Tag Archive for: Guay-Woodford

Innovations for health equity: Food pharmacy app wins Hackathon

When families come into the endocrinology clinic, 66% of prediabetes and Type 2 diabetes patients screen positive for food insecurity. One remedy: a smartphone app envisioned by Children’s National Hospital researchers to communicate with families between visits and provide resources to help stock pantries with nutritious foods.

The Children’s National Food Pharmacy app is on its way from idea to reality, thanks to the inaugural Health Equity in Research Hackathon event at the Children’s National Research & Innovation Campus. This team-based, “Shark Tank”-like competition involved roughly 50 experts designing creative healthcare solutions that could be delivered through ubiquitous smartphones.

“It takes a village to raise a child, and we want to show that at Children’s National we are part of that community,” said food pharmacy founder and diabetes educator Alexis Richardson, M.S., R.D., L.D.N., C.D.C.E.S.

Why it matters

The rate of new-onset Type 2 diabetes increased by a staggering 182% during the first nine months of the COVID-19 pandemic. Now, the Children’s National food pharmacy provides families that screen positive for food insecurity during quarterly clinic appointments with a 50-pound bag of medically-tailored groceries.

The new app, as envisioned, would follow them home to connect them with food bank information and other nutritional resources, eliminating paper forms and other hurdles that get in the way of care.

What’s ahead

Children’s National leaders are committed to making the proposal a reality. “We are going to support today’s winner through the next steps to prepare them to enter the app development pipeline at the Sheikh Zayed Institute,” said Lisa Guay-Woodford, M.D., director for the Clinical and Translational Science Institute at Children’s National (CTSI-CN) and one of the main judges of the competition.

The app development will happen in the months ahead. Kevin Cleary, Ph.D., technical director of the Sheikh Zayed Institute of Pediatric Surgical Innovation, said the Hackathon planted the seeds. “It really depends on the drive of the individual to see the idea to fruition,” Cleary told competitors.

Other app entries were encouraged to continue their work:

  • The Surgical Checklist, led by Brian K. Reilly, M.D., co-director of the Cochlear Implant Program: this app would help patients and providers successfully navigate the often-confusing pre-operative checklist, including required physical exams, lab work, imaging and pre-procedure fasting. Reilly said the hospital handles about 15,000 cases a year, and about 10% are rescheduled, often for reasons that could be avoided with digital organization and reminders for families.
  • More than Determined, led by Pediatrician Jessica Lazerov, M.D., M.B.A.: this app aims to give time-strapped providers a platform to better understand and address social determinants of health – such as access to safe housing, education and jobs – that can promote better preventative care outcomes.

The Health Equity in Research Hackathon was created by the new Health Equity in Research Unit, a joint initiative between the CTSI-CN and the Center for Translational Research within the Children’s National Research Institute.

Dr. Lisa Guay-Woodford and the winners of the Health Equity in Research Hackathon

Dr. Lisa Guay-Woodford, director for the Clinical and Translational Science Institute, joins the winners of the inaugural Health Equity in Research Hackathon: the Children’s National Food Pharmacy. The team’s proposed app will connect families facing food insecurity with resources and guidance for nutritious eating.

2022 Hackathon logo

Addressing health equity issues through an app innovation competition

Children’s National Hospital launches The Health Equity in Research Hackathon — a team-based collaborative competition that empowers researchers to address health equity issues in the community through innovative apps. A panel of expert judges will select winning app ideas for full development, including finding grant opportunities, access to mentors and collaborators.

The big picture

“This Hackathon is a great chance for our research community to address larger issues related to advancing health equity within translational and clinical research,” said Patrick O’Keefe, administrative director for the Clinical and Translational Science Institute at Children’s National (CTSI-CN). “We are thrilled to see how people collaborate to create solutions for big problems that have traditionally slowed research and contributed to the vast inequities in health we see today.”

Additional details

The 2022 hackathon will be a two-part event. During Part I, slated for June 17, participants will gather in diverse teams to discuss and refine the selected app ideas. They will learn from technical and scientific experts and brainstorm app-based approaches to address health equity.

Each team will pitch their ideas to a panel of judges, and the winning app(s) will advance to Part II of the hackathon planned for Fall 2022, where app developers will build the selected apps.

