Tag Archive for: Cancer

Yuan Zhu

The brain tumor field moves forward with new findings and a research grant

Yuan Zhu

Yuan Zhu, Ph.D., and other experts completed new research findings evaluating the effects of manipulating the growth-promoting signaling pathways in brain tumors associated with adults and children.

This month, experts at Children’s National Health System made great strides in brain tumor research, specifically in gliomas, glioblastomas and medulloblastomas. Led by Yuan Zhu, Ph.D., the scientific director and Gilbert Endowed Professor of the Gilbert Family Neurofibromatosis Institute and Center for Cancer and Immunology Research at Children’s National, the team completed new research findings evaluating the effects of manipulating the growth-promoting signaling pathways in brain tumors associated with adults and children. Dr. Zhu’s research was recently published in Cell Reports and he was also awarded a U.S. Department of Defense (DoD) grant to gain a better understanding of how low-grade gliomas form. Together, this work moves the needle on developing more effective treatments for these debilitating and life-threatening tumors.

The study

In his recently published paper, Dr. Zhu and his colleagues, including Drs. Seckin Akgul and Yinghua Li, studied glioblastomas, the most common brain tumor in adults, and medulloblastomas, the most common brain tumor found in children, in genetically engineered experimental models. Dr. Zhu found that when they removed the p53 gene (the most commonly mutated tumor suppressor gene in human cancers) in the experimental model’s brain, most developed malignant gliomas and glioblastomas, while Sonic Hedgehog (SHH)-subtype (SHH) medulloblastomas were also observed. They further suppressed the Rictor/mTorc2 molecular pathway that is known in the regulation of tumor growth. This action greatly reduced the incidence of malignant gliomas and extended the survival of the models, validating the concept that Rictor/mTorc2 could be a viable drug target for this lethal brain cancer in adults.

The study also found that the same Rictor/mTorc2 molecular pathway serves the opposite function in SHH medulloblastoma formation, acting as a tumor suppressor. Findings suggest that if the same drug treatment is used for treating SHH medulloblastoma in children, it could potentially have an adverse effect and promote growth of the tumors.

Ultimately, the study demonstrates that Rictor/mTORC2 has opposing functions in glioblastomas in adults and SHH medulloblastomas in children. While drug therapies targeting Rictor/mTORC2 may be successful in adults, the findings reveal the risks of treating children with pediatric brain tumors when using the same therapies.

The grant

Continuing the study of brain tumors, Dr. Zhu recently received a $575,000 grant from DoD to research benign gliomas, with the hope of gaining a greater understanding of how the tumors form. Low-grade gliomas, or benign brain tumors, are the most common brain tumors in children. While not lethal like their high-grade counterpart, these tumors can lead to significant neurological defects, permanently impacting a child’s quality of life. Most commonly, the tumor can impair vision, often leading to blindness.

Since the tumors only occur in children under the age of eight, Dr. Zhu believes they are linked to neural stem or progenitor cells that exist in the optic nerve only during development, or when children are under eight-years-old. To test if his hypothesis is correct, Dr. Zhu will develop a preclinical model that mimics human brain tumors to study the development of the optic nerve. If his theory proves correct, Dr. Zhu’s long-term goal is to develop a strategy that prevents the tumor formation from ever occurring, ultimately preventing vision loss in children. The grant begins in July and will run for three years.

 

Brian Rood

Improving the understanding of medulloblastoma

Brian Rood

Brian Rood, M.D., employed quantitative proteomics to tumor samples that led to novel therapeutic targets for Medulloblastoma and other tumors.

In a recently published study, Brian Rood, M.D., a neuro-oncologist at Children’s National Health System, employed quantitative proteomics to tumor samples, a technique that could lead to novel therapeutic targets for medulloblastoma and other tumors in the future.

Currently, many experts use genomic characterization to understand the genetic makeup of cancer cells, which has deepened the field’s collective knowledge of tumor biology. However, it has remained challenging to infer specific information about how the tumors will respond and consequently develop more effective therapies. Medulloblastoma is the most common pediatric, malignant brain tumor. Through Dr. Rood’s research using proteomic analysis, he was able to identify and measure the protein makeup of medulloblastoma, which led to a potential pathway for clinical intervention to treat this life-threatening cancer. The findings were published online June 7, 2018, in Acta Neuropathologica Communications.

