – so he serves the suffering. He also has mentored numerous physicians over the course of his career.”

Gallo’s formal induction occurred in late May 2019, just prior to the medical school graduation at the George Washington University School of Medicine & Health Sciences (GWSMHS) and was strongly supported by Jeffrey S. Akman, Vice President for Health Affairs and Dean of the university’s medical school.

“I’ve been part of Children’s National and in the medical field for almost 18 years. That’s what I’m passionate about: being able to enhance translational research in a clinical environment,” Gallo says. “In a way, this recognition from the medical field is a perfect match for what I do. As Chief Research Officer at Children’s National, I am charged with continuing to expand our research program in one of the top U.S. children’s hospitals. And, as Associate Dean for Child Health Research at GWSMHS, I enhance research collaboration between the two institutions.”

Gustavo Nino

Gustavo Nino, M.D., honored with national award from American Thoracic Society

Gustavo Nino

Gustavo Nino, M.D., a pulmonologist who directs the Sleep Medicine program at Children’s National, was honored by the American Thoracic Society with The Robert B. Mellins, M.D. Outstanding Achievement Award in recognition of his contributions to pediatric pulmonology and sleep medicine.

“I am humbled and pleased to be recognized with this distinction,” says Dr. Nino. “This national award is particularly special because it honors both academic achievements as well as research that I have published to advance the fields of pediatric pulmonology and sleep medicine.”

After completing a mentored career development award (K Award) from the National Institutes of Health (NIH), Dr. Nino established an independent research program at Children’s National funded by three different NIH R-level grants, an R01 research project grant; an R21 award for new, exploratory research; and an R4 small business/technology transfer award to stimulate research innovation.

The research team Dr. Nino leads has made important contributions to developing novel models to study the molecular mechanisms of airway epithelial immunity in newborns and infants. He also has pioneered the use of computer-based lung imaging tools and physiological biomarkers to predict early-life respiratory disease in newborns and infants.

Dr. Nino has published roughly 60 peer-review manuscripts including in the “Journal of Allergy and Clinical Immunology,” the “European Respiratory Journal,” and the “American Journal of Respiratory and Critical Care Medicine,” the three top journals in the field of respiratory medicine. He has been invited to chair sessions about sleep medicine during meetings held by the Pediatric Academic Societies, American College of Chest Physicians and the American Thoracic Society (ATS).

Dr. Nino also has served as NIH scientific grant reviewer of the Lung Cellular and Molecular Immunology Section; The Infectious, Reproductive, Asthma and Pulmonary Conditions Section; and The Impact of Initial Influenza Exposure on Immunity in Infants NIH/National Institute of Allergy and Infectious Diseases Special Emphasis Panel.

In addition to his research and academic contributions, over the past five years Dr. Nino has led important clinical and educational activities at Children’s National and currently directs the hospital’s Sleep Medicine program, which has grown to become one of the region’s largest programs conducting more than 1,700 sleep studies annually.

He has developed several clinical multidisciplinary programs including a pediatric narcolepsy clinic and the Advanced Sleep Apnea Program in collaboration with the Division of Ear, Nose and Throat at Children’s National. In addition, Dr. Nino started a fellowship program in Pediatric Sleep Medicine accredited by the Accreditation Council for Graduate Medical Education in collaboration with The George Washington University and has served as clinical and research mentor of several medical students, pediatric residents and fellows.

Catherine Bollard

Engineering TGFB receptor to enhance NK cells and fight neuroblastoma

Catherine Bollard

“In this study, we have genetically engineered cord blood derived NK cells so that they are not only resistant to the devastating effects of TGFb, but they are not able to become activated in the presence of TGFb,” said, Catherine Bollard, M.B.Ch.B., M.D.

Catherine Bollard, M.B.Ch.B., M.D., and her research team published results showing potential efficacy of a novel cell therapy for treatment of pediatric patients with relapsed/refractory neuroblastoma.

The research paper, entitled, “Engineering the TGFβ receptor to Enhance the Therapeutic Potential of Natural Killer Cell as an Immunotherapy for Neuroblastoma,” was published on April 29, 2019 by Clinical Cancer Research and is being recognized for the potential efficacy of the “off the shelf” treatment for patients with relapsed/refractory neuroblastoma.

