Tag Archive for: Magnetic resonance-guided high-intensity focused ultrasound

Drs. Packer and van den Acker at the Pediatric Device Innovators Forum

Pediatric Device Innovators Forum explores state of focused ultrasound

For children living with pediatric tumors, less invasive and less painful treatment with no radiation exposure was not always possible. In recent years, the development of technologies like Magnetic resonance guided high intensity focused ultrasound (MR-HIFU) and Low intensity transcranial focused ultrasound (LIFU) is helping to reverse that trend.

This topic was the focus of the recent Pediatric Device Innovators Forum (PDIF) hosted by the National Capital Consortium for Pediatric Device Innovation (NCC-PDI) in partnership with the U.S. Food and Drug Administration’s (FDA) Pediatric Device Consortia (PDC) grant program. A collaboration between Children’s National Hospital and University of Maryland Fischell Institute for Biomedical Devices, NCC-PDI is one of five PDCs funded by the FDA to support pediatric device innovators in bringing more medical devices to market for children.

The discussion, moderated by Kolaleh Eskandanian, Ph.D., MBA, PMP, vice president and chief innovation officer at Children’s National and principal investigator of NCC-PDI, explored the use of focused ultrasound’s noninvasive therapeutic technology for two pediatric indications, Osteoid Osteoma (OO) and Diffuse Intrinsic Pontine Glioma (DIPG), and the ways it can increase the quality of life for pediatric patients while also decreasing the cost of care.

The discussion also examined the most common barriers preventing more widespread implementation of focused ultrasound technology, specifically small sample size for evidence generation, lack of funding opportunities and reimbursement issues that can make or break a technology’s chances at reaching the patients that need it.

Karun Sharma, M.D., director of Interventional Radiology at Children’s National, emphasized the potential for focused ultrasound to treat localized pain relief and treat other diseases that, like OO, do not have any other therapeutic alternative

“At Children’s National, we use MR-HIFU to focus an ultrasound beam into lesions, usually tumors of the bone and soft tissues, to heat and destroy the harmful tissue in that region, eliminating the need for incisions,” says Sharma. “In 2015, Children’s National doctors became the first in the U.S. to use MR-HIFU to treat pediatric osteoid osteoma (OO), a painful, but benign, bone tumor that commonly occurs in children and young adults. The trial demonstrated early success in establishing the safety and feasibility of noninvasive MR-HIFU in children as an alternative to current, more invasive approaches to treat these tumors.”

In November 2020, the FDA approved this MR-HIFU system to treat OO in pediatric patients.

Roger Packer, M.D., senior vice president of the Center for Neuroscience and Behavioral Medicine at Children’s National, also discussed how focused ultrasound, specifically LIFU, has also proven to be an attractive modality for its ability to non-invasively, focally and temporarily disrupt the blood brain barrier (BBB) to allow therapies to reach tumors that, until recently, would have been considered unreachable without severe intervention.

“This presents an opportunity in pediatric care to treat conditions like Diffuse Intrinsic Pontine Glioma (DIPG), a highly aggressive brain tumor that typically causes death and morbidity,” says Packer.

Packer is planning a clinical trial protocol to investigate the safety and efficacy of LIFU for this pediatric indication.

The forum also featured insight from Jessica Foley, M.D., chief scientific officer, Focused Ultrasound Foundation; Arjun Desai, M.D., chief strategic innovation officer, Insighttec; Arun Menawat, M.D., chairman and CEO, Profound Medical; Francesca Joseph, M.D., Children’s National; Johannes N. van den Anker, M.D., Ph.D., vice chair of Experimental Therapeutics, Children’s National; Gordon Schatz, president, Schatz Reimbursement Strategies; Mary Daymont, vice president of Revenue Cycle and Care Management, Children’s National; and Michael Anderson, MD, MBA, FAAP, FCCM, FAARC, senior advisor to US Department of Health and Human Services (HHS/ASPR) and Children’s National.

Anthony Sandler, M.D., senior vice president and surgeon-in-chief of the Joseph E. Robert Jr. Center for Surgical Care and director of the Sheikh Zayed Institute for Pediatric Surgical Innovation at Children’s National Hospital, and Sally Allain, regional head of Johnson & Johnson Innovation, JLABS @ Washington, DC, opened the forum by reinforcing both organizations’ commitment to improving pediatric health.