“The goal of this research was to find out how these tumor cells function at the protein level, which may ultimately help the field identify drug therapies to stop them,” says Dr. Rood. “The genes of a cancer cell are like a blueprint for a building, but the blueprints aren’t always followed in a cancer cell: Not every active gene will produce its corresponding protein. Proteins do the work of the cell, and understanding them will provide a better overall understanding of a cancer cell’s biology.”

Dr. Rood compared proteomic and genomic data to confirm that genetics do not accurately predict the quantity of proteins. By directly quantitating the proteins and comparing them between different subgroups of the disease, they were able to identify protein-based pathways driving tumor biology. With this information, Dr. Rood was able to demonstrate that medulloblastoma depends on a crucial pathway, the eukaryotic initiation factor 4F protein synthesis pathway, resulting in the identification of a potential target for new treatments in medulloblastoma.

Ultimately, Dr. Rood found that proteomic analysis complements genomic characterization and the two can be used together to create a more complete understanding of tumor biology. Going forward, he hopes proteomic analysis will become common practice for studying all tumors, allowing tumors to be categorized and grouped together by protein makeup to help the field identify more effective therapies for all tumors.

Making the grade: Children’s National is nation’s Top 5 children’s hospital

Children’s National rose in rankings to become the nation’s Top 5 children’s hospital according to the 2018-19 Best Children’s Hospitals Honor Roll released June 26, 2018, by U.S. News & World Report. Additionally, for the second straight year, Children’s Neonatology division led by Billie Lou Short, M.D., ranked No. 1 among 50 neonatal intensive care units ranked across the nation.

Children’s National also ranked in the Top 10 in six additional services:

For the eighth year running, Children’s National ranked in all 10 specialty services, which underscores its unwavering commitment to excellence, continuous quality improvement and unmatched pediatric expertise throughout the organization.

“It’s a distinct honor for Children’s physicians, nurses and employees to be recognized as the nation’s Top 5 pediatric hospital. Children’s National provides the nation’s best care for kids and our dedicated physicians, neonatologists, surgeons, neuroscientists and other specialists, nurses and other clinical support teams are the reason why,” says Kurt Newman, M.D., Children’s President and CEO. “All of the Children’s staff is committed to ensuring that our kids and families enjoy the very best health outcomes today and for the rest of their lives.”

The excellence of Children’s care is made possible by our research insights and clinical innovations. In addition to being named to the U.S. News Honor Roll, a distinction awarded to just 10 children’s centers around the nation, Children’s National is a two-time Magnet® designated hospital for excellence in nursing and is a Leapfrog Group Top Hospital. Children’s ranks seventh among pediatric hospitals in funding from the National Institutes of Health, with a combined $40 million in direct and indirect funding, and transfers the latest research insights from the bench to patients’ bedsides.

“The 10 pediatric centers on this year’s Best Children’s Hospitals Honor Roll deliver exceptional care across a range of specialties and deserve to be highlighted,” says Ben Harder, chief of health analysis at U.S. News. “Day after day, these hospitals provide state-of-the-art medical expertise to children with complex conditions. Their U.S. News’ rankings reflect their commitment to providing high-quality care.”

The 12th annual rankings recognize the top 50 pediatric facilities across the U.S. in 10 pediatric specialties: cancer, cardiology and heart surgery, diabetes and endocrinology, gastroenterology and gastrointestinal surgery, neonatology, nephrology, neurology and neurosurgery, orthopedics, pulmonology and urology. Hospitals received points for being ranked in a specialty, and higher-ranking hospitals receive more points. The Best Children’s Hospitals Honor Roll recognizes the 10 hospitals that received the most points overall.

This year’s rankings will be published in the U.S. News & World Report’s “Best Hospitals 2019” guidebook, available for purchase in late September.