The researcher’s approach allows them to manipulate Natural Killer (NK) cells, expand and reinfuse them within a patient so they can fight cancer and disease.

“In this study, we have genetically engineered cord blood derived NK cells so that they are not only resistant to the devastating effects of TGFb, but they are not able to become activated in the presence of TGFb,” said, Dr. Bollard, who is the senior corresponding author of the study and director of the Center for Cancer and Immunology Research at the Children’s Research Institute. “In other words, turning the negative effects of TGFb into positive effects enhances the persistence and anti-tumor activity of these tumor-killing NK cells in vivo.”

NK cells are highly cytolytic, and their potent antitumor effects can be rapidly triggered by a lack of human leukocyte antigen (HLA) expression on interacting target cells, as in the case for a majority of solid tumors, including neuroblastoma. With neuroblastoma being a leading cause of pediatric cancer-related deaths, it presents as an ideal candidate for NK cell therapy.

“This manuscript encompasses a significant portion of work, in which we generated genetically-modified NK cells as an enhanced form of immunotherapy for neuroblastoma,” said Rachel Burga, Ph.D., lead author and graduate of the Institute for Biomedical Sciences at George Washington and Children’s National Health System.  “We’re very excited to share our pre-clinical findings which demonstrate the efficacy of approaches to “hijack” the TGFb receptor and target TGFb in the tumor microenvironment.”

She added that the approach will allow for the NK cells to simultaneously resist the immune suppression in the microenvironment and initiate activation to increase their ability to target tumor cells.

Pre-clinical testing and research for this trial began in 2016 and ended in 2019. “The idea came from a Department of Defense award given to Dr. Bollard and Dr. Cruz and they took the idea and reduced it to practice and showed feasibility for pre-clinical trial,” said Rohan Fernandes, Ph.D., assistant professor in the Department of Medicine at George Washington University and senior author on the manuscript.

Fernandes added that the timeframe to start the clinical trial is within the next two to four years at Children’s National.

Additional authors include Rachel A. Burga, Ph.D., Eric Yvon, Rohan Fernandes, Conrad Russell Cruz, and Catherine M. Bollard, M.B.Ch.B., M.D.

John Schreiber

New study to raise profile of SCN8A-related disorders

John Schreiber

“The Cute Syndrome Foundation reached out because children with this disorder are dying. They were hoping to find a way to make more people, especially medical professionals, aware of this disorder and treatment recommendations,” said John Schreiber, M.D.

Children’s National Health System is proud to share that they have launched into a 6-month pilot research program to evaluate and improve education and access to care for SCN8A-related epilepsy. Due to advances in genetic testing, more patients with SCN8A mutations and other rare genetic epilepsies are being discovered all the time.

The research for the pilot program is being led by John Schreiber, M.D., assistant professor of neurology and pediatrics and director of the epilepsy genetics program at Children National. Dr. Schreiber will help to develop a more focused effort to provide families and clinicians with the Clinician Information and Reference Guide that was created by The Cute Syndrome Foundation. The goal of the information is to provide families and clinicians with a guide to remove barriers to access expert care.

“The Cute Syndrome Foundation reached out because children with this disorder are dying. They were hoping to find a way to make more people, especially medical professionals, aware of this disorder and treatment recommendations,” said Dr. Schreiber. “We’re at a critical point of collecting information as patients from around the world are looking at Children’s National as a leader to combat this type of disorder.”

As the first study of its kind in a rare genetic epilepsy, the pilot will provide the opportunity for future interventions that will help elevate the profile of SCN8A-related disorders, improve overall patient outcomes and facilitate collaborative partnerships that focus on research and on supporting positive outcomes for patients.

To help uncover barriers to accessing expert advice, the SCN8A survey was given out to over 200 health care professionals at Children’s National 2019 Pediatric Neurology Update meeting. Specifically, the study will help doctors at Children’s National increase provider knowledge of SN8A-related disorders, improve utilization of appropriate anti-seizure therapies and may ultimately end up reducing mortality.

