Posts

RSV infected infant cells

$2.13M grant accelerates treatments for kids with Down Syndrome experiencing respiratory viruses

RSV infected infant cells

Children’s National Hospital received a combined $2.13 million award from the National Institutes of Health’s (NIH) National Heart, Lung and Blood Institute to better understand the mechanisms of severe viral respiratory infections in patients with Down syndrome and to develop new diagnostic tools and innovative precision medicine approaches for this vulnerable population.

“We have a unique opportunity to discover novel targets that can treat severe viral respiratory infections, including SARS-CoV-2,” said Gustavo Nino, M.D., M.S.H.S., D’A.B.S.M., principal investigator in the Center for Genetic Medicine at Children’s National. “Part of the award will help us accelerate the development of these novel approaches to prevent severe respiratory infections caused by SARS-CoV-2 and other viruses like respiratory syncytial virus infection (RSV) in children and adults with Down syndrome.”

Lower respiratory tract infections are a leading cause of hospitalization and death in children with Down syndrome. Those children have a nine times higher risk for hospitalization and mortality due to respiratory viruses that cause lower respiratory tract infections.

Chromosome 21, which is an extra chromosome copy found in patients with Down syndrome, encodes four of the six known interferon receptors, leading to hyperactivation of interferon response in Down syndrome. With the central role of interferons focused on antiviral defense, it remains puzzling how interferon hyperactivation contributes to severe viral lower respiratory tract infections in children with Down syndrome. This is an area that the researchers will explore to better manage and treat viral lower respiratory tract infections in these patients, with the support of NIH’s INCLUDE initiative. INCLUDE provides institutions with grants to help clinical research and therapeutics to understand and diminish risk factors that influence the overall health, longevity, and quality of life for people with Down syndrome related to respiratory viruses.

“While many of the other studies focus on intellectual and other disabilities, we are exploring a novel viral respiratory infectious disease mechanism and are doing so by working directly with patients and patient-derived samples,” said Jyoti Jaiswal, M.Sc., Ph.D., senior investigator in the Center for Genetic Medicine Research at Children’s National.

Children with Down syndrome have historically been excluded in research related to airway antiviral immunity, which is a focus of this human-based transformative study to improve the health and survival of patients with Down syndrome. There is a critical need for studies that define targetable molecular and cellular mechanisms to address dysregulated antiviral responses in this patient population.

“The clinical expertise at Children’s National in studying Down syndrome and the work of our team in caring for these patients with respiratory and sleep disorders positions us well to pursue this work,” said Jaiswal. “This is further supplemented by our initial studies that have identified a novel mechanism of impaired airway antiviral responses in these patients.”

Congresswoman Eleanor Holmes Norton (D-DC) also celebrated Children’s National and its NIH research funding benefitting people with Down syndrome.

“I am pleased to congratulate Dr. Nino and staff on being the recipients of the National Heart, Lung, & Blood Institute grant. You were chosen from a competitive group of applicants and should be proud of this notable achievement,” said Norton in a letter. “By receiving this grant, you have demonstrated outstanding promise in your field. It is my hope that this grant will enable you to better the local and global community.”

coronavirus

Children’s National Hospital and NIAID launch large study on long-term impacts of COVID-19 and MIS-C on kids

coronavirus

Up to 2,000 children and young adults will be enrolled in a study from Children’s National Hospital in collaboration with the National Institute of Allergy and Infectious Diseases (NIAID) that will examine the long-term effects of COVID-19 and multisystem inflammatory syndrome in children (MIS-C) after these patients have recovered from a COVID-19 infection.

This $40 million multi-year study will provide important information about quality of life and social impact, in addition to a better understanding of the long-term physical impact of the virus, including effects on the heart and lung. The researchers hope to detail the role of genetics and the immune response to COVID-19, so-called “long COVID” and MIS-C, including the duration of immune responses from SARS-CoV-2, the virus that causes COVID-19. It is fully funded by a subcontract with the NIH-funded Frederick National Laboratory for Cancer Research operated by Leidos Biomedical Research, Inc.

“We don’t know the unique long-term impact of COVID-19 or MIS-C on children so this study will provide us with a critical missing piece of the puzzle,” says Roberta DeBiasi, M.D., M.S., chief of the Division of Pediatric Infectious Diseases at Children’s National and lead researcher for this study. “I am hopeful that the insights from this enormous effort will help us improve treatment of both COVID-19 and MIS-C in the pediatric population both nationally and around the world.”

Over the past year, more than 3.6 million children have tested positive for SARS-CoV-2 and over 2,800 cases of MIS-C have been reported throughout the U.S. While the vast majority of children with primary SARS-CoV-2 infection may have mild or no symptoms, some develop severe illness and may require hospitalization, including life support measures. In rare cases, some children who have previously been infected or exposed to someone with SARS-CoV-2 have developed MIS-C, a serious condition that may be associated with the virus. MIS-C symptoms can include fever, abdominal pain, bloodshot eyes, trouble breathing, rash, vomiting, diarrhea and neck pain, and can progress to shock with low blood pressure and insufficient cardiac function. Long COVID is a wide range of symptoms that can last or appear weeks or even months after being infected with the virus that causes COVID-19.

The study is designed to enroll at least 1,000 children and young adults under 21 years of age who have a confirmed history of symptomatic or asymptomatic SARS-CoV-2 infection or MIS-C. Participants who enroll within 12 weeks of an acute infection will attend study visits every three months for the first six months and then every six months for three years. Participants who enroll more than 12 weeks after acute infection will attend study visits every six months for three years. The study will also enroll up to 1,000 household contacts to serve as a control group, and up to 2,000 parents or guardians (one parent per participant) will complete targeted questionnaires.

“The large number of patients who will be enrolled in this study should provide us with a truly comprehensive understanding of how the virus may continue to impact some patients long after the infection has subsided,” says Dr. DeBiasi.

The study primarily aims to determine incidence and prevalence of, and risk factors for, certain long-term medical conditions among children who have MIS-C or a previous SARS-CoV-2 infection. The study will also evaluate the health-related quality of life and social impacts for participants and establish a biorepository that can be used to study the roles of host genetics, immune response and other possible factors influencing long-term outcomes.

Children’s National was one of the first U.S. institutions to report that children can become very ill from SARS-CoV-2 infection, despite early reports that children were not seriously impacted. In studies published in the Journal of Pediatrics in May of 2020 and June of 2021, Children’s National researchers found that about 25% of symptomatic COVID patients who sought care at our institution required hospitalization. Of those hospitalized, about 25% required life support measures, and the remaining 75% required standard hospitalization. Of patients with MIS-C, 52% were critically ill.

Study sites include Children’s National Hospital inpatient and outpatient clinics in the Washington, D.C. area, and the NIH Clinical Center in Bethesda, Maryland.

Those interested in participating should submit this form. You will then be contacted by a study team member to review the study details and determine whether you are eligible to participate.

You can find more information about the study here.

little boy at doctor

Demographic, clinical and biomarker features of MIS-C

little boy at doctor

In a new observational study, researchers provide insight into key features distinguishing MIS-C patients to provide a more realistic picture of the burden of disease in the pediatric population and aid with the early detection of disease and treatment for optimal outcomes.

Multisystem Inflammatory Syndrome in Children (MIS-C) significantly affected more Black and Latino children than white children, with Black children at the highest risk, according to a new observational study of 124 pediatric patients treated at Children’s National Hospital in Washington, D.C. Researchers also found cardiac complications, including systolic myocardial dysfunction and valvular regurgitation, were more common in MIS-C patients who were critically ill. Of the 124 patients, 63 were ultimately diagnosed with MIS-C and were compared with 61 patients deemed controls who presented with similar symptoms but ultimately had an alternative diagnosis.

In the study, published in The Journal of Pediatrics, researchers provide insight into key features distinguishing MIS-C patients to provide a more realistic picture of the burden of disease in the pediatric population and aid with the early detection of disease and treatment for optimal outcomes. The COVID-linked syndrome has affected nearly 4,000 children in the United States in the past year. Early reports showed severe illness, substantial variation in treatment and mortality associated with MIS-C. However, this study demonstrated that with early recognition and standardized treatment, short-term mortality can be nearly eliminated.