ER Nurse

An unexpected discovery in a central line

ER Nurse

About a year and a half ago, a 6-year-old boy arrived at Children’s Emergency Department after accidently removing his own gastrointestinal feeding tube. He wasn’t a stranger to Children’s National Health System: This young patient had spent plenty of time at the hospital since birth. Diagnosed in infancy with an intestinal pseudo-obstruction, a rare condition in which his bowels acted as if there were a blockage even though one was not present, parts of his intestine died and had been removed through multiple surgeries.

Because of this issue and associated health problems, at 4 years old he had a central line placed in a large vein that leads to his heart. That replaced other central lines placed in his neck earlier after those repeatedly broke. This latest central line in his chest als0 had frequent breaks. It also had become infected with multidrug-resistant Klebsiella bacteria two years before he was treated at Children’s National for inadvertently removing his feeding tube.

On that day, he seemed otherwise well. His exam was relatively unremarkable, except for a small leak in his central line and a slight fever. Those findings triggered cultures taken both from blood flowing through his central line and the surrounding skin.

“No one expected him to grow anything from these cultures, especially from a child who looked so healthy,” explains Madan Kumar, a fellow in Children’s division of Pediatric Infectious Disease and a member of the child’s care team. But a mold grew prolifically. Further investigation from a sample sent to the National Institutes of Health showed that it was a relatively new species known as Mucor velutinosus.

Because such an infection had never been reported in a child whose immune system wasn’t extremely compromised from cancer, Kumar and team decided to publish a case report. The study appeared online Jan. 24, 2018, in the Journal of the Pediatric Infectious Diseases Society.

Kumar notes that this patient faced myriad challenges. Not only did he have a central line, but the line also had numerous problems, necessitating fixes that could increase the chance of infection. Additionally, because of his intestinal issues, he had a chronic problem with malabsorption of nutrients. Patients with this issue often are treated liberally with antibiotics. Although this intervention can kill “bad” bacteria that can cause an infection, they also knock out “good” bacteria that keep other microorganisms – like fungi – in check. On top of all of this, the patient was receiving a nutrient-rich formula in his central line to boost his caloric intake, yet another factor associated with infections.

Patients who develop this specific fungal infection are overwhelmingly adults who are immunocompromised, Kumar explains, including those with diabetes, transplant recipients, patients with cancer and those who have abnormally low concentrations of immune cells called neutrophils in their blood. The only children who tend to get this infection are preterm infants of very low birth weight who haven’t yet developed a robust immune response.

Because there was only one other published case report about a child with M. velutinosus – a 1-year-old with brain cancer who had undergone a bone marrow transplant – Kumar notes that he and colleagues were at a loss as to how best to treat their patient. “There’s a paucity of literature on what to do in a case like this,” he says.

Fortunately, the treatment they selected was successful. As soon as the cultures came back positive for this mold, the patient went on a three-week course of an antifungal drug known as amphotericin B. Surgeons also removed his infected central line and placed a new one. These efforts cured the patient’s infection and prevented it from spreading and potentially causing the multi-organ failure associated with these types of infections.

This case taught Kumar and colleagues quite a bit – knowledge that they wanted to share by publishing the case report. For example, it reinforces the importance of central line care. It also highlights the value of thoroughly investigating potential problems in a patient with risk factors, even one who appears otherwise healthy.

Finally, Kumar adds, the case emphasizes the importance of good antibiotic stewardship, which can help prevent patients from developing sometimes deadly secondary infections like this one. “This is not an organism that you see growing in a 6-year-old very often,” he says. “The fact that we saw it here speaks to the need to be judicious with broad-spectrum antibiotics so that we have a number of therapeutic options should we see unusual cases like this one.”

Anthony Sandler

Treatment of neuroblastoma with immunotherapy and vaccine combination shows promise

Anthony Sandler

“Treatment options like these that help the body use its own immune system to fight off cancer are incredibly promising, and we look forward to continuing this work to understand how we can best help our patients and their families,” said Anthony Sandler, M.D.