Children’s National received a gift of $15,397 to establish the SCN8A Education and Research Fund, which will support research within the Comprehensive Pediatric Epilepsy Program to evaluate access to and increase awareness of SCN8A epileptic encephalopathy and treatment recommendation from experts in the field. The funds will be used for personnel, technology and material costs associated with the research.

DNA Molecule

Decoding cellular signals linked to hypospadias

DNA Molecule

“By advancing our understanding of the genetic causes and the anatomic differences among patients, the real goal of this research is to generate knowledge that will allow us to take better care of children with hypospadias,” Daniel Casella, M.D. says.

Daniel Casella, M.D., a urologist at Children’s National, was honored with an AUA Mid-Atlantic Section William D. Steers, M.D. Award, which provides two years of dedicated research funding that he will use to better understand the genetic causes for hypospadias.

With over 7,000 new cases a year in the U.S., hypospadias is a common birth defect that occurs when the urethra, the tube that transports urine out of the body, does not form completely in males.

Dr. Casella has identified a unique subset of cells in the developing urethra that have stopped dividing but remain metabolically active and are thought to represent a novel signaling center. He likens them to doing the work of a construction foreman. “If you’re constructing a building, you need to make sure that everyone follows the blueprints.  We believe that these developmentally senescent cells are sending important signals that define how the urethra is formed,” he says.

His project also will help to standardize the characterization of hypospadias. Hypospadias is classically associated with a downward bend to the penis, a urethra that does not extend to the head of the penis and incomplete formation of the foreskin. Still, there is significant variability among patients’ anatomy and to date, no standardized method for documenting hypospadias anatomy.

“Some surgeons take measurements in the operating room, but without a standardized classification system, there is no definitive way to compare measurements among providers or standardize diagnoses from measurements that every surgeon makes,” he adds. “What one surgeon may call ‘distal’ may be called ‘midshaft’ by another.” (With distal hypospadias, the urethra opening is near the penis head; with midshaft hypospadias, the urethra opening occurs along the penis shaft.)

“By advancing our understanding of the genetic causes and the anatomic differences among patients, the real goal of this research is to generate knowledge that will allow us to take better care of children with hypospadias,” he says.

Parents worry about lingering social stigma, since some boys with hypospadias are unable to urinate while standing, and in older children the condition can be associated with difficulties having sex. Surgical correction of hypospadias traditionally is performed when children are between 6 months to 1 year old.

When reviewing treatment options with family, “discussing the surgery and postoperative care is straight forward. The hard part of our discussion is not having good answers to questions about long-term outcomes,” he says.

Dr. Casella’s study hopes to build the framework to enable that basic research to be done.

“Say we wanted to do a study to see how patients are doing 15-20 years after their surgery.  If we go to their charts now, often we can’t accurately describe their anatomy prior to surgery.  By establishing uniform measurement baselines, we can accurately track long-term outcomes since we’ll know what condition that child started with and where they ended up,” he says.

Dr. Casella’s research project will be conducted at Children’s National under the mentorship of Eric Vilain, M.D., Ph.D., an international expert in sex and genitalia development; Dolores J. Lamb, Ph.D., HCLD, an established leader in urology based at Weill Cornell Medicine; and Marius George Linguraru, DPhil, MA, MSc, an expert in image processing and artificial intelligence.

Billie Lou Short and Kurt Newman at Research and Education Week

Research and Education Week honors innovative science

Billie Lou Short and Kurt Newman at Research and Education Week

Billie Lou Short, M.D., received the Ninth Annual Mentorship Award in Clinical Science.

People joke that Billie Lou Short, M.D., chief of Children’s Division of Neonatology, invented extracorporeal membrane oxygenation, known as ECMO for short. While Dr. Short did not invent ECMO, under her leadership Children’s National was the first pediatric hospital to use it. And over decades Children’s staff have perfected its use to save the lives of tiny, vulnerable newborns by temporarily taking over for their struggling hearts and lungs. For two consecutive years, Children’s neonatal intensive care unit has been named the nation’s No. 1 for newborns by U.S. News & World Report. “Despite all of these accomplishments, Dr. Short’s best legacy is what she has done as a mentor to countless trainees, nurses and faculty she’s touched during their careers. She touches every type of clinical staff member who has come through our neonatal intensive care unit,” says An Massaro, M.D., director of residency research.