“We encourage anyone at Children’s or George Washington University to submit an app idea – even if it is not fully formed — as long as they think it would help reduce health disparities through improving the research process,” said Lisa Guay-Woodford, M.D., director for Clinical and Translational Science Institute and Center for Translational Research at Children’s National. “We also hope researchers, staff and students who don’t have app ideas at this time will consider attending anyway to participate in the lively development process of the Hackathon.”

Anyone within the Children’s National and George Washington University research communities can submit an app idea for consideration. No app development experience is necessary to enter.

Why it matters

Health equity also means bringing the community into the research process. Thus, in part II, Children’s National will partner with high schools and universities in the area to incorporate voices who are often under-represented in the science and technology field.

“Our community is home to brilliant young minds at our local high schools and universities,” said Chaya Merrill, Dr.P.H., director for Child Health Data Lab at Children’s National. “We are excited to create an opportunity for them to work alongside experienced app builders – at the intersection of health equity and technology – by engaging in Part II of the Hackathon to build the winning apps!”

The hackathon will take place at Children’s Research and Innovation Campus in partnership with CTSI-CN and the Center for Translational Research.

The app idea submission deadline is on May 20, 2022, by 5pm. You may apply here. If you have questions about completing this submission, please email Patrick O’Keefe at pokeefe@childrensnational.org.

2022 Hackathon logo

cystic kidney disease

NIH $4 million grant funds new core center for childhood cystic kidney disease

cystic kidney disease

The University of Alabama at Birmingham (UAB), in collaboration with Children’s National Hospital has received a five-year, $4 million grant from the National Institute of Diabetes and Digestive and Kidney Diseases, part of the National Institutes of Health (NIH) to create a core center for childhood cystic kidney disease (CCKDCC). The UAB-CCKDCC will conduct and facilitate research into the causes of and possible treatments for cystic kidney diseases, particularly those that present in childhood.

The UAB/Children’s National grant is a U54 center grant, an NIH funding mechanism to develop a multidisciplinary attack on a specific disease entity or biomedical problem area. With this grant, UAB joins with investigators at the University of Kansas and the University of Maryland-Baltimore as part of the NIH Polycystic Kidney Disease Research Resource Consortium. The NIH describes the consortium as a framework for effective collaboration to develop and share research resources, core services and expertise to support innovation in research related to polycystic kidney disease.

“Infants with childhood cystic kidney disease may develop kidney failure within a few years after birth and some need dialysis and kidney transplantation before they reach adulthood,” said Lisa Guay-Woodford, M.D., director of the Clinical and Translational Science Institute at Children’s National and co-director of the UAB-CCKDCC. “In many cases, the earlier the onset of symptoms, the more severe the outcome.”

“The intent is to accelerate the science and advance research into new therapies for cystic kidney disease through enhanced sharing of resources and the establishment of a robust research community,” said Bradley K. Yoder, Ph.D., professor and chair of the UAB Department of Cell, Developmental and Integrative Biology and co-director of the UAB-CCKDCC. “Childhood polycystic disease can be a devastating condition for children and their families.”

The UAB-CCKDCC will focus primarily on childhood polycystic kidney disease, a condition that affects about one in 20,000 infants in the United States. The center’s primary goals are:

  • Provide the Polycystic Kidney Disease Research Resource Consortium members with access to phenotypic, genetic and clinical information and biomaterials from CCKD patients
  • Analyze pathways involved in cyst pathogenesis through the generation of verified genetic model systems and biosensor/reporter systems
  • Assess the impact of patient variants on cystic disease proteins through generation and validation of innovative models
  • Provide ready access to biological materials from genetic CCKD models
  • Develop efficient pipelines for in vitro and in vivo preclinical testing of therapeutic compounds

Dr. Guay-Woodford is an internationally recognized pediatric nephrologist with a research program focused on identifying clinical and genetic factors involved in the pathogenesis of inherited renal disorders, most notably autosomal recessive polycystic kidney disease (ARPKD). Her laboratory has identified the disease-causing genes in several experimental models of recessive polycystic kidney disease and her group participated in the identification of the human ARPKD gene as part of an international consortium. In addition, her laboratory was the first to identify a candidate modifier gene for recessive polycystic kidney disease. For her contributions to the field, she was awarded the Lillian Jean Kaplan International Prize for Advancement in the Understanding of Polycystic Kidney Disease, given by the Polycystic Kidney Disease Foundation and the International Society of Nephrology.

coronavirus

COVID-19 Pandemic: 3rd Annual CN – NIAID Virtual Symposium

The CN-NIAID Virtual Symposium highlighted work being done to fight the COVID-19 pandemic globally.