Despite being the most common extracranial solid tumor found in children and having multiple modes of therapy, neuroblastoma continues to carry a poor prognosis. However, a recent cutting-edge pre-clinical study, PD-L1 checkpoint inhibition and anti-CTLA-4 whole tumor cell vaccination counter adaptive immune resistance: A mouse neuroblastoma model that mimics human disease, published in PLOS Medicine shows the first signs of success in treating high-risk neuroblastoma, a promising step not only for neuroblastoma patients, but potentially for other types of cancer and solid tumors as well. While the research was conducted on mouse models and is in the early stages, the lead author of the study, Anthony Sandler, M.D., senior vice president and surgeon-in-chief of the Joseph E. Robert, Jr., Center for Surgical Care at Children’s National, believes these findings are an encouraging development for the field.

The treatment method combines a novel personalized vaccine and a combination of drugs that target checkpoint inhibitors enabling the immune system to identify and kill cancer cells. When these checkpoints are blocked, it’s similar to taking the brakes off the immune system so that the body’s T cells can be primed by the vaccine, identify the tumor and allow for targeted tumor cell killing. The vaccine then brings in reinforcements to double down on the attack, helping to eradicate the tumor. The vaccine could also be used as a way to prevent recurrence of disease. After a patient has received the vaccine, the T cells would live in the body, remembering the tumor cells, and attack reemerging cancer in a similar way that a flu vaccine helps fight off the flu virus.

“Treatment options like these that help the body use its own immune system to fight off cancer are incredibly promising, and we look forward to continuing this work to understand how we can best help our patients and their families,” said Dr. Sandler.

Electronic medical record on tablet

Combating ENT wrong patient errors

Electronic medical record on tablet

A recent article published in ENTtoday highlights specific ways ENT physicians can improve quality and care for patients to work towards eliminating wrong patient errors and achieving a zero-harm environment.

In the article, Rahul Shah, M.D., Vice President and Chief Quality & Safety Officer at Children’s National Health System, points out that ENTs are especially vulnerable to wrong patient errors (WPEs) due to the wide variety of settings in which they see patients. He asserts that with this knowledge in mind, ENTS can find ways to “block and tackle” to prevent WPEs from occurring. Key to success is the development of a supportive culture of reporting where all staff are encouraged and empowered to speak up.

“With any size of practice, you need to talk about safety and quality. If doesn’t have to be formal, and don’t overthink it. Something as easy as a safety huddle a couple of times a week goes a long way toward shaping the culture.”

Read the full article here.

Ashley Hill and Joyce Turner

New clues to detect rare pediatric cancers

Ashley Hill and Joyce Turner

Using germline and tumor testing and centralized pathology review, a research team that included D. Ashley Hill, M.D, and Joyce Turner found that Sertoli-Leydig cell tumor and gynandroblastoma are nearly always DICER1-related tumors.

Children’s National Health System researchers played a key role in a new study exploring the clinical and genetic qualities of a group of rare, potentially deadly cancers that affect infants, children and adolescents. The research team’s findings suggest that genetic testing for people at risk may aid in earlier, more accurate diagnoses of these cancers, leading to early-stage treatment that could greatly improve survival.

Ovarian sex cord-stromal tumors (OSCST) include juvenile granulosa cell tumors (JGCT), Sertoli-Leydig cell tumor (SLCT) and gynandroblastoma (GAB). Mutations in the DICER1 gene often have been noted in children with these cancers, as well as in those with a particularly lethal pediatric lung cancer called pleuropulmonary blastoma (PPB). All of these cancers are highly curable if caught early but, at later stages, can be aggressive and often fatal.

Using germline and tumor testing and centralized pathology review, the research team found that SLCT and GAB are nearly always DICER1-related tumors. There also may be a much stronger association between SLCT and DICER1 than was previously appreciated. The new findings have implications for earlier detection and diagnoses of these cancers, as well as for screening other family members. The study was published in the December 2017 edition of Gynecologic Oncology.

“These types of tumors are diverse, relatively rare and understudied,” says D. Ashley Hill, M.D., the study’s senior author and a professor in the Division of Pathology and Laboratory Medicine at Children’s National. “Sertoli-Leydig cell tumor, for instance, is a unique genetic and pathologic entity and this rare cancer of the ovaries can be hard to detect. Using the testing process from this study, we now may be able to classify these tumors more accurately.”