For these achievements, Dr. Short received the Ninth Annual Mentorship Award in Clinical Science.

Anna Penn, M.D., Ph.D., has provided new insights into the central role that the placental hormone allopregnanolone plays in orderly fetal brain development, and her research team has created novel experimental models that mimic some of the brain injuries often seen in very preterm babies – an essential step that informs future neuroprotective strategies. Dr. Penn, a clinical neonatologist and developmental neuroscientist, “has been a primary adviser for 40 mentees throughout their careers and embodies Children’s core values of Compassion, Commitment and Connection,” says Claire-Marie Vacher, Ph.D.

For these achievements, Dr. Penn was selected to receive the Ninth Annual Mentorship Award in Basic and Translational Science.

The mentorship awards for Drs. Short and Penn were among dozens of honors given in conjunction with “Frontiers in Innovation,” the Ninth Annual Research and Education Week (REW) at Children’s National. In addition to seven keynote lectures, more than 350 posters were submitted from researchers – from high-school students to full-time faculty – about basic and translational science, clinical research, community-based research, education, training and quality improvement; five poster presenters were showcased via Facebook Live events hosted by Children’s Hospital Foundation.

Two faculty members won twice: Vicki Freedenberg, Ph.D., APRN, for research about mindfulness-based stress reduction and Adeline (Wei Li) Koay, MBBS, MSc, for research related to HIV. So many women at every stage of their research careers took to the stage to accept honors that Naomi L.C. Luban, M.D., Vice Chair of Academic Affairs, quipped that “this day is power to women.”

Here are the 2019 REW award winners:

2019 Elda Y. Arce Teaching Scholars Award
Barbara Jantausch, M.D.
Lowell Frank, M.D.

Suzanne Feetham, Ph.D., FAA, Nursing Research Support Award
Vicki Freedenberg, Ph.D., APRN, for “Psychosocial and biological effects of mindfulness-based stress reduction intervention in adolescents with CHD/CIEDs: a randomized control trial”
Renee’ Roberts Turner for “Peak and nadir experiences of mid-level nurse leaders”

2019-2020 Global Health Initiative Exploration in Global Health Awards
Nathalie Quion, M.D., for “Latino youth and families need assessment,” conducted in Washington
Sonia Voleti for “Handheld ultrasound machine task shifting,” conducted in Micronesia
Tania Ahluwalia, M.D., for “Simulation curriculum for emergency medicine,” conducted in India
Yvonne Yui for “Designated resuscitation teams in NICUs,” conducted in Ghana
Xiaoyan Song, Ph.D., MBBS, MSc, “Prevention of hospital-onset infections in PICUs,” conducted in China

Ninth Annual Research and Education Week Poster Session Awards

Basic and Translational Science
Faculty:
Adeline (Wei Li) Koay, MBBS, MSc, for “Differences in the gut microbiome of HIV-infected versus HIV-exposed, uninfected infants”
Faculty: Hayk Barseghyan, Ph.D., for “Composite de novo Armenian human genome assembly and haplotyping via optical mapping and ultra-long read sequencing”
Staff: Damon K. McCullough, BS, for “Brain slicer: 3D-printed tissue processing tool for pediatric neuroscience research”
Staff: Antonio R. Porras, Ph.D., for “Integrated deep-learning method for genetic syndrome screening using facial photographs”
Post docs/fellows/residents: Lung Lau, M.D., for “A novel, sprayable and bio-absorbable sealant for wound dressings”
Post docs/fellows/residents:
Kelsey F. Sugrue, Ph.D., for “HECTD1 is required for growth of the myocardium secondary to placental insufficiency”
Graduate students:
Erin R. Bonner, BA, for “Comprehensive mutation profiling of pediatric diffuse midline gliomas using liquid biopsy”
High school/undergraduate students: Ali Sarhan for “Parental somato-gonadal mosaic genetic variants are a source of recurrent risk for de novo disorders and parental health concerns: a systematic review of the literature and meta-analysis”

