Posts

vials and needles

Study examines severity of COVID-19 on kids with Type 1 diabetes

vials and needles

A new study published in the Journal of Diabetes, found that although nearly 80% of youth with Type 1 diabetes and COVID-19 infection are managed at home, youth from racial and ethnic minority groups – those with higher hemoglobin A1c values – and those with public insurance are at increased risk for hospitalization.

In a new study published in the Journal of Diabetes, researchers found that although nearly 80% of youth with Type 1 diabetes (T1D) and COVID-19 infection are managed at home, youth from racial and ethnic minority groups – those with higher hemoglobin A1c values – and those with public insurance are at increased risk for hospitalization. Most hospitalizations among these youth were related to diabetic ketoacidosis (DKA) (72%) and 86% of youth hospitalized had an A1c value over 9%. The increased risk for DKA among racial and ethnic minority groups and publicly insured youth in this study is indicative of disparities in T1D outcomes and aligns with other research findings both before and during the pandemic.

Adults with certain underlying medical conditions, like diabetes, are at an increased risk for severe illness from COVID-19. Though there are limited data on youth with T1D who have been infected with COVID-19, viral infections can make it harder to control blood glucose levels. If not properly managed, infections may lead to DKA, a serious life-threatening condition where the body converts fat instead of sugar into energy, causing ketones to build up in the blood and acid levels to rise.

“There is still more to learn about COVID-19 and how it affects children with diabetes and other underlying medical conditions,” said Brynn Marks, M.D., MS-HPEd, pediatric endocrinologist at Children’s National Hospital and one of the study’s co-authors. “We are hopeful that this latest data will emphasize the importance of optimizing glycemic control and give physicians and families more information about the virus and T1D so that severe illness and hospitalizations can possibly be prevented.”

In April 2020, the T1D Exchange Quality Improvement Collaborative, along with endocrinology clinics across the U.S., formed a COVID-19 clinical registry to better understand symptoms and outcomes of patients with T1D who also tested positive for SARS-CoV-2 infection. More than 46 centers nationwide, including Children’s National Hospital, submitted data to this novel registry of 266 youth under the age of 19 with previously established T1D and laboratory confirmed COVID-19.

The study found that nearly 80% of youth with T1D and known COVID-19 infection were cared for at home without any adverse outcomes. It is also important to note that COVID-19 was incidentally discovered in 16% of hospitalized youth admitted for reasons unrelated to COVID-19 or T1D (e.g. urological procedures, psychiatric admissions). However, the data revealed a disproportionate rate of hospitalizations and DKA among racial and ethnic minority groups, children who were publicly insured and those with higher A1c. Out of the 266 patients, 72% of the 61 patients were hospitalized due to DKA. An overwhelming majority (82%) of hospitalized patients had an A1c value greater than 9%. More than 40% of non-Hispanic Black youth in the study were hospitalized as compared to 14% of non-Hispanic white youth. Researchers also noted that those patients with public insurance were less likely to use insulin pumps and continuous glucose monitors, emphasizing the continued need to improve more access to diabetes technologies.

“Diabetes technology has advanced rapidly in the last decade and access to insulin pumps and continuous glucose monitors is improving, however these technological advances are perpetuating pre-existing disparities in T1D care and outcomes,” Dr. Marks said. “The data is clear and there is a pressing need to act to promote optimal care for all people with T1D.”

Recently, Dr. Marks and the Children’s National Diabetes team became official members of the Type 1 Diabetes Exchange Collaborative. The team looks forward to using the opportunity to improve diabetes care both here at Children’s National and across the country.

 

boy checking his blood glucose

There’s still more to learn about COVID-19 and diabetes

boy checking his blood glucose

Researchers have learned a lot about COVID-19 over the past year and are continuing to learn and study more about this infection caused by the SARS-CoV-2 virus. There have been many questions about whether COVID-19 affects people with diabetes differently than those without and why this might occur.

Diabetes experts, like Brynn Marks, M.D., M.S.H.P.Ed., endocrinologist at Children’s National Hospital, have been studying the relationship between COVID-19 and diabetes, especially in the pediatric population. Dr. Marks tells us more about what we know so far and further research that needs to be done when it comes to COVID-19 and diabetes.

1.      What do we know about COVID-19 and its effect on people with known diabetes?

The Centers for Disease Control and Prevention (CDC) currently lists type 2 diabetes (T2D) as a high risk condition for severe illness related to COVID-19 infection, while stating that adults with type 1 diabetes (T1D) might be at increased risk. A recent study from Vanderbilt University found that people with T1D and T2D were at approximately equal risk for complications of COVID-19 infection. As compared to adults without diabetes, adults with T1D and T2D were 3-4 times more likely to be hospitalized and to have greater illness severity. Given these comparable risks, both the American Diabetes Association and the Juvenile Diabetes Research Foundation are lobbying for adults with T1D to be given the same level or priority for COVID-19 vaccines as adults with T2D.

However, as pediatricians, we all know to be wary of extrapolating adult data to pediatrics. Children are less likely to be infected with COVID-19 and if they are, the clinical course is typically mild. To date, there have not been any studies of the impact of COVID-19 on youth with known T2D. Our clinical experience at Children’s National Hospital and reports from international multicenter studies indicate that youth with T1D are not at increased risk for hospitalization from COVID-19 infection. However, paralleling ongoing disparities in T1D care, African Americans with known T1D and COVID-19 infection were more likely to be develop diabetic ketoacidosis (DKA) than their White counterparts.