The study authors assessed the first 107 individuals enrolled in the International Ovarian and Testicular Stromal Tumor Registry. They obtained medical and family history, and they conducted central pathology review plus DICER1 gene sequencing on blood and tumor tissue. Thirty-six of 37 patients with SLCTs and all four patients with GABs they tested showed DICER1 mutations, and half of those with SLCT had germline or mosaic mutations. The team noted that individuals with predisposing DICER1 mutations had significantly better overall and recurrence-free survival.

Based on their findings, the study authors recommend:

  • Careful and ideally centralized pathologic review for all individuals with OSCST tumors
  • DICER1 testing for all those with SLCT and GAB and
  • Consideration of DICER1 testing for patients with other OSCSTs.

“Genetic testing may be useful for screening and diagnosing entire families if one family member tests positive for a DICER1 mutation, especially to determine if they are at risk for PPB. When we know who is at risk, we can protect all children in a family,” Dr. Hill says. “Ultimately we may be able to cure this deadly lung cancer, PPB, by identifying and performing computed tomography scans on people who are at risk, so we can catch these cancers early.”

Dr. Hill thinks future research may study children whose cancer was not detected early or has become resistant to chemotherapy. They also may explore ways to restore normal controls in cancer cells, so they follow normal paths of development, for the purpose of developing targeted treatments with fewer side effects than current therapies.

In addition to Dr. Hill, other Children’s National study co-authors include Amanda Field, M.P.H., Department of Pathology; Weiying Yu, Ph.D., Department of Pathology; and Joyce Turner, director of the Cancer Genetic Counseling Program in Children’s Rare Disease Institute.

Other members of the study team are experts from the International Ovarian and Testicular Stromal Tumor Registry, Children’s Minnesota, Washington University Medical Center, Carolinas Health Care System, University of Texas MD Anderson Cancer Center, Harvard Medical School, University of Colorado School of Medicine, Clinic of Pediatrics (Dortmund, Germany), National Cancer Institute and Dana-Farber Cancer Institute.

Research reported in this story was supported by the National Institutes of Health under award number NCI R01CA143167, The Parson’s Foundation, St. Baldrick’s Foundation, Pine Tree Apple Tennis Classic Foundation, Hyundai Hope on Wheels, the Randy Shaver Cancer Research and Community Fund, the German Childhood Cancer Foundation and the Intramural Research Program of the Divisions of Cancer Epidemiology and Genetics, National Cancer Institute.

Rahul Shah

A big transformation starting with small changes from within

Rahul Shah

“It was novel and exciting to see managers, chiefs, and even front-line staff identify potential ‘projects’ that could potentially fall under this work,” said . Rahul Shah, M.D., Vice President and Chief Quality & Safety Officer. “The change, as the executive leadership hoped, was organic and recognized a true cultural shift.”

Like many health care systems, Children’s National realizes that in order to provide top care to patients, the hospital and health system have to constantly evolve. In 2013, across the country, the importance of a strong safety and quality program were growing and the organization’s executive leadership made it a key priority to deliver the best care and follow best practices to ensure that we were driving value in healthcare. Children’s National embarked on a long-term journey, known as Transformation 2018, that would ultimately prove successful in improving quality of care while reducing costs across the hospital system.

When starting this initiative, the leaders at Children’s realized that in order to successfully transition from volume-based to value-based care, the change had to occur organically – in other words, led by our own internal teams. Continuously striving to be on the forefront of quality and safety innovation, Children’s National has always valued a culture that empowers staff at all levels to be part of transformations, and this initiative was no different. Rahul Shah, M.D., Vice President and Chief Quality & Safety Officer, and Linda Talley, R.N., Vice President and Chief Nursing Officer, would lead the effort.

Rather than setting their sights on first targeting populations of patients, as is common practice, the team aimed to make an impact at a more micro level by focusing on particular diseases or diagnoses. This strategy allowed the initiative to start on a small scale and involve staff in numerous divisions across the health system, which would eventually pave the way for bolder and broader population health initiatives.

By integrating changes through individual initiatives, Children’s National achieved a combination of quality and cost savings in a number of disease areas, including autism, testicular torsion, idiopathic posterior spinal fusion and sickle cell disease vaso-occlusive crisis.