Clinical Research
Faculty:
Amy Hont, M.D., for “Ex vivo expanded multi-tumor antigen specific T-cells for the treatment of solid tumors”
Faculty: Lauren McLaughlin, M.D., for “EBV/LMP-specific T-cells maintain remissions of T- and B-cell EBV lymphomas after allogeneic bone marrow transplantation”

Staff: Iman A. Abdikarim, BA, for “Timing of allergenic food introduction among African American and Caucasian children with food allergy in the FORWARD study”
Staff: Gelina M. Sani, BS, for “Quantifying hematopoietic stem cells towards in utero gene therapy for treatment of sickle cell disease in fetal cord blood”
Post docs/fellows/residents: Amy H. Jones, M.D., for “To trach or not trach: exploration of parental conflict, regret and impacts on quality of life in tracheostomy decision-making”
Graduate students: Alyssa Dewyer, BS, for “Telemedicine support of cardiac care in Northern Uganda: leveraging hand-held echocardiography and task-shifting”
Graduate students: Natalie Pudalov, BA, “Cortical thickness asymmetries in MRI-abnormal pediatric epilepsy patients: a potential metric for surgery outcome”
High school/undergraduate students:
Kia Yoshinaga for “Time to rhythm detection during pediatric cardiac arrest in a pediatric emergency department”

Community-Based Research
Faculty:
Adeline (Wei Li) Koay, MBBS, MSc, for “Recent trends in the prevention of mother-to-child transmission (PMTCT) of HIV in the Washington, D.C., metropolitan area”
Staff: Gia M. Badolato, MPH, for “STI screening in an urban ED based on chief complaint”
Post docs/fellows/residents:
Christina P. Ho, M.D., for “Pediatric urinary tract infection resistance patterns in the Washington, D.C., metropolitan area”
Graduate students:
Noushine Sadeghi, BS, “Racial/ethnic disparities in receipt of sexual health services among adolescent females”

Education, Training and Program Development
Faculty:
Cara Lichtenstein, M.D., MPH, for “Using a community bus trip to increase knowledge of health disparities”
Staff:
Iana Y. Clarence, MPH, for “TEACHing residents to address child poverty: an innovative multimodal curriculum”
Post docs/fellows/residents:
Johanna Kaufman, M.D., for “Inpatient consultation in pediatrics: a learning tool to improve communication”
High school/undergraduate students:
Brett E. Pearson for “Analysis of unanticipated problems in CNMC human subjects research studies and implications for process improvement”

Quality and Performance Improvement
Faculty:
Vicki Freedenberg, Ph.D., APRN, for “Implementing a mindfulness-based stress reduction curriculum in a congenital heart disease program”
Staff:
Caleb Griffith, MPH, for “Assessing the sustainability of point-of-care HIV screening of adolescents in pediatric emergency departments”
Post docs/fellows/residents:
Rebecca S. Zee, M.D., Ph.D., for “Implementation of the Accelerated Care of Torsion (ACT) pathway: a quality improvement initiative for testicular torsion”
Graduate students:
Alysia Wiener, BS, for “Latency period in image-guided needle bone biopsy in children: a single center experience”

View images from the REW2019 award ceremony.

Beth Tarini

Getting to know SPR’s future President, Beth Tarini, M.D., MS

Beth Tarini

Quick. Name four pillar pediatric organizations on the vanguard of advancing pediatric research.

Most researchers and clinicians can rattle off the names of the Academic Pediatric Association, the American Academy of Pediatrics and the American Pediatric Society. But that fourth one, the Society for Pediatric Research (SPR), is a little trickier. While many know SPR, a lot of research-clinicians simply do not.

Over the next few years, Beth A. Tarini, M.D., MS, will make it her personal mission to ensure that more pediatric researchers get to know SPR and are so excited about the organization that they become active members. In May 2019 Dr. Tarini becomes Vice President of the society that aims to stitch together an international network of interdisciplinary researchers to improve kids’ health. Four-year SPR leadership terms begin with Vice President before transitioning to President-Elect, President and Past-President, each for one year.