In September 2020, the Focused Ultrasound Foundation designated Children’s National Hospital as the first global pediatric Center of Excellence for using this technology to help patients with specific types of childhood tumors. As a designated COE, Children’s National has the necessary infrastructure to support the ongoing use of this technology, especially for carrying out future pediatric clinical trials. This infrastructure includes an ethics committee familiar with focused ultrasound, a robust clinical trials research support team, a data review committee for ongoing safety monitoring and annual safety reviews, and a scientific review committee for protocol evaluation.

The Pediatric Device Innovators Forum is a recurring collaborative educational experience designed by the FDA-supported pediatric device consortia to connect and foster synergy among innovators across the technology development ecosystem interested in pediatric medical device development. Each forum is hosted by one of the five consortia. This hybrid event took place at the new Children’s National Research and Innovation Campus, the first-of-its-kind focused on pediatric health care innovation, on the former Walter Reed Army Medical Center campus in Washington, D.C.

To view the latest edition of the forum, visit the NCC-PDI website.

Panelists at the Pediatric Device Innovators Forum

The recent Pediatric Device Innovators Forum (PDIF) exploring the state of focused ultrasound was held at the new Children’s National Research and Innovation Campus, a first-of-its-kind focused on pediatric health care innovation.

Karun Sharma

Children’s National designated Center of Excellence by Focused Ultrasound Foundation

Karun Sharma

“This designation provides a high level of recognition and legitimacy to the work our Children’s National team has done with MR-HIFU over many years,” says Karun Sharma, M.D., PhD, director of Interventional Radiology and associate director of clinical translation at the Sheikh Zayed Institute for Pediatric Surgical Innovation.

More precise, less invasive and less painful surgery with lower risk of complications and no radiation exposure – these are some of the benefits of treating pediatric tumors with Magnetic Resonance Guided High Intensity Focused Ultrasound (MR-HIFU). And now the Focused Ultrasound Foundation has designated Children’s National Hospital as the first global pediatric Center of Excellence (COE) for using this technology to help patients with specific types of childhood tumors.

“This designation provides a high level of recognition and legitimacy to the work our Children’s National team has done with MR-HIFU over many years,” says Karun Sharma, M.D., PhD, director of Interventional Radiology and associate director of clinical translation at the Sheikh Zayed Institute for Pediatric Surgical Innovation (SZI) at Children’s National. “This will allow our focused ultrasound program to expand to other areas of interest and become more cohesive while continuing to uncover additional clinical indications for pediatric patients.”

At Children’s National, radiologists use MR-HIFU to focus an ultrasound beam into lesions, usually tumors of the bone and soft tissues, to heat and destroy the tissue in that region. There are no incisions at all. In 2015, Children’s National doctors became the first in the U.S. to use MR-HIFU to treat pediatric osteoid osteoma, a painful, but benign, bone tumor that commonly occurs in children and young adults. The trial, led by Dr. Sharma, demonstrated early success in establishing the safety and feasibility of noninvasive MR-HIFU in children as an alternative to the current, more invasive approaches to treat these tumors. The team also conducted another clinical trial, led by AeRang Kim, M.D., Ph.D., a pediatric oncologist, to treat relapsed soft tissue tumors such as sarcomas.

Since then, the Children’s National team has built an active clinical trials program and become a leader in translation of focused ultrasound for the treatment of pediatric solid tumors. The center is currently investigating the treatment of malignant solid tumors with focused ultrasound alone and combined with chemotherapy.

“Focused ultrasound offers a number of important benefits over traditional therapies, which are especially paramount for the pediatric population,” said Focused Ultrasound Foundation Chairman Neal F. Kassell, M.D. “The team at Children’s National has an exemplary track record in using this technology to pioneer new treatment options for their patients, and we look forward to collaborating and supporting their future research.”

As a designated COE, Children’s National has the necessary infrastructure to support the ongoing use of this technology, especially for carrying out future pediatric clinical trials. This infrastructure includes an ethics committee familiar with focused ultrasound, a robust clinical trials research support team, a data review committee for ongoing safety monitoring and annual safety reviews, and a scientific review committee for protocol evaluation.

The program also features a multidisciplinary team of clinicians and investigators from SZI, radiology, oncology, surgery and orthopedics. With the new designation and continued expansion, we will expand MR-HIFU to other areas such as neuro-oncology, neurosurgery, and urology. Ongoing and future work will investigate a rational combination of MR-HIFU with local tumor drug delivery, immunotherapy and cellular therapy.