“Data like this will be critical for the development of clinical trials around the long-term implications of MIS-C,” says Dr. Roberta DeBiasi, M.D., lead author and chief of the Division of Pediatric Infectious Diseases at Children’s National. “Our study sheds light on the demographic, clinical and biomarker features of this disease, as well as viral load and viral sequencing.”

Of the 63 children with MIS-C, 52% were critically ill, and additional subtypes of MIS-C were identified including those with and without still detectable virus, those with and without features meeting criteria for Kawasaki Disease, and those with and without detectable cardiac abnormalities. While median age (7.25 years) and sex were similar between the MIS-C cohort and control group, Black (46%) and Latino (35%) children were overrepresented in the MIS-C group, especially those who required critical care. Heart complications were also more frequent in children who became critically ill with MIS-C (55% vs. 28%). Findings also showed MIS-C patients demonstrated a distinct cytokine signature, with significantly higher levels of certain cytokines than those of controls. This may help in the understanding of what drives the disease and which potential treatments may be most effective.

In reviewing viral load and antibody biomarkers, researchers found MIS-C cases with detectable virus had a lower viral load than in primary SARS-CoV-2 infection cases, but similar to MIS-C controls who had alternative diagnoses, but who also had detectable virus. A larger proportion of patients with MIS-C had detectable SARS-CoV-2 antibodies than controls. This is consistent with current thinking that MIS-C occurs a few weeks after a primary COVID-19 infection as part of an overzealous immune response.

Viral sequencing was also performed in the MIS-C cohort and compared to cases of primary COVID-19 infection in the Children’s National geographic population. 88% of the samples analyzed fell into the GH clade consistent with the high frequency of the GH clade circulating earlier in the pandemic in the U.S. and Canada, and first observed in France.

“The fact that there were no notable sequencing differences between our MIS-C and primary COVID cohorts suggests that variations in host genetics and/or immune response are more likely primary determinants of how MIS-C presents itself, rather than virus-specific factors,” says Dr. DeBiasi. “As we’ve seen new variants continue to emerge, it will be important to study their effect on the frequency and severity of MIS-C.”

Researchers are still looking for consensus on the most efficacious treatments for MIS-C. In a recent editorial in the New England Journal of Medicine, Dr. DeBiasi calls for well-characterized large prospective cohort studies at single centers, and systematic and long-term follow-up for cardiac and non-cardiac outcomes in children with MIS-C. Data from these studies will be a crucial determinant of the best set of treatment guidelines for immunotherapies to treat MIS-C.

boy in hospital bed

Long-term, controlled studies needed to chart optimal MIS-C immunotherapy

boy in hospital bed

Roberta L. DeBiasi, M.D., chief of the Division of Pediatric Infectious Diseases at Children’s National Hospital, cautions that two new studies in the New England Journal of Medicine present seemingly conflicting findings about which treatments for MIS-C are optimal.

Multisystem inflammatory disease in children (MIS-C) has affected nearly 4,000 children in the United States in the last year. Two major studies appearing in the June edition of the New England Journal of Medicine seek to better define which immunotherapy treatments or combinations of treatments — intravenous immune globulin (IVIG), glucocorticoids or biologics — do the best job of combating the syndrome’s effects.

But Roberta L. DeBiasi, M.D., chief of the Division of Pediatric Infectious Diseases at Children’s National Hospital, cautions that though these two studies present seemingly conflicting findings about which treatments are optimal, neither study can provide a complete picture of efficacy, in part due to their retrospective and observational study design and population made up of patients from many different centers. True consensus will likely be found, she writes in an editorial that accompanies the studies in the journal, through single-center prospective cohort studies with standardized treatment approaches and long-term follow-up on outcomes.

“While there is a diagnostic criterion and an agreed upon need to induce a rapid therapy for MIS-C, the scientific community has not been able to agree on specific and optimal forms of immunomodulatory therapy,” she writes.

Despite efforts by the study authors to use statistical methods and modeling to control for variations in treatment applications from center to center, the study data is limited by the fact that the therapies have already been administered, in various combinations, based on conditions at each center where a  child was treated and not on a common set of treatment criteria.

Another challenge for generalizing from the findings of these studies is a mismatch in time. The data collected from the two published studies have two different time frames: before and after variants emerged or at various points during different waves of COVID-19 circulation in the U.S.

“Depending on the strain of initial infection and/or subsequent exposure, the dysregulated hyperimmune response of MIS-C could change,” Dr. DeBiasi says. And along with it, how patients respond to a particular treatment or combination of treatments.

Also, she notes it is too soon for any consortia to assess the impact of these therapies on longer-term outcomes, “specifically, comparative efficacy for progression or resolution of coronary abnormalities and prolonged or permanent cardiac dysfunction or scarring.”

Dr. DeBiasi concludes her editorial with a call for well-characterized large prospective cohort studies at single centers, and systematic and long-term follow-up for cardiac and non-cardiac outcomes in children with MIS-C. Data from these studies will be a crucial determinant of the best set of treatment guidelines for immunotherapies to treat MIS-C. Without findings from these types of studies, the selection of the most efficacious treatments is still unknown.

Read the full editorial in the New England Journal of Medicine: Immunotherapy for MIS-C: IVIG, Glucocorticoids, and Biologics

coronavirus

Children have more COVID-19 antibodies than previously thought, study finds

coronavirus

Seroprevalence of antibodies to SARS-CoV-2 in healthy children and children with chronic diseases is higher than researchers previously believed, according to a new study published in The Pediatric Infectious Diseases Journal. The study, which included 385 children in the Washington metropolitan area, found a 9.46% SARS-CoV-2 seroprevalence among this group. Researchers from Children’s National Hospital also identified predictive factors such as specific symptoms, race and ethnicity, that are associated with the antibodies’ presence in the blood, also known as seropositivity.

The 9.46% seroprevalence in healthy children and children with chronic diseases is higher than previously reported. However, this rate remains below the theoretical herd immunity threshold, estimated between 50% and 67% for the general population in the absence of any interventions — like vaccination — and assuming possible lasting immunity.

“We believe our estimate is a close approximation of seroprevalence for the diverse pediatric population in our region,” said the study authors, including Burak Bahar, M.D., lead author and director of Laboratory Informatics at Children’s National.

Since most symptomatic individuals are adults and they have been the main focus for seroprevalence studies, there is still a lack of information about SARS-CoV-2 seroprevalence for pediatric patients and healthy kids. With this study, researchers wanted to shed light on the knowledge gap in COVID-19 pediatric research.

“Parents are key allies who can help scientists better understand the virus’ behavior in children,” said Dr. Bahar.

Until now, it was also unknown if children with chronic diseases had less evidence of antibodies due to underlying conditions, particularly illnesses that cause weakened immune systems. The study showed no notable difference in the association with seropositivity among chronic illness groups, including immunocompromised children.

“Our findings offer important information as all children, with chronic illness or not, could be considered for ‘back to school’ transitions, because they have the same levels of protection. This means they all can have access to social, emotional and behavioral development,” said the authors.

The researchers explored co-existing conditions, symptomatology and demographics as predictors of antibody presence. The analysis showed that children with chronic conditions like asthma, diabetes and cancer were not predictors. This means that these sick kids, when introduced to the virus, make antibodies at the same levels as kids without these diseases.

While most participants were asymptomatic, in those who tested positive for anti-SARS-CoV-2 antibodies, fever, headache and cough were the most common symptoms.

Among the demographics, Hispanic children had a higher seropositive rate than white children. However, median household income based on reported zip code and state of residency were not found to be associated with having antibodies or not.

To determine the impact of continued infections in the community, future studies are needed to identify possible changes in the seroprevalence over a more extended period and to assess seropositivity with vaccination implementation, as that may influence the current rate.

The study is a snapshot in time from July to October 2020. The sample size of 385 patients included both healthy children and those with chronic diseases (69.7%) ranging from 2 months to 22 years old. From the sample pool, 38 individuals were found to have antibodies against SARS-CoV-2. To assess demographic characteristics, symptoms and co-existing conditions associated with seropositivity the researchers used a survey.