Dr. Tarini says she looks forward to working with other SPR leaders to find ways to build more productive, collaborative professional networks among faculty, especially emerging junior faculty. “Facilitating ways to network for research and professional reasons across pediatric research is vital – albeit easier said than done. I have been told I’m a connector, so I hope to leverage that skill in this new role,” says Dr. Tarini, associate director for Children’s Center for Translational Research.

“I’m delighted that Dr. Tarini was elected to this leadership position, and I am impressed by her vision of improving SPR’s outreach efforts,” says Mark Batshaw, M.D., Executive Vice President, Chief Academic Officer and Physician-in-Chief at Children’s National. “Her goal of engaging potential members in networking through a variety of ways – face-to-face as well as leveraging digital platforms like Twitter, Facebook and LinkedIn – and her focus on engaging junior faculty will help strengthen SPR membership in the near term and long term.”

Dr. Tarini adds: “Success to me would be leaving after four years with more faculty – especially junior faculty – approaching membership in SPR with the knowledge and enthusiasm that they bring to membership in other pediatric societies.”

SPR requires that its members not simply conduct research, but move the needle in their chosen discipline. In her research, Dr. Tarini has focused on ensuring that population-based newborn screening programs function efficiently and effectively with fewer hiccups at any place along the process.

Thanks to a heel stick to draw blood, an oxygen measurement, and a hearing test, U.S. babies are screened for select inherited health conditions, expediting treatment for infants and reducing the chances they’ll experience long-term health consequences.

“The complexity of this program that is able to test nearly all 4 million babies in the U.S. each year is nothing short of astounding. You have to know the child is born – anywhere in the state – and then between 24 and 48 hours of birth you have to do testing onsite, obtain a specific type of blood sample, send the blood sample to an off-site lab quickly, test the sample, find the child if the test is out of range, get the child evaluated and tested for the condition, then send them for treatment. Given the time pressures as well as the coordination of numerous people and organizations, the fact that this happens routinely is amazing. And like any complex process, there is always room for improvement,” she says.

Dr. Tarini’s research efforts have focused on those process improvements.

As just one example, the Advisory Committee on Heritable Disorders in Newborns and Children, a federal advisory committee on which she serves, was discussing how to eliminate delays in specimen processing to provide speedier results to families. One possible solution floated was to open labs all seven days, rather than just five days a week. Dr. Tarini advocated for partnering with health care engineers who could help model ways to make the specimen transport process more efficient, just like airlines and mail delivery services. A more efficient and effective solution was to match the specimen pick-up and delivery times more closely with the lab’s operational times – which maximizes lab resources and shortens wait times for parents.

Conceptual modeling comes so easily for her that she often leaps out of her seat mid-sentence, underscoring a point by jotting thoughts on a white board, doing it so often that her pens have run dry.

“It’s like a bus schedule: You want to find a bus that not only takes you to your destination but gets you there on time,” she says.

Dr. Tarini’s current observational study looks for opportunities to improve how parents in Minnesota and Iowa are given out-of-range newborn screening test results – especially false positives – and how that experience might shake their confidence in their child’s health as well as heighten their own stress level.

“After a false positive test result, are there parents who walk away from newborn screening with lingering stress about their child’s health? Can we predict who those parents might be and help them?” she asks.

Among the challenges is the newborn screening occurs so quickly after delivery that some emotionally and physically exhausted parents may not remember it was done. Then they get a call from the state with ominous results. Another challenge is standardizing communication approaches across dozens of birthing centers and hospitals.

“We know parents are concerned after receiving a false positive result, and some worry their infant remains vulnerable,” she says. “Can we change how we communicate – not just what we say, but how we say it – to alleviate those concerns?”

Nickie Andescavage

To understand the preterm brain, start with the fetal brain

Nickie Andescavage

“My best advice to future clinician-scientists is to stay curious and open-minded; I doubt I could have predicted my current research interest or described the path between the study of early oligodendrocyte maturation to in vivo placental development, but each experience along the way – both academic and clinical – has led me to where I am today,” Nickie Andescavage, M.D., writes.

Too often, medical institutions erect an artificial boundary between caring for the developing fetus inside the womb and caring for the newborn whose critical brain development continues outside the womb.

