Tag Archive for: brain cancer

Catherine Bollard

In the news: Novel research to stop pediatric brain tumors

“The team is really bringing in very new ideas from mathematical modeling, engineering, all the way to cell therapy, immunotherapy and immunology…This is what really excites and energizes us to be part of this great team, to address the Cancer Grand Challenge, to better target pediatric solid tumors.”

The Cancer Letter connected with Catherine Bollard, M.D., M.B.Ch.B., director of the Center for Cancer and Immunology Research at Children’s National Hospital, for a conversation about her work as a leader of the Cancer Grand Challenges NexTGen team. The $25 million effort is funded by Cancer Research U.K. and the National Institute of Health’s National Cancer Institute and the Mark Foundation for Cancer Research. Its ambitious goal: find novel therapies to break the stalemate in the treatment of pediatric solid brain tumors in the next 10 years. Bollard shared her work plan and the “secret sauce” that gives the team its edge with The Cancer Letter. Find out more about the hope behind this effort in the full interview here.

t cells fighting cancer cell

Personalized T cell immunotherapy for brain tumors closer to becoming reality

t cells fighting cancer cell

Children’s National Hospital experts developed a new approach that discovered unique proteins in an individual tumor’s cells, which then helped scientists generate personalized T cells to target and kill tumors.

Children’s National Hospital experts developed a new approach that discovered unique proteins in an individual tumor’s cells, which then helped scientists generate personalized T cells to target and kill tumors, according to a pre-clinical study published in Nature Communications.

This effort is the first to create a new workflow for neoantigen identification that incorporates both genetic sequencing and protein identification to create a personalized treatment for medulloblastoma in children, a common malignant brain tumor. Given these promising findings, the researchers are now designing a phase I clinical trial slated to open in 12-18 months.

“This work is an incredibly exciting advancement in personalized medicine. It will allow us to treat patients with a novel T cell therapy that is developed for each individual patient to specifically attack and kill their tumor,” said Catherine Bollard, M.D., M.B.Ch.B., director of the Center for Cancer and Immunology Research at Children’s National and co-author on the paper. “This treatment will offer a potential option for children with hard-to-treat brain tumors for which all other therapeutic options have been exhausted.”

Catherine Bollard

Catherine Bollard, M.D., M.B.Ch.B., director of the Center for Cancer and Immunology Research at Children’s National and co-senior author on the paper.

First, the researchers sequenced the DNA of small tissue samples while studying its complete set of proteins that influence cancer biology — also named a “low-input proteogenomic approach” by the authors. After analyzing the empirical data, which shies away from the commonly used predictive models, the researchers developed a T cell immunotherapy that targets the tumor’s unique proteins and allows the T cells to distinguish between healthy cells and tumor cells. This means that Rivero-Hinojosa et al. managed to merge two research fields, proteogenomics and immunotherapy, and lay the groundwork for personalized, targeted T cell therapies to treat children with brain tumors.

“Neoantigen discovery techniques have either been dependent upon in silico prediction algorithms or have required a significant amount of tumor tissue, making them inappropriate for most brain tumors,” said Brian Rood, M.D., medical director of Neuro-oncology and the Brain Tumor Institute at Children’s National. “This neoantigen identification pipeline creates a new opportunity to expand the repertoire of T cell-based immunotherapies.”

Tumor cells have damaged DNA that create mutations during the repair process because they do not do a good job at maintaining their DNA fidelity. The repairs therefore create aberrant DNA that codes for proteins that were never intended by the genetic code and, consequently, they are unique to the individual’s tumor cells.

Brian Rood

Brian Rood, M.D., medical director of Neuro-oncology and the Brain Tumor Institute at Children’s National and co-senior author on the paper.

“We developed a new filtering pipeline to remove non-annotated normal peptides. Targeting antigens that are completely specific to the tumor, and expressed nowhere else in the body, will potentially increase the strength of tumor antigen-specific T cell products while decreasing the toxicity,” said Samuel Rivero-Hinojosa, Ph.D., staff scientist at Children’s National and first author of the study.

Once the experts identified these unique peptides, they used them to select and expand T cells, which showed specificity for the tumor specific neoantigens and the ability to kill tumor cells. The next step is to conduct a clinical trial in which a patient’s own T cells are trained to recognize their tumor’s unique neoantigens and then reinfused back into the patient.

From an immunotherapy standpoint, tumor specificity is important because when clinicians treat patients with T cell therapies, they want to make sure that the T cells directly target and kill the tumor and will not cause devastating harm to healthy cells. This paper demonstrated that it may be possible to create a better efficacy and safety margin with this new approach.