A related SARS-CoV-2 antibody production study published on Sept. 3, 2020 in the Journal of Pediatrics, also led by Bahar et al., found that antibodies are detected 18 days after a positive COVID-19 test in children. The authors further noted that the virus and antibodies can co-exist in young patients, so even if seropositivity is detected, they may still transmit the virus.

antibodies attacking t-cell

Immunocompromised pediatric patients show T-cell activity against SARS-CoV-2

antibodies attacking t-cell

The study, published in the Journal of Clinical Immunology, suggests that patients with antibody deficiency disorders, including inborn errors of immunity (IEI) and common variable immunodeficiency (CVID), can mount an immune response to SARS-CoV-2 and proposes that vaccination may still be helpful for this population.

According to data from a cohort of adult and pediatric patients with antibody deficiencies, patients that often fail to make protective immune responses to infections and vaccinations showed robust T-cell activity and humoral immunity against SARS-CoV-2 structural proteins. The new study, led by researchers at Children’s National Hospital, is the first to demonstrate a robust T-cell response against SARS-CoV-2 in immunocompromised patients.

“If T-cell responses to SARS-CoV-2 are indeed protective, then it could suggest that adoptive T-cell immunotherapy might benefit more profoundly immunocompromised patients,” said Michael Keller, M.D., director of the Translational Research Laboratory in the Program for Cell Enhancement and Technologies for Immunotherapy (CETI) at Children’s National. “Through our developing phase I T-cell immunotherapy protocol, we intend to investigate if coronavirus-specific T-cells may be protective following bone marrow transplantation, as well as in other immunodeficient populations.”

The study, published in the Journal of Clinical Immunology, showed that patients with antibody deficiency disorders, including inborn errors of immunity (IEI) and common variable immunodeficiency (CVID), can mount an immune response to SARS-CoV-2. The findings propose that vaccination may still be helpful for this population.

“This data suggests that many patients with antibody deficiency should be capable of responding to COVID-19 vaccines, and current studies at the National Institutes of Health and elsewhere are addressing whether those responses are likely to be protective and lasting,” said Dr. Keller.

The T-cell responses in all the COVID-19 patients were similar in magnitude to healthy adult and pediatric convalescent participants.

Kinoshita et al. call for additional studies to further define the quality of the antibody response and the longevity of immune responses against SARS-CoV-2 in immunocompromised patients compared with healthy donors. Currently, there is also very little data on adaptive immune responses to SARS-CoV-2 in these vulnerable populations.

The study sheds light on the antibody and T-cell responses to SARS-CoV-2 protein spikes based on a sample size of six patients, including a family group of three children and their mother. All have antibody deficiencies and developed mild COVID-19 symptoms, minus one child who remained asymptomatic. Control participants were the father of the same family, who tested positive for COVID-19, and another incidental adult (not next of kin) experienced mild COVID-19 symptoms. The researchers took blood samples to test the T-cell response in cell cultures and provided comprehensive statistical analysis of the adaptive immune responses.

“This was a small group of patients, but given the high proportion of responses, it does suggest that many of our antibody deficient patients are likely to mount immune responses to SARS-CoV-2,” said Dr. Keller. “Additional studies are needed to know whether other patients with primary immunodeficiency develop immunity following COVID-19 infection and will likely be answered by a large international collaboration organized by our collaborators at the Garvan Institute in Sydney.”

vials and needles

Study examines severity of COVID-19 on kids with Type 1 diabetes

vials and needles

A new study published in the Journal of Diabetes, found that although nearly 80% of youth with Type 1 diabetes and COVID-19 infection are managed at home, youth from racial and ethnic minority groups – those with higher hemoglobin A1c values – and those with public insurance are at increased risk for hospitalization.

In a new study published in the Journal of Diabetes, researchers found that although nearly 80% of youth with Type 1 diabetes (T1D) and COVID-19 infection are managed at home, youth from racial and ethnic minority groups – those with higher hemoglobin A1c values – and those with public insurance are at increased risk for hospitalization. Most hospitalizations among these youth were related to diabetic ketoacidosis (DKA) (72%) and 86% of youth hospitalized had an A1c value over 9%. The increased risk for DKA among racial and ethnic minority groups and publicly insured youth in this study is indicative of disparities in T1D outcomes and aligns with other research findings both before and during the pandemic.

Adults with certain underlying medical conditions, like diabetes, are at an increased risk for severe illness from COVID-19. Though there are limited data on youth with T1D who have been infected with COVID-19, viral infections can make it harder to control blood glucose levels. If not properly managed, infections may lead to DKA, a serious life-threatening condition where the body converts fat instead of sugar into energy, causing ketones to build up in the blood and acid levels to rise.

“There is still more to learn about COVID-19 and how it affects children with diabetes and other underlying medical conditions,” said Brynn Marks, M.D., MS-HPEd, pediatric endocrinologist at Children’s National Hospital and one of the study’s co-authors. “We are hopeful that this latest data will emphasize the importance of optimizing glycemic control and give physicians and families more information about the virus and T1D so that severe illness and hospitalizations can possibly be prevented.”

In April 2020, the T1D Exchange Quality Improvement Collaborative, along with endocrinology clinics across the U.S., formed a COVID-19 clinical registry to better understand symptoms and outcomes of patients with T1D who also tested positive for SARS-CoV-2 infection. More than 46 centers nationwide, including Children’s National Hospital, submitted data to this novel registry of 266 youth under the age of 19 with previously established T1D and laboratory confirmed COVID-19.

The study found that nearly 80% of youth with T1D and known COVID-19 infection were cared for at home without any adverse outcomes. It is also important to note that COVID-19 was incidentally discovered in 16% of hospitalized youth admitted for reasons unrelated to COVID-19 or T1D (e.g. urological procedures, psychiatric admissions). However, the data revealed a disproportionate rate of hospitalizations and DKA among racial and ethnic minority groups, children who were publicly insured and those with higher A1c. Out of the 266 patients, 72% of the 61 patients were hospitalized due to DKA. An overwhelming majority (82%) of hospitalized patients had an A1c value greater than 9%. More than 40% of non-Hispanic Black youth in the study were hospitalized as compared to 14% of non-Hispanic white youth. Researchers also noted that those patients with public insurance were less likely to use insulin pumps and continuous glucose monitors, emphasizing the continued need to improve more access to diabetes technologies.

“Diabetes technology has advanced rapidly in the last decade and access to insulin pumps and continuous glucose monitors is improving, however these technological advances are perpetuating pre-existing disparities in T1D care and outcomes,” Dr. Marks said. “The data is clear and there is a pressing need to act to promote optimal care for all people with T1D.”

Recently, Dr. Marks and the Children’s National Diabetes team became official members of the Type 1 Diabetes Exchange Collaborative. The team looks forward to using the opportunity to improve diabetes care both here at Children’s National and across the country.

 

Francis Collins

Francis S. Collins, M.D., Ph.D. from NIH: The future of genomic medicine and research funding opportunities

Kurt Newman and Francis Collins

Genomic medicine, diversity, equity and inclusion (DEI), a world post-COVID-19 and pediatric research funding were among the topics discussed during the “Special Fireside Chat” keynote lecture at the 2021 Children’s National Hospital Research, Education and Innovation Week.

Francis S. Collins, M.D., Ph.D., director at the National Institutes of Health (NIH), is well known for his landmark discoveries of disease genes and his leadership of the international Human Genome Project, which culminated in April 2003 with the completion of a finished sequence of the human DNA instruction book.

The President and CEO of Children’s National, Kurt Newman, M.D., joined Dr. Collins during the “Special Fireside Chat” keynote lecture. Dr. Newman posed several health care-related questions to Dr. Collins over the course of 30 minutes. Dr. Collins’s responses shed light on what it takes to advance various research fields focused on improving child health and develop frameworks that advocate for DEI in order to foster a more just society.

Q: You have been involved with genomic medicine since its inception. You discovered the gene causing cystic fibrosis and led the Human Genome project. What do you see as the future of genomic medicine, especially as it relates to improving child health?