“To improve neonatal outcomes, we must transform our current clinical paradigms to begin treatment in the intrauterine period and continue care through the perinatal transition through strong collaborations with obstetricians and fetal-medicine specialists,” writes Nickie Andescavage, M.D., an attending in Neonatal-Perinatal Medicine at Children’s National.

Dr. Andescavage’s commentary was published online March 25, 2019, in Pediatrics Research and accompanies recently published Children’s research about differences in placental development in the setting of placental insufficiency. Her commentary is part of a new effort by Nature Publishing Group to spotlight research contributions from early career investigators.

The placenta, an organ shared by a pregnant woman and the developing fetus, plays a critical but underappreciated role in the infant’s overall health. Under the mentorship of Catherine Limperopoulos, Ph.D., director of MRI Research of the Developing Brain, and Adré J. du Plessis, M.B.Ch.B., MPH, chief of the Division of Fetal and Transitional Medicine, Dr. Andescavage works with interdisciplinary research teams at Children’s National to help expand that evidence base. She has contributed to myriad published works, including:

While attending Cornell University as an undergraduate, Dr. Andescavage had an early interest in neuroscience and neurobehavior. As she continued her education by attending medical school at Columbia University, she corroborated an early instinct to work in pediatrics.

It wasn’t until the New Jersey native began pediatric residency at Children’s National that those complementary interests coalesced into a focus on brain autoregulation and autonomic function in full-term and preterm infants and imaging the brains of both groups. In normal, healthy babies the autonomic nervous system regulates heart rate, blood pressure, digestion, breathing and other involuntary activities. When these essential controls go awry, babies can struggle to survive and thrive.

“My best advice to future clinician-scientists is to stay curious and open-minded; I doubt I could have predicted my current research interest or described the path between the study of early oligodendrocyte maturation to in vivo placental development, but each experience along the way – both academic and clinical – has led me to where I am today,” Dr. Andescavage writes in the commentary.

Steven Hardy

Steven Hardy, Ph.D., awarded prestigious NIH grant for sickle cell research, career development

Steven Hardy

Steven Hardy, Ph.D., a pediatric psychologist in the Center for Cancer and Blood Disorders at Children’s National, has been awarded a K23 Mentored Patient-Oriented Research Career Development Award by the National Heart, Lung, and Blood Institute (NHLBI) in recognition of his progress toward a productive, independent clinical research career. National Institutes of Health (NIH) Mentored Career Development Awards are designed to provide early career investigators with the time and support needed to focus on research and develop new research capabilities that will propel them to lead innovative studies in the future.

Dr. Hardy, who has worked at Children’s National since 2013, specializes in the emotional, behavioral and cognitive aspects of children’s health, with a particular emphasis on evaluating and treating psychological difficulties among children with cancer or sickle cell disease. With the K23 award, he will receive nearly $700,000 over a five-year period, which will provide him with an intensive, supervised, patient-oriented research experience. The grant will support Dr. Hardy’s time to conduct research, allow him to attend additional trainings to enhance research skills, and fund a research project titled “Trajectory of Cognitive Functioning in Youth with Sickle Cell Disease without Cerebral Infarction.”

Many children with sickle cell disease (SCD) also have intellectual challenges which stem from two primary pathways – stroke and other disease-related central nervous system effects. While stroke is a major complication of SCD, the majority of children with SCD have no evidence of stroke but may still exhibit cognitive functioning challenges related to their disease. Such cognitive difficulties have practical implications for the 100,000 individuals in the SCD, as 20-40% of youth with SCD repeat a grade in school and fewer than half of adults with SCD are employed. Dr. Hardy’s project will focus on understanding the scope and trajectory of cognitive difficulties in children with SCD without evidence of stroke, as well as the mechanisms that precipitate disease-related cognitive decline. The study will characterize temporal relationships between biomarkers of SCD severity and changes in cognitive functioning to inform future development of risk stratification algorithms to predict cognitive decline. Armed with the ability to predict cognitive decline, families will have additional information to weigh when making decisions and providers will be better able to intervene and tailor treatment.