“This recognition sets us apart as a premier pediatric institution, and will allow us to pave the way to make pediatric surgery more precise and less invasive,” says Dr. Sharma.

 

banner year

2017: A banner year for innovation at Children’s National

banner year

In 2017, clinicians and research faculty working at Children’s National Health System published more than 850 research articles about a wide array of topics. A multidisciplinary Children’s Research Institute review group selected the top 10 articles for the calendar year considering, among other factors, work published in high-impact academic journals.

“This year’s honorees showcase how our multidisciplinary institutes serve as vehicles to bring together Children’s specialists in cross-cutting research and clinical collaborations,” says Mark L. Batshaw, M.D., Physician-in-Chief and Chief Academic Officer at Children’s National. “We’re honored that the National Institutes of Health and other funders have provided millions in awards that help to ensure that these important research projects continue.”

The published papers explain research that includes using imaging to describe the topography of the developing brains of infants with congenital heart disease, how high levels of iron may contribute to neural tube defects and using an incisionless surgery method to successfully treat osteoid osteoma. The top 10 Children’s papers:

Read the complete list.

Dr. Batshaw’s announcement comes on the eve of Research and Education Week 2018 at Children’s National, a weeklong event that begins April 16, 2018. This year’s theme, “Diversity powers innovation,” underscores the cross-cutting nature of Children’s research that aims to transform pediatric care.

Karun Sharma

Osteoid osteoma successfully treated with MR-HIFU

Karun Sharma

Doctors from the Sheik Zayed Institute for Pediatric Surgical Innovation at Children’s National Health System have completed a clinical trial that demonstrates how osteoid osteoma, a benign but painful bone tumor that commonly occurs in children and young adults, can be safely and successfully treated using an incisionless surgery method called magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU).

Published in The Journal of Pediatrics on Aug. 17, 2017, the study compares nine patients, ages 6 to 16 years old, who were treated for osteoid osteoma using MR-HIFU with a nine-patient historical control group, ages 6 to 10 years old, who were treated at Children’s National using radiofrequency ablation (RFA) surgery, the standard treatment at most U.S. hospitals. The study results show that treatment using MR-HIFU is feasible and safe for patients, eliminating the incisions or exposure to ionizing radiation that is associated with the RFA procedure. Children’s National is the first U.S. children’s hospital to successfully use MR-HIFU to treat osteoid osteoma.

CT-guided RFA, the most commonly used osteoid osteoma treatment, requires drilling through muscle and soft tissue into bone and also exposes the patient and operator to radiation from the imaging necessary to guide the probe that is inserted to heat and destroy tumor tissue.

“Our objective is to provide a noninvasive treatment option for children with osteoid osteoma and we’re very pleased with the results of this clinical trial,” says Karun Sharma, M.D., Ph.D., director of Interventional Radiology at Children’s National and principal investigator for the osteoid osteoma trial. “We have now shown that MR-HIFU can be performed safely with clinical improvement that is comparable to RFA, but without any incisions or ionizing radiation exposure to children.”

High-intensity focused ultrasound therapy uses focused sound wave energy to heat and destroy the targeted tumor under MRI guidance. This precise and controlled method does not require a scalpel or needle, greatly reducing the risk of complications like infections and bone fractures. It is also a faster treatment option, with expected total procedure time of 90 minutes or less. In the U.S., MR-HIFU is used to treat uterine fibroids and painful bone metastases from several types of cancer in adults, but has not previously been used in children.

This breakthrough is the latest from the Image-Guided Non-Invasive Therapeutic Energy (IGNITE) program, a collaboration of the Sheikh Zayed Institute and the departments of RadiologyOncologySurgery, and Anesthesiology at Children’s National. The goal of the IGNITE program is to improve the quality of life and outcomes for pediatric patients through the development and clinical introduction of novel minimally invasive and noninvasive surgery technologies and combination therapy approaches. The team is led by Peter Kim, M.D., Ph.D., vice president of the Sheikh Zayed Institute.

“The use of MR-HIFU ablation of osteoid osteoma is a perfect example of our mission in the Sheikh Zayed Institute to make pediatric surgery more precise, less invasive and pain-free,” says Dr. Kim. “Our leading team of experts are also exploring the use of MR-HIFU as a noninvasive technique of ablating growth plates and pediatric solid tumors. We also have another clinical trial open for children and young adults with refractory soft tissue tumors, which is being performed in collaboration with Dr. Bradford Wood’s team at the National Institutes of Health, and if successful, it would be the first in the world.”