A: Thank you for the question, Kurt. First, I wanted to say congratulations on your 150th anniversary. Children’s National Hospital has been such a critical component for pediatric research and care in the Washington, D.C., area, and at the national and international levels. We at the NIH consider it a great privilege to be your partner in many of the things that we can and are doing together.

Genomic medicine has certainly come a long way. The word genomics was invented in 1980, so we have not been at this for that long. Yet, the success of the Human Genome Project and the access to cost-effective tools for rapid DNA sequencing have made many things possible. It took a lot of effort, time and money to discover the gene that causes cystic fibrosis. Kurt, if you look at what we did, while it was rewarding, it was a challenging problem that occupied the hearts of the scientific community in 1980. Now, a graduate student at Children’s National that has access to DNA samples, a thermal cycler, a DNA sequencer and the internet could do in about a week what it took us a decade and with 50 people.

We have been able to rocket forward as far as identifying the genetic causes of 6,500 diseases, where we know precisely the molecular glitch responsible for those conditions. While most of those are rare diseases, it leads to the opportunity for immediate diagnosis, which used to be a long and troubled journey.

DNA sequencing has increasingly become an essential tool in newborns, especially when trying to sort out puzzling diagnosis for specific syndromes or phenotypes that are not immediately clear. Additionally, DNA sequencing significantly impacted clinical care in cancer because it made it possible to look at the mutations driving the malignancy and its genetic information that can lead to interventions. This approach is going forward in the next few years in ways that we can see now. Although I am a little reluctant to make predictions because I have to be careful about that, it may be possible to obtain complete genome sequences that can be yours for life and place them into the medical record to make predictions about future risks and choices about appropriate drugs. This path costs less than any imaging tests.

Q: The racial justice movement that was brought back to the forefront this past year has, once again, reaffirmed that this country has so much more work to do in order to end systemic racism. You have been at the forefront of promoting diversity, equity and inclusion in research and at the NIH. What do you and the NIH plan to do further DEI efforts in research and in general so that we can be a more just and equitable society?

A: I appreciate you raising this, Kurt. Diversity, equity and inclusion (DEI) is an issue where everyone should be spending a lot of time, energy and passion. You are right. 2020 will be remembered for COVID-19. I also think it will be remembered for the things that occurred around the killing of George Floyd, and the recognition of the very foundation that is still infected by this terribly difficult circumstance of structural racism. I convened a group of about 75 deep thinkers about these issues, many of them are people of color from across the NIH’s different areas of activities. I asked the group to come forward with a bold set of proposals. This effort is how the program UNITE came together to work hard on this, which is now making recommendations that I intend to follow. We are determined to close that gap and pursue additional programs that will allow us to be more successful in recruiting and retaining minority groups, for example. We need to do something with our health disparity and research portfolio as well to ensure that we are not just looking around the edges of the causes for racial inequities. We are digging deeper into what the structural racism underpinnings are and what we can do about it. I am particularly interested in supporting research projects that test intervention and not just catalog the factors involved. We have been, at times, accused and maybe rightly so of being more academic about this, and, less kindly, we have been accused of admiring the problem of health disparities as opposed to acting on it. We are ready to act.

Q: COVID has affected us all in so many ways. Could you tell us what this past year has been like for you? Also, how is the NIH preparing for a soon-to-be post-COVID pandemic?

A: This is the time to contemplate the lessons learned as everyone knows that the last worst pandemic happened over a century ago. One thing that maybe will vex us going forward, which we already started to invest in a big way, is this whole long COVID syndrome, also referred to post-acute sequelae, to understand precisely the consequences and mechanisms like Multisystem Inflammatory Syndrome in Children (MIS-C). Before moving to the next pandemic, we must think about how we will help understand those who suffer from long COVID syndrome. As far as the broader lessons learn, Kurt, we must expect that there will be other pandemics because humans are interacting more with animals, so zoonosis is likely to emerge. We need to have a clear sense of preparation for the next one. For instance, we are working on this right now, but we need to have a stronger effort to develop small molecules of anti-viral drugs aimed at the major viral classes, so we do not have to start from scratch. We also need clinical trial networks warm all the time, ready to go and to learn how valuable public partnerships can be to get things done in a hurry.

Editor’s Note: The responses in this Q+A have been modified to fit the word count.

Little boy going to school with protective mask

Firearm injuries involving young children in the United States during the COVID-19 pandemic

Little boy going to school with protective mask

After seeing the surge of firearm injuries in young children and inflicted by young children during the first six months of the COVID-19 pandemic, the study’s experts are saying there is an urgent and critical need for enactment of interventions aimed at preventing firearm injuries and deaths involving children.

A recent study pre-published in Pediatrics found that the COVID-19 pandemic is associated with a surge in fatal and nonfatal firearm injuries both in young children and inflicted by young children, correlating with a rise in firearm acquisitions.

The findings, led by Children’s National Hospital experts, show the risk was higher during the first six months of the COVID-19 pandemic as compared to the pre-COVID period.

“According to the Centers for Disease Control and Prevention, firearms are a leading cause of injury and death among youth,” said Monika K. Goyal, M.D., M.S.C.E., senior author of this study and associate  chief of Emergency Medicine and Trauma Services at Children’s National. “The pandemic has led to an increase in these preventable tragedies and it is incumbent upon us as a society to put appropriate measures in place to keep children safe.”

“Increased firearm purchases are one reason we have seen an increase in firearm injuries during the pandemic,” said Joanna S. Cohen, M.D., associate professor of Pediatrics and Emergency Medicine. “Increased purchases are likely related to the political unrest we recently witnessed and increased firearm injuries may be related to children being at home more. Whereas children were in school before, they might be home unsupervised while parents and caretakers are working.”

In addition, there has been an increase in domestic violence over the course of the pandemic which, according to Dr. Cohen, could be a reflection of the stress emerging from financial insecurity, joblessness, illness and other stressors deriving from the pandemic.

After seeing the surge of firearm injuries in young children and inflicted by young children during the first six months of the COVID-19 pandemic, the study’s experts are saying there is an urgent and critical need for enactment of interventions aimed at preventing firearm injuries and deaths involving children.

“There is an urgent need for strategies to prevent further injuries,” Dr. Goyal said. “This includes counseling families on firearm safety at home, having more sensible gun laws and educating the public accordingly.”

In the past, if you were a new gun owner, you would have access to training on how to handle a gun and find safe storage. With all the sheltering in place due to the pandemic, those educational opportunities have fallen by the wayside. “Now you have more people who have become new gun owners but haven’t had the opportunity to get education on safe gun ownership, coinciding with more children staying at home because of the pandemic,” Dr. Goyal said.

The increase in domestic violence could also be a contributing factor. Children are often witnesses to violence at home, Dr. Cohen explained. In many cases, she said, if children see a parent being threatened with a gun, they might model that behavior without fully understanding the implications of holding a gun and the injury it can cause.

patient meets with ED robot

New robot helps care for kids in the emergency room at Children’s National Hospital

patient meets with ED robot

The robot, which is part of the FCC-funded COVID-19 Telehealth Program at Children’s National, is the latest innovation of the program that has rapidly evolved due to the ongoing pandemic.

Children and families who come into the emergency room at Children’s National Hospital may be surprised when their doctor comes in – in the form of a robot. Children’s National introduced a new robot to its Emergency Department (ED) for patients under evaluation for a COVID infection or being treated for other conditions. The robot, which is part of the FCC-funded COVID-19 Telehealth Program at Children’s National, is the latest innovation of the program that has rapidly evolved due to the ongoing pandemic.

“The robot can move in and out of spaces that otherwise we couldn’t get a significant number of providers in, especially with COVID-19 restrictions in place,” said  Shireen Atabaki, M.D., M.P.H., associate medical director of Telemedicine, emergency medicine physician and program director for the COVID-19 Telehealth Program at Children’s National. “This is a really exciting program and it implements innovation that we might not have been able to do without the insights we’ve gained from the pandemic.”

The robot is Wi-Fi-enabled and can be remotely controlled by the physician providing the teleconsultation to monitor patient vitals — such as heart rate, body temperature or respiration rate. This allows doctors to work virtually with their team while also having the flexibility to attend to patients faster.

“The pandemic has made us aware of the need to protect patients, families and staff from infectious diseases,” said  Alejandro Jose Lopez-Magallon, M.D., medical director of Telemedicine at Children’s National. The robot, he noted, spares clinicians from having to change their PPE, which saves time and gives them the ability to move on to the next patient while nurses and staff continue to provide bedside care.

“We have also seen that whenever a remote clinician is completely alone in the command center and can get on-screen without a mask, in a paradoxical way our patients may be more accepting of seeing a face on a screen that’s not covered with a mask and shield than a stranger using a mask in the same room,” Dr. Lopez-Magallon added.

Soon, the robot will also be used to coordinate subspecialty care — such as cardiac care — in the ED. This will provide more streamlined and expedited care for patients. Instead of leaving with a referral to set up a follow-up appointment with a specialist, patients would be able to receive the consult they need during the same appointment.

The robot is also presenting promising solutions for concerns around the number of restricted visitors. The team at Children’s National recently piloted using an iPad and other technology purchased with the FCC funds to remotely connect family members with patients.

“We downloaded the Zoom app to iPads in our ED to be able to coordinate calls between family members who can’t come in and see patients,” said Dr. Atabaki. “We are looking to implement this as a permanent solution keeping in mind how burdensome and emotionally stressful it has been for many not having the ability to be by the loved one’s side during such a challenging time.”

The FCC funds also covered the telehealth carts, tablets and other connected devices, the telehealth platform, telehealth equipment and innovative AI (augmented intelligence) to treat seriously ill COVID-19 pediatric patients.

The emergency department robot brings the robot-fleet at Children’s National up to three. The first robot was debuted in 2019 to serve children and families in the Cardiac Intensive Care Unit.

using a laser to cut PPE face shields for staff during covid-19

Multidisciplinary team develops innovative PPE that fits clinical needs during COVID-19

using a laser to cut PPE face shields for staff during covid-19

Children’s National engineers and clinicians developed plexiglass shields for testing sites, comfortable face shields for clinical providers, affordable oversized breath shields for ophthalmology and 3D printed flip-up attachments to the safety goggles for nurses.

The Children’s National Hospital innovation working group shares a retrospective on their local experience in mobilizing resources to offer relief following the personal protective equipment (PPE) shortages at the beginning of COVID-19. Engineers and clinicians developed plexiglass shields for testing sites, comfortable face shields for clinical providers, affordable oversized breath shields for ophthalmology and 3D printed flip-up attachments to the safety goggles for nurses.

The study, published in the Surgical Innovation Journal, narrates a series of events that occurred at the beginning of the pandemic, where the increased demand for personal protective equipment (PPE) usage in healthcare personnel skyrocketed and led to a severe national shortage. Still, the multidisciplinary approach at Children’s National facilitated the response and preparedness to the emerging situation back in March of 2020, serving as a framework for the current and future challenges.

To meet the needs of one of the busiest pediatric emergency departments in the country, the researchers aimed to develop a plexiglass shield that was reliable, reusable and practical while staying pediatric-friendly. The prototype had advantages and disadvantages while administering a COVID-19 swab test in a tent.

The 2020 FDA Emergency Authorization Use (EUA) issued in April provided manufacturing guidelines to produce face shields. Given the federal support, innovators at Children’s National, in partnership with GCMI, designed a rigid and foam prototype. Both prototypes were measured by comfort, visibility, breathability, ability to perform the job, durability, stability, fit and easy assembly. The rigid prototype performed the highest in all metrics and it had few adjustments after various tests.

“While the FDA has become nimbler as evidenced by rapid issuance of EUA of the vaccines, regulatory concerns are still paramount,” Operfmann et al. write. “Having staff experienced with regulatory processes is important to introduce new regulated devices.”

In May 2020, there was also a production lag on the available oversized breath shields for ophthalmology slits, which cost between $35 and $40. To lift the burden, the researchers designed and produced in-house a cost-effective oversized breath shield for less than $9. They used a 40 W laser machine to cut through the thick clear cast acrylic while following the compatible measurements of commercial lamps. The team also distributed the breath shields to other Children’s National regional clinics.

Within the nursing staff, the main factor associated with abiding to PPE compliance is the usage of safety goggles before entering a room. But in time-sensitive situations like patients with severe COVID-19 symptoms, the equipment can be easily forgotten. To support busy shifts, researchers designed a 3D printable attachment valued at $5 for safety goggles, which are more comfortable to keep on, even during downtime. The efficacy of the flip-up attachment is yet to be determined in an upcoming trial.

“Hospitals have already begun augmenting their disaster preparation plans and ensuring they have adequate stockpiles of equipment for future events,” Opfermann et al. write.

Children’s National authors on the study include: Justin Opfermann, M.S., Anuradha Dayal, M.D.Alyssa Abo, M.D., M.B.A., Tyler Salvador, B.S., Kolaleh Eskandanian, Ph.D., M.B.A., P.M.P., Raven McLeese, R.N., and Kevin R. Cleary, Ph.D.

coronavirus

An analysis of articles on pediatric COVID-19 cases

coronavirus

In a recent editorial, Dr. Briony Varda commented on a systematic review and meta-analysis of articles reporting on pediatric cases of COVID-19.

In a recent editorial, Children’s National Hospital Pediatric Urologist Briony Varda, M.D., M.P.H., and Emilie K. Johnson, M.D., M.P.H., from Ann & Robert H. Lurie Children’s Hospital of Chicago, comment on a systematic review and meta-analysis of articles reporting on pediatric cases of coronavirus disease 2019 (COVID-19) due to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection.

Their take home messages were that although COVID-19 is typically milder in children than in adults, children (particularly infants) do appear to have cardiac damage from COVID-19 which may be a consideration for preoperative evaluation among surgeons. They also note the MIS-C is another emerging concern for children following an infection with COVID-19.

Read the full editorial in the Journal of Pediatric Urology.

illustration of lungs with coronavirus inside

Pediatric asthma exacerbations during the COVID-19 pandemic

illustration of lungs with coronavirus inside

The authors found that in 2020, the District of Columbia did not experience the typical “September asthma epidemic” of exacerbations seen in past years.

In the United States, pediatric asthma exacerbations typically peak in the fall due to seasonal factors such as increased spread of common respiratory viruses, increased exposure to indoor aeroallergens, changing outdoor aeroallergen exposures and colder weather. In early 2020, measures enacted to reduce spread of the coronavirus (COVID-19) — such as social distancing, quarantines and school closures — also reduced pediatric respiratory illnesses and asthma morbidity. Children’s National Hospital immunologist and allergist William J. Sheehan, M.D., and colleagues sought to determine if these measures also affected the 2020 fall seasonal asthma exacerbation peak in Washington, D.C.

The authors found that in 2020, the District of Columbia did not experience the typical “September asthma epidemic” of exacerbations seen in past years. Emergency department visits, hospitalizations and intensive care unit admissions for asthma during the 2020 fall season were significantly reduced compared to previous years.

The authors conclude that, “this is likely due to social distancing, quarantines and school closures enacted during the pandemic. This is a small silver lining in a very difficult year. As 2021 brings optimism for gradual improvements of the pandemic, careful monitoring is necessary to recognize and prepare for childhood asthma morbidity to return to pre-pandemic levels.”

Additional study authors include: Shilpa J. Patel, M.D., M.P.H., Rachel H.F. Margolis, Ph.D., Eduardo R. Fox, M.D., Deborah Q. Shelef, M.P.H., Nikita Kachroo, B.S., Dinesh Pillai, M.D. and Stephen J. Teach, M.D., M.P.H.

Read the full study in the Journal of Allergy and Clinical Immunology: In Practice.

Asthma-Related Healthcare Utilization by Month

Asthma-Related Healthcare Utilization by Month (2016-2020). Asthma-related emergency department (ED) visits, hospitalizations and pediatric intensive care unit (PICU) admissions over time by month between 2016 and 2020. The p-values are for comparisons of mean monthly numbers for fall seasons of 2016-2019 to fall season of 2020. Image courtesy of the Journal of Allergy and Clinical Immunology: In Practice.

coronavirus molecules with DNA

Novel SARS-CoV-2 spike variant found in a newborn in Washington, D.C.

coronavirus molecules with DNA

Researchers at Children’s National Hospital found a new SARS-CoV-2 spike variant in a neonatal patient, according to a study that genetically sequenced the virus in 27 pediatric patients. The newborn presented with a viral load of 50,000 times more particles than the average patient, which led to identifying the N679S spike protein variant — the earliest known sample of this coronavirus lineage in the U.S. mid-Atlantic region.

While the paper is posted to the preprint server medRxiv and has not been peer-reviewed, it represents an early step towards establishing better surveillance of the COVID-19 pandemic. The new variant helps understand the process of viral adaptation, potentially informing treatment development and vaccine design for any viral variants in the future.

All genomes change and evolve. Additional viral variants are expected to emerge as more patients are infected. The data analysis recognized eight other cases in Washington, D.C., with the N679S variant, pointing toward a European origin due to the genetic similarity between of SARS-CoV-2 strains in the U.S. and United Kingdom.

“We need to sequence more cases to identify variants and stay ahead of the virus,” said Drew Michael, Ph.D., molecular geneticist at Children’s National and senior author of the study. “The United States sequences a tiny fraction of all cases, and because we are not sequencing enough, we are not aware of the variants in SARS-CoV-2 that may be spreading in our community.”

“Novel SARS-CoV-2 spike variant identified through viral genome sequencing of the pediatric Washington D.C. COVID-19 outbreak,” was published on the preprint server medRxiv. Additional authors include Jonathan LoTempio, Erik Billings, Kyah Draper, Christal Ralph, Mahdi Moshgriz, Nhat Duong, Jennifer Dien Bard, Xiaowu Gai, David Wessel, M.D., Roberta L. DeBiasi, M.D., M.S., Joseph M. Campos, Ph.D., Eric Vilain, M.D., Ph.D. and Meghan Delaney, D.O., M.P.H.

You can read the full preprint on medRxiv.

boy checking his blood glucose

There’s still more to learn about COVID-19 and diabetes

boy checking his blood glucose

Researchers have learned a lot about COVID-19 over the past year and are continuing to learn and study more about this infection caused by the SARS-CoV-2 virus. There have been many questions about whether COVID-19 affects people with diabetes differently than those without and why this might occur.

Diabetes experts, like Brynn Marks, M.D., M.S.H.P.Ed., endocrinologist at Children’s National Hospital, have been studying the relationship between COVID-19 and diabetes, especially in the pediatric population. Dr. Marks tells us more about what we know so far and further research that needs to be done when it comes to COVID-19 and diabetes.

1.      What do we know about COVID-19 and its effect on people with known diabetes?

The Centers for Disease Control and Prevention (CDC) currently lists type 2 diabetes (T2D) as a high risk condition for severe illness related to COVID-19 infection, while stating that adults with type 1 diabetes (T1D) might be at increased risk. A recent study from Vanderbilt University found that people with T1D and T2D were at approximately equal risk for complications of COVID-19 infection. As compared to adults without diabetes, adults with T1D and T2D were 3-4 times more likely to be hospitalized and to have greater illness severity. Given these comparable risks, both the American Diabetes Association and the Juvenile Diabetes Research Foundation are lobbying for adults with T1D to be given the same level or priority for COVID-19 vaccines as adults with T2D.

However, as pediatricians, we all know to be wary of extrapolating adult data to pediatrics. Children are less likely to be infected with COVID-19 and if they are, the clinical course is typically mild. To date, there have not been any studies of the impact of COVID-19 on youth with known T2D. Our clinical experience at Children’s National Hospital and reports from international multicenter studies indicate that youth with T1D are not at increased risk for hospitalization from COVID-19 infection. However, paralleling ongoing disparities in T1D care, African Americans with known T1D and COVID-19 infection were more likely to be develop diabetic ketoacidosis (DKA) than their White counterparts.

With the increased use of diabetes technologies, including continuous glucose monitors, insulin pumps and automated insulin delivery systems, diabetes care lends itself well to telemedicine. Studies from Italy during the period of lockdown showed better glycemic control among youth with T1D. Further studies are needed to better understand the implications of telehealth on diabetes care, particularly among those in rural areas with limited access to care.

Brynn Marks

Diabetes experts, like Brynn Marks, M.D., M.S.H.P.Ed., endocrinologist at Children’s National Hospital, have been studying the relationship between COVID-19 and diabetes, especially in the pediatric population.

2.      What do we know about the impact of the COVID-19 pandemic on children with newly diagnosed diabetes?

Nationwide studies from Italy and Germany over the first few months of the pandemic found no increase in the incidence of pediatric T1D during the COVID-19 pandemic as compared to the year before; in fact, the Italian study found that fewer children were diagnosed with T1D during the pandemic. However, many centers are seeing higher rates of DKA and more severe DKA at diagnosis during the pandemic, possibly due to decreased primary care visits and/or fears of contracting COVID-19 while seeking care.

To date, no studies have been published exploring the incidence of T2D in youth. A group from Children’s National, including myself, Myrto Flokas, M.D., Abby Meyers, M.D., and Elizabeth Estrada, M.D., from the Division of Endocrinology and Randi Streisand, Ph.D., C.D.C.E.S. and Maureen Monaghan, Ph.D., C.D.C.E.S., from the Department of Psychology and Behavioral Health, are gathering data to compare the incidence of T1D and T2D during the pandemic as compared to the year before.

3.      Can COVID-19 cause diabetes to develop?

This has been area of great interest, but the jury is still out. The SARS-CoV-2 virus, which causes COVID-19 infection, binds the angiotensin-converting enzyme 2 (ACE2) receptor which is located in many tissues throughout the body, including the pancreas. SARS-CoV-2 has been shown to infect pancreatic tissue leading to impaired glucose stimulated insulin secretion. Although the SARS-CoV-2 virus could plausibly cause diabetes, assessment has been complicated by many confounders that could be contributing to hyperglycemia in addition to or rather than the virus itself. Stress-induced hyperglycemia from acute illness, the use of high dose steroids to treat COVID-19 infection, and the disproportionate rates of infection among those already at high risk for T2D, as well as weight gain due to changes in day-to-day life as a result of social distancing precautions are all likely contributing factors.

FCC Chairwoman Jessica Rosenworcel visited Children’s National Hospital

Acting FCC chairwoman Rosenworcel highlights telehealth for pediatrics

FCC Chairwoman Jessica Rosenworcel visited Children’s National Hospital

Acting FCC Chairwoman Jessica Rosenworcel visited Children’s National Hospital yesterday to highlight the importance of connectivity in healthcare and learn more about how the hospital is using telehealth to serve families during the pandemic. Children’s National Hospital in Washington, D.C., has provided pediatric care for 150 years and is among the nation’s top 10 children’s hospitals. Last year, Children’s National, an academic pediatric health system, saw more than 219,000 children from the capital region and from across the country and around the world.

“So much more can be done to connect children and their families — in both urban and rural parts of the country — to the care they need not only to survive, but to thrive,” said Rosenworcel. “Telehealth can help bridge that gap by bringing specialty care available only in hospital centers to smaller clinics and even the home where problems can be addressed quickly, before they prove life threatening. I was encouraged by the creative work that Children’s National Hospital is doing to address the unique health needs of children from all backgrounds especially during these challenging times.”

Acting Chairwoman Rosenworcel was joined by her colleague FCC Commissioner Nathan Simington for a tour of the hospital, where they met with Shireen Atabaki, M.D., M.P.H., associate medical director of Telehealth, Emergency Medicine physician and program director for the COVID-19 Telehealth Program at Children’s National Hospital. The visit also included a demo of a telehealth robot by Ricardo Munoz, M.D., Cardiac Critical Care Medicine chief, and Alejandro Jose Lopez-Magallon, M.D., medical director of Telemedicine, both at Children’s National.

“The pandemic catapulted telehealth as a tool for the future of health care delivery,” said Dr. Atabaki. “With the support of the FCC, Children’s National is excited to introduce a robot and other state-of-the-art digital health technology to support provider-to-patient pediatric care and expert consultations in our hospital’s emergency departments and across our region. These innovations in telemedicine will facilitate access to specialized expertise and care of COVID-19 patients.”

In May 2020, Children’s National Hospital was approved for funding as part of the FCC’s COVID-19 Telehealth Program and established a regional pediatric telehealth consortium. This will enable the hospital to expand its telehealth platform to support 15 health care sites in the region serving children and young adults, providing care to children with COVID-19, as well as those who are medically vulnerable.

Acting Chairwoman Rosenworcel is committed to closing the digital divide and sees access to telehealth care services — especially for underserved and marginalized communities — as a top priority. To learn more about telehealth efforts at the FCC, including the COVID-19 Telehealth Program and the Connected Care Pilot Program, visit: https://www.fcc.gov/connecting-americans-health-care.

Coronavirus and lungs with world map in the background

Top AI models unveiled in COVID-19 challenge to improve lung diagnostics

Coronavirus and lungs with world map in the background

The top 10 results have been unveiled in the first-of-its-kind COVID-19 Lung CT Lesion Segmentation Grand Challenge, a groundbreaking research competition focused on developing artificial intelligence (AI) models to help in the visualization and measurement of COVID specific lesions in the lungs of infected patients, potentially facilitating more timely and patient-specific medical interventions.

Attracting more than 1,000 global participants, the competition was presented by the Sheikh Zayed Institute for Pediatric Surgical Innovation at Children’s National Hospital in collaboration with leading AI technology company NVIDIA and the National Institutes of Health (NIH). The competition’s AI models utilized a multi-institutional, multi-national data set provided by public datasets from The Cancer Imaging Archive (National Cancer Institute), NIH and the University of Arkansas, that originated from patients of different ages, genders and with variable disease severity. NVIDIA provided GPUs to the top five winners as prizes, as well as supported the selection and judging process.

“Improving COVID-19 treatment starts with a clearer understanding of the patient’s disease state. However, a prior lack of global data collaboration limited clinicians in their ability to quickly and effectively understand disease severity across both adult and pediatric patients,” says Marius George Linguraru, D.Phil., M.A., M.Sc., principal investigator at the Sheikh Zayed Institute for Pediatric Surgical Innovation at Children’s National, who led the Grand Challenge initiative. “By harnessing the power of AI through quantitative imaging and machine learning, these discoveries are helping clinicians better understand COVID-19 disease severity and potentially stratify and triage into appropriate treatment protocols at different stages of the disease.”

The top 10 AI algorithms were identified from a highly competitive field of participants who tested the data in November and December 2020. The results were unveiled on Jan. 11, 2021, in a virtual symposium, hosted by Children’s National, that featured presentations from top teams, event organizers and clinicians.

Developers of the 10 top AI models from the COVID-19 Lung CT Lesion Segmentation Grand Challenge are:

  1. Shishuai Hu, et al. Northwestern Polytechnical University, China. “Semi-supervised Method for COVID-19 Lung CT Lesion Segmentation”
  2. Fabian Isensee, et al. German Cancer Research Center, Germany. “nnU-Net for Covid Segmentation”
  3. Claire Tang, Lynbrook High School, USA. “Automated Ensemble Modeling for COVID-19 CT Lesion Segmentation”
  4. Qinji Yu, et al. Shanghai JiaoTong University, China. “COVID-19-20 Lesion Segmentation Based on nnUNet”
  5. Andreas Husch, et al. University of Luxembourg, Luxembourg. “Leveraging State-of-the-Art Architectures by Enriching Training Information – a case study”
  6. Tong Zheng, et al. Nagoya University, Japan. “Fully-automated COVID-19-20 Segmentation”
  7. Vitali Liauchuk. United Institute of Informatics Problems (UIIP), Belarus. “Semi-3D CNN with ImageNet Pretrain for Segmentation of COVID Lesions on CT”
  8. Ziqi Zhou, et al. Shenzhen University, China. “Automated Chest CT Image Segmentation of COVID-19 with 3D Unet-based Framework”
  9. Jan Hendrik Moltz, et al. Fraunhofer Institute for Digital Medicine MEVIS, Germany. “Segmentation of COVID-19 Lung Lesions in CT Using nnU-Net”
  10. Bruno Oliveira, et al. 2Ai – Polytechnic Institute of Cávado and Ave, Portugal. “Automatic COVID-19 Detection and Segmentation from Lung Computed Tomography (CT) Images Using 3D Cascade U-net”

Linguraru added that, in addition to an award for the top five AI models, these winning algorithms are now available to partner with clinical institutions across the globe to further evaluate how these quantitative imaging and machine learning methods may potentially impact global public health.

“Quality annotations are a limiting factor in the development of useful AI models,” said Mona Flores, M.D., global head of Medical AI, NVIDIA. “Using the NVIDIA COVID lesion segmentation model available on our NGC software hub, we were able to quickly label the NIH dataset, allowing radiologists to do precise annotations in record time.”

“I applaud the computer science, data science and image processing global academic community for rapidly teaming up to combine multi-disciplinary expertise towards development of potential automated and multi-parametric tools to better study and address the myriad of unmet clinical needs created by the pandemic,” said Bradford Wood, M.D., director, NIH Center for Interventional Oncology and chief, Interventional Radiology Section, NIH Clinical Center. “Thank you to each team for locking arms towards a common cause that unites the scientific community in these challenging times.”

happy children running with kite

Spurring innovation to support pediatric preparedness

happy children running with kite

There are many lessons to be learned from the response to the COVID-19 pandemic, but one that is at the forefront is to be prepared for anything and to strengthen readiness even in the unlikeliest circumstances.

This was the focus of a recent panel discussion featuring Lee Beers, M.D., F.A.A.P, medical director of Community Health and Advocacy within the Goldberg Center for Community Pediatric Health and Child Health Advocacy Institute at Children’s National Hospital. Dr. Beers is also president of the American Academy of Pediatrics.

The webinar entitled, “Protecting Our Future: Spurring Innovation to Support Pediatric Preparedness,” was hosted by Johnson & Johnson Innovation – JLABS (JLABS) as a product of BLUE KNIGHT™, a collaboration between JLABS and the Biomedical Advanced Research and Development Authority (BARDA), a component of the Office of the Assistant Secretary for Preparedness and Response within the U.S. Department of Health and Human Services.

This event focused on what innovators can do to develop therapeutics, diagnostics, vaccines and other technologies that may protect our future, our children. Experts shared what has been done to develop groundbreaking medical countermeasures that aim to prepare and protect pediatric populations from the health threats of today and those of tomorrow. The main discussions were on ecosystems readiness, adaptations for the pediatric population and the way forward in 2021.

“One size does not fit all for pediatrics when it comes to treatments and personal protective equipment,” said Dr. Beers “We need to know the need and how to do the roll-out.” Fellow panelists agreed.

Dr. Beers went on to say that mental health is the pandemic within the pandemic for our nation’s youth. There are increased cases and severity now for children who struggle to cope with the lockdowns. “We cannot have our children bear the burdens of our challenges.”

After robust questions and answers from everything from the role of artificial intelligence in preparing for future pandemics to the inclusion of families in research and decisions, the panelists walked away with a good feeling about the future with the unprecedented speed of vaccines aimed to counter the effects of the 2020 virus crisis.

The consensus priorities of 2021 should be to develop specifics for children and not just adaptations from adults, with the aim to advance equity, diversity and inclusion in treatment goals, and to build on the success of telemedicine.

Nationally, funding for pediatric research continues to trail efforts targeted for adults. That’s why Children’s National is creating a one-of-a-kind pediatric research and innovation hub. The Children’s National Research & Innovation Campus is set to open in 2021, located on a nearly 12-acre portion of the former Walter Reed Army Medical Center campus. The campus will combine the strengths of Children’s National with those of public and private partners who share the vision of accelerating new discoveries that save and improve the lives of children. At the new campus, breakthrough innovations can more quickly be translated into new treatments and technologies benefitting kids.

Sally Allain, Head of Johnson & Johnson Innovation – JLABS @ Washington, D.C., highlighted the opening of a 32,000 square-foot facility on the Research & Innovation Campus with a residency capacity for up to 50 companies. This will be the first JLABS site anchored with a children’s hospital and research institute working to bring recognition to the need for more early-stage research and innovation in pediatrics for our smallest patients.

The new site will serve as an incubator for pharmaceutical, medical device, consumer and health technology companies, and serve as the hub for BLUE KNIGHT™. BLUE KNIGHT™ aims to stimulate innovation and incubation of technologies that improve health security and response through companies focused on public health threats and emerging infectious diseases. At JLABS @ Washington, DC, companies selected for BLUE KNIGHT™ will have access to the JLABS ecosystem and being a part of the Research & Innovation Campus, as well as fee assistance for certain costs associated with access, mentorship for BARDA, and dedicated equipment for BLUE KNIGHT™ companies.

child receiving COVID test

COVID testing results highlight importance of understanding virus in children

child receiving COVID test

A new study looking at the results of testing children for COVID-19 through a Children’s National Hospital community-based testing site found that one in four patients had a positive test.

A new study looking at the results of testing children for COVID-19 through a Children’s National Hospital community-based testing site found that one in four patients had a positive test. The findings, reported online Dec. 18 in The Journal of Pediatrics, reinforce that children and young adults are impacted by the virus more than originally believed, and that the continued understanding of their role in transmitting COVID-19 is essential to getting the virus under control.

Of the 1,445 patients tested at the specimen collection site for SARS-CoV-2 virus between March 21 and May 16, 2020, the median age was 8 years old, and more than 34% of positive patients were Hispanic, followed by non-Hispanic Black and non-Hispanic white. The daily positivity rate increased over the study period, from 5.4% during the first week to a peak of 47.4% in May. Children and adolescents were referred to the testing site because of risk of exposure or mild symptoms.

“We knew that community-based testing sites were key in minimizing exposure risk to other patients and health care workers, preserving PPE, centralizing specimen collection services, mitigating acute care site overcrowding and informing our community of the burden caused by this disease,” says Joelle Simpson, M.D., medical director of Emergency Preparedness at Children’s National.

Drive-through/walk-up testing sites outside of a traditional acute care setting have emerged around the world to meet the need for testing mildly ill or asymptomatic individuals. In March, Children’s National Hospital opened a drive-up/walk-up location — one of the first exclusively pediatric testing sites for the virus in the U.S. — where primary care doctors in the Washington, D.C., region could refer young patients for COVID-19 specimen collection and testing.

“At first, children were not the target of testing initiatives, but it is clear that making testing available to pediatric patients early was a very important part of the pandemic response,” says Meghan Delaney, D.O., M.P.H., chief of Pathology and Laboratory Medicine at Children’s National. “Not only can children get severe disease, they can be part of positive clusters with the adults they live with. The knowledge we have gained by testing many thousands of children over the pandemic has provided key information.”

Compared with non-Hispanic white children and after adjustments for age, sex and distance of residence from specimen collection site, minority children had a higher likelihood of infection.

“We wanted to identify the features of children tested at this site who did not require acute medical care and be able to compare demographic and clinical differences between patients who tested positive and negative for COVID-19,” says Dr. Simpson.

Patients with COVID-19 exposure and symptoms were more likely to have a positive test than patients without symptoms. This supports contact tracing for symptomatic cases and testing as an important tool in detecting and containing community spread, according to the study’s findings. Although most patients were referred because they lived with a family member with high risk for exposure or infection, this was not associated with positive test results.

“The impact of this virus is broad and affects planning for children, especially as schools and childcare centers work to reopen,” Dr. Simpson says. “In order to guide the development of measures to control the ongoing pandemic, we need better understand the transmission potential of these mildly symptomatic or well children and young adults.”

global connectedness concept illustration

Research partnerships and capacity building in the time of COVID-19

global connectedness concept illustration

“COVID infection anywhere in the world is COVID infection everywhere in the world,” said John Nkengasong, M.Sc., Ph.D., director of the Africa Centers for Disease Control (Africa CDC), during his remarks on the importance of shared science, innovation and diplomacy. Leading experts in global health met virtually on November 13, 2020, to discuss updates in the COVID-19 crisis and lessons learned in Africa. Children’s National Hospital, along with the George Washington University (GW) Institute for Africa Studies and the CNRS-EpiDaPo Lab, sponsored the half-day conference that captured the interest of international attendees committed to examining how best to expand strong and enduring partnerships between U.S. and African scientists, health professionals and research institutes to meet global challenges.

Trust, transparency and communication were common themes of expert panelists that included Elizabeth Bukusi, Ph.D., M.P.H., Kenya Medical Research Institute; Maryam DeLoffre, Ph.D., GW Humanitarian Action Initiative; Peter Kilmarx, M.D., National Institutes of Health (NIH) Fogarty International Center; Enock Motavu, Ph.D., Makerere University in Uganda; Jennifer Troyer, Ph.D., Human Health and Heredity in Africa Program (H3Africa) at NIH; Désiré Tshala-Katumbay, M.D., Ph.D., National Institute of Biomedical Research in Kinshasa; Eric Vilain, M.D., Ph.D., Center for Genetic Medicine Research at Children’s National, with Institute for African Studies Director Jennifer Cooke, and Jonathan LoTempio Jr and D’Andre Spencer of Children’s National as moderators and co-conveners. Read more about the panelists.

The keynote speaker, Nkengasong, updated the group on the massive efforts in bending the COVID-19 disease curve on the African continent which at present has two million cases and 46,000 deaths. This is fewer than many other regions, and Nkengasong attributes this in part to health systems strengthening and capacity building that already occurred with past pandemics like Ebola. He stressed the importance of focusing on the “4 Ps” — population, pathogen, politics and policy — in fighting the pandemic, and the need to ensure that citizens trust their leaders and the public health measures they advance. New endeavors by the Africa CDC include the Pathogen Genomic Initiative, which will help inform research and responses to COVID-19 and other emergent disease threats, and the African COVID-19 Vaccine Development and Access Strategy, which aims to ensure widespread access, delivery and uptake of effective vaccines across Africa. Africa CDC is surging to hotspots as lockdowns ease or shift, and is empowering universities to invest in proactive and, which has helped with the active response success. “Rising tides raise all boats in the sea,” said Nkengasong. He went on to say that there is great power in coordination and cooperation, and science diplomacy and technology are critical to winning the novel coronavirus war.

In a panel on research partnerships, speakers Motavu, Tshala-Katumbay, and Vilain emphasized the global benefits of scientific collaborations in Africa. Africa contains more human genetic variation than any other region of the world, and capturing that diversity in global understanding of the human genome — which is still heavily skewed toward individuals of European ancestry — will be a major factor in global medical advances of the future. And research into relatively localized diseases can lead to breakthroughs in broader understanding on connections between climate variation, environment, nutrition and child health. “The simplistic, localized, nationalist, way of doing science is over,” said Tshala-Katumbay, “and there is no way to go back.” The discipline of science diplomacy will take time for people to grasp, he added, “but it will be crucial for the future generation of scientists to go back.”

A recurring conference theme was that collaboration between countries is crucial for development of better care. Kilmarx told the event participants that in 2019, the National Institutes of Health supported some 1,668 collaborations with African research institutions. Investments in capacity building have yielded impressive results, and today some of Africa’s foremost leaders in science research and public health have received NIH training and support, stating: “If you plant acorns over the decades, you have some mighty oaks.” Bukusi, once such NIH trainee, now is engaged in training a new generation of African researchers and U.S. researchers based in Africa and expanding research partnerships at the Kenya Medical Research Institute.

Troyer showed the successes of the Human Heredity and Health in Africa Initiative, a large consortium that supports a pan-continental network of laboratories that aims to determine disease susceptibility and drug responses. Finally, DeLoffre underscored the need for long-term investments and the value of building local capacities to respond to current crises and anticipate future challenges.

Overall, there was optimism that innovative coalitions are a long-term strength in fighting pandemics and promoting reciprocal learning that will last after the crisis. Science can be a neutral platform that, combined with diplomacy and technology, builds bridges between peoples.