Vittorio Gallo and Mark Batshaw

Children’s National Research Institute releases annual report

Vittorio Gallo and Marc Batshaw

Children’s National Research Institute directors Vittorio Gallo, Ph.D., and Mark Batshaw, M.D.

The Children’s National Research Institute recently released its 2019-2020 academic annual report, titled 150 Years Stronger Through Discovery and Care to mark the hospital’s 150th birthday. Not only does the annual report give an overview of the institute’s research and education efforts, but it also gives a peek in to how the institute has mobilized to address the coronavirus pandemic.

“Our inaugural research program in 1947 began with a budget of less than $10,000 for the study of polio — a pressing health problem for Washington’s children at the time and a pandemic that many of us remember from our own childhoods,” says Vittorio Gallo, Ph.D., chief research officer at Children’s National Hospital and scientific director at Children’s National Research Institute. “Today, our research portfolio has grown to more than $75 million, and our 314 research faculty and their staff are dedicated to finding answers to many of the health challenges in childhood.”

Highlights from the Children’s National Research Institute annual report

  • In 2018, Children’s National began construction of its new Research & Innovation Campus (CNRIC) on 12 acres of land transferred by the U.S. Army as part of the decommissioning of the former Walter Reed Army Medical Center campus. In 2020, construction on the CNRIC will be complete, and in 2012, the Children’s National Research Institute will begin to transition to the campus.
  • In late 2019, a team of scientists led by Eric Vilain, M.D., Ph.D., director of the Center for Genetic Medicine Research, traveled to the Democratic Republic of Congo to collect samples from 60 individuals that will form the basis of a new reference genome data set. The researchers hope their project will generate better reference genome data for diverse populations, starting with those of Central African descent.
  • A gift of $5.7 million received by the Center for Translational Research’s director, Lisa Guay-Woodford, M.D., will reinforce close collaboration between research and clinical care to improve the care and treatment of children with polycystic kidney disease and other inherited renal disorders.
  • The Center for Neuroscience Research’s integration into the infrastructure of Children’s National Hospital has created a unique set of opportunities for scientists and clinicians to work together on pressing problems in children’s health.
  • Children’s National and the National Institute of Allergy and Infectious Diseases are tackling pediatric research across three main areas of mutual interest: primary immune deficiencies, food allergies and post-Lyme disease syndrome. Their shared goal is to conduct clinical and translational research that improves what we know about those conditions and how we care for children who have them.
  • An immunotherapy trial has allowed a little boy to be a kid again. In the two years since he received cellular immunotherapy, Matthew has shown no signs of a returning tumor — the longest span of time he’s been tumor-free since age 3.
  • In the past 6 years, the 104 device projects that came through the National Capital Consortium for Pediatric Device Innovation accelerator program raised $148,680,256 in follow-on funding.
  • Even though he’s watched more than 500 aspiring physicians pass through the Children’s National pediatric residency program, program director Dewesh Agrawal, M.D., still gets teary at every graduation.

Understanding and treating the novel coronavirus (COVID-19)

In a short period of time, Children’s National Research Institute has mobilized its scientists to address COVID-19, focusing on understanding the virus and advancing solutions to ameliorate the impact today and for future generations. Children’s National Research Institute Director Mark Batshaw, M.D., highlighted some of these efforts in the annual report:

  • Eric Vilain, M.D., Ph.D., director of the Center for Genetic Medicine Research, is looking at whether or not the microbiome of bacteria in the human nasal tract acts as a defensive shield against COVID-19.
  • Catherine Bollard, M.D., MBChB, director of the Center for Cancer and Immunology Research, and her team are seeing if they can “train” T cells to attack the invading coronavirus.
  • Sarah Mulkey, M.D., Ph.D., an investigator in the Center for Neuroscience Research and the Fetal Medicine Institute, is studying the effects of, and possible interventions for, coronavirus on the developing brain.

You can view the entire Children’s National Research Institute academic annual report online.

kidneys with cysts on them

$6M gift powers new PKD clinical and research activities

kidneys with cysts on them

PKD is a genetic disorder characterized by clusters of fluid-filled sacs (cysts) multiplying and interfering with the kidneys’ ability to filter waste from the blood.

When Lisa M. Guay-Woodford, M.D., McGehee Joyce Professor of Pediatrics at Children’s National Hospital, considers a brand-new gift, she likens it to 6 million gallons of “rocket fuel” that will power new research to better understand polycystic kidney disease.