As the benefits of this effort were realized, leaders throughout the hospital approached the transformation team to see how they too could be a part of the project to transition their divisions.

“It was novel and exciting to see managers, chiefs, and even front-line staff identify potential ‘projects’ that could potentially fall under this work,” said Dr. Shah. “The change, as the executive leadership hoped, was organic and recognized a true cultural shift.”

Children's National Red Badge Project

The Red Badge Project: expediting ED care

Children's National Red Badge Project

A red badge allows newly diagnosed cancer patients and BMT patients to bypass security and triage so they can receive lifesaving antibiotics within an hour of fighting fever.

Chemotherapy and bone marrow transplant procedures leave cancer patients with compromised immune systems, leading many to develop life-threatening infections or other complications. In particular, neutropenia, or abnormally low levels of white blood cells that are critical to fighting off infections, is prevalent among this population. Fever with neutropenia can be fatal.

As part of the Children’s National Health System commitment to deliver better outcomes and safer care through innovative approaches, the Hematology/Oncology/Bone Marrow Transplant (BMT) Family Advisory team developed a protocol to rapidly identify BMT and cancer patients with suspected neutropenia to receive antibiotics within 60 minutes of arriving at the Emergency Department (ED). The Red Badge Project was born with the following goals:

• Decrease the median triage-to-antibiotic time in cancer patients with fever and suspected neutropenia or bone marrow transplant patients to 30 minutes
• Increase the proportion of patients receiving antibiotics within one hour to 90 percent

As part of the protocol, newly diagnosed cancer and bone marrow transplant patients receive a Red Badge and education regarding how to use it. If they run a fever and need medical attention, the patient and family present the Red Badge upon arrival at the ED in order to bypass the welcome desk and ED triage. This action accelerates the process, keeps the child from waiting in an area where there are other sick children and ensures the patient receives lifesaving antibiotics as fast as possible.

Work done before the patient walks through the ED doors contributes to the success of this program. When a patient runs a fever, the family is instructed to call the Hematology Oncology Fellow on-call. If it is determined that the patient needs to come to the ED, the Fellow then: 1) receives the patient’s estimated arrival time so that staff can clean and prep a room 2) reminds them to apply their topical analgesia to numb the port site where the antibiotic will be administered 3) reminds them to bring their Red Badge.

From there, swift action is taken. By the time the patient arrives, he or she has already been registered and the appropriate medications have been ordered. The patient bypasses security and triage using their Red Badge as a visual cue and is then directed to a prepped room complete with medications ready for administration.

To date, the median time from triage to administration of antibiotics has decreased nearly 50 percent while the proportion of patients who received antibiotics within 60 minutes of triage improved to 90 percent.

Leveraging that success, the next step is to develop education for non-English speaking families in order to extend the reach of this lifesaving practice.

Cancer update: tumor targeting, neurofibromatosis type 1 symptoms

June 6, 2016Targeting tumors more precisely, with fewer lasting side effects for kids
Pediatric patients with cancer are often treated with a cocktail of therapies to attack the disease through a variety of mechanisms. While this approach has been instrumental in saving children’s lives, the life-saving therapies can be accompanied by acute side effects, and the treatments may have lingering impacts as cancer survivors enter adulthood. Magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) holds the promise of surgically removing large tumors without exacting the same array of harsh side effects. Ultrasound relies on high-frequency sound waves to make diagnostic images, and those same sound waves can be used therapeutically to destroy tumors. Layering on MR imaging gives clinicians the ability to precisely guide the ultrasound therapy in real time. A study led by Children’s National Health System researchers and clinicians is using MR-HIFU for the first time in children to examine its safety and feasibility.

May 11, 2016 – Quantitative MRI criteria for optic pathway enlargement in neurofibromatosis type 1
Symptoms of neurofibromatosis type 1 (NF1) vary widely, but the condition is characterized by changes in skin pigmentation and growth of tumors along nerves. The research team sought to determine quantitative size thresholds for enlargement of the optic nerve, chiasm, and tract in children aged 0.5 to 18.6 years with NF1. The study, published in Neurology, found that quantitative reference values for anterior visual pathway enlargement will enhance development of objective diagnostic criteria for optic pathway gliomas secondary to NF1.