In addition to Drs. Sharma and Kim, the Children’s National team for the ablation of osteoid osteoma clinical trial included: AeRang Kim, M.D., Ph.D., pediatric oncologist; Matthew Oetgen, M.D., division chief of Orthopaedic Surgery and Sports Medicine; Anilawan Smitthimedhin, M.D., radiology research fellow; Pavel Yarmolenko, Ph.D., Haydar Celik, Ph.D., and Avinash Eranki, engineers; and Janish Patel, M.D., and Domiciano Santos, M.D., pediatric anesthesiologists. Ari Partanen, Ph.D., a senior clinical scientist from Philips, was also a member.

Karun Sharma, M.D., poses with two patients

Treating osteoid osteoma with MR-HIFU

Karun Sharma, M.D., poses with two patients

Karun Sharma, M.D., poses with two patients who participated in the MR-HIFU trial for pediatric osteoid osteoma.

Doctors from the Sheikh Zayed Institute for Pediatric Surgical Innovation and surgeons from Children’s National are the first in the U.S. to use Magnetic Resonance-Guided High-intensity Focused Ultrasound (MR-HIFU) to treat pediatric osteoid osteoma.

The trial, led by Principal Investigator Karun Sharma, M.D., Ph.D., Director of Interventional Radiology at Children’s National, began in 2015 and is demonstrating early success in establishing the safety and feasibility of noninvasive MR-HIFU as an alternative to the current, more invasive approaches to remove tumor tissue.

Osteoid osteoma is a painful, but benign, bone tumor that commonly occurs in children and young adults. Removal generally requires orthopaedic surgery to scrape the tumor from the bone or CT (computerized tomography) image-guided radiofrequency ablation (RFA), which is less invasive than surgery but is associated with ionizing radiation exposure and requires drilling through muscle and soft tissue into bone.

MR-HIFU, on the other hand, is a precise and controlled method that does not require a scalpel or needle, greatly reducing the risk of complications, including infections and bone fractures. Even better, it promises reduced procedure time, typically an hour or less.

“Our team set out to provide a noninvasive and radiation free treatment option for children with osteoid osteoma and our pilot feasibility and safety trial is almost completed. We have treated 9 patients and we’re very pleased with the success of the treatments so far. Although follow up will continue for another year, results to date that show that MR-HIFU may be a completely non-invasive and radiation free treatment for osteoid osteoma,” Dr. Sharma says. “Several of the children we treated were very active prior to the onset of their tumor, one a soccer player and the other a swimmer, but because of pain from the tumor, they were unable to enjoy their favorite activities, until now.”

“The use of MR-HIFU ablation of osteoid osteoma is a perfect example of our mission in the Sheikh Zayed Institute to make pediatric surgery more precise and less invasive,” adds Peter Kim, M.D., C.M., Ph.D., Vice President of the Sheikh Zayed Institute, who leads the Image Guided Non-Invasive Therapeutic Energy (IGNITE) program.

IGNITE is a joint clinical and research collaboration between the Sheikh Zayed Institute and the Divisions of Radiology, Oncology, Surgery, and Anesthesiology at Children’s National. MR-HIFU is also being used to treat pediatric refractory soft tissue tumors, a first-in-the-world clinical trial that is a collaboration between Children’s National and the NIH Center for Interventional Oncology directed by Bradford Wood, MD. Additionally, the IGNITE team has started preliminary work to explore applications of MR-HIFU for noninvasive ablation of growth plates and pediatric solid tumors.

In addition to Drs. Sharma and Kim, the team for the ablation of osteoid osteoma clinical trial includes: AeRang Kim, MD, PhD, pediatric oncologist; Matthew Oetgen, M.D., Division Chief of Orthopaedic Surgery and Sports Medicine; Kaleb Friend, M.D., pediatric orthopedic surgeon; Pavel Yarmolenko, Ph.D., Haydar Celik, Ph.D., and Avinash Eranki, biomedical engineers; Viktoriya Beskin, MR technologist; and Janish Patel, M.D., and Domiciano Santos, M.D., pediatric anesthesiologists.

Study to evaluate heat-activated chemotherapy drug

Children’s National Health System and Celsion Corp., a leading oncology drug-development company, will be the first to launch a clinical study in the U.S. that evaluates the use of ThermoDox®, a heat-activated chemotherapy drug, in combination with noninvasive magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) to treat refractory or relapsed solid tumors in children and young adults.