Dr. Guay-Woodford received a $5.7 million dollar gift to support PKD clinical and research activities. PKD is a genetic disorder characterized by clusters of fluid-filled sacs (cysts) multiplying and interfering with the kidneys’ ability to filter waste from the blood. The kidneys’ smooth surface transforms to a bumpy texture as the essential organs grow oversized and riddled with cysts.

The extraordinary generosity got its start in an ordinary clinical visit.

Dr. Guay-Woodford saw a young patient in her clinic at Children’s National a few times in 2015. The child’s diagnosis sparked a voyage of discovery for the patient’s extended family and, ultimately, they attended a presentation she gave during a regional meeting about PKD. That led to a telephone conversation and in-person meeting as they invited her to describe “the white space” between what was being done at the time to better understand PKD and what could be done.

“It’s the power of the art and science of medicine. They come to see people like me because of the science. If we can convey to patients and families that who they are and their unique concerns are really important to researchers, that becomes a powerful connection,” she says. “The art plus the science equals hope. That is what these families are looking for: We give people the latest insights about their disease because information is power.”

The infusion of new funding will strengthen the global initiative’s four pillars:

  • Coordinated care for children and families impacted by renal cystic disease. The Inherited and Polycystic Kidney Disease (IPKD) program, launched September 2019, includes a cadre of experts working together as a team in the medical home so that “in a single, one-stop visit, Children’s National can address the myriad concerns they have,” she explains. A multi-disciplinary team that includes nephrologists, hepatologists and endocrinology experts meets weekly to ensure the Center of Excellence provides the highest-caliber patient care. The team includes genetic counselors to empower families with knowledge about genetic risks and testing opportunities. A nurse helps families navigate the maze of who to call about which issue. Psychologists help to ease anxiety. “There is stress. There is fear. There is pain that can be associated with this set of diseases. The good news is we can control their medical issues. The bad news is some children have difficulty coping. Our psychologists help children cope so they can be a child and do the normal things that children do,” she says.
  • Strengthening global databases to capture PKD variations. The team will expand its outreach to other centers located around the world – including Australia, Europe, India and Latin America – caring for patients with both the recessive and dominant forms of polycystic kidney disease, to better understand the variety of ways the disease can manifest in children. We really don’t know a lot about kids with the dominant form of the disease. How hard should we push to control their blood pressure, knowing that could ease symptoms? What are the ramifications of experiencing acute pain compared with chronic pain? How much do these pain flareups interfere with daily life and a child’s sense of self,” she asks. Capturing the nuances of the worldwide experience offers the power of harnessing even more data. And ensuring that teams collect data in a consistent way means each group would have the potential to extract the most useful information from database queries.
  • Filling a ‘desperate need’ for biomarkers. Developing clinical trials for new therapies requires having biomarkers that indicate the disease course. Such biomarkers have been instrumental in personalizing care for patients with other chronic conditions. “We are in desperate need for such biomarkers, and this new funding will underwrite pilot studies to identify and validate these disease markers. The first bite at the apple will leverage our imaging data to identify promising biomarkers,” she says.
  • Genetic mechanisms that trigger kidney disease. About 500,000 people in the U.S. have PKD. In many cases, children inherit a genetic mutation but, often, their genetic mutation develops spontaneously. Dr. Guay-Woodford’s research about the mechanisms that make certain inherited renal disorders lethal, such as autosomal recessive polycystic kidney disease, is recognized around the world. The fourth pillar of the new project provides funding to continue her lab’s research efforts to improve the mechanistic understanding of what triggers PKD.
Lisa M. Guay-Woodford, M.D

Serving patients with polycystic kidney disease

Lisa M. Guay-Woodford, M.D

Lisa M. Guay-Woodford, M.D., is internationally recognized for her examination of the mechanisms that make certain inherited renal disorders particularly lethal, a research focus inspired by her patients.

When Children’s National pediatric nephrologist Lisa Guay-Woodford, M.D., was an intern at Boston Children’s Hospital, a baby with autosomal recessive polycystic kidney disease (ARPKD) was admitted to one of the hospital’s neonatal intensive care units (NICU). This disease, which causes cysts to form in the kidney and liver, kills about one-fifth of babies within the newborn period due to related problems that affect lung development.