Training t-cells, essential players in the immune system, to fight a trio of viruses

Children's is the only U.S. pediatric hospital that manufactures specialized T-cells from native cord blood

What’s Known
Following treatment, patients with leukemia, lymphoma, and other cancers may receive a transplant in order to restore their body’s natural ability to fight infection and, sometimes, such transplants are a component of leukemia treatment. (Leukemia is the second most common blood cancer, after lymphoma, and its incidence rate has increased by 0.2 percent annually from 2002 to 2011.) A stem cell or cord blood transplant restores the body’s ability to produce infection-fighting white blood cells. After such transplants, however, patients can face heightened risk of developing a life-threatening infection with such viruses as adenovirus, cytomegalovirus, or Epstein-Barr virus.

What’s New
A head-to-head comparison of two strategies to thwart such viral infections shows that both approaches leverage the power of multivirus-specific, donor-derived T-cells (mCTL), which are highly skilled at recognizing foreign invaders. The research team, made up of nine scientists and clinicians affiliated with Children’s National Health System, grew personalized T-cells from peripheral blood (PB) of adult donors who were seropositive for CMV and also coaxed T-cells to grow from naïve cord blood (CB). PB-derived cells have long memories of past battles; naïve CB-derived cells need additional training to acquire such skills. From 35 to 384 days after their stem cell or cord blood transplant, 13 patients were infused with PB mCTL and 12 patients were infused with CB mCTL. Within four weeks, patients experienced up to a 160-fold increase in virus-specific T-cells, which coincided with their response to therapy. Overall response rate was 81 percent.

Questions for Future Research
Q: Could T-cells be personalized to attack other viruses that infect patients post-transplant, such as human parainfluenza virus and BK polyomavirus, providing the potential to target five viruses in a single infusion?
Q: Could the proteins that are used to train T-cells to attack certain viruses also be used to create a personalized approach to tumor suppression?

Source: “A Phase 1 Perspective: Multivirus-Specific T Cells From Both Cord Blood and Bone Marrow Transplant Donors.” Hanley, P., M. D. Keller, M. Martin Manso, C. Martinez, K. Leung, C.R. Cruz, C. Barese, S. McCormack, M. Luo, R.A. Krance, D. Jacobsohn, C. Rooney, H. Heslop, E.J. Shpall, and C. Bollard. Presented during the International Society for Cellular Therapy 2016 Annual Meeting, Singapore. May 26, 2016.

researcher using ice bucket in lab

Spatial and temporal homogeneity of driver mutations in diffuse intrinsic pontine glioma

PDF Version

What’s Known
Needle biopsies help to guide diagnosis and targeted therapies for diffuse intrinsic pontine gliomas (DIPGs), which make up 10 percent to 15 percent of all pediatric brain tumors but carry a median survival of 9 to 12 months. This dismal survival rate compares with a 70 percent chance of children surviving other central nervous system tumors five years post diagnosis. In DIPG, tumors appear in the pons, an area of the brain that houses cranial nerve nuclei. Surgical options are limited. Spatial and temporal tumor heterogeneity is a major obstacle to accurate diagnosis and successful targeted therapy.

What’s New
The team sought to better define DIPG heterogeneity. They analyzed 134 specimens from nine patients and found that H3K27M mutations were ubiquitous in all 41 samples with oncogenic content, and always were associated with at least one partner driver mutation: TP53, PPM1D, ACVR1 or PIK3R1. These H3K27M mutations are the initial oncogenic event in DIPG, writes the research team led by Children’s National Health System. “Driver” mutations, such as H3K27M, are essential to begin and sustain tumor formation. This main driver partnership is maintained throughout the course of the disease, in all cells across the tumor, and as tumors spread throughout the brain. Because homogeneity for main driver mutations persists for the duration of illness, efforts to cure DIPG should be directed at the oncohistone partnership, the authors write. Based on early tumor spread, efforts to cure DIPG should aim for early systemic tumor control, rather focused exclusively on the pons.