The investigator-sponsored Phase I study, which is partially funded by an NIH R01 grant, will determine a safe and tolerable dose of ThermoDox, a lyso-thermosensitive liposomal doxorubicin (LTLD), which can be administered in combination with MR-HIFU. Under the guidance of an MRI, the high-intensity focused ultrasound directs soundwave energy to heat the tumor and the area around the tumor. When heated, the liposome rapidly changes structure and releases doxorubicin directly into and around the targeted tumor.

“There is currently no known cure for many patients with refractory recurring solid tumors, despite the use of intensive therapy, so we need to identify new, smarter therapies that can improve outcomes,” said AeRang Kim, M.D., Ph.D., oncologist and member of the Sheikh Zayed Institute for Pediatric Surgical Innovation at Children’s National, who is also principal investigator for the study. “Recent advances in the use of noninvasive MR-HIFU coupled with novel therapies, such as LTLD, may provide us with a mechanism to noninvasively administer high concentrations of the drug directly to the site where it is most needed and avoid toxicity to other areas of the body.”

A First to Treat Childhood Cancer

This is the first time LTLD is being combined with MR-HIFU and the first time it is being evaluated in children.

“Celsion’s experience in combining ThermoDox with HIFU, a noninvasive next generation heating technology, supports this very important research in childhood cancers. From a safe dose, ThermoDox’s proven ability to deliver high concentrations of an effective chemotherapy directly to a heated tumor makes it an ideal candidate for a trial involving children and young adults,” said Michael H. Tardugno, Celsion’s chairman, president and CEO. “This study will further elucidate ThermoDox’s potential in combination with ultrasound-induced hyperthermia, and highlight potential applications of ThermoDox in combination with a broad range of heating technologies that could address an even larger population of patients.”

A Multidisciplinary Approach

The study targeting the treatment of childhood sarcomas will be carried out as a multidisciplinary collaboration between Children’s National, Celsion, and Dr. Bradford Wood’s team at the National Institutes of Health.

This is the latest study from the Image-Guided Non-Invasive Therapeutic Energy (IGNITE) program, a collaboration of the Sheikh Zayed Institute for Pediatric Surgical Innovation at Children’s National and the pediatric health system’s Divisions of Radiology, Oncology, Surgery, and Anesthesiology. The goal of the IGNITE program is to improve the quality of life and outcomes for pediatric patients through the development and clinical introduction of novel minimally invasive and noninvasive surgery technologies and combination therapy approaches. In 2015, doctors from Children’s National were the first in the U.S. to treat osteoid osteoma, a benign and painful bone tumor, using MR-HIFU.

ThermoDox is currently in late-stage clinical trials in primary liver cancer and recurrent chest wall breast cancer. It is positioned for use with multiple heating technologies, and has the potential for applications in the treatment of other forms of cancer including metastatic liver and nonmuscle invading bladder cancers.

Cancer update: tumor targeting, neurofibromatosis type 1 symptoms

June 6, 2016Targeting tumors more precisely, with fewer lasting side effects for kids
Pediatric patients with cancer are often treated with a cocktail of therapies to attack the disease through a variety of mechanisms. While this approach has been instrumental in saving children’s lives, the life-saving therapies can be accompanied by acute side effects, and the treatments may have lingering impacts as cancer survivors enter adulthood. Magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) holds the promise of surgically removing large tumors without exacting the same array of harsh side effects. Ultrasound relies on high-frequency sound waves to make diagnostic images, and those same sound waves can be used therapeutically to destroy tumors. Layering on MR imaging gives clinicians the ability to precisely guide the ultrasound therapy in real time. A study led by Children’s National Health System researchers and clinicians is using MR-HIFU for the first time in children to examine its safety and feasibility.

May 11, 2016 – Quantitative MRI criteria for optic pathway enlargement in neurofibromatosis type 1
Symptoms of neurofibromatosis type 1 (NF1) vary widely, but the condition is characterized by changes in skin pigmentation and growth of tumors along nerves. The research team sought to determine quantitative size thresholds for enlargement of the optic nerve, chiasm, and tract in children aged 0.5 to 18.6 years with NF1. The study, published in Neurology, found that quantitative reference values for anterior visual pathway enlargement will enhance development of objective diagnostic criteria for optic pathway gliomas secondary to NF1.