But this baby seemed like a survivor, Dr. Guay-Woodford remembers. The child passed the newborn period and graduated from the NICU, although she went home with severe blood pressure issues. Along with a team of colleagues, Dr. Guay-Woodford helped to manage this patient’s care, juggling normal infant concerns with her ARPKD.

As far as Dr. Guay-Woodford knew at the time, this baby was beating the odds against her, growing and thriving. But one day near the end of her internship period, Dr. Guay-Woodford was called to the emergency department. Her patient was in a hypertensive crisis that ultimately killed her.

“It was absolutely devastating to all of us. This was supposed to be a good news kind of story, that she survived the newborn period and had gone home and was growing and developing,” Dr. Guay-Woodford says. “I realized then that a big part of the tragedy of this disease is how little we knew about it.”

Dr. Guay-Woodford vowed to change that. Since then, she’s devoted her career to studying ARPKD and other inherited kidney diseases.

After finishing her residency and fellowship in Boston, Dr. Guay-Woodford was recruited to the University of Alabama, where she began caring for a cadre of 40 patients with inherited renal disorders. Fueled by the research questions that arose while working with these patients, she and her colleagues searched for PKD-related genes in the cpk mouse model, an animal that mimics many of the features of human ARPKD.

Dr. Guay-Woodford and her team cloned several of the key genes that caused recessive PKD in this mouse and other mouse models and eventually went on to identify the first major genetic modifier of PKD in these animals – a gene that wasn’t directly responsible for the disease but could sway its course. In time, her collaborative group became one of two that co-indentified the major gene responsible for human ARPKD. In 2005, Dr. Guay-Woodford led a team of investigators at the University of Alabama-Birmingham to establish one of just four PKD translational core centers funded by a National Institutes of Health P30 grant.

After moving to Children’s National in 2012, Dr. Guay-Woodford still co-directs this PKD translational core center while also caring for patients at her inherited renal disorders clinic. She and her colleagues here and beyond continue to work with mouse models of this disease, trying to ferret out the vast network of genes that interact in ARPKD and their specific roles.

“You can use a variety of strategies to compare these patients’ gene portfolios with those of healthy patients and pick out the disease genes. But at the end of the day, to me, that’s just the opening chapter,” she says. “To really make a story, you’ve got to understand what is it that gene does, what protein it makes, and how that protein works together with others involved in this disease.”

She and her team also are currently working with a pharmaceutical company to develop the first clinical trial to test a treatment for ARPKD. This effort has relied heavily on a clinical database that Dr. Guay-Woodford and colleagues worldwide maintain to track patients with this and related conditions. Through the extensive collection of clinical information in this database – including a variety of data on patients’ gestation and birth, growth, and kidney structure and function – the team has identified a core cohort of patients whose disease is rapidly progressing, a characteristic that makes them prime candidates to test this potential new treatment.

“Everything I do in the clinic informs the work I do in the lab, and everything I do in the lab is to help the patients I see in the clinic. It’s this constant dance back and forth between our human patients and animal models,” she says. “One day, this dance will help lessen the burden of this disease for these kids and their families.”

Lisa M. Guay-Woodford, M.D

Internationally renowned pediatric nephrologist named to NIH advisory council

Lisa M. Guay-Woodford, M.D

Pediatric nephrologist Lisa M. Guay-Woodford, M.D., has been named to a three-year term as adviser serving on the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) Kidney, Urologic and Hematologic Diseases subcouncil.

Dr. Guay-Woodford, Director of the Center for Translational Science at Children’s National, is an internationally recognized expert in the mechanisms that modulate the clinical severity of certain inherited renal disorders, such as autosomal recessive polycystic kidney disease. She holds the Richard L. and Agnes F. Hudson Professorship in Health Services Research at Children’s National.

NIDDK, like other grant-awarding institutes within the National Institutes of Health (NIH), looks to its advisory councils for feedback on procedures that govern staff and manage its grant portfolios. The institute, the fifth largest at the NIH, supports clinical research about internal medicine and related subspecialties for many of the most common chronic health conditions.

“It is a tremendous honor to be asked to serve on this important council. I look forward to providing advice and perspective on the exciting portfolio of NIDDK-funded projects,” Dr. Guay-Woodford says.

Lisa M. Guay-Woodford, M.D

Lisa Guay-Woodford: minimizing kidney disease effects

Lisa M. Guay-Woodford, M.D

Lisa M. Guay-Woodford, M.D., is internationally recognized for her examination of the mechanisms that make certain inherited renal disorders particularly lethal, a research focus inspired by her patients.