In the past five years, under the leadership of Dr. Bollard, the Center for Cancer and Immunology Research at Children’s National has advanced the scientific knowledge in preclinical and clinical settings. The center discovered a signaling pathway that can be hijacked to prevent brain tumor development, and further advanced translational research with several key first-in-human studies that utilized novel cell therapies to treat cancer and life-threatening viral infections.

Research & Innovation Campus

Virginia Tech, Children’s National Hospital award $100,000 to fund collaborative cancer research pilot projects

Research & Innovation Campus

This pilot research program represents a growing academic research partnership between Children’s National and Virginia Tech. Last year, the two institutions announced that Virginia Tech will establish a biomedical research facility on the Children’s National Research & Innovation Campus.

Children’s National Hospital and Virginia Tech have awarded two $50,000 one-year pilot grants to multi-institutional teams of scientists for pediatric brain cancer research.

The inter-institutional program, which launched in December, promotes cross-disciplinary collaborations among researchers at both institutions. At Virginia Tech, the program is part of the Virginia Tech Cancer Research Alliance. Financial support for the program was provided by the Offices of the Physician-in-Chief and Chief Academic Officer at Children’s National, and by Virginia Tech’s Office of the Vice President for Health Sciences and Technology.

“We were delighted to see so many innovative and competitive research proposals for our first round of pilot grants in the area of brain cancer. By forging new research collaborations with our partners at Children’s National, we hope to make major strides in addressing one of the most common and devastating groups of cancers in children,” said Michael Friedlander, Virginia Tech’s vice president for health sciences and technology, and the executive director of the Fralin Biomedical Research Institute at VTC. “The pilot funding will bootstrap several programs to be able to acquire ongoing sustainable funding by providing the opportunity to test novel high impact ideas for new strategies for treating these disorders. There are simply too few good options for children in this space now and this partnership can change that for the better.”

The collaborative research initiative began through an agreement between the Fralin Biomedical Research Institute and the Children’s National Research Institute. The collaborative teams formed through a series of interactive discussions among Virginia Tech’s Cancer Research Alliance faculty members from the university’s Blacksburg and Roanoke campuses, and Children’s National’s neuro-oncology researchers.

“I am extremely excited by this collaboration between VT and CNH that is focused on pediatric brain tumors which is such an area of unmet need,” said Catherine Bollard, M.D., M.B.Ch.B.,, director of Children’s National’s Center for Cancer and Immunology Research. “I am confident that the funded proposals will soon advance our understanding of pediatric brain tumors and, more importantly, facilitate more joint efforts between two world-class institutions which is especially timely with the development of the Children’s National Research & Innovation Campus.”

Yanxin Pei, Ph.D., an assistant professor in the Center for Cancer Immunology Research at Children’s National, and Liwu Li, Ph.D., a professor of biological sciences in Virginia Tech’s College of Science, were awarded one of the pilot research grants to study how white blood cells called neutrophils are involved in metastatic MYC-driven medulloblastoma, an aggressive type of brain tumor in children that often resists conventional radiation and chemotherapies.

Yuan Zhu, Ph.D., the Gilbert Family Professor of Neurofibromatosis Research at Children’s National, and Susan Campbell, Ph.D., an assistant professor of animal and poultry sciences in Virginia Tech’s College of Agriculture and Life Sciences, were awarded funds to study glioma-induced seizures in mice with a genetic mutation that inhibits the production of P53, a key protein involved in suppressing cancer cell growth and division.

The successful applicants will receive funding starting this month and are expected to deliver preliminary data to support an extramural research application by 2024.

This pilot research program represents a growing academic research partnership between Children’s National and Virginia Tech. Last year, the two institutions announced that Virginia Tech will establish a biomedical research facility on the Children’s National Research & Innovation Campus. It will be the first research and innovation campus in the nation focused on pediatrics when it opens later this year and will house newly recruited teams of pediatric brain cancer researchers.

Liwu Li, Yanxin Pei, Susan Campbell, and Yuan Zhu

Liwu Li, Ph.D., Yanxin Pei, Ph.D., Susan Campbell, Ph.D., and Yuan Zhu, Ph.D., were awarded funding through the new pilot research program.

Xanxin Pei

Dr. Yanxin Pei receives prestigious grant from V Foundation for Cancer Research

Xanxin Pei

When asked about this award, Dr. Pei noted “I am so deeply grateful to receive this support from the V Foundation for Cancer Research…I will use these resources to aid our goal of discovering new therapies to treat medulloblastoma.”

