Tag Archive for: Nickel

Microscopic view of thalassemia

What it means to be a designated treatment center for beta thalassemia

Microscopic view of thalassemia

ZYNTEGLO® (betibeglogene autotemcel) is an FDA-approved gene therapy for transfusion-dependent beta thalassemia, which is an inherited blood disorder that causes the body to make less hemoglobin, resulting in anemia.

Children’s National Hospital is a designated qualified treatment center for Beta Thalassemia Gene Therapy. ZYNTEGLO® (betibeglogene autotemcel) is an FDA-approved gene therapy for transfusion-dependent beta thalassemia, which is an inherited blood disorder that causes the body to make less hemoglobin, resulting in anemia.

This unique therapy is made specifically for each child or adult, by adding functional copies of the beta-globin gene to their own blood stem cells. Most patients with beta thalassemia who have received a one-time ZYNTEGLO® treatment have been able to produce sufficient hemoglobin because of the treatment, freeing them from regular blood transfusions.

Evelio Perez, M.D., and Robert Nickel, M.D., lead the gene therapy program and discuss the importance of offering this gene therapy to patients with beta thalassemia.

Q: What has been the hold-up in this field and how does this work move the field forward?

A: Stem cell transplant using a donor’s cells (called allogeneic transplant) has been a curative treatment option for patients with beta thalassemia for many years. Unfortunately, many patients do not have a suitable donor. And, even for patients who have a donor, allogenic transplants have serious risks including a problem called graft versus host disease (GVHD) in which the new donor cells attack the patient’s body. Gene therapy like ZYNTEGLO® has no risk of GVHD because we use the patient’s own cells.

Q: How will this benefit patients? What excites you most about this advancement?

A: This treatment will give almost every patient with beta thalassemia the option of undergoing curative therapy. This is obviously exciting for patients because it means they no longer need to come to the hospital every 3-4 weeks for transfusions as well as take medications to treat the dangerous accumulation of iron in their body. It is also good for the health system because it will allow donated blood to go to other patients in need.

Q: How is Children’s National leading in this space?

A: This therapy really requires a multi-disciplinary team including members of the transplant, hematology, apheresis, stem cell lab and others! At Children’s National we have the experts on these teams and experience working together. As one of the largest sickle cell disease centers in the country, we are participating in research to hopefully help bring gene therapy to patients with sickle cell disease in the near future too.

pregnant woman at fertility consultant

Fertility preservation in sickle cell disease patients

pregnant woman at fertility consultant

Fertility is a long-standing concern for patients with sickle cell disease and their families.

In a recent review in the Journal of Clinical Medicine, researchers from Children’s National Hospital look at the current state of fertility preservation in patients with sickle cell disease and make recommendations for longitudinal post-treatment for these individuals.

Fertility is a long-standing concern for patients with sickle cell disease and their families. Current curative therapy for the disease requires gonadotoxic conditioning, which many patients resist because of the resulting risk of infertility. And, while standard fertility preserving interventions exist for pre- and postpubescent females and males, best practices for integrating these interventions into sickle cell disease care have not yet been established.

In their article, Children’s National hematologist Robert Sheppard Nickel, M.D., and co-authors review current fertility assessments, fertility considerations in pre- and post-transplant patients with sickle cell disease and fertility preserving interventions for patients. The authors conclude that in the future, less toxic curative approaches may make fertility preservation unnecessary, but at present, fertility preservation should be offered to patients with sickle cell disease pursing curative therapy.

Additional authors from Children’s National include Michael Hsieh, M.D., Ph.D., and Jacqueline Maher, M.D.

Read the full review article, Fertility after Curative Therapy for Sickle Cell Disease: a Comprehensive Review to Guide Care, in the Journal of Clinical Medicine.

Children’s National Health System advances sickle cell disease cure through Doris Duke Charitable Foundation grant

Sickle-Cell-Blood-Cells

An innovative Children’s National Health System project aimed at improving the only proven cure for sickle cell disease – hematopoietic cell transplantation – will receive more than $550,000 in funding from the Doris Duke Charitable Foundation’s inaugural Sickle Cell Disease/Advancing Cures Awards, which provides grants to advance curative approaches for sickle cell disease. The study, a three-year, multi-center trial that will study a low intensity, chemotherapy-free transplantation approach to cure children with sickle cell disease using a matched related donor, is led by Allistair Abraham, M.D., blood and marrow transplantation specialist, and Robert Nickel, M.D., hematologist, and is one of seven projects receiving approximately $6 million total through the awards.

While transplantation using a matched sibling donor today has a high cure rate (>90 percent) for sickle cell disease, traditional transplant approaches have many risks and side effects in both the short and long term. The study will examine if a chemotherapy-free approach can lead to a successful transplant without resulting in graft-versus-host disease (GVHD). GVHD is one of the most challenging complications of a transplant, in which the transplant immune cells attack the patient’s body. The researchers anticipate that this new transplant approach will be so well tolerated that patients’ quality of life will be maintained and improved throughout the process, with most of the care administered in a clinic setting.

“This approach has proven to be effective for adults with sickle cell disease, so we are grateful for the opportunity to begin this important trial for children thanks to the Doris Duke Charitable Foundation,” says Dr. Abraham. “Children with sickle cell disease are in need of innovative treatments, and we look forward to finding more solutions that improve the quality of life for these patients.”

“Advancing treatment for sickle cell patients to the point where they can live free of the disease is our top priority,” says Dr. Nickel, who is also an assistant professor of pediatrics at the George Washington University School of Medicine and Health Sciences. “This funding is critical to our study and it will accelerate the timeline to achieve the goal of a well-tolerated and safe cure for children with sickle cell disease.”

Matthew Hsieh, M.D., who helped pioneer this work at the National Institute of Health in adults, and Greg Guilcher, M.D., who has used this transplant approach in children, are key collaborators on the project.

The study is projected to begin in December 2018 and continue for three years. The Comprehensive Sickle Cell Disease Program at Children’s National is among the largest in the country, treating more than 1,400 children and young adults with all types of sickle cell disease. Children’s National also offers the largest, most comprehensive blood disorders team in the Washington, D.C., area.