The artist chose tempera paint for her oeuvre. The flower’s petals are the color of Snow White’s buddy, the Bluebird of Happiness. Each petal is accentuated in stop light red, and the blossom’s leaves stretch up toward the sun. With its bold strokes and exuberant colors, the painting exudes life itself.

It’s the first thing Lisa M. Guay-Woodford, M.D., sees when she enters her office. It’s the last thing she sees as she leaves.

Dr. Guay-Woodford, a pediatric nephrologist, is internationally recognized for her research into the mechanisms that make certain inherited renal disorders, such as autosomal recessive polycystic kidney disease (ARPKD), particularly lethal. She also studies disparate health disorders that have a common link: Disruption to the cilia, slim hair-like structures that protrude from almost every cell in the human body and that play pivotal roles in human genetic disease.

Sarah, the artist who painted the bright blue flower more than 20 years ago when she was 8, was one of Dr. Guay-Woodford’s patients. And she’s part of the reason why Dr. Guay-Woodford has spent much of her career focused on the broader domain of disorders tied to just a single defective gene, such as ARPKD.

“It dates back to when I was a house officer and took care of kids with this disorder,” Dr. Guay-Woodford says. “Maybe 30 percent die in the newborn period. Others survive, but they have a whole range of complications.”

Two of her favorite patients died from ARPKD-related reasons in the same year. One died from uncontrolled high blood pressure. The other, Sarah, died from complications from a combined kidney and liver transplant.

“The picture she drew hangs in my office,” she says. “She was a wonderful kid who was really full of life, and what she chose really mirrored who she was as a person. We put up lots of those sorts of those things in my office. It’s a daily reminder of why we do the things we do and the end goal.”

ARPKD is characterized by the growth of cysts in the liver, the kidney – which can lead to kidney failure – and complications within other structures, such as blood vessels in the heart and brain, according to the National Institutes of Health. About 1 in 20,000 live births is complicated by the genetic disorder. The age at which symptoms arise varies.

“Given the way it plays out, starting in utero, this is not a disease we are likely to cure,” she says. “But there are children who have very minimal complications. The near-term goal is to use targeted therapies to convert the children destined to have a more severe disease course to one that is less complicated so that no child suffers the full effects of the disease.”

That’s why it is essential to attain detailed knowledge about the defective gene responsible for ARPKD. To that end, Dr. Guay-Woodford participated in an international collaboration – one of three separate groups that 14 years ago identified PKHD1 as the defective gene that underlies ARPKD.

“The progress has been slow, partly because the gene and its protein products are very complex,” she says. “The good news is the gene has been identified. The daunting news is the identification did not leap us forward. It is just sort of an important step in what is going to be a fits-and-starts kind of journey.”

The field is trying to emulate the clinical successes that have occurred for patients with cystic fibrosis, which now can be treated by a drug that targets the defective gene, attacking disease at a fundamental level. Patient outcomes also have improved due to codifying care.

When she was a resident in the 1980s, children with cystic fibrosis died in their teens. “Now, they’re living well into their 40s because of careful efforts by really astute clinicians to deliver a standardized approach to care, an approach now enhanced by a terrific new drug. We measure quality care in terms of patient outcomes. That has allowed us to really understand how to effectively use antibiotics, physical therapy and how to think about nutrition – which makes a hugely important contribution that previously had been underappreciated.”

Standardizing clinical approaches dramatically improved and extended patients’ lives. “For renal cystic disease, we are beginning to do that better and better,” she adds.

There’s no targeted medicine yet for ARPKD. But thanks to an international conference that Dr. Guay-Woodford convened in Washington in 2013, such consensus expert recommendations have been published to guide diagnosis, surveillance and management of pediatric patients with ARPKD.

“There is an awful lot we can do in the way we systematically look at the clinical disease in these patients and improve our management. And, if you can overlay on top of that specific insights about why one person goes one way in disease progression versus another way, I think we can boost the baseline by developing good standards of care,” she says.

“Science does march on. There are a number of related research studies that are expanding our understanding of ARPKD. Within the next decade, we probably will be able to capitalize on not just the work in ARPKD but work in related diseases to learn the entry points for targeting therapies. That way, we can build a portfolio of markers of disease progression and test how effective these potential therapies are in slowing the course of the disease.”