With the increased use of diabetes technologies, including continuous glucose monitors, insulin pumps and automated insulin delivery systems, diabetes care lends itself well to telemedicine. Studies from Italy during the period of lockdown showed better glycemic control among youth with T1D. Further studies are needed to better understand the implications of telehealth on diabetes care, particularly among those in rural areas with limited access to care.

Brynn Marks

Diabetes experts, like Brynn Marks, M.D., M.S.H.P.Ed., endocrinologist at Children’s National Hospital, have been studying the relationship between COVID-19 and diabetes, especially in the pediatric population.

2.      What do we know about the impact of the COVID-19 pandemic on children with newly diagnosed diabetes?

Nationwide studies from Italy and Germany over the first few months of the pandemic found no increase in the incidence of pediatric T1D during the COVID-19 pandemic as compared to the year before; in fact, the Italian study found that fewer children were diagnosed with T1D during the pandemic. However, many centers are seeing higher rates of DKA and more severe DKA at diagnosis during the pandemic, possibly due to decreased primary care visits and/or fears of contracting COVID-19 while seeking care.

To date, no studies have been published exploring the incidence of T2D in youth. A group from Children’s National, including myself, Myrto Flokas, M.D., Abby Meyers, M.D., and Elizabeth Estrada, M.D., from the Division of Endocrinology and Randi Streisand, Ph.D., C.D.C.E.S. and Maureen Monaghan, Ph.D., C.D.C.E.S., from the Department of Psychology and Behavioral Health, are gathering data to compare the incidence of T1D and T2D during the pandemic as compared to the year before.

3.      Can COVID-19 cause diabetes to develop?

This has been area of great interest, but the jury is still out. The SARS-CoV-2 virus, which causes COVID-19 infection, binds the angiotensin-converting enzyme 2 (ACE2) receptor which is located in many tissues throughout the body, including the pancreas. SARS-CoV-2 has been shown to infect pancreatic tissue leading to impaired glucose stimulated insulin secretion. Although the SARS-CoV-2 virus could plausibly cause diabetes, assessment has been complicated by many confounders that could be contributing to hyperglycemia in addition to or rather than the virus itself. Stress-induced hyperglycemia from acute illness, the use of high dose steroids to treat COVID-19 infection, and the disproportionate rates of infection among those already at high risk for T2D, as well as weight gain due to changes in day-to-day life as a result of social distancing precautions are all likely contributing factors.

IV Bag

New study examines treatment for diabetic ketoacidosis

IV Bag

Brain injuries that happen during episodes of diabetic ketoacidosis (DKA) – where the body converts fat instead of sugar into energy, and where the pancreas is unable to process insulin, such as in type 1 diabetes – are rare, and happen in less than 1 percent of DKA episodes, but these injuries can carry lasting consequences – including mild to severe neurological damage.

A new 13-center, randomized, controlled trial published on June 13, 2018, in the New England Journal of Medicine finds two variables – the speed of rehydration fluids administered to patients and the sodium concentrations in these intravenous fluids – don’t impact neurological function or brain damage.

“One medical center would never be able to study this independently because of the relatively small volume of children with DKA that present to any one site,” says Kathleen Brown, M.D., a study author, the medical director of the emergency medicine and trauma center at Children’s National Health System and a professor of pediatrics and emergency medicine at George Washington University School of Medicine. “The strength of this research lies in our ability to work with 13 medical centers to study almost 1,400 episodes of children with DKA over five years to see if these variables make a difference. The study design showcases the efficiency of the Pediatric Emergency Center Applied Research Network, or PECARN, a federally-funded initiative that powers collaboration and innovation.”

Researchers have speculated about the techniques of administering intravenous fluids, specifically speed and sodium concentrations, to patients experiencing a DKA episode, with many assuming a faster administration rate of fluids would produce brain swelling. Others argued, from previous data, that these variables may not matter – especially since higher levels of brain damage were noted among children with higher rates of dehydration before they were treated. Some thought DKA created a state of inflammation in the brain, which caused the damage, and that speed and sodium concentration wouldn’t reverse this initial event. The researchers set out to determine the answers to these questions.

The PECARN research team put the data to the test: They created a 2-by-2 factorial design to test the impact of providing 1,255 pediatric patients, ages zero to 18, with higher (.9 percent) and lower (.45 percent) concentrations of sodium chloride at rapid and slow-rate administration speeds during a DKA episode. They administered tests during the first DKA episode and again during a recurrent episode. After analyzing 1,389 episodes, they found that the four different combinations did not have a statistically significant impact on the rate of cognitive decline during the DKA episode or during the 2-month and 6-month recovery periods.

“One of the most important lessons from this study is that diabetic ketoacidosis should be avoided because it can cause harm,” says Dr. Brown. “But the best way to treat diabetic ketoacidosis is to prevent it. Parents can monitor this by checking blood sugar for insulin control and taking their children for treatment as soon as they show signs or symptoms that are concerning.”

According to the National Institute of Diabetes and Kidney Disease, symptoms of diabetic ketoacidosis include nausea and vomiting, stomach pain, fruity breath odor and rapid breathing. Untreated DKA can lead to coma and death.

An accompanying video and editorial are available online in the New England Journal of Medicine.

The study was funded by the Eunice Kennedy Shriver National Institute of Child Health and Human Development at the Health Resources and Services Administration. The PECARN DKA FLUID ClinicalTrials.gov number is NCT00629707.

Children’s National Health System’s Division of Pediatric Emergency Medicine has been a lead site for the PECARN network since its inception in 2001.