Yanxin Pei, Ph.D., assistant professor in the Brain Tumor Institute and the Children’s Research Institute at Children’s National Hospital in Washington, D.C., has recently been awarded a prestigious grant by the V Foundation for Cancer Research to support her groundbreaking work in finding new treatments for childhood medulloblastoma.

Dr. Pei, who joined Children’s National in 2014 after training in the Wechsler-Reya lab at the Sanford-Burnham Institute in La Jolla, CA, has focused her work on the biology of medulloblastoma, the most common malignant brain tumor in children, with a major emphasis on the study of the medulloblastoma subtype most resistant to treatment. Children with this form of medulloblastoma have less than a 30% chance of survival five years from their diagnosis.

Having already developed one of the most important mouse models of this disease, Dr. Pei’s present V Foundation for Cancer Research Award, which includes becoming a V scholar, will explore the role of metabolism in the development of metastasis in MYC-amplified medulloblastomas (the most virulent form of medulloblastoma).

The V Foundation for Cancer Research Award is one of a series of prestigious awards Dr. Pei has received over the past 18 months for her work, including an NIH-sponsored 5-year award (ROI) evaluating other aspects of medulloblastoma development and resistance to therapy, and grants from the Rally Foundation, the Meghan Rose Bradley Foundation and the Children’s Cancer Foundation.

When asked about this award, Dr. Pei noted “I am so deeply grateful to receive this support from the V Foundation for Cancer Research…I will use these resources to aid our goal of discovering new therapies to treat medulloblastoma.”

Her cutting-edge work is generating national and international attention and firmly places Dr. Pei as an international leader in medulloblastoma research.

Eugene Hwang in an exam room

Clinical Trial Spotlight: Creating a super army to target CNS tumors

Eugene Hwang in an exam room

Following the noted success of CAR-T cells in treating leukemia, Eugene Hwang, M.D., and a team of physicians at Children’s National are studying the efficacy of using these white blood cell “armies” to fight central nervous system (CNS) tumors.

Following the noted success of CAR-T cells in treating leukemia, physicians at Children’s National are studying the efficacy of using these white blood cell “armies” to fight central nervous system (CNS) tumors. Employing a strategy of “supertraining” the cells to target and attack three tumor targets as opposed to just one, Eugene Hwang, M.D., and the team at Children’s are optimistic about using this immunotherapy technique on a patient population that hasn’t previously seen much promise for treatment or cure. The therapy is built on the backbone of T cell technology championed by Catherine Bollard, M.B.Ch.B., M.D., director of the Center for Cancer and Immunology Research, which is only available at Children’s National. Hwang sees this trial as an exciting start to using T cells to recognize resistant brain cancer. “We have never before been able to pick out markers on brain cancer and use the immune system to help us attack the cancer cells. This strategy promises to help us find treatments that are better at killing cancer and lessening side effects,” he says.

This Phase 1 dose-escalation is designed to determine the safety and feasibility of rapidly generated tumor multiantigen associated specific cytotoxic T lymphocytes (TAA-T) in patients with newly diagnosed diffuse intrinsic pontine gliomas (DIPGs) or recurrent, progressive or refractory non-brainstem CNS malignancies. Pediatric and adult patients who have high-risk CNS tumors with known positivity for one or more Tumor Associated Antigens (TAA) (WT1, PRAME and/or surviving) will be enrolled in one of two groups: Group A includes patients with newly diagnosed DIPGs who will undergo irradiation as part of their upfront therapy and Group B includes patients with recurrent, progressive or refractory CNS tumors including medulloblastoma, non-brainstem high-grade glioma, and ependymoma, among others. TAA-T will be generated from a patient’s peripheral blood mononuclear cells (PBMCs) or by apheresis. This protocol is designed as a phase 1 dose-escalation study. Group A patients: TAA-T will be infused any time >2 weeks after completion of radiotherapy. Group B patients: TAA-T will be infused any time >2 after completing the most recent course of conventional (non-investigational) therapy for their disease AND after appropriate washout periods as detailed in eligibility criteria.

For more information about this trial, contact:

Eugene Hwang, M.D.
202-476-5046
ehwang@childrensnational.org

Click here to view Open Phase 1 and 2 Cancer Clinical Trials at Children’s National.

The Children’s National Center for Cancer and Blood Disorders is committed to providing the best care for pediatric patients. Our experts play an active role in innovative clinical trials to advance pediatric cancer care. We offer access to novel trials and therapies, some of which are only available here at Children’s National. With research interests covering nearly aspect of pediatric cancer care, our work is making great advancements in childhood cancer.