Questions for Future Research
Q: If a larger sample size were analyzed, what would it reveal about the true heterogeneity/homogeneity status of DIPGs?
Q: “Accessory” driver mutations are not absolutely essential but do help to further promote and accelerate tumor growth. What is their precise role?

Source: Spatial and Temporal Homogeneity of Driver Mutations in Diffuse Intrinsic Pontine Glioma.” H. Nikbakht, E. Panditharatna, L.G. Mikael, R. Li, T. Gayden, M. Osmond, C.Y. Ho, M. Kambhampati, E.I. Hwang, D. Faury, A. Siu, S. Papillon-Cavanagh, D. Bechet, K.L. Ligon, B. Ellezam, W.J. Ingram, C. Stinson, A.S. Moore, K.E. Warren, J. Karamchandani, R.J. Packer, N. Jabado, J. Majewski, and J. Nazarian. Published by Nature Communications on April 6, 2016.

The role of NG2 proteoglycan in glioma

A large number of staffers contribute to the Children's National team effort to unravel the mysteries of DIPG. We photograph a few essential players in Dr. Nazarian's lab.

PDF Version

What’s Known
Neuron glia antigen-2 (NG2) is a protein expressed by many central nervous system cells during development and differentiation. NG2-expressing oligodendrocyte progenitor cells have been identified as the cells of origin in gliomas, tumors that arise from the brain’s gluey supportive tissue. What’s more, NG2 expression also has been associated with childhood diffuse intrinsic pontine glioma (DIPG) an aggressive tumor that accounts for 10 percent to 20 percent of pediatric central nervous system (CNS) tumors. Radiation can prolong survival by a few months, but children diagnosed with DIPG typically survive less than one year.

What’s New
Researchers are searching for appropriate targets and effective drugs that offer some chance of benefit. A team of Children’s National Health System researchers investigated whether NG2 – which plays a critical role in proliferation and development of new blood vessels and promotes tumor infiltration – could be a potential target for cancer treatment. Of the various options, antibody-mediated mechanisms of targeting NG2 are feasible, but the size of antibodies limits their ability to cross the blood-brain barrier. “Due to its role in maintaining a pluripotent pool of tumor cells, and its role in tumor migration and infiltration, NG2 provides multiple avenues for developing therapeutics,” the research team concludes. “Moreover, the large extracellular domain of NG2 provides an excellent antigen repertoire for immunotherapeutic interventions. As such, further research is warranted to define the role and expression regulation of NG2 in CNS cancers.”

Questions for Future Research

Q: Because healthy oligodendrocyte progenitor cells are important for the child’s developing brain, how could further characterization of NG2 isoforms help prevent drugs from damaging those beneficial cells?

Q: Could NG2-binding peptides cross the blood-brain barrier to deliver anti-cancer therapies precisely to tumor sites?

Source: The Role of NG2 Proteoglycan in Glioma.” S. Yadavilli, E.I. Hwang, R. J. Packer, and J. Nazarian. Published by Translational Oncology on February 2016.

Clinicopathology of diffuse intrinsic pontine glioma and its redefined genomic and epigenomic landscape

Dr. Nazarian's lab

PDF Version

What’s Known
Fewer than 150 U.S. children per year are diagnosed with diffuse intrinsic pontine glioma (DIPG), one of the most lethal pediatric central nervous system cancers. Despite an increasing number of experimental therapies tested via clinical trials, more than 95 percent of these children die within two years of diagnosis. Molecular studies have yielded additional insight about DIPG, including that mutations in histone-encoding genes are associated with 70 percent of cases. Understanding mutations that drive tumors and the genomic landscape can help to guide development of targeted therapies.

What’s New: Frequently found genetic alterations prevalent in DIPGs

dipg-gene-mutations-and-biological-consequences

Source: Clinicopathology of Diffuse Intrinsic Pontine Glioma and Its Redefined Genomic and Epigenomic Landscape.” E. Panditharatna, K. Yaeger, L.B. Kilburn, R.J. Packer, and J. Nazarian. Published by Cancer Genetics on May